The Global Market for Flexible Displays

0

cover

Electronics giants Samsung and LG Display have announced concrete plans to bring smartphones with flexible displays to the market.  In June 2017, LG Display launched the world’s first 77-inch flexible and transparent OLED display.

Flexible displays are ultra thin display screens that can be printed onto flexible or stretchable materials, and then attached to other surfaces or produced in a variety of shapes. Main flexible display technologies are:

  • Flexible LCDs.
  • Flexible OLED
  • Flexible AMOLED
  • E-paper: Electrophoretic, Cholesteric LCDs, flexible OLCD
  • Electrowetting Displays (EWD), Electrochromic Displays.
  • Interferometric Modulator Technology.

The use of advanced materials and developments in processing techniques is enabling displays with unique form factors that the current rigid glass substrate-based displays cannot support.

Flexible displays can be very thin and lightweight, have unique form factors, exceptional mechanical stability and flexibility unlike rigid and flat glass substrate-based displays. This multi billion dollar market will grow greatly in the next decade at the materials AND components levels in consumer electronics applications.

As a raft of products will come onto the market over the next few years, their is a requirement to analysis the scale and scope of current and planned commercial activity in flexible displays. This 200 page plus report includes:

  • Market revenues at the materials and components levels.
  • Market growth to 2025.
  • Market breakdown by applications (smartphone, tablets, wearables etc.).
  • Market breakdown by technology (Flexible LCD, OLED, EPD etc.).
  • Market breakdown by region.
  • Challenges in flexible displays.
  • Market trends in flexible displays.
  • Current and upcoming flexible display products.

Published August 2017 | 213 pages

TABLE OF CONTENTS

1    EXECUTIVE SUMMARY…………………………………………………………. 18

  • 1.1    The evolution of electronics……………………………………………………………………………………………. 18
    • 1.1.1     The wearables revolution……………………………………………………………………………………….. 19
    • 1.1.2     Flexible, thin, and large-area form factors………………………………………………………………. 20
  • 1.2    What are flexible displays?…………………………………………………………………………………………….. 22
    • 1.2.1     From rigid to flexible and stretchable……………………………………………………………………… 22
    • 1.2.2     Organic and printed electronics……………………………………………………………………………… 25
    • 1.2.3     New conductive materials………………………………………………………………………………………. 25
  • 1.3    Growth in flexible electronics market………………………………………………………………………………. 29
    • 1.3.1     Recent growth in flexible products…………………………………………………………………………. 29
    • 1.3.2     Future growth…………………………………………………………………………………………………………. 29
    • 1.3.3     Nanotechnology as a market driver……………………………………………………………………….. 30
    • 1.3.4     Growth in remote health monitoring and diagnostics……………………………………………… 31

