The Carbon Nanomaterials Global Opportunity Report

0

Carbon nanotubes, graphene, 2D materials and nanodiamonds

Published November 16 2016 | 778 pages | Download Table of contents

cover

This is a golden era for nanostructured carbon materials research. Graphitic carbon materials such as carbon nanotubes (CNTs) and graphene are the strongest, lightest and most conductive fibres known to man, with a performance-per-weight greater than any other material. In direct competition in a number of markets, they are complementary in others.

Once the most promising of all nanomaterials, CNTs face stiff competition in conductive applications from graphene and other 2D materials and in mechanically enhanced composites from nanocellulose. However, after considerable research efforts, numerous multi-walled carbon nanotubes (MWNTs)-enhanced products are commercially available. Super-aligned CNT arrays, films and yarns have found applications in consumer electronics, batteries, polymer composites, aerospace, sensors, heaters, filters and biomedicine.

Large-scale industrial production of single-walled carbon nanotubes (SWNTs) has been initiated, promising new market opportunities in transparent conductive films, transistors, sensors and memory devices. SWNTs are regarded as one of the most promising candidates to utilized as building blocks in next generation electronics.

Two-dimensional(2D) materials are currently one of the most active areas of nanomaterials research, and offer a huge opportunity for both fundamental studies and practical applications, including superfast, low-power, flexible and wearable electronics, sensors, photonics and electrochemical energy storage devices that will have an immense impact on our society.

Graphene is a ground-breaking two-dimensional (2D) material that possesses extraordinary electrical and mechanical properties that promise a new generation of innovative devices. New methods of scalable synthesis of high-quality graphene, clean delamination transfer and device integration have resulted in the commercialization of state-of-the-art electronics such as graphene touchscreens in smartphones and flexible RF devices on plastics.

Beyond graphene, emerging elementary 2D materials such as transition metal dichalcogenides, group V systems including phosphorene, and related isoelectronic structures will potentially allow for flexible electronics and field-effect transistors that exhibit ambipolar transport behaviour with either a direct band-gap or greater gate modulation.

Nanodiamonds (NDs), also called detonation diamonds (DND) or ultradispersed diamonds (UDD), are relatively easy and inexpensive to produce, and have moved towards large-scale commercialization due to their excellent mechanical, thermal properties and chemical stability. Based upon their primary particle sizes, they have been classified into:

  • nanocrystalline particles (1 to ≥150 nm)
  • ultrananocrystalline particles (2 to 10 nm)
  • diamondoids (1 to 2 nm).

Carbon nanotubes, graphene and 2D materials and nanodiamonds exhibit a unique combination of mechanical, thermal, electronic and optical properties that provide opportunities for new innovation in:

Electronics & photonics

  • Conductive electrode films for flexible displays.
  • Transparent conductive films for large area and high-efficiency organic light emitting diodes.
  • 2D printable and transparent ultrathin electronic devices.
  • 2D transistors and circuits.
  • RFID tags.
  • 2D magnetic semiconductors.
  • Conductive inks for wearable electronics.
  • 2d MOSFETs.
  • Inkjet-printed electronics.
  • Flexible Graphene FETs.
  • Flexible TMD FETs for digital logic and RF.
  • Graphene optical modulators.
  • Electrically conductive textiles
  • Interconnects.

 Energy

  • Li-ion battery additives.
  • Aerogel anodes for LIBs.
  • Proton exchange fuel cell membranes.
  • Hydrogen fuel cells.
  • CNT cathodes fithium sulfur batteries.
  • Electrodes for supercapacitors.
  • Transparent electrodes in photovoltaic cells.
  • SiG anodes.
  • Thermal spreaders.
  • Catalysts for energy conversion.
  • Sustainable electrocatalysis and photocatalysis.
  • Nanofluids for heat dissipation.
  • Flexible electrodes for polymer solar cells.

 Automotive

  • Tire additives for improved abrasion resistance.
  • Anti-scratch and anti-corrosion coatings.
  • Automotive composites.
  • Anti-fogging coatings.

Aerospace

  • De-icing coatings.
  • Electrically conductive composites.
  • EMI shielding coatings.
  • Anti-corrosion coatings.
  • Glass additives.
  • Shape memory alloys.
  • Protective glass.

Biomedicine and healthcare

  • Tissue engineering scaffols to facilitate cell growth and tissue regeneration.
  • Carriers for drug delivery.
  • Biosensor chips.
  • Brain electrodes.
  • Anti-bacterial materials.
  • Gene therapy.
  • Photodynamic therapy.
  • Cell imaging using carbon quantum dots.
  • Bone repair.
  • Glucose biosensors.
  • Wound management and anti-bacterial.
  • Graphene hydrogels for controlled delivery of drugs.
  • Porous carriers for drug delivery.
  • Carbon nanoonions as imaging probes.

Polymer composites

  • Nanocomposites for wind turbines.
  • Barrier packaging materials.
  • ESD and EMI shielding.
  • Sporting goods composites (e.g. bike tires).
  • Composites with improved conductive and thermal properties.
  • Nanocomposite yarns.
  • Adhesives and pads for thermal interface materials.
  • Shape memory.

 Filtration

  • Gas separation membranes.
  • Photocatalytic absorbents.
  • Ultrathin, high-flux and energy-efficient sieving membranes.
  • Arsenic removal from water.
  • Water desalination.

Sensors

  • Electrochemical sensors.
  • DNA detection platforms.
  • Pressure sensors.
  • Optical sensors.
  • Humidity sensors.
  • Acoustic sensors.
  • Wireless sensors.

This 778 page report on the carbon nanotubes, graphene and 2D materials and nanodiamonds market is by far the most comprehensive and authoritative report produced.

  • Production volumes, estimated to 2025
  • Commercialization timelines and technology trends
  • Carbon nanotubes and graphene products, now and planned
  • Comparative analysis of carbon nanotubes and graphene
  • Assessment of carbon nanomaterials market including production volumes, competitive landscape, commercial prospects, applications, demand by market and region, commercialization timelines, prices and producer profiles.
  • Assessment of end user markets for carbon nanomaterials including market drivers and trends, applications, market opportunity, market challenges and application and product developer profiles.
  • Unique assessment tools for the carbon nanomaterials market, end user applications, economic impact, addressable markets and market challenges to provide the complete picture of where the real opportunities in carbon nanomaterials are.
  • Company profiles of carbon nanotubes, graphene, 2D materials and nanodiamonds producers and product developers, including products, target markets and contact details
The Carbon Nanomaterials Global Opportunity Report
The Carbon Nanomaterials Global Opportunity Report
Instant PDF download on completion of purchase.
The Carbon Nanomaterials Global Opportunity Report
The Carbon Nanomaterials Global Opportunity Report
PDF plus hard copy in glossy print format. 5-7 working days delivery. Price includes postage and packing.
The Carbon Nanomaterials Global Opportunity Report
The Carbon Nanomaterials Global Opportunity Report
PDF download. Company wide licence.

 

TABLE OF CONTENTS

1       RESEARCH METHODOLOGY………………………………………………………………………………………….. 46

1.1        NANOMATERIALS MARKET RATING SYSTEM……………………………………………………….. 46

1.2        COMMERCIAL IMPACT RATING SYSTEM………………………………………………………………. 48

1.3        MARKET CHALLENGES RATING SYSTEM……………………………………………………………… 49

2       EXECUTIVE SUMMARY……………………………………………………………………………………………………. 51

2.1        CARBON NANOTUBES…………………………………………………………………………………………….. 51

2.1.1     Exceptional properties…………………………………………………………………………………………… 53

2.1.2     Products and applications…………………………………………………………………………………….. 54

2.1.3     Threat from the graphene market………………………………………………………………………….. 55

2.1.4     Production……………………………………………………………………………………………………………… 55

2.1.4.1      Multi-walled nanotube (MWNT) production………………………………………………….. 55

2.1.4.2      Single-walled nanotube (SWNT) production………………………………………………… 56

2.1.5     Global demand for carbon nanotubes…………………………………………………………………… 58

2.1.5.1      Current products……………………………………………………………………………………………. 60

2.1.5.2      Future products……………………………………………………………………………………………… 61

2.1.6     Market drivers and trends……………………………………………………………………………………… 61

2.1.6.1      Electronics…………………………………………………………………………………………………….. 61

2.1.6.2      Electric vehicles and lithium-ion batteries…………………………………………………….. 62

2.1.7     Market and production challenges………………………………………………………………………… 63

2.1.7.1      Safety issues…………………………………………………………………………………………………. 63

2.1.7.2      Dispersion…………………………………………………………………………………………………….. 63

2.1.7.3      Synthesis and supply quality………………………………………………………………………… 64

2.1.7.4      Cost……………………………………………………………………………………………………………….. 64

2.1.7.5      Competition from other materials………………………………………………………………….. 64

2.2        Two-dimensional (2D) materials……………………………………………………………………………….. 64

2.3        Graphene…………………………………………………………………………………………………………………… 65

2.3.1     Products………………………………………………………………………………………………………………… 66

2.3.2     Short-term opportunities………………………………………………………………………………………… 66

2.3.3     Medium-term opportunities……………………………………………………………………………………. 67

2.3.4     Remarkable properties………………………………………………………………………………………….. 69

2.3.5     Global funding and initiatives………………………………………………………………………………… 69

2.3.5.1      Europe…………………………………………………………………………………………………………… 69

2.3.5.2      Asia……………………………………………………………………………………………………………….. 69

2.3.5.3      United States…………………………………………………………………………………………………. 70

2.3.6     Products and applications…………………………………………………………………………………….. 71

2.3.7     Production……………………………………………………………………………………………………………… 72

2.3.8     Market drivers and trends……………………………………………………………………………………… 74

2.3.8.1      Production exceeds demand………………………………………………………………………… 74

2.3.8.2      Market revenues remain small……………………………………………………………………… 75

2.3.8.3      Scalability and cost……………………………………………………………………………………….. 76

2.3.8.4      Applications hitting the market………………………………………………………………………. 77

2.3.8.5      Wait and see?……………………………………………………………………………………………….. 78

2.3.8.6      Asia and US lead the race…………………………………………………………………………….. 78

2.3.8.7      Competition from other materials………………………………………………………………….. 79

2.3.9     Market and technical challenges…………………………………………………………………………… 80

2.3.9.1      Inconsistent supply quality……………………………………………………………………………. 80

2.3.9.2      Functionalization and dispersion………………………………………………………………….. 80

2.3.9.3      Cost……………………………………………………………………………………………………………….. 81

2.3.9.4      Product integration………………………………………………………………………………………… 81

2.3.9.5      Regulation and standards…………………………………………………………………………….. 81

2.3.9.6      Lack of a band gap……………………………………………………………………………………….. 81

3       INTRODUCTION………………………………………………………………………………………………………………… 83

3.1        Properties of nanomaterials………………………………………………………………………………………. 83

3.2        Categorization…………………………………………………………………………………………………………… 84

4       CARBON NANOTUBES……………………………………………………………………………………………………. 86

4.1        Multi-walled nanotubes (MWNT)……………………………………………………………………………….. 86

4.2        Single-wall carbon nanotubes (SWNT)…………………………………………………………………….. 87

4.2.1     Single-chirality………………………………………………………………………………………………………. 89

4.3        Double-walled carbon nanotubes (DWNTs)……………………………………………………………… 90

4.4        Few-walled carbon nanotubes (FWNTs)…………………………………………………………………… 91

4.5        Carbon Nanohorns (CNHs)………………………………………………………………………………………. 91

4.6        Carbon Onions………………………………………………………………………………………………………….. 92

4.7        Fullerenes………………………………………………………………………………………………………………….. 93

4.8        Boron Nitride nanotubes (BNNTs)…………………………………………………………………………….. 94

4.9        Properties………………………………………………………………………………………………………………….. 95

4.10      Applications of carbon nanotubes…………………………………………………………………………….. 96

4.10.1       High volume applications………………………………………………………………………………….. 96

4.10.2       Low volume applications…………………………………………………………………………………… 97

4.10.3       Novel applications…………………………………………………………………………………………….. 97

5       GRAPHENE………………………………………………………………………………………………………………………. 98

5.1        History……………………………………………………………………………………………………………………….. 98

5.2        Forms of graphene…………………………………………………………………………………………………….. 99

5.3        Properties………………………………………………………………………………………………………………… 101

5.4        3D Graphene…………………………………………………………………………………………………………… 102

5.5        Graphene Quantum Dots………………………………………………………………………………………… 102

5.5.1     Synthesis…………………………………………………………………………………………………………….. 103

5.5.2     Applications…………………………………………………………………………………………………………. 104

5.5.3     Producers……………………………………………………………………………………………………………. 105

6       NANODIAMONDS…………………………………………………………………………………………………………… 106

6.1        Properties………………………………………………………………………………………………………………… 106

6.2        Applications…………………………………………………………………………………………………………….. 108

7       OTHER 2D MATERIALS…………………………………………………………………………………………………. 110

7.1        Black phosphorus/Phosphorene…………………………………………………………………………….. 111

7.1.1     Properties……………………………………………………………………………………………………………. 111

7.1.2     Applications…………………………………………………………………………………………………………. 113

7.2        C2N………………………………………………………………………………………………………………………….. 113

7.2.1     Properties……………………………………………………………………………………………………………. 114

7.2.2     Applications…………………………………………………………………………………………………………. 115

7.3        Carbon nitride………………………………………………………………………………………………………….. 115

7.3.1     Properties……………………………………………………………………………………………………………. 115

7.3.2     Applications…………………………………………………………………………………………………………. 116

7.4        Germanene……………………………………………………………………………………………………………… 116

7.4.1     Properties……………………………………………………………………………………………………………. 116

7.4.2     Applications…………………………………………………………………………………………………………. 117

7.5        Graphdiyne……………………………………………………………………………………………………………… 117

7.5.1     Properties……………………………………………………………………………………………………………. 118

7.5.2     Applications…………………………………………………………………………………………………………. 119

7.6        Graphane………………………………………………………………………………………………………………… 119

7.6.1     Properties……………………………………………………………………………………………………………. 120

7.6.2     Applications…………………………………………………………………………………………………………. 120

7.7        Hexagonal boron nitride………………………………………………………………………………………….. 121

7.7.1     Properties……………………………………………………………………………………………………………. 122

7.7.2     Applications…………………………………………………………………………………………………………. 123

7.7.3     Producers……………………………………………………………………………………………………………. 123

7.8        Molybdenum disulfide (MoS2)…………………………………………………………………………………. 123

7.8.1     Properties……………………………………………………………………………………………………………. 124

7.8.2     Applications…………………………………………………………………………………………………………. 125

7.9        Rhenium disulfide (ReS2) and diselenide (ReSe2)……………………………………………….. 127

7.9.1     Properties……………………………………………………………………………………………………………. 128

7.9.2     Applications…………………………………………………………………………………………………………. 128

7.10      Silicene……………………………………………………………………………………………………………………. 129

7.10.1       Properties………………………………………………………………………………………………………… 129

7.10.2       Applications…………………………………………………………………………………………………….. 130

7.11      Stanene/tinene………………………………………………………………………………………………………… 132

7.11.1       Properties………………………………………………………………………………………………………… 133

7.12      Applications…………………………………………………………………………………………………………….. 134

7.13      Tungsten diselenide………………………………………………………………………………………………… 134

7.13.1       Properties………………………………………………………………………………………………………… 135

7.13.2       Applications…………………………………………………………………………………………………….. 135

8       COMPARATIVE ANALYSIS OF GRAPHENE AND CARBON NANOTUBES……………….. 136

8.1        Comparative properties…………………………………………………………………………………………… 137

8.2        Cost and production………………………………………………………………………………………………… 138

8.3        Carbon nanotube-graphene hybrids………………………………………………………………………. 139

8.4        Competitive market analysis of carbon nanotubes and graphene………………………….. 140

9       CARBON NANOTUBE SYNTHESIS………………………………………………………………………………. 142

9.1        Arc discharge synthesis…………………………………………………………………………………………… 143

9.2        Chemical Vapor Deposition (CVD)…………………………………………………………………………. 144

9.3        Plasma enhanced chemical vapor deposition (PECVD)………………………………………… 145

9.4        High-pressure carbon monoxide synthesis…………………………………………………………….. 146

9.4.1     High Pressure CO (HiPco)………………………………………………………………………………….. 146

9.4.2     CoMoCAT……………………………………………………………………………………………………………. 146

9.5        Flame synthesis………………………………………………………………………………………………………. 147

9.6        Laser ablation synthesis………………………………………………………………………………………….. 148

9.7        Silane solution method……………………………………………………………………………………………. 149

10     GRAPHENE SYNTHESIS……………………………………………………………………………………………….. 150

10.1      Large area graphene films………………………………………………………………………………………. 150

10.2      Graphene oxide flakes and graphene nanoplatelets……………………………………………… 151

10.3      Production methods………………………………………………………………………………………………… 152

10.3.1       Production directly from natural graphite ore………………………………………………….. 154

10.3.2       Alternative starting materials…………………………………………………………………………… 154

10.3.3       Quality……………………………………………………………………………………………………………… 154

10.4      Synthesis and production by types of graphene……………………………………………………… 155

10.4.1       Graphene nanoplatelets (GNPs)…………………………………………………………………….. 156

10.4.2       Graphene nanoribbons…………………………………………………………………………………… 156

10.4.3       Large-area graphene films……………………………………………………………………………… 157

10.4.4       Graphene oxide flakes (GO)……………………………………………………………………………. 158

10.5      Pros and cons of graphene production methods…………………………………………………….. 159

10.5.1       Chemical Vapor Deposition (CVD)…………………………………………………………………. 160

10.5.2       Exfoliation method…………………………………………………………………………………………… 161

10.5.3       Epitaxial growth method………………………………………………………………………………….. 161

10.5.4       Wet chemistry method (liquid phase exfoliation)…………………………………………….. 162

10.5.5       Micromechanical cleavage method………………………………………………………………… 163

10.5.6       Green reduction of graphene oxide………………………………………………………………… 163

10.5.7       Plasma…………………………………………………………………………………………………………….. 164

10.6      Recent synthesis methods………………………………………………………………………………………. 164

10.6.1       Ben-Gurion University of the Negev (BGU) and University of Western Australia 164

10.6.2       Graphene Frontiers…………………………………………………………………………………………. 164

10.6.3       MIT and the University of Michigan…………………………………………………………………. 165

10.6.4       Oak Ridge National Laboratory/University of Texas/General Graphene………… 166

10.6.5       University of Florida/Donghua University……………………………………………………….. 166

10.6.6       Ulsan National Institute of Science and Technology (UNIST) and Case Western Reserve University          167

10.6.7       Trinity College Dublin……………………………………………………………………………………… 167

10.6.8       Sungkyunkwan University and Samsung Advanced Institute of Technology (SAIT)     167

10.6.9       Korea Institute of Science and Technology (KIST), Chonbuk National University and KRICT 167

10.6.10     NanoXplore…………………………………………………………………………………………………….. 167

10.6.11     Carbon Sciences Inc……………………………………………………………………………………….. 167

10.6.12     California Institute of Technology……………………………………………………………………. 168

10.6.13     Shanghai Institute of Microsystem and Information Technology…………………….. 168

10.6.14     Oxford University…………………………………………………………………………………………….. 168

10.6.15     University of Tokyo………………………………………………………………………………………….. 168

10.7      Synthesis methods by company……………………………………………………………………………… 170

11     CARBON NANOTUBES MARKET STRUCTURE………………………………………………………….. 172

12     GRAPHENE MARKET STRUCTURE AND ROUTES TO COMMERCIALIZATION……….. 174

13     REGULATIONS AND STANDARDS………………………………………………………………………………. 178

13.1      Europe…………………………………………………………………………………………………………………….. 178

13.1.1       REACH……………………………………………………………………………………………………………. 178

13.1.2       Biocidal Products Regulation………………………………………………………………………….. 179

13.1.3       National nanomaterials registers……………………………………………………………………. 179

13.1.4       Cosmetics regulation………………………………………………………………………………………. 180

13.1.5       Food safety……………………………………………………………………………………………………… 181

13.2      United States…………………………………………………………………………………………………………… 182

13.2.1       Toxic Substances Control Act (TSCA)…………………………………………………………….. 182

13.3      Asia………………………………………………………………………………………………………………………….. 183

13.3.1       Japan………………………………………………………………………………………………………………. 183

13.3.2       South Korea…………………………………………………………………………………………………….. 183

13.3.3       Taiwan…………………………………………………………………………………………………………….. 183

13.3.4       Australia………………………………………………………………………………………………………….. 183

14     CARBON NANOTUBES PATENTS………………………………………………………………………………… 185

15     GRAPHENE PATENTS AND PUBLICATIONS………………………………………………………………. 189

15.1      Fabrication processes……………………………………………………………………………………………… 189

15.2      Academia………………………………………………………………………………………………………………… 189

15.3      Regional leaders…………………………………………………………………………………………………….. 190

16     TECHNOLOGY READINESS LEVEL………………………………………………………………………………. 194

16.1      Carbon nanotubes…………………………………………………………………………………………………… 194

16.2      Graphene………………………………………………………………………………………………………………… 196

16.3      Nanodiamonds………………………………………………………………………………………………………… 197

17     CARBON NANOTUBES END USER MARKET SEGMENT ANALYSIS………………………… 199

17.1      Production volumes in metric tons, 2010-2025……………………………………………………….. 199

17.2      Carbon nanotube producer production capacities………………………………………………….. 204

17.3      Regional demand for carbon nanotubes………………………………………………………………… 206

17.3.1       Japan………………………………………………………………………………………………………………. 208

17.3.2       China………………………………………………………………………………………………………………. 209

17.4      Main carbon nanotubes producers…………………………………………………………………………. 210

17.4.1       SWNT production……………………………………………………………………………………………. 211

17.4.1.1    OCSiAl………………………………………………………………………………………………………… 211

17.4.1.2    FGV Cambridge Nanosystems……………………………………………………………………. 211

17.4.1.3    Zeon Corporation………………………………………………………………………………………… 211

17.5      Price of carbon nanotubes-MWNTs, SWNTs and FWNTs………………………………………. 212

17.5.1       MWNTs……………………………………………………………………………………………………………. 212

17.5.2       SWNTs…………………………………………………………………………………………………………….. 213

17.6      APPLICATIONS……………………………………………………………………………………………………….. 214

18     GRAPHENE END USER MARKET SEGMENT ANALYSIS……………………………………………. 216

18.1      Graphene production volumes 2010-2025……………………………………………………………… 217

18.2      Graphene producers and production capacities…………………………………………………….. 218

19     NANODIAMONDS END USER SEGMENT ANALYSIS………………………………………………….. 224

19.1      Demand by market………………………………………………………………………………………………….. 224

19.2      Market challenges…………………………………………………………………………………………………… 225

19.3      Production volumes in tons, 2010-2025………………………………………………………………….. 225

19.4      Production volumes, by region………………………………………………………………………………… 226

19.5      Prices………………………………………………………………………………………………………………………. 227

20     ADHESIVES…………………………………………………………………………………………………………………….. 228

20.1      MARKET DRIVERS AND TRENDS…………………………………………………………………………. 228

20.1.1       Thermal management in high temperature electronics………………………………….. 228

20.1.2       Environmental sustainability…………………………………………………………………………… 228

20.2      PROPERTIES AND APPLICATIONS………………………………………………………………………. 228

20.3      MARKET SIZE AND OPPORTUNITY………………………………………………………………………. 230

20.3.1       Total market size……………………………………………………………………………………………… 230

20.3.2       Carbon nanomaterials opportunity…………………………………………………………………. 230

20.4      MARKET CHALLENGES…………………………………………………………………………………………. 231

20.5      APPLICATION AND PRODUCT DEVELOPERS…………………………………………………….. 231

20.5.1       Carbon nanotubes………………………………………………………………………………………….. 231

20.5.2       Graphene………………………………………………………………………………………………………… 232

21     AEROSPACE………………………………………………………………………………………………………………….. 233

21.1      MARKET DRIVERS AND TRENDS…………………………………………………………………………. 233

21.1.1       Safety………………………………………………………………………………………………………………. 233

21.1.2       Reduced fuel consumption and costs…………………………………………………………….. 233

21.1.3       Increased durability…………………………………………………………………………………………. 233

21.1.4       Multi-functionality…………………………………………………………………………………………….. 234

21.1.5       Need for new de-icing solutions……………………………………………………………………… 234

21.1.6       Weight reduction……………………………………………………………………………………………… 234

21.1.7       Need for improved lightning protection materials…………………………………………… 235

21.2      PROPERTIES AND APPLICATIONS………………………………………………………………………. 235

21.2.1       Composites……………………………………………………………………………………………………… 235

21.2.1.1    CESD protection…………………………………………………………………………………………. 236

21.2.1.2    Conductive cables………………………………………………………………………………………. 237

21.2.1.3    Anti-friction braking systems……………………………………………………………………….. 237

21.2.2       Coatings………………………………………………………………………………………………………….. 237

21.2.2.1    Anti-icing……………………………………………………………………………………………………… 238

21.2.3       Sensors…………………………………………………………………………………………………………… 239

21.3      MARKET SIZE AND OPPORTUNITY………………………………………………………………………. 239

21.3.1       Total market size……………………………………………………………………………………………… 239

21.3.2       Carbon nanomaterials opportunity…………………………………………………………………. 239

21.4      MARKET CHALLENGES…………………………………………………………………………………………. 240

21.5      APPLICATION AND PRODUCT DEVELOPERS…………………………………………………….. 241

21.5.1       Carbon nanotubes………………………………………………………………………………………….. 241

21.5.2       Graphene………………………………………………………………………………………………………… 243

22     AUTOMOTIVE………………………………………………………………………………………………………………….. 245

22.1      MARKET DRIVER AND TRENDS…………………………………………………………………………… 245

22.1.1       Environmental regulations………………………………………………………………………………. 245

22.1.2       Lightweighting…………………………………………………………………………………………………. 245

22.1.3       Increasing use of natural fiber composites……………………………………………………… 246

22.1.4       Safety………………………………………………………………………………………………………………. 247

22.1.5       Cost…………………………………………………………………………………………………………………. 247

22.1.6       Need for enhanced conductivity in fuel components………………………………………. 248

22.1.7       Increase in the use of touch-based automotive applications………………………….. 248

22.2      PROPERTIES AND APPLICATIONS………………………………………………………………………. 249

22.2.1       Composites……………………………………………………………………………………………………… 250

22.2.2       Thermally conductive additives………………………………………………………………………. 252

22.2.3       Vehicle mass reduction…………………………………………………………………………………… 252

22.2.4       Lithium-ion batteries in electric and hybrid vehicles……………………………………….. 252

22.2.5       Paints and coatings…………………………………………………………………………………………. 252

22.3      MARKET SIZE AND OPPORTUNITY………………………………………………………………………. 255

22.3.1       Composites……………………………………………………………………………………………………… 255

22.3.1.1    Total market size…………………………………………………………………………………………. 255

22.3.1.2    Carbon nanomaterials opportunity……………………………………………………………… 256

22.3.2       Coatings………………………………………………………………………………………………………….. 256

22.3.2.1    Total market size…………………………………………………………………………………………. 256

22.3.2.2    Carbon nanomaterials opportunity……………………………………………………………… 257

22.3.3       MARKET CHALLENGES………………………………………………………………………………… 258

22.4      APPLICATION AND PRODUCT DEVELOPERS…………………………………………………….. 259

22.4.1       Carbon nanotubes………………………………………………………………………………………….. 259

22.4.2       Graphene………………………………………………………………………………………………………… 260

23     BIOMEDICAL & HEALTHCARE……………………………………………………………………………………… 261

23.1      MARKET DRIVERS AND TRENDS…………………………………………………………………………. 262

23.1.1       Improved drug delivery for cancer therapy……………………………………………………… 262

23.1.2       Shortcomings of chemotherapies……………………………………………………………………. 262

23.1.3       Biocompatibility of medical implants……………………………………………………………….. 262

23.1.4       Anti-biotic resistance……………………………………………………………………………………….. 263

23.1.5       Growth in advanced woundcare market…………………………………………………………. 263

23.1.6       Growth in the wearable monitoring market……………………………………………………… 263

23.1.7       Cancer therapy……………………………………………………………………………………………….. 265

23.1.7.1    Immunotherapy…………………………………………………………………………………………… 267

23.1.7.2    Thermal ablation…………………………………………………………………………………………. 267

23.1.7.3    Stem cell therapy………………………………………………………………………………………… 267

23.1.7.4    Graphene oxide for therapy and drug delivery…………………………………………… 267

23.1.7.5    Graphene nanosheets………………………………………………………………………………… 268

23.1.7.6    Gene delivery……………………………………………………………………………………………… 268

23.1.7.7    Photodynamic Therapy……………………………………………………………………………….. 268

23.1.8       Medical implants and devices…………………………………………………………………………. 268

23.1.9       Wound dressings…………………………………………………………………………………………….. 269

23.1.10     Biosensors………………………………………………………………………………………………………. 269

23.1.10.1      FRET biosensors for DNA detection……………………………………………………….. 271

23.1.11     Medical imaging……………………………………………………………………………………………… 272

23.1.12     Tissue engineering…………………………………………………………………………………………. 272

23.1.13     Dental……………………………………………………………………………………………………………… 273

23.1.14     Electrophysiology……………………………………………………………………………………………. 273

23.2      MARKET SIZE AND OPPORTUNITY………………………………………………………………………. 273

23.3      MARKET CHALLENGES…………………………………………………………………………………………. 274

23.3.1       Potential toxicity………………………………………………………………………………………………. 274

23.3.2       Safety………………………………………………………………………………………………………………. 275

23.3.3       Dispersion……………………………………………………………………………………………………….. 275

23.4      APPLICATION AND PRODUCT DEVELOPERS…………………………………………………….. 275

23.4.1       Carbon nanotubes………………………………………………………………………………………….. 275

23.4.2       Graphene………………………………………………………………………………………………………… 277

24     COATINGS………………………………………………………………………………………………………………………. 278

24.1      MARKET DRIVERS AND TRENDS…………………………………………………………………………. 278

24.1.1       New functionalities and improved properties………………………………………………….. 279

24.1.2       Need for more effective protection………………………………………………………………….. 280

24.1.3       Sustainability and regulation…………………………………………………………………………… 281

24.1.4       Cost of corrosion……………………………………………………………………………………………… 281

24.1.5       Need for improved hygiene…………………………………………………………………………….. 282

24.1.6       Cost of weather-related damage…………………………………………………………………….. 283

24.1.7       Increased demand for coatings for extreme environments…………………………….. 283

24.2      PROPERTIES AND APPLICATIONS………………………………………………………………………. 284

24.2.1       Anti-static coatings………………………………………………………………………………………….. 286

24.2.2       Anti-corrosion coatings……………………………………………………………………………………. 286

24.2.2.1    Marine…………………………………………………………………………………………………………. 288

24.2.2.2    Oil and gas………………………………………………………………………………………………….. 288

24.3      Anti-microbial…………………………………………………………………………………………………………… 289

24.3.1       Anti-icing…………………………………………………………………………………………………………. 289

24.3.2       Barrier coatings……………………………………………………………………………………………….. 290

24.3.3       Heat protection………………………………………………………………………………………………… 291

24.3.4       Anti-fouling………………………………………………………………………………………………………. 292

24.3.5       Wear and abrasion resistance………………………………………………………………………… 293

24.3.6       Smart windows………………………………………………………………………………………………… 294

24.4      MARKET SIZE AND OPPORTUNITY………………………………………………………………………. 295

24.5      PRODUCT DEVELOPERS……………………………………………………………………………………… 300

24.5.1       Carbon nanotubes………………………………………………………………………………………….. 300

24.5.2       Graphene………………………………………………………………………………………………………… 301

25     COMPOSITES………………………………………………………………………………………………………………….. 302

25.1      MARKET DRIVERS AND TRENDS…………………………………………………………………………. 302

25.1.1       Growing use of polymer composites……………………………………………………………….. 302

25.1.2       Increased need for advanced, protective materials………………………………………… 302

25.1.3       Improved performance over traditional composites………………………………………… 302

25.1.4       Multi-functionality…………………………………………………………………………………………….. 303

25.1.5       Growth in use in the wind energy market………………………………………………………… 303

25.1.6       Need for new flame retardant materials………………………………………………………….. 304

25.1.7       Environmental impact of carbon fibers……………………………………………………………. 304

25.1.8       Shortcomings of natural fiber composites and glass fiber reinforced composites 304

25.2      PROPERTIES AND APPLICATIONS………………………………………………………………………. 305

25.2.1       Polymer composites………………………………………………………………………………………… 305

25.2.2       Barrier packaging……………………………………………………………………………………………. 307

25.2.3       Electrostatic discharge (ESD) and electromagnetic interference (EMI) shielding 307

25.2.4       Wind turbines………………………………………………………………………………………………….. 308

25.2.5       Ballistic protection…………………………………………………………………………………………… 308

25.2.6       Cement additives…………………………………………………………………………………………….. 309

25.2.7       Sporting goods………………………………………………………………………………………………… 310

25.2.8       Wire and cable………………………………………………………………………………………………… 310

25.2.9       Thermal management…………………………………………………………………………………….. 310

25.2.10     Rubber and elastomers…………………………………………………………………………………… 311

25.3      MARKET SIZE AND OPPORTUNITY………………………………………………………………………. 312

25.3.1       Total market size……………………………………………………………………………………………… 312

25.3.2       Carbon nanomaterials opportunity…………………………………………………………………. 312

25.4      MARKET CHALLENGES…………………………………………………………………………………………. 313

25.5      APPLICATION AND PRODUCT DEVELOPERS…………………………………………………….. 315

25.5.1       Carbon nanotubes………………………………………………………………………………………….. 315

25.5.2       Graphene………………………………………………………………………………………………………… 318

26     ELECTRONICS AND PHOTONICS…………………………………………………………………………………. 319

26.1      Carbon nanotubes in electronics…………………………………………………………………………….. 319

26.2      Graphene and 2D materials in electronics……………………………………………………………… 320

26.2.1       Properties………………………………………………………………………………………………………… 320

26.2.2       Applications…………………………………………………………………………………………………….. 320

26.3      FLEXIBLE ELECTRONICS, CONDUCTIVE FILMS AND DISPLAYS………………………. 321

26.3.1       MARKET DRIVERS AND TRENDS………………………………………………………………… 321

26.3.1.1    ITO replacement for flexible electronics……………………………………………………… 321

26.3.2       PROPERTIES AND APPLICATIONS………………………………………………………………. 323

26.3.2.1    Transparent electrodes in flexible electronics…………………………………………….. 323

26.3.2.2    Electronic paper………………………………………………………………………………………….. 327

26.3.3       MARKET SIZE AND OPPORTUNITY………………………………………………………………. 328

26.3.3.1    Touch panel and ITO replacement……………………………………………………………… 328

26.3.4       CHALLENGES………………………………………………………………………………………………… 334

26.3.4.1    Competing materials…………………………………………………………………………………… 334

26.3.4.2    Cost in comparison to ITO…………………………………………………………………………… 335

26.3.4.3    Fabricating SWNT devices………………………………………………………………………….. 335

26.3.4.4    Problems with transfer and growth……………………………………………………………… 335

26.3.4.5    Improving sheet resistance…………………………………………………………………………. 336

26.3.4.6    Difficulties in display panel integration……………………………………………………….. 337

26.3.5       APPLICATION AND PRODUCT DEVELOPERS…………………………………………….. 338

26.3.5.1    Carbon nanotubes………………………………………………………………………………………. 338

26.3.5.2    Graphene……………………………………………………………………………………………………. 340

26.4      CONDUCTIVE INKS………………………………………………………………………………………………… 342

26.4.1       MARKET DRIVERS AND TRENDS………………………………………………………………… 342

26.4.1.1    Increased demand for printed electronics…………………………………………………… 342

26.4.1.2    Limitations of existing conductive inks………………………………………………………… 342

26.4.1.3    Growth in the 3D printing market………………………………………………………………… 343

26.4.1.4    Growth in the printed sensors market…………………………………………………………. 343

26.4.2       PROPERTIES AND APPLICATIONS………………………………………………………………. 344

26.4.2.1    Carbon nanotubes………………………………………………………………………………………. 344

26.4.2.2    Graphene……………………………………………………………………………………………………. 345

26.4.3       MARKET SIZE AND OPPORTUNITY………………………………………………………………. 348

26.4.3.1    Total market size…………………………………………………………………………………………. 348

26.4.3.2    Carbon nanomaterials opportunity……………………………………………………………… 349

26.4.4       MARKET CHALLENGES………………………………………………………………………………… 351

26.4.5       APPLICATION AND PRODUCT DEVELOPERS…………………………………………….. 352

26.4.5.1    Carbon nanotubes………………………………………………………………………………………. 352

26.4.5.2    Graphene……………………………………………………………………………………………………. 352

26.5      TRANSISTORS AND INTEGRATED CIRCUITS……………………………………………………… 354

26.5.1       MARKET DRIVERS AND TRENDS………………………………………………………………… 354

26.5.1.1    Scaling………………………………………………………………………………………………………… 354

26.5.1.2    Limitations of current materials…………………………………………………………………… 356

26.5.1.3    Limitations of copper as interconnect materials………………………………………….. 356

26.5.1.4    Need to improve bonding technology…………………………………………………………. 357

26.5.1.5    Need to improve thermal properties……………………………………………………………. 357

26.5.2       PROPERTIES AND APPLICATIONS………………………………………………………………. 357

26.5.2.1    Carbon nanotubes………………………………………………………………………………………. 358

26.5.2.2    Graphene……………………………………………………………………………………………………. 361

26.5.2.3    Graphene Radio Frequency (RF) circuits…………………………………………………… 361

26.5.2.4    Graphene spintronics………………………………………………………………………………….. 362

26.5.3       MARKET SIZE AND OPPORTUNITY………………………………………………………………. 363

26.5.4       CHALLENGES………………………………………………………………………………………………… 365

26.5.4.1    Device complexity……………………………………………………………………………………….. 365

26.5.4.2    Competition from other materials………………………………………………………………… 365

26.5.4.3    Lack of band gap………………………………………………………………………………………… 365

26.5.4.4    Transfer and integration……………………………………………………………………………… 365

26.5.5       APPLICATION AND PRODUCT DEVELOPERS…………………………………………….. 367

26.5.5.1    Carbon nanotubes………………………………………………………………………………………. 367

26.5.5.2    Graphene……………………………………………………………………………………………………. 367

26.6      MEMORY DEVICES………………………………………………………………………………………………… 369

26.6.1       MARKET DRIVERS AND TRENDS………………………………………………………………… 369

26.6.1.1    Density and voltage scaling………………………………………………………………………… 369

26.6.1.2    Growth in the smartphone and tablet markets…………………………………………….. 370

26.6.1.3    Growth in the flexible electronics market…………………………………………………….. 370

26.6.2       PROPERTIES AND APPLICATIONS………………………………………………………………. 372

26.6.2.1    Carbon nanotubes………………………………………………………………………………………. 373

26.6.2.2    Graphene……………………………………………………………………………………………………. 376

26.6.3       MARKET SIZE AND OPPORTUNITY………………………………………………………………. 377

26.6.3.1    Total market size…………………………………………………………………………………………. 377

26.6.4       APPLICATION AND PRODUCT DEVELOPERS…………………………………………….. 378

26.6.4.1    Carbon nanotubes………………………………………………………………………………………. 378

26.6.4.2    Graphene……………………………………………………………………………………………………. 379

26.7      PHOTONICS……………………………………………………………………………………………………………. 380

26.7.1       MARKET DRIVERS AND TRENDS………………………………………………………………… 380

26.7.1.1    Increased bandwidth at reduced cost…………………………………………………………. 380

26.7.1.2    Increasing sensitivity of photodetectors………………………………………………………. 380

26.7.2       PROPERTIES AND APPLICATIONS………………………………………………………………. 380

26.7.2.1    Si photonics versus graphene…………………………………………………………………….. 382

26.7.2.2    Optical modulators………………………………………………………………………………………. 382

26.7.2.3    Photodetectors……………………………………………………………………………………………. 383

26.7.2.4    Plasmonics………………………………………………………………………………………………….. 385

26.7.2.5    Fiber lasers…………………………………………………………………………………………………. 385

26.7.3       CHALLENGES………………………………………………………………………………………………… 385

26.7.3.1    Need to design devices that harness graphene’s properties……………………… 385

26.7.3.2    Problems with transfer………………………………………………………………………………… 385

26.7.3.3    THz absorbance and nonlinearity………………………………………………………………. 386

26.7.3.4    Stability and sensitivity………………………………………………………………………………… 386

26.7.4       MARKET SIZE AND OPPORTUNITY………………………………………………………………. 386

26.7.4.1    Total market size…………………………………………………………………………………………. 386

26.7.4.2    Nanotechnology and nanomaterials opportunity……………………………………….. 386

26.7.5       MARKET CHALLENGES………………………………………………………………………………… 387

26.7.6       APPLICATION AND PRODUCT DEVELOPERS…………………………………………….. 388

27     ENERGY STORAGE, CONVERSION AND EXPLORATION…………………………………………… 389

27.1      BATTERIES……………………………………………………………………………………………………………… 389

27.1.1       MARKET DRIVERS AND TRENDS………………………………………………………………… 389

27.1.1.1    Growth in personal electronics, electric vehicles and smart grids markets… 390

27.1.1.2    Reduce dependence on lithium………………………………………………………………….. 390

27.1.1.3    Shortcomings of existing battery and supercapacitor technology………………. 390

27.1.1.4    Reduced costs for widespread application…………………………………………………. 391

27.1.1.5    Power sources for flexible electronics………………………………………………………… 392

27.1.2       PROPERTIES AND APPLICATIONS………………………………………………………………. 392

27.1.2.1    Li-ion batteries (LIB)……………………………………………………………………………………. 392

27.1.2.2    Lithium-air batteries…………………………………………………………………………………….. 393

27.1.2.3    Sodium-ion batteries…………………………………………………………………………………… 394

27.1.3       MARKET SIZE AND OPPORTUNITY………………………………………………………………. 394

27.1.3.1    Total market size…………………………………………………………………………………………. 394

27.1.3.2    Nanotechnology and nanomaterials opportunity……………………………………….. 394

27.1.4       CHALLENGES………………………………………………………………………………………………… 395

27.1.5       APPLICATION AND PRODUCT DEVELOPERS…………………………………………….. 396

27.2      SUPERCAPACITORS……………………………………………………………………………………………… 402

27.2.1       MARKET DRIVERS AND TRENDS………………………………………………………………… 402

27.2.1.1    Reducing costs……………………………………………………………………………………………. 402

27.2.1.2    Demand from portable electronics……………………………………………………………… 402

27.2.1.3    Inefficiencies of standard battery technology……………………………………………… 402

27.2.1.4    Problems with activated carbon………………………………………………………………….. 402

27.2.2       PROPERTIES AND APPLICATIONS………………………………………………………………. 402

27.2.2.1    Carbon nanotubes………………………………………………………………………………………. 403

27.2.2.2    Graphene……………………………………………………………………………………………………. 403

27.2.2.3    Graphene/CNT hybrids……………………………………………………………………………….. 404

27.2.3       MARKET SIZE AND OPPORTUNITY………………………………………………………………. 405

27.2.3.1    Total market size…………………………………………………………………………………………. 405

27.2.3.2    Carbon nanomaterials opportunity……………………………………………………………… 405

27.2.4       CHALLENGES………………………………………………………………………………………………… 406

27.2.4.1    Low energy storage capacity of graphene………………………………………………….. 406

27.2.5       APPLICATION AND PRODUCT DEVELOPERS…………………………………………….. 407

27.3      PHOTOVOLTAICS…………………………………………………………………………………………………… 408

27.3.1       MARKET DRIVERS AND TRENDS………………………………………………………………… 408

27.3.1.1    Need for new materials and novel devices…………………………………………………. 408

27.3.1.2    Need for cost-effective solar energy for wider adoptions……………………………. 409

27.3.1.3    Varying environmental conditions require new coating technology…………… 409

27.3.2       PROPERTIES AND APPLICATIONS………………………………………………………………. 410

27.3.2.1    Solar cells……………………………………………………………………………………………………. 411

27.3.2.2    Solar coatings……………………………………………………………………………………………… 413

27.3.3       MARKET SIZE AND OPPORTUNITY………………………………………………………………. 413

27.3.3.1    Total market size…………………………………………………………………………………………. 413

27.3.3.2    Carbon nanomaterials opportunity……………………………………………………………… 414

27.3.4       MARKET CHALLENGES………………………………………………………………………………… 415

27.3.5       APPLICATION AND PRODUCT DEVELOPERS…………………………………………….. 416

27.4      FUEL CELLS AND HYDROGEN STORAGE…………………………………………………………… 417

27.4.1       MARKET DRIVERS AND TRENDS………………………………………………………………… 417

27.4.1.1    Need for alternative energy sources…………………………………………………………… 417

27.4.1.2    Demand from transportation and portable and stationary power sectors…… 418

27.4.1.3    Temperature problems with current fuel cell technology……………………………. 418

27.4.1.4    Reducing corrosion problems…………………………………………………………………….. 418

27.4.1.5    Limitations of platinum………………………………………………………………………………… 418

27.4.1.6    Reducing cost and increasing reliability of current fuel cell technology…….. 418

27.4.2       APPLICATION AND PRODUCT DEVELOPERS…………………………………………….. 419

27.4.3       PROPERTIES AND APPLICATIONS………………………………………………………………. 420

27.4.3.1    Fuel cells…………………………………………………………………………………………………….. 421

27.4.3.2    Hydrogen storage……………………………………………………………………………………….. 422

27.4.4       MARKET SIZE AND OPPORTUNITY………………………………………………………………. 423

27.4.4.1    Total market size…………………………………………………………………………………………. 423

27.4.4.2    Carbon nanomaterials opportunity……………………………………………………………… 423

27.4.5       CHALLENGES………………………………………………………………………………………………… 423

27.5      LED LIGHTING AND UVC……………………………………………………………………………………….. 424

27.5.1       MARKET DRIVERS AND TRENDS………………………………………………………………… 424

27.5.1.1    Need to develop low-cost lighting………………………………………………………………. 424

27.5.1.2    Environmental regulation……………………………………………………………………………. 424

27.5.1.3    Limited efficiency of phosphors in LEDs…………………………………………………….. 425

27.5.1.4    Shortcomings with LED lighting technologies…………………………………………….. 425

27.5.1.5    Improving flexibility……………………………………………………………………………………… 425

27.5.1.6    Improving performance and costs of UV-LEDs…………………………………………… 425

27.5.2       PROPERTIES AND APPLICATIONS………………………………………………………………. 426

27.5.3       MARKET SIZE AND OPPORTUNITY………………………………………………………………. 426

27.5.3.1    Total market size…………………………………………………………………………………………. 426

27.5.3.2    Carbon nanomaterials opportunity……………………………………………………………… 427

27.5.4       MARKET CHALLENGES………………………………………………………………………………… 427

27.5.5       APPLICATION AND PRODUCT DEVELOPERS…………………………………………….. 428

27.6      OIL AND GAS EXPLORATION………………………………………………………………………………… 429

27.6.1       MARKET DRIVERS AND TRENDS………………………………………………………………… 429

27.6.1.1    Need to reduce operating costs and improve operation efficiency…………….. 429

27.6.1.2    Increased demands of drilling environments……………………………………………… 429

27.6.1.3    Increased exploration in extreme environments…………………………………………. 430

27.6.1.4    Environmental and regulatory…………………………………………………………………….. 430

27.6.2       PROPERTIES AND APPLICATIONS………………………………………………………………. 430

27.6.2.1    Sensing and reservoir management…………………………………………………………… 430

27.6.2.2    Coatings……………………………………………………………………………………………………… 431

27.6.2.3    Drilling fluids……………………………………………………………………………………………….. 432

27.6.2.4    Sorbent materials………………………………………………………………………………………… 432

27.6.2.5    Separation…………………………………………………………………………………………………… 433

27.6.3       MARKET SIZE AND OPPORTUNITY………………………………………………………………. 433

27.6.3.1    Total market size…………………………………………………………………………………………. 433

27.6.3.2    Nanotechnology and nanomaterials opportunity……………………………………….. 433

27.7      APPLICATION AND PRODUCT DEVELOPERS…………………………………………………….. 434

27.7.1       Carbon nanotubes………………………………………………………………………………………….. 434

27.7.2       Graphene………………………………………………………………………………………………………… 437

28     FILTRATION AND SEPARATION…………………………………………………………………………………… 441

28.1      MARKET DRIVERS AND TRENDS…………………………………………………………………………. 441

28.1.1       Water shortage and population growth…………………………………………………………… 441

28.1.2       Need for improved and low cost membrane technology………………………………… 442

28.1.3       Need for improved groundwater treatment technologies……………………………….. 442

28.1.4       Cost and efficiency………………………………………………………………………………………….. 443

28.1.5       Growth in the air filter market…………………………………………………………………………… 443

28.1.6       Need for environmentally, safe filters……………………………………………………………… 443

28.2      PROPERTIES AND APPLICTIONS…………………………………………………………………………. 443

28.2.1.1    Desalination and water filtration…………………………………………………………………. 445

28.2.1.2    Gas separation……………………………………………………………………………………………. 447

28.3      MARKET SIZE AND OPPORTUNITY………………………………………………………………………. 447

28.3.1.1    Total market size…………………………………………………………………………………………. 447

28.3.1.2    Carbon nanomaterials opportunity……………………………………………………………… 448

28.4      CHALLENGES………………………………………………………………………………………………………… 449

28.4.1.1    Uniform pore size and distribution………………………………………………………………. 449

28.4.1.2    Cost…………………………………………………………………………………………………………….. 449

28.5      APPLICATION AND PRODUCT DEVELOPERS…………………………………………………….. 450

28.5.1       Carbon nanotubes………………………………………………………………………………………….. 450

28.5.2       Graphene………………………………………………………………………………………………………… 451

29     LUBRICANTS………………………………………………………………………………………………………………….. 452

29.1      MARKET DRIVERS AND TRENDS…………………………………………………………………………. 452

29.1.1       Need for new additives that provide “more for less”……………………………………….. 452

29.1.2       Need for higher-performing lubricants for fuel efficiency………………………………… 452

29.1.3       Environmental concerns…………………………………………………………………………………. 452

29.2      PROPERTIES AND APPLICATIONS………………………………………………………………………. 453

29.3      MARKET SIZE AND OPPORTUNITY………………………………………………………………………. 454

29.3.1       Total market size……………………………………………………………………………………………… 454

29.3.2       Carbon nanomaterials opportunity…………………………………………………………………. 454

29.4      CHALLENGES………………………………………………………………………………………………………… 455

29.5      APPLICATION AND PRODUCT DEVELOPERS…………………………………………………….. 456

29.5.1       Carbon nanotubes………………………………………………………………………………………….. 456

29.5.2       Graphene………………………………………………………………………………………………………… 456

30     SENSORS……………………………………………………………………………………………………………………….. 457

30.1      MARKET DRIVERS AND TRENDS…………………………………………………………………………. 457

30.1.1       Increased power and performance with reduced cost……………………………………. 457

30.1.2       Enhanced sensitivity……………………………………………………………………………………….. 457

30.1.3       Replacing silver electrodes…………………………………………………………………………….. 458

30.1.4       Growth in the home diagnostics and point of care market………………………………. 458

30.1.5       Improved thermal stability……………………………………………………………………………….. 458

30.2      PROPERTIES AND APPLICATIONS………………………………………………………………………. 458

30.2.1       Gas sensors…………………………………………………………………………………………………….. 460

30.2.2       Strain sensors…………………………………………………………………………………………………. 461

30.2.3       Biosensors………………………………………………………………………………………………………. 461

30.2.4       Food sensors…………………………………………………………………………………………………… 462

30.2.5       Infrared (IR) sensors……………………………………………………………………………………….. 463

30.2.6       Optical sensors……………………………………………………………………………………………….. 463

30.2.7       Pressure sensors…………………………………………………………………………………………….. 464

30.2.8       Humidity sensors…………………………………………………………………………………………….. 464

30.2.9       Acoustic sensors……………………………………………………………………………………………… 465

30.2.10     Wireless sensors…………………………………………………………………………………………….. 465

30.3      MARKET SIZE AND OPPORTUNITY………………………………………………………………………. 465

30.3.1       Total market size……………………………………………………………………………………………… 465

30.3.2       Carbon nanomaterials opportunity…………………………………………………………………. 466

30.4      Challenges………………………………………………………………………………………………………………. 466

30.5      APPLICATION AND PRODUCT DEVELOPERS…………………………………………………….. 467

30.5.1       Carbon nanotubes………………………………………………………………………………………….. 467

30.5.2       Graphene………………………………………………………………………………………………………… 469

31     TEXTILES AND APPAREL…………………………………………………………………………………………….. 470

31.1      MARKET DRIVERS AND TRENDS…………………………………………………………………………. 470

31.1.1       Growth in the wearable electronics market…………………………………………………….. 470

31.1.2       Growth in remote health monitoring and diagnostics……………………………………… 470

31.2      PROPERTIES AND APPLICATONS……………………………………………………………………….. 471

31.2.1       Protective textiles…………………………………………………………………………………………….. 473

31.2.2       Electronic textiles…………………………………………………………………………………………….. 473

31.3      MARKET SIZE AND OPPORTUNITY………………………………………………………………………. 478

31.3.1.1    Protective textiles………………………………………………………………………………………… 478

31.3.1.2    Electronic textiles………………………………………………………………………………………… 479

31.4      APPLICATION AND PRODUCT DEVELOPERS…………………………………………………….. 479

31.4.1       Carbon nanotubes………………………………………………………………………………………….. 479

31.4.2       Graphene………………………………………………………………………………………………………… 480

32     3D PRINTING…………………………………………………………………………………………………………………… 481

32.1      MARKET DRIVERS AND TRENDS…………………………………………………………………………. 481

32.1.1       Improved materials at lower cost…………………………………………………………………….. 481

32.1.2       Limitations of current thermoplastics………………………………………………………………. 481

32.2      PROPERTIES AND APPLICATIONS………………………………………………………………………. 481

32.3      MARKET SIZE AND OPPORTUNITY………………………………………………………………………. 483

32.3.1       Total market size……………………………………………………………………………………………… 483

32.3.2       Carbon nanomaterials opportunity…………………………………………………………………. 483

32.4      CHALLENGES………………………………………………………………………………………………………… 483

32.5      APPLICATION AND PRODUCT DEVELOPERS…………………………………………………….. 484

32.5.1       Carbon nanotubes………………………………………………………………………………………….. 484

32.5.2       Graphene………………………………………………………………………………………………………… 485

33     CARBON NANOTUBES PRODUCERS AND PRODUCT DEVELOPERS…………………….. 486-602 (181 company profiles)

34     GRAPHENE PRODUCERS AND PRODUCT DEVELOPERS………………………………………… 603-729 (187 company profiles)

35     NANODIAMONDS PRODUCERS…………………………………………………………………………………… 730-736 (13 company profiles)

36     REFERENCES………………………………………………………………………………………………………………… 738

 

TABLES

Table 1: Nanomaterials scorecard for carbon nanotubes………………………………………………………….. 51

Table 2: Market summary for carbon nanotubes-Selling grade particle diameter, usage, advantages, average price/ton, high volume applications, low volume applications and novel applications……………………………….. 51

Table 3: Properties of CNTs and comparable materials……………………………………………………………. 54

Table 4: Annual production capacity of MWNT and SWNT producers………………………………………. 55

Table 5: SWNT producers production capacities 2015……………………………………………………………… 57

Table 6: Global production of carbon nanotubes, 2010-2025 in tons/year. Base year for projections is 2014.           59

Table 7: Consumer products incorporating graphene……………………………………………………………….. 66

Table 8: Graphene target markets-Applications potential addressable market size…………………. 71

Table 9: Graphene producers annual production capacities…………………………………………………….. 73

Table 10: Global production of graphene, 2010-2025 in tons/year. Base year for projections is 2014. 74

Table 11: Graphene types and cost per kg………………………………………………………………………………… 77

Table 12: Categorization of nanomaterials………………………………………………………………………………… 84

Table 13: Comparison between single-walled carbon nanotubes (SWCNT) and multi-walled carbon nanotubes.   89

Table 14: Properties of carbon nanotubes…………………………………………………………………………………. 95

Table 15: Properties of graphene…………………………………………………………………………………………….. 101

Table 16: Graphene quantum dot producers…………………………………………………………………………… 105

Table 17: Markets, benefits and applications of nanodiamonds……………………………………………… 108

Table 18: Electronic and mechanical properties of monolayer phosphorene, graphene and MoS2.     112

Table 19: Markets and applications of phosphorene………………………………………………………………. 113

Table 20: Markets and applications of C2N…………………………………………………………………………….. 115

Table 21: Markets and applications of hexagonal boron-nitride……………………………………………… 117

Table 22: Markets and applications of graphdiyne………………………………………………………………….. 119

Table 23: Markets and applications of graphane…………………………………………………………………….. 120

Table 24: Markets and applications of hexagonal boron-nitride……………………………………………… 123

Table 25: Markets and applications of MoS2……………………………………………………………………………. 125

Table 26: Markets and applications of Rhenium disulfide (ReS2) and diselenide (ReSe2)…… 128

Table 27: Markets and applications of silicene………………………………………………………………………… 130

Table 28: Markets and applications of stanene/tinene…………………………………………………………….. 134

Table 29: Markets and applications of tungsten diselenide…………………………………………………….. 135

Table 30: Comparative properties of carbon materials……………………………………………………………. 137

Table 31: Comparative properties of graphene with nanoclays and carbon nanotubes…………. 139

Table 32: Competitive analysis of Carbon nanotubes and graphene by application area and potential impact by 2025.    140

Table 33: SWNT synthesis methods………………………………………………………………………………………… 143

Table 34: Large area graphene films-Markets, applications and current global market…………. 150

Table 35: Graphene oxide flakes/graphene nanoplatelets-Markets, applications and current global market. 151

Table 36: Main production methods for graphene…………………………………………………………………… 152

Table 37: Graphene synthesis methods, by company…………………………………………………………….. 170

Table 38: Carbon nanotubes market structure………………………………………………………………………… 172

Table 39: Graphene market structure………………………………………………………………………………………. 174

Table 40: National nanomaterials registries in Europe……………………………………………………………. 179

Table 41: Nanomaterials regulatory bodies in Australia………………………………………………………….. 184

Table 42: Top ten countries based on number of nanotechnology patents in USPTO 2014-2015. 186

Table 43: Published patent publications for graphene, 2004-2014………………………………………… 190

Table 44: Leading graphene patentees…………………………………………………………………………………… 191

Table 45: Industrial graphene patents in 2014………………………………………………………………………… 192

Table 46: Production volumes of carbon nanotubes (tons), 2010-2025………………………………….. 200

Table 47: Annual production capacity of MWNT producers…………………………………………………….. 204

Table 48: SWNT producers production capacities 2015…………………………………………………………. 205

Table 49: Example carbon nanotubes prices………………………………………………………………………….. 213

Table 50: Markets, benefits and applications of Carbon Nanotubes……………………………………….. 214

Table 51: Potential market penetration and volume estimates (tons) for graphene in key applications.           216

Table 52: Global production of graphene, 2010-2025 in tons/year. Base year for projections is 2014. 217

Table 53: Graphene producers and production capacity  (Current and projected), prices and target markets.           218

Table 54: Production volumes of nanodiamonds (tons), 2010-2025………………………………………. 225

Table 55: Example prices of nanodiamonds……………………………………………………………………………. 227

Table 56: Graphene properties relevant to application in adhesives………………………………………. 229

Table 57: Applications in adhesives, by carbon nanomaterials type and benefits thereof……… 229

Table 58: Carbon nanomaterials in the adhesives market-applications, stage of commercialization and estimated economic impact…………………………………………………………………………………………………………………………………………….. 230

Table 59: Market challenges rating for nanotechnology and nanomaterials in the adhesives market. 231

Table 60: Carbon nanotubes product and application developers in the adhesives industry… 231

Table 61:  Graphene product and application developers in the adhesives industry……………… 232

Table 62: Applications in aerospace composites, by carbon nanomaterials type and benefits thereof.            236

Table 63: Applications in aerospace coatings, by carbon nanomaterials type and benefits thereof.     238

Table 64: Carbon nanomaterials in the aerospace market-applications, stage of commercialization and estimated economic impact…………………………………………………………………………………………………………………………………. 240

Table 65: Market challenges rating for nanotechnology and nanomaterials in the aerospace market. 241

Table 66: Carbon nanotubes product and application developers in the aerospace industry… 241

Table 67: Graphene product and application developers in the aerospace industry……………… 243

Table 68: Applications of natural fiber composites in vehicles by manufacturers……………………. 247

Table 69: Applications in automotive composites, by carbon nanomaterials type and benefits thereof.           251

Table 70: Nanocoatings applied in the automotive industry……………………………………………………. 253

Table 71: Application markets, competing materials, nanomaterials advantages and current market size in the automotive sector…………………………………………………………………………………………………………………………………………….. 256

Table 72: Carbon nanomaterials in the automotive market-applications, stage of commercialization and estimated economic impact…………………………………………………………………………………………………………………………………. 257

Table 73: Applications and commercilization challenges in the automotive market……………….. 258

Table 74: Market challenges rating for nanotechnology and nanomaterials in the automotive market.            258

Table 75: Carbon nanotubes product and application developers in the automotive industry.. 259

Table 76: Graphene product and application developers in the automotive industry……………… 260

Table 77: CNTs in life sciences and biomedicine……………………………………………………………………. 264

Table 78: Graphene properties relevant to application in biomedicine and healthcare………….. 264

Table 79: Carbon nanomaterials in the biomedical & healthcare markets-applications, stage of commercialization and estimated economic impact………………………………………………………………………………………………………………… 274

Table 80: Carbon nanotubes product and application developers in the medical and healthcare industry.    275

Table 81: Graphene product and application developers in the biomedical and healthcare industry.  277

Table 82: Properties of nanocoatings………………………………………………………………………………………. 278

Table 83: Graphene properties relevant to application in coatings…………………………………………. 285

Table 84: Markets for nanocoatings…………………………………………………………………………………………. 296

Table 85: Carbon nanotubes in the coatings market-applications, stage of commercialization and addressable market size.       299

Table 86: Graphene and 2D materials in the coatings market-applications, stage of commercialization and estimated economic impact…………………………………………………………………………………………………………………………………. 299

Table 87: Carbon nanotubes product and application developers in the coatings industry……. 300

Table 88: Graphene product and application developers in the coatings industry…………………. 301

Table 89: Graphene properties relevant to application in polymer composites………………………. 306

Table 90: Applications in polymer composites, by carbon nanomaterials type and benefits thereof.    306

Table 91: Applications in ESD and EMI shielding composites, by carbon nanomaterials type and benefits thereof. 307

Table 92: Applications in thermal management composites, by carbon nanomaterials type and benefits thereof.    310

Table 93: Applications in rubber and elastomers, by carbon nanomaterials type and benefits thereof.            311

Table 94: Potential addressable market size for carbon nanomaterials composites in tons…… 312

Table 95: Carbon nanomaterials in the composites market-applications, stage of commercialization and estimated economic impact…………………………………………………………………………………………………………………………………. 312

Table 96: Market challenges rating for nanotechnology and nanomaterials in the composites market.           314

Table 97: Carbon nanotubes product and application developers in the composites industry. 315

Table 98: Graphene product and application developers in the composites industry…………….. 318

Table 99: Comparison of ITO replacements…………………………………………………………………………….. 321

Table 100: Global market for wearables, 2014-2021, units and US$……………………………………… 334

Table 100: Market challenges rating for nanotechnology and nanomaterials in the flexible electronics, conductive films and displays market………………………………………………………………………………………………………………….. 337

Table 101: Carbon nanotubes product and application developers in transparent conductive films and displays.    338

Table 102: Graphene product and application developers in in flexible electronics, flexible conductive films and displays.           340

Table 103: Comparative properties of conductive inks……………………………………………………………. 342

Table 104: Applications in conductive inks by nanomaterials type and benefits thereof………… 346

Table 105: Opportunities for nanomaterials in printed electronics………………………………………….. 350

Table 106: Nanomaterials in the conductive inks market-applications, stage of commercialization and estimated economic impact…………………………………………………………………………………………………………………………………………….. 350

Table 107: Market challenges rating for nanotechnology and nanomaterials in the conductive inks market.  351

Table 108: Carbon nanotubes product and application developers in conductive inks………….. 352

Table 109: Graphene product and application developers in conductive inks……………………….. 352

Table 110: Comparison of Cu, CNTs and graphene as interconnect materials………………………. 357

Table 111: Applications in transistors, integrated circuits and other components, by carbon nanomaterials type and benefits thereof…………………………………………………………………………………………………………………………………………….. 357

Table 112: Carbon nanomaterials in the transistors, integrated circuits and other components market-applications, stage of commercialization and estimated economic impact………………………………………………………….. 364

Table 113: Market challenges rating for nanotechnology and nanomaterials in the transistors, integrated circuits and other components market……………………………………………………………………………………………………………. 366

Table 114: Carbon nanotubes product and application developers in integrated circuits, transistors and other components.        367

Table 115: Graphene product and application developers in transistors and integrated circuits. 367

Table 116: Nanotechnology and nanomaterials in the memory devices market-applications, stage of commercialization and estimated economic impact……………………………………………………………………………………………….. 378

Table 117: Carbon nanotubes product and application developers in memory devices………… 378

Table 118: Graphene product and application developers in memory devices………………………. 379

Table 119: Applications in photonics, by nanomaterials type and benefits thereof…………………. 380

Table 120: Graphene properties relevant to application in optical modulators……………………….. 383

Table 121: Nanotechnology and nanomaterials in the photonics market-applications, stage of commercialization and estimated economic impact………………………………………………………………………………………………………………… 386

Table 122: Market challenges rating for nanotechnology and nanomaterials in the photonics market.            388

Table 123: Graphene product and application developers in photonics…………………………………. 388

Table 124: Applications in LIB, by carbon nanomaterials type and benefits thereof……………….. 393

Table 125: Applications in lithium-air batteries, by carbon nanomaterials type and benefits thereof.    393

Table 126: Applications in sodium-ion batteries, by nanomaterials type and benefits thereof.. 394

Table 127: Carbon nanomaterials opportunity in the batteries market-applications, stage of commercialization and estimated economic impact………………………………………………………………………………………………………………… 395

Table 128: Market challenges in batteries……………………………………………………………………………….. 395

Table 129: Market challenges rating for nanotechnology and nanomaterials in the batteries market.  396

Table 130: Carbon nanomaterials application and product developers in batteries………………. 397

Table 131: Comparative properties of graphene supercapacitors and lithium-ion batteries…… 404

Table 132: Properties of carbon materials in high-performance supercapacitors…………………… 404

Table 133: Carbon nanomaterials in the supercapacitors market-applications, stage of commercialization and estimated economic impact…………………………………………………………………………………………………………………………………. 405

Table 134: Carbon nanomaterials application developers in supercapacitors……………………….. 407

Table 135: Applications in solar, by carbon nanomaterials type and benefits thereof…………….. 411

Table 136: Applications in solar coatings, by carbon nanomaterials type and benefits thereof. 413

Table 137: Nanotechnology and nanomaterials in the solar market-applications, stage of commercialization and estimated economic impact………………………………………………………………………………………………………………… 415

Table 138: Market challenges for nanomaterials in solar………………………………………………………… 416

Table 139: Market challenges rating for nanotechnology and nanomaterials in the solar market. 416

Table 140: Carbon nanomaterials application developers in solar…………………………………………. 416

Table 141: Carbon nanonomaterials application and product developers in fuel cells and hydrogen storage.          419

Table 142: Applications in fuel cells, by carbon nanomaterials type and benefits thereof………. 421

Table 143: Applications hydrogen storage, by carbon nanomaterials type and benefits thereof. 422

Table 144: Carbon nanomaterials in the fuel cells and hydrogen storage market-applications, stage of commercialization and estimated economic impact……………………………………………………………………………………………….. 423

Table 145: Applications in lighting, by carbon nanomaterials type and benefits thereof………… 426

Table 146: Carbon nanomaterials in the lighting and UVC market-applications, stage of commercialization and estimated economic impact………………………………………………………………………………………………………………… 427

Table 147: Market challenges rating for nanotechnology and nanomaterials in the lighting and UVC market.           428

Table 148: Carbon nanomaterials application developers in lighting…………………………………….. 428

Table 149: Applications in sensing and reservoir management, by carbon nanomaterials type and benefits thereof.          431

Table 150: Applications in oil & gas exploration coatings, by carbon nanomaterials type and benefits thereof.         431

Table 151: Applications in oil & gas exploration drilling fluids, by carbon nanomaterials type and benefits thereof. 432

Table 152: Applications in oil & gas exploration sorbent materials, by carbon nanomaterials type and benefits thereof.     432

Table 153: Applications in separation, by carbon anomaterials type and benefits thereof……… 433

Table 154: Carbon nanomaterials in the oil and gas market-applications, stage of commercialization and estimated economic impact…………………………………………………………………………………………………………………………………. 434

Table 155: Carbon nanotubes product and application developers in the energy industry……. 434

Table 156: Graphene product and application developers in the energy industry………………….. 437

Table 157: Types of filtration……………………………………………………………………………………………………. 444

Table 158: Applications in desalination and water filtration, by carbon nanomaterials type and benefits thereof.      446

Table 159: Applications in gas separation, by nanomaterials type and benefits thereof………… 447

Table 160: Application markets, competing materials and current market size in filtration……… 448

Table 161: Graphene and 2D materials in the filtration and separation market-applications, stage of commercialization and estimated economic impact……………………………………………………………………………………………….. 448

Table 162: Market challenges rating for nanotechnology and nanomaterials in the filtration and environmental remediation market…………………………………………………………………………………………………………………………………………….. 449

Table 163: Carbon nanotubes product and application developers in the filtration industry….. 450

Table 164: Graphene product and application developers in the filtration industry………………… 451

Table 165: Applications in lubricants, by carbon nanomaterials type and benefits thereof…….. 453

Table 166: Applications of carbon nanomaterials in lubricants……………………………………………….. 454

Table 167: Nanotechnology and nanomaterials in lubricants market-applications, stage of commercialization and estimated economic impact………………………………………………………………………………………………………………… 455

Table 168: Market challenges rating for nanotechnology and nanomaterials in the lubricants market.            455

Table 169: Carbon nanotubes product and application developers in the lubricants industry.. 456

Table 170:  Graphene product and application developers in the lubricants industry…………….. 456

Table 171: Graphene properties relevant to application in sensors………………………………………… 459

Table 172: Applications in strain sensors, by carbon nanomaterials type and benefits thereof. 460

Table 173: Applications in strain sensors, by carbon nanomaterials type and benefits thereof. 461

Table 174: Applications in biosensors, by nanomaterials type and benefits thereof………………. 462

Table 175: Applications in food sensors, by carbon nanomaterials type and benefits thereof.. 462

Table 176: Applications in infrared (IR) sensors, by carbon nanomaterials type and benefits thereof. 463

Table 177: Applications in optical sensors, by carbon nanomaterials type and benefits thereof. 463

Table 178: Applications in pressure sensors, by carbon nanomaterials type and benefits thereof. 464

Table 179: Applications in humidity sensors, by carbon nanomaterials type and benefits thereof. 464

Table 180: Applications in acoustic sensors, by carbon nanomaterials type and benefits thereof. 465

Table 181: Applications in wireless sensors, by carbon nanomaterials type and benefits thereof. 465

Table 182: Carbon nanomaterials in the sensors market-applications, stage of commercialization and estimated economic impact…………………………………………………………………………………………………………………………………………….. 466

Table 183: Market challenges rating for nanotechnology and nanomaterials in the sensors market.   467

Table 184: Carbon nanotubes product and application developers in the sensors industry….. 467

Table 185: Graphene product and application developers in the sensors industry………………… 469

Table 186: Desirable functional properties for the textiles industry afforded by the use of nanomaterials.       472

Table 187: Applications in textiles, by carbon nanomaterials type and benefits thereof…………. 473

Table 188: Nanocoatings applied in the textiles industry-type of coating, nanomaterials utilized, benefits and applications.          474

Table 189: Carbon nanomaterials in the textiles market-applications, stage of commercialization and estimated economic impact…………………………………………………………………………………………………………………………………………….. 479

Table 190: Carbon nanotubes product and application developers in the textiles industry……. 479

Table 191:  Graphene product and application developers in the textiles industry…………………. 480

Table 192: Graphene properties relevant to application in 3D printing…………………………………… 482

Table 193: Carbon nanomaterials in the 3D printing market-applications, stage of commercialization and estimated economic impact…………………………………………………………………………………………………………………………………. 483

Table 194: Market challenges rating for nanotechnology and nanomaterials in the textiles and apparel market.      484

Table 195: Carbon nanotubes product and application developers in the 3D printing industry. 484

Table 196: Graphene product and application developers in the 3D printing industry…………… 485

Table 197: CNT producers and companies they supply/licence to…………………………………………. 487

Table 198: Graphene producers and types produced…………………………………………………………….. 603

Table 199: Graphene industrial collaborations and target markets…………………………………………. 605

 

 

FIGURES

Figure 1: Molecular structures of SWNT and MWNT………………………………………………………………….. 53

Figure 2: Production capacities for SWNTs in kilograms, 2005-2014……………………………………….. 58

Figure 3: Demand for graphene, by market, 2015……………………………………………………………………… 67

Figure 4: Demand for graphene, by market, 2015……………………………………………………………………… 68

Figure 5: Global government funding for graphene in millions USD…………………………………………. 70

Figure 6: Global market for graphene 2010-2025 in tons/year………………………………………………….. 75

Figure 7: Global consumption of graphene 2015, by region……………………………………………………… 79

Figure 8: Schematic of single-walled carbon nanotube…………………………………………………………….. 88

Figure 9: Double-walled carbon nanotube bundle cross-section micrograph and model………… 90

Figure 10: Schematic representation of carbon nanohorns………………………………………………………. 91

Figure 11: TEM image of carbon onion……………………………………………………………………………………… 92

Figure 12: Fullerene schematic………………………………………………………………………………………………….. 94

Figure 13: Schematic of Boron Nitride nanotubes (BNNTs). Alternating B and N atoms are shown in blue and red. 95

Figure 14: Graphene layer structure schematic…………………………………………………………………………. 98

Figure 15: Graphite and graphene…………………………………………………………………………………………….. 99

Figure 16: Graphene and its descendants: top right: graphene; top left: graphite = stacked graphene; bottom right: nanotube=rolled graphene; bottom left: fullerene=wrapped graphene. ………………………………………………………. 100

Figure 17: Schematic of (a) CQDs and (c) GQDs. HRTEM images of (b) C-dots and (d) GQDs showing combination of zigzag and armchair edges (positions marked as 1–4)……………………………………………………………………….. 103

Figure 18: Graphene quantum dots…………………………………………………………………………………………. 105

Figure 19: Black phosphorus structure…………………………………………………………………………………….. 111

Figure 20: Structural difference between graphene and C2N-h2D crystal: (a) graphene; (b) C2N-h2D crystal.         114

Figure 21: Schematic of germanene………………………………………………………………………………………… 116

Figure 22: Graphdiyne structure………………………………………………………………………………………………. 118

Figure 23: Schematic of Graphane crystal……………………………………………………………………………….. 120

Figure 24: Structure of hexagonal boron nitride………………………………………………………………………. 122

Figure 25: Structure of 2D molybdenum disulfide……………………………………………………………………. 124

Figure 26: Atomic force microscopy image of a representative MoS2 thin-film transistor……….. 125

Figure 27: Schematic of the molybdenum disulfide (MoS2) thin-film sensor with the deposited molecules that create additional charge………………………………………………………………………………………………………………………………… 127

Figure 28: Schematic of a monolayer of rhenium disulphide…………………………………………………… 128

Figure 29: Silicene structure…………………………………………………………………………………………………….. 129

Figure 30: Monolayer silicene on a silver (111) substrate……………………………………………………….. 130

Figure 31: Silicene transistor……………………………………………………………………………………………………. 132

Figure 32: Crystal structure for stanene…………………………………………………………………………………… 133

Figure 33: Atomic structure model for the 2D stanene on Bi2Te3(111)…………………………………… 133

Figure 34: Schematic of tungsten diselenide…………………………………………………………………………… 135

Figure 35: Graphene can be rolled up into a carbon nanotube, wrapped into a fullerene, and stacked into graphite.          137

Figure 36: Schematic representation of methods used for carbon nanotube synthesis (a) Arc discharge (b) Chemical vapor deposition (c) Laser ablation (d) hydrocarbon flames……………………………………………………….. 142

Figure 37: Arc discharge process for CNTs……………………………………………………………………………… 144

Figure 38: Schematic of thermal-CVD method………………………………………………………………………… 145

Figure 39: Schematic of plasma-CVD method…………………………………………………………………………. 146

Figure 40: CoMoCAT® process……………………………………………………………………………………………….. 147

Figure 41: Schematic for flame synthesis of carbon nanotubes (a) premixed flame (b) counter-flow diffusion flame (c) co-flow diffusion flame (d) inverse diffusion flame………………………………………………………………………….. 148

Figure 42: Schematic of laser ablation synthesis…………………………………………………………………….. 149

Figure 43: Graphene synthesis methods…………………………………………………………………………………. 153

Figure 44: TEM micrographs of: A) HR-CNFs; B) GANF® HR-CNF, it can be observed its high graphitic structure; C) Unraveled ribbon from the HR-CNF; D) Detail of the ribbon; E) Scheme of the structure of the HR-CNFs; F) Large single graphene oxide sheets derived from GANF…………………………………………………………………………………………………. 154

Figure 45: Graphene nanoribbons grown on germanium……………………………………………………….. 157

Figure 46: Methods of synthesizing high-quality graphene…………………………………………………….. 159

Figure 47: Roll-to-roll graphene production process……………………………………………………………….. 165

Figure 48: Schematic of roll-to-roll manufacturing process……………………………………………………… 166

Figure 49: Microwave irradiation of graphite to produce single-layer graphene…………………….. 169

Figure 50: Schematic of typical commercialization route for graphene producer……………………. 174

Figure 51: Nanotechnology patent applications, 1991-2015…………………………………………………… 185

Figure 52: Share of nanotechnology related patent applications since 1972, by country……….. 186

Figure 53: CNT patents filed 2000-2014………………………………………………………………………………….. 187

Figure 54: Patent distribution of CNT application areas to 2014……………………………………………… 188

Figure 55: Published patent publications for graphene, 2004-2014……………………………………….. 191

Figure 56: Technology Readiness Level (TRL) for Carbon Nanotubes………………………………….. 196

Figure 57: Technology Readiness Level (TRL) for graphene…………………………………………………. 197

Figure 58: Technology Readiness Level (TRL) for nanodiamonds…………………………………………. 198

Figure 59: Production volumes of carbon nanotubes (tons), 2010-2025………………………………… 201

Figure 60: Production capacities for SWNTs in kilograms, 2005-2014……………………………………. 202

Figure 61: Demand for carbon nanotubes, by market……………………………………………………………… 203

Figure 62: Production volumes of Carbon Nanotubes 2015, by region…………………………………… 206

Figure 63: Regional demand for CNTs utilized in batteries…………………………………………………….. 207

Figure 64: Regional demand for CNTs utilized in Polymer reinforcement………………………………. 208

Figure 65: Global market for graphene 2010-2025 in tons/year……………………………………………… 218

Figure 66: Demand for nanodiamonds, by market…………………………………………………………………… 224

Figure 67: Production volumes of nanodiamonds, 2010-2025……………………………………………….. 226

Figure 68: Production volumes of nanodiamonds 2015, by region…………………………………………. 227

Figure 69: Nanomaterials-based automotive components……………………………………………………… 248

Figure 70: The Tesla S’s touchscreen interface……………………………………………………………………….. 249

Figure 71: Graphene Frontiers’ Six™ chemical sensors consists of a field effect transistor (FET) with a graphene channel. Receptor molecules, such as DNA, are attached directly to the graphene channel…………………………. 271

Figure 72: Graphene-Oxide based chip prototypes for biopsy-free early cancer diagnosis……. 272

Figure 73: Heat transfer coating developed at MIT………………………………………………………………….. 285

Figure 74: Water permeation through a brick without (left) and with (right) “graphene paint” coating.   291

Figure 75: Four layers of graphene oxide coatings on polycarbonate…………………………………….. 294

Figure 76: Global Paints and Coatings Market, share by end user market……………………………… 295

Figure 77: Graphene electrochromic devices. Top left: Exploded-view illustration of the graphene electrochromic device. The device is formed by attaching two graphene-coated PVC substrates face-to-face and filling the gap with a liquid ionic electrolyte…………………………………………………………………………………………………………………………… 325

Figure 78: Flexible transistor sheet………………………………………………………………………………………….. 326

Figure 79: Foldable graphene E-paper……………………………………………………………………………………. 328

Figure 80: Global touch panel market ($ million), 2011-2018…………………………………………………. 329

Figure 81: Capacitive touch panel market forecast by layer structure  (Ksqm)………………………… 330

Figure 82: Global transparent conductive film market forecast (million $)……………………………….. 331

Figure 83: Global transparent conductive film market forecast by materials type, 2015, %…….. 332

Figure 84: Global transparent conductive film market forecast by materials type, 2020, %…….. 333

Figure 85: Global market revenues for smart wearable devices 2014-2021, in US$………………. 334

Figure 86: Schematic of the wet roll-to-roll graphene transfer from copper foils to polymeric substrates.         336

Figure 87: The transmittance of glass/ITO, glass/ITO/four organic layers, and glass/ITO/four organic layers/4-layer graphene.     337

Figure 88: Nanotube inks…………………………………………………………………………………………………………. 345

Figure 89: Graphene printed antenna……………………………………………………………………………………… 345

Figure 90: BGT Materials graphene ink product………………………………………………………………………. 346

Figure 91: Global market for conductive inks and pastes in printed electronics……………………… 349

Figure 92: Transistor architecture trend chart………………………………………………………………………….. 355

Figure 93: Schematic cross-section of a graphene based transistor (GBT, left) and a graphene field-effect transistor (GFET, right)…………………………………………………………………………………………………………………………………………….. 355

Figure 94: CMOS Technology Roadmap…………………………………………………………………………………. 356

Figure 95: Figure 38: Thin film transistor incorporating CNTs…………………………………………………. 359

Figure 96: Graphene IC in wafer tester……………………………………………………………………………………. 361

Figure 97: Schematic cross-section of a graphene based transistor (GBT, left) and a graphene field-effect transistor (GFET, right)…………………………………………………………………………………………………………………………………………….. 362

Figure 98: Emerging logic devices…………………………………………………………………………………………… 364

Figure 99: Stretchable CNT memory and logic devices for wearable electronics…………………… 371

Figure 100: Graphene oxide-based RRAm device on a flexible substrate……………………………… 371

Figure 101: Emerging memory devices…………………………………………………………………………………… 372

Figure 102: Carbon nanotubes NRAM chip…………………………………………………………………………….. 373

Figure 103: Schematic of NRAM cell……………………………………………………………………………………….. 375

Figure 104: Layered structure of tantalum oxide, multilayer graphene and platinum used for resistive random access memory (RRAM)………………………………………………………………………………………………………………………………. 376

Figure 105: A schematic diagram for the mechanism of the resistive switching in metal/GO/Pt. 377

Figure 106: Hybrid graphene phototransistors………………………………………………………………………… 384

Figure 107: Wearable health monitor incorporating graphene photodetectors………………………. 384

Figure 108: Energy densities and specific energy of rechargeable batteries………………………….. 391

Figure 109: Zapgo supercapacitor phone charger………………………………………………………………….. 406

Figure 110: Suntech/TCNT nanotube frame module……………………………………………………………….. 410

Figure 111: Perforene graphene filter……………………………………………………………………………………… 446

Figure 112: 3D Printed tweezers incorporating Carbon Nanotube Filament…………………………… 482