
- Published: November 2025
- Pages: 386
- Tables: 224
- Figures: 24
The global 6G market represents a transformational opportunity evolving from experimental deployments in 2026 through explosive commercial growth during 2030-2031 launch phases, before moderating to sustainable expansion as markets mature through 2046. This evolution reflects fundamental reimagining of wireless infrastructure driven by AI-native network architectures, distributed intelligence through Reconfigurable Intelligent Surfaces, and value-based connectivity models replacing traditional volume-driven pricing. Market composition shifts dramatically throughout the forecast period. Infrastructure hardware dominates early phases but services and devices progressively capture larger shares as the industry transitions from capital-intensive buildouts to recurring managed services, edge computing platforms, and mass-market device adoption. The services transformation proves particularly significant as operators successfully monetize AI-driven optimization, network slicing, and application enablement platforms generating predictable subscription revenues that eventually exceed infrastructure equipment spending.
Technology innovation fundamentally reshapes network economics. Reconfigurable Intelligent Surfaces revolutionize coverage extension through passive signal manipulation costing fractions of traditional base station deployments. Sub-terahertz components, thermal management solutions, and advanced materials address extreme technical challenges of operating at frequencies substantially higher than 5G, creating substantial opportunities for specialized component manufacturers and materials suppliers. Application diversity validates 6G's value proposition across multiple verticals. Enterprise automation, healthcare telemedicine, autonomous vehicles, extended reality experiences, and massive IoT deployments demonstrate compelling use cases that justify infrastructure investments. Industrial and enterprise applications drive early adoption with willingness to pay premium pricing for guaranteed ultra-low latency and reliability, while consumer applications accelerate later as device ecosystems mature and mass-market economics enable broad adoption.
The global 6G communications market is experiencing a transformative convergence of artificial intelligence and wireless infrastructure, exemplified by Nvidia's landmark $1 billion investment in Nokia and their strategic partnership to develop next-generation 6G cellular technology. This collaboration represents far more than a financial transaction—it signals the telecommunications industry's fundamental architectural shift toward AI-native networks where machine learning algorithms are embedded throughout every layer of the network stack, from physical layer signal processing to autonomous network orchestration.
The strategic importance of AI integration stems from 6G's unprecedented complexity. Operating at frequencies from 7 GHz through sub-terahertz bands (100-300 GHz), 6G networks must coordinate massive MIMO antenna arrays with thousands of elements, orchestrate hybrid terrestrial-satellite networks, and dynamically configure metamaterial RIS panels containing thousands of individually controllable elements. Manual network optimization at this scale proves impossible; only AI systems capable of processing vast sensor data streams and making microsecond-level decisions can achieve 6G's ambitious targets: peak rates exceeding 1 Tbps, latency below 100 microseconds, and energy efficiency 100 times greater than 5G.
The Global 6G Market 2026-2046 provides authoritative intelligence on the emerging sixth-generation wireless communications market, delivering comprehensive analysis of technology roadmaps, market forecasts, enabling materials, and competitive dynamics shaping this $830 billion opportunity. This 380-page plus report addresses critical questions facing telecommunications operators, equipment vendors, semiconductor manufacturers, materials suppliers, and investors seeking to capitalize on the transformative shift from 5G to 6G networks expected to commercialize between 2028-2030.
The report delivers granular market forecasts segmented by infrastructure type (base stations, reconfigurable intelligent surfaces, customer premises equipment), devices (smartphones, AR/VR headsets, automotive modules, IoT sensors), components and materials (RF front-end semiconductors, advanced substrates, thermal management solutions), and services (network deployment, managed operations, edge computing platforms). Geographic analysis covers North America, Asia Pacific (China, Japan, South Korea, India), Europe, and emerging markets, with detailed assessment of regional deployment strategies, government funding initiatives, and spectrum allocation progress.
Extensive technical analysis evaluates critical enabling technologies including sub-terahertz semiconductors (InP, GaN, SiGe), reconfigurable intelligent surfaces and metamaterials, massive MIMO and cell-free architectures, AI-native network optimization, zero-energy devices and ambient backscatter communications, advanced packaging approaches (antenna-in-package, antenna-on-chip), and thermal management solutions addressing extreme heat dissipation challenges at 100-300 GHz frequencies. The report identifies technology readiness levels, development bottlenecks, and commercialization timelines for each critical component.