2    RESEARCH METHODOLOGY………………………………………………… 33

3    FLEXIBLE ELECTRONIC MATERIALS AND COMPOSITES………. 34

  • 3.1    CARBON NANOTUBES…………………………………………………………………………………………………. 34
    • 3.1.1     Properties………………………………………………………………………………………………………………. 34
    • 3.1.2     Properties utilized in flexible electronics…………………………………………………………………. 35
      • 3.1.2.1       Single-walled carbon nanotubes……………………………………………………………………. 36
    • 3.1.3     Applications in flexible electronics……………………………………………………………………………… 38
  • 3.2    CONDUCTIVE POLYMERS (CP)…………………………………………………………………………………… 40
    • 3.2.1     Properties………………………………………………………………………………………………………………. 40
      • 3.2.1.1       PDMS…………………………………………………………………………………………………………….. 41
      • 3.2.1.2       PEDOT: PSS…………………………………………………………………………………………………. 41
    • 3.2.2     Properties utilized in flexible electronics…………………………………………………………………. 41
    • 3.2.3     Applications in flexible electronics………………………………………………………………………….. 43
  • 3.3    GRAPHENE…………………………………………………………………………………………………………………… 44
    • 3.3.1     Properties………………………………………………………………………………………………………………. 44
    • 3.3.2     Properties utilized in flexible electronics…………………………………………………………………. 46
    • 3.3.3     Applications in flexible electronics………………………………………………………………………….. 47
  • 3.4    METAL MESH………………………………………………………………………………………………………………… 49
    • 3.4.1     Properties………………………………………………………………………………………………………………. 49
    • 3.4.2     Properties utilized in flexible electronics…………………………………………………………………. 51
    • 3.4.3     Applications in flexible electronics………………………………………………………………………….. 52
  • 3.5    METAL NANOWIRES…………………………………………………………………………………………………….. 52
    • 3.5.1     Properties………………………………………………………………………………………………………………. 53
    • 3.5.2     Properties utilized in flexible electronics…………………………………………………………………. 53
    • 3.5.3     Applications in flexible electronics………………………………………………………………………….. 54
  • 3.6    NANOCELLULOSE………………………………………………………………………………………………………… 55
    • 3.6.1     Properties………………………………………………………………………………………………………………. 56
    • 3.6.2     Properties utilized in flexible electronics…………………………………………………………………. 58
    • 3.6.3     Applications in flexible electronics………………………………………………………………………….. 59
      • 3.6.3.1       Nanopaper…………………………………………………………………………………………………….. 61
      • 3.6.3.2       Paper memory……………………………………………………………………………………………….. 63
  • 3.7    NANOFIBERS………………………………………………………………………………………………………………… 64
    • 3.7.1     Properties………………………………………………………………………………………………………………. 64
    • 3.7.2     Properties utilized in flexible electronics…………………………………………………………………. 64
    • 3.7.3     Applications in flexible electronics………………………………………………………………………….. 65
  • 3.8    QUANTUM DOTS………………………………………………………………………………………………………….. 65
    • 3.8.1     Properties………………………………………………………………………………………………………………. 65
    • 3.8.2     Properties utilized in flexible electronics…………………………………………………………………. 68
    • 3.8.3     Applications in flexible electronics………………………………………………………………………….. 68
  • 3.9    GRAPHENE AND CARBON QUANTUM DOTS…………………………………………………………….. 69
    • 3.9.1     Properties………………………………………………………………………………………………………………. 70
    • 3.9.2     Applications in flexible electronics………………………………………………………………………….. 72
  • 3.10      OTHER 2-D MATERIALS…………………………………………………………………………………………… 72
    • 3.10.1        Black phosphorus/Phosphorene………………………………………………………………………… 72
      • 3.10.1.1     Properties………………………………………………………………………………………………………. 73
      • 3.10.1.2     Applications in flexible electronics…………………………………………………………………. 74
    • 3.10.2        C2N…………………………………………………………………………………………………………………….. 75
      • 3.10.2.1     Properties………………………………………………………………………………………………………. 76
      • 3.10.2.2     Applications in flexible electronics…………………………………………………………………. 76
    • 3.10.3        Germanene………………………………………………………………………………………………………… 76
      • 3.10.3.1     Properties………………………………………………………………………………………………………. 77
      • 3.10.3.2     Applications in flexible electronics…………………………………………………………………. 78
    • 3.10.4        Graphdiyne………………………………………………………………………………………………………… 78
      • 3.10.4.1     Properties………………………………………………………………………………………………………. 79
      • 3.10.4.2     Applications in flexible electronics…………………………………………………………………. 79
    • 3.10.5        Graphane…………………………………………………………………………………………………………… 79
      • 3.10.5.1     Properties………………………………………………………………………………………………………. 80
      • 3.10.5.2     Applications in flexible electronics…………………………………………………………………. 80
    • 3.10.6        Boron nitride………………………………………………………………………………………………………. 81
      • 3.10.6.1     Properties………………………………………………………………………………………………………. 81
      • 3.10.6.2     Applications in flexible electronics…………………………………………………………………. 82
    • 3.10.7        Molybdenum disulfide (MoS2)…………………………………………………………………………….. 82
      • 3.10.7.1     Properties………………………………………………………………………………………………………. 83
      • 3.10.7.2     Applications in flexible electronics…………………………………………………………………. 83
    • 3.10.8        Rhenium disulfide (ReS2) and diselenide (ReSe2)……………………………………………. 85
      • 3.10.8.1     Properties………………………………………………………………………………………………………. 85
      • 3.10.8.2     Applications in flexible electronics…………………………………………………………………. 86
    • 3.10.9        Silicene………………………………………………………………………………………………………………. 86
      • 3.10.9.1     Properties………………………………………………………………………………………………………. 87
      • 3.10.9.2     Applications in flexible electronics…………………………………………………………………. 88
    • 3.10.10      Stanene/tinene…………………………………………………………………………………………………… 89
      • 3.10.10.1       Properties………………………………………………………………………………………………….. 89
      • 3.10.10.2       Applications in flexible electronics……………………………………………………………… 90
    • 3.10.11      Tungsten diselenide…………………………………………………………………………………………… 90
      • 3.10.11.1       Properties………………………………………………………………………………………………….. 91
      • 3.10.11.2       Applications in flexible electronics……………………………………………………………… 91

4    THE MARKET FOR FLEXIBLE DISPLAYS……………………………….. 92

  • 4.1    MARKET DRIVERS……………………………………………………………………………………………………….. 92
  • 4.2    FLEXIBLE DISPLAYS…………………………………………………………………………………………………………… 101
    • 4.2.1     Flexible LCDs………………………………………………………………………………………………………. 101
    • 4.2.2     Flexible OLEDs (FOLED)…………………………………………………………………………………….. 102
    • 4.2.3     Flexible AMOLED…………………………………………………………………………………………………. 104
    • 4.2.4     Flexible electrophoretic displays…………………………………………………………………………… 107
    • 4.2.5    Flexible circuit boards and interconnects……………………………………………………………………… 107
    • 4.2.6    Flexible transistors……………………………………………………………………………………………………….. 108
  • 4.5    FLEXIBLE CONDUCTIVE INKS…………………………………………………………………………………… 109
    • 4.5.1     Graphene conductive inks……………………………………………………………………………………. 114
    • 4.5.2     RFID…………………………………………………………………………………………………………………….. 116
    • 4.5.3     Smart labels…………………………………………………………………………………………………………. 118
    • 4.5.4     Flexible sensors…………………………………………………………………………………………………… 118
    • 4.5.5     Flexible batteries………………………………………………………………………………………………….. 119
    • 4.5.6     Printable antennas……………………………………………………………………………………………….. 121
    • 4.5.7     In-mold electronics……………………………………………………………………………………………….. 122
  • 4.6    WEARABLE ELECTRONICS……………………………………………………………………………………….. 123
    • 4.6.1     Advanced materials solutions………………………………………………………………………………. 125
    • 4.6.2     Transparent conductive films……………………………………………………………………………….. 126
      • 4.6.2.1       Carbon nanotubes (SWNT)…………………………………………………………………………. 131
      • 4.6.2.2       Double-walled carbon nanotubes………………………………………………………………… 132
      • 4.6.2.3       Graphene…………………………………………………………………………………………………….. 132
      • 4.6.2.4       Silver nanowires………………………………………………………………………………………….. 134
      • 4.6.2.5       Nanocellulose………………………………………………………………………………………………. 136
      • 4.6.2.6       Copper nanowires……………………………………………………………………………………….. 140
      • 4.6.2.7       Nanofibers…………………………………………………………………………………………………… 140
    • 4.6.3     Wearable sensors………………………………………………………………………………………………… 140
      • 4.6.3.1       Current stage of the art………………………………………………………………………………… 140
      • 4.6.3.2       Advanced materials solutions………………………………………………………………………. 143
      • 4.6.3.3       Wearable gas sensors…………………………………………………………………………………. 148
      • 4.6.3.4       Wearable strain sensors………………………………………………………………………………. 149
      • 4.6.3.5       Wearable tactile sensors……………………………………………………………………………… 149
  • 4.7    GLOBAL MARKET SIZE………………………………………………………………………………………………. 150
    • 4.7.1     Flexible displays…………………………………………………………………………………………………… 150
    • 4.7.2     Wearables……………………………………………………………………………………………………………. 151
    • 4.7.3     Transparent conductive electrodes………………………………………………………………………. 153
    • 4.7.4     Flexible conductive inks……………………………………………………………………………………….. 154
    • 4.7.5     Flexible health monitoring…………………………………………………………………………………….. 156

5    COMPANY PROFILES………………………………………………………….. 157-212 (133 Company profiles)

TABLES

  • Table 1: Evolution of wearable devices, 2011-201……………………………………………………………………… 19
  • Table 2: Advanced materials for flexible sensors and Electronics-Advantages and disadvantages. 25
  • Table 3: Sheet resistance (RS) and transparency (T) values for transparent conductive oxides and alternative materials for transparent conductive electrodes (TCE)……………………………………….. 27
  • Table 4: Markets for wearable devices and applications…………………………………………………………….. 29
  • Table 5: Properties of CNTs and comparable materials……………………………………………………………… 34
  • Table 6: Companies developing carbon nanotubes fo flexible electronics………………………………….. 39
  • Table 7: Types of flexible conductive polymers, properties and applications……………………………… 41
  • Table 8: Properties of graphene…………………………………………………………………………………………………. 44
  • Table 9: Companies developing graphene for applications in flexible electronics………………………. 47
  • Table 10: Advantages and disadvantages of fabrication techniques to produce metal mesh structures……………………………………………………………………………………………………………………………… 49
  • Table 11: Types of flexible conductive polymers, properties and applications……………………………. 50
  • Table 12: Companies developing metal mesh for applications in flexible electronics…………………. 51
  • Table 13: Companies developing silver nanowires for applications in flexible electronics………….. 54
  • Table 14: Nanocellulose properties…………………………………………………………………………………………….. 55
  • Table 15: Properties and applications of nanocellulose………………………………………………………………. 56
  • Table 16: Properties of flexible electronics‐cellulose nanofiber film (nanopaper)……………………….. 57
  • Table 17: Properties of flexible electronics cellulose nanofiber films………………………………………….. 60
  • Table 18: Companies developing nanocellulose for applications in flexible electronics……………… 63
  • Table 19: Companies developing quantum dots for applications in flexible electronics………………. 67
  • Table 20: Schematic of (a) CQDs and (c) GQDs. HRTEM images of (b) C-dots and (d) GQDs showing combination of zigzag and armchair edges (positions marked as 1–4……………………. 69
  • Table 21: Properties of graphene quantum dots…………………………………………………………………………. 69
  • Table 22: Electronic and mechanical properties of monolayer phosphorene, graphene and MoS2. 73
  • Table 23: Market drivers for flexible displays………………………………………………………………………………. 91
  • Table 24: Applications in flexible and stretchable circuit boards, by advanced materials type and benefits thereof…………………………………………………………………………………………………………………… 106
  • Table 25: Price comparison of thin-film transistor (TFT) electronics technology……………………….. 108
  • Table 26: Printable electronics products…………………………………………………………………………………… 108
  • Table 27: Comparative properties of conductive inks……………………………………………………………….. 109
  • Table 28: Applications in flexible conductive inks by type and benefits thereof………………………… 110
  • Table 29: Opportunities for advanced materials in printed electronics……………………………………… 116
  • Table 30: Applications in flexible and stretchable batteries, by nanomaterials type and benefits thereof………………………………………………………………………………………………………………………………… 118
  • Table 31: Wearable electronics devices and stage of development…………………………………………. 123
  • Table 32: Comparison of ITO replacements……………………………………………………………………………… 125
  • Table 33: Applications in flexible sensors, by advanced materials type and benefits thereof…… 127
  • Table 34: Graphene properties relevant to application in sensors……………………………………………. 145
  • Table 38: Global market for wearable electronics, 2015-2020, by application, billions $………….. 151
  • Table 39: Main markets for conductive inks, applications and revenues………………………………….. 153
  • Table 40: Conductive inks in the flexible electronics market 2017-2027 revenue forecast (million $), by ink types…………………………………………………………………………………………………………………………. 154
  • Table 41: Potential addressable market for smart textiles and wearables in medical and healthcare…………………………………………………………………………………………………………………………………………….. 155

FIGURES

  • Figure 1: Evolution of electronics………………………………………………………………………………………………… 19
  • Figure 2: Wove Band………………………………………………………………………………………………………………….. 22
  • Figure 3: Wearable graphene medical sensor……………………………………………………………………………. 24
  • Figure 4: Applications timeline for organic and printed electronics……………………………………………… 25
  • Figure 5: Wearable health monitor incorporating graphene photodetectors……………………………….. 32
  • Figure 6: Schematic of single-walled carbon nanotube………………………………………………………………. 37
  • Figure 7: Stretchable SWNT memory and logic devices for wearable electronics………………………. 37
  • Figure 8: Graphene layer structure schematic……………………………………………………………………………. 45
  • Figure 9: Flexible graphene touch screen…………………………………………………………………………………… 46
  • Figure 10: Foldable graphene E-paper……………………………………………………………………………………….. 46
  • Figure 11: Large-area metal mesh touch panel………………………………………………………………………….. 49
  • Figure 12: Flexible silver nanowire wearable mesh…………………………………………………………………….. 53
  • Figure 13:  Cellulose nanofiber films…………………………………………………………………………………………… 58
  • Figure 14: Nanocellulose photoluminescent paper…………………………………………………………………….. 58
  • Figure 15: LEDs shining on circuitry imprinted on a 5x5cm sheet of CNF………………………………….. 59
  • Figure 16: Foldable nanopaper…………………………………………………………………………………………………… 61
  • Figure 17: Foldable nanopaper antenna…………………………………………………………………………………….. 62
  • Figure 18: Paper memory (ReRAM)……………………………………………………………………………………………. 62
  • Figure 19: Quantum dot……………………………………………………………………………………………………………… 65
  • Figure 20: The light-blue curve represents a typical spectrum from a conventional white-LED LCD TV. With quantum dots, the spectrum is tunable to any colours of red, green, and blue, and each Color is limited to a narrow band………………………………………………………………………………….. 66
  • Figure 21: Black phosphorus structure……………………………………………………………………………………….. 72
  • Figure 22: Structural difference between graphene and C2N-h2D crystal: (a) graphene; (b) C2N-h2D crystal……………………………………………………………………………………………………………………………. 74
  • Figure 23: Schematic of germanene…………………………………………………………………………………………… 76
  • Figure 24: Graphdiyne structure…………………………………………………………………………………………………. 78
  • Figure 25: Schematic of Graphane crystal………………………………………………………………………………….. 79
  • Figure 26: Structure of hexagonal boron nitride………………………………………………………………………….. 80
  • Figure 27: Structure of 2D molybdenum disulfide……………………………………………………………………….. 81
  • Figure 28: Atomic force microscopy image of a representative MoS2 thin-film transistor…………… 82
  • Figure 29: Schematic of the molybdenum disulfide (MoS2) thin-film sensor with the deposited molecules that create additional charge……………………………………………………………………………….. 84
  • Figure 30: Schematic of a monolayer of rhenium disulphide………………………………………………………. 84
  • Figure 31: Silicene structure……………………………………………………………………………………………………….. 85
  • Figure 32: Monolayer silicene on a silver (111) substrate…………………………………………………………… 86
  • Figure 33: Silicene transistor………………………………………………………………………………………………………. 88
  • Figure 34: Crystal structure for stanene……………………………………………………………………………………… 88
  • Figure 35: Atomic structure model for the 2D stanene on Bi2Te3(111)………………………………………. 89
  • Figure 36: Schematic of tungsten diselenide………………………………………………………………………………. 90
  • Figure 37: Flexible LCD……………………………………………………………………………………………………………. 101
  • Figure 38: “Full ActiveTM Flex”…………………………………………………………………………………………………. 101
  • Figure 39: FOLED schematic……………………………………………………………………………………………………. 103
  • Figure 40: Foldable display………………………………………………………………………………………………………. 104
  • Figure 41: Stretchable AMOLED………………………………………………………………………………………………. 105
  • Figure 42: LGD 12.3” FHD Automotive OLED………………………………………………………………………….. 105
  • Figure 43: LECTUM® display…………………………………………………………………………………………………… 106
  • Figure 44: Thin film transistor incorporating CNTs……………………………………………………………………. 108
  • Figure 45: BGT Materials graphene ink product……………………………………………………………………….. 114
  • Figure 46: Flexible RFID tag…………………………………………………………………………………………………….. 115
  • Figure 47: Enfucell Printed Battery…………………………………………………………………………………………… 120
  • Figure 48: Graphene printed antenna………………………………………………………………………………………. 120
  • Figure 49: Stretchable material for formed an in-molded electronics………………………………………… 121
  • Figure 50: Wearable patch with a skin-compatible, pressure-sensitive adhesive……………………… 121
  • Figure 51: Covestro wearables…………………………………………………………………………………………………. 124
  • Figure 52: Royole flexible display……………………………………………………………………………………………… 125
  • Figure 53: Panasonic CNT stretchable Resin Film……………………………………………………………………. 127
  • Figure 54: Bending durability of Ag nanowires………………………………………………………………………….. 135
  • Figure 55: NFC computer chip………………………………………………………………………………………………….. 137
  • Figure 56: NFC translucent diffuser schematic…………………………………………………………………………. 137
  • Figure 57: Softceptor sensor…………………………………………………………………………………………………….. 140
  • Figure 58: BeBop Media Arm Controller…………………………………………………………………………………… 141
  • Figure 59: LG Innotek flexible textile pressure sensor………………………………………………………………. 141
  • Figure 60: <hitoe> nanofiber conductive shirt original design(top) and current design (bottom).. 143
  • Figure 61: Garment-based printable electrodes……………………………………………………………………….. 144
  • Figure 62: Wearable gas sensor………………………………………………………………………………………………. 148
  • Figure 63: BeBop Sensors Marcel Modular Data Gloves………………………………………………………….. 149
  • Figure 75: Global market for flexible OLED displays, 2015-2027 (billion $)………………………………. 150
  • Figure 76: Global market for wearable electronics, 2015-2020, by application, billions $…………. 151
  • Figure 77: Global transparent conductive electrodes market forecast by materials type, 2012-2025, millions $…………………………………………………………………………………………………………………………….. 152
  • Figure 78: Conductive inks in the flexible electronics market 2017-2027 revenue forecast (million $), by ink types…………………………………………………………………………………………………………………………. 154
The Global Market for Flexible Displays
The Global Market for Flexible Displays
PDF download.
The Global Market for Flexible Displays
The Global Market for Flexible Displays
PDF and print edition. Price includes tracked postage.