Market driver analysis examines application opportunities across autonomous vehicles, industrial automation, healthcare telemedicine, extended reality experiences, holographic communications, and persistent AR overlays—quantifying bandwidth requirements, latency constraints, and revenue potential for each vertical. Competitive landscape assessment profiles strategies of leading equipment vendors (Huawei, Nokia, Ericsson, Samsung), semiconductor manufacturers (Qualcomm, NXP, Renesas), innovative antenna and metamaterial specialists, and telecommunications operators planning 6G deployments.
Sustainability analysis addresses 6G's ambitious target of 100x improved energy efficiency versus 5G baseline, evaluating power consumption roadmaps, renewable energy integration strategies, and carbon footprint reduction pathways essential for environmental and economic viability. The report incorporates primary research from industry stakeholders, technical publications from standards bodies (3GPP, ITU-R), government research programs, patent analysis, and academic research, providing evidence-based projections through 2046.
Report Contents Include:
- Market Analysis & Forecasts:
- Global 6G market revenue forecasts 2026-2046 with annual projections
- Infrastructure market segmentation by deployment location and region
- Device market forecasts by category with unit shipment projections
- Components and materials market analysis by technology type
- Services market evolution and recurring revenue opportunities
- Application-specific market sizing across 10+ vertical segments
- Regional market analysis with country-level detail for major markets
- Technology Assessment
- 6G radio system architecture and performance targets
- Semiconductor technology comparison (InP, GaN, GaAs, SiGe, CMOS)
- Reconfigurable intelligent surfaces (RIS) and metamaterial roadmaps
- Phased array antenna technologies and packaging approaches
- Advanced materials enabling 6G (low-loss dielectrics, thermal management)
- MIMO evolution from massive to cell-free architectures
- Zero-energy devices and battery elimination strategies
- Non-terrestrial networks (satellites, HAPS, drones) integration
- Strategic Intelligence
- Government 6G programs and funding initiatives by country
- Spectrum allocation status and World Radiocommunication Conference roadmap
- Standards development timeline and technology readiness assessment
- Competitive positioning of major equipment vendors and semiconductor suppliers
- Deployment strategies comparing standalone versus non-standalone approaches
- Open RAN evolution and regional adoption strategies
- Sustainability targets and power efficiency improvement roadmaps
- Application Analysis
- Connected autonomous vehicle systems and cooperative perception
- Industrial automation and Industry 4.0 applications
- Healthcare solutions including remote surgery and patient monitoring
- Extended reality (AR/VR/MR) market opportunities
- Holographic communications technical requirements and market sizing
- Persistent AR overlays and ambient intelligence infrastructure
- Real-time digital twins for manufacturing and infrastructure
- Materials & Components
- Advanced substrate materials (LTCC, LCP, glass) for low-loss propagation
- Thermal management solutions (phase change materials, graphene, diamond)
- Metamaterials for RIS and electromagnetic manipulation
- Transparent conductive materials for building-integrated deployments
- Energy harvesting technologies for zero-power IoT devices
- Packaging technologies (antenna-in-package, 3D integration)
- Optical components for fiber-wireless convergence
- Companies Profiled include AALTO HAPS, AGC Japan, Alcan Systems, Alibaba China, Alphacore, Ampleon, Apple, Atheraxon, Commscope, Echodyne, Ericsson, Fractal Antenna Systems, Freshwave, Fujitsu, Greenerwave, Huawei, Kymeta, Kyocera, LATYS Intelligence, LG Electronics, META, NEC Corporation, Nokia, NTT DoCoMo, NXP Semiconductors, NVIDIA, Omniflow, Orange France, Panasonic, Picocom, Pivotal Commware, Plasmonics, Qualcomm, Radi-Cool, Renesas Electronics Corporation, Samsung, Sekisui, SensorMetrix, SK telecom, Solvay, Sony, Teraview, TMYTEK, Vivo Mobile Communications, and ZTE.
Purchasers will receive the following:
- PDF report download/by email.
- Comprehensive Excel spreadsheet of all data.
- Mid-year Update
1 EXECUTIVE SUMMARY 24
- 1.1 From 1G to 6G 24
- 1.2 The AI-Native 6G Revolution 27
- 1.3 Evolution from 5G Networks 28
- 1.3.1 Limitations with 5G 28
- 1.3.2 Benefits of 6G 30
- 1.3.3 Advanced materials in 6G 31
- 1.3.4 Recent hardware developments 32
- 1.4 The 6G Market in 2025 33
- 1.4.1 Regional Market Activity 34
- 1.4.2 Investment Landscape 34
- 1.4.3 Market Constraints in 2025 35
- 1.5 Market outlook for 6G 35
- 1.5.1 Growth of Mobile Traffic 35
- 1.5.1.1 Optimistic Scenario 36
- 1.5.1.2 Conservative Scenario 36
- 1.5.1.3 Regional Divergence 36
- 1.5.1.4 Implications for 6G 37
- 1.5.2 Proliferation in Consumer Technology 38
- 1.5.2.1 Smartphone Evolution 38
- 1.5.2.2 Beyond Smartphones 39
- 1.5.3 Industrial and Enterprise Transformation 39
- 1.5.4 Economic Competitiveness 40
- 1.5.5 Sustainability 41
- 1.5.5.1 Energy Efficiency Imperative 41
- 1.5.1 Growth of Mobile Traffic 35
- 1.6 Market drivers and trends 42
- 1.7 Market challenges and bottlenecks 45
- 1.7.1 Critical Bottlenecks 47
- 1.8 Key Conclusions for 6G Communications Systems and Hardware 49
- 1.9 Roadmap 52
- 1.9.1 Critical Path Analysis 53
- 1.10 Global Market Revenues to 2046 54
- 1.10.1 6G Infrastructure Market by Deployment Location 57
- 1.10.2 6G Infrastructure Market by Region 58
- 1.10.3 6G Base Station Market 59
- 1.10.4 Reconfigurable Intelligent Surfaces (RIS) Market 59
- 1.10.5 6G Thermal Management Market 60
- 1.10.6 6G Application Markets 61
- 1.10.7 6G Device Market Forecast by Category 64
- 1.10.8 6G Components & Materials Market 65
- 1.10.9 6G Services Market 67
- 1.11 Applications 69
- 1.11.1 Connected Autonomous Vehicle Systems 69
- 1.11.2 Next Generation Industrial Automation 70
- 1.11.3 Healthcare Solutions 71
- 1.11.4 Immersive Extended Reality Experiences 73
- 1.12 Geographical Markets for 6G 74
- 1.12.1 North America 74
- 1.12.2 Asia Pacific 76
- 1.12.2.1 China 76
- 1.12.2.2 Japan 77
- 1.12.2.3 South Korea 77
- 1.12.2.4 India 78
- 1.12.3 Europe 78
- 1.13 Main Market Players 79
- 1.14 6G Projects by Country 81
- 1.15 Sustainability in 6G 82
2 INTRODUCTION 83
- 2.1 What is 6G? 83
- 2.2 Evolving Mobile Communications 84
- 2.3 5G deployment 86
- 2.3.1 Motivation for 6G 87
- 2.3.2 Growth in Mobile Data Traffic 88
- 2.3.2.1 Growth of Mobile Traffic Slows 88
- 2.3.3 Future of Traffic 90
- 2.3.3.1 Continued Exponential Growth (Optimist View) 90
- 2.3.3.2 Structural Deceleration (Realist View) 90
- 2.3.3.3 Plateau and Decline (Pessimist View) 91
- 2.3.4 Traffic Growth Plateau in China 92
- 2.3.5 Video Streaming 93
- 2.4 Multi-Dimensional Value Proposition 94
- 2.5 Potential 6G High-Value Applications 95
- 2.5.1 Holographic Communication 95
- 2.5.2 Persistent AR Overlays 96
- 2.5.3 Cooperative Perception for Autonomous Systems 96
- 2.5.4 Real-Time Digital Twins 97
- 2.6 Applications and Required Bandwidths 98
- 2.7 Artificial Intelligence's impact on network traffic 100
- 2.7.1 AI Workload: On-Device vs Cloud 102
- 2.8 Autonomous vehicles 103
- 2.8.1 Autonomous Vehicle Communications 104
- 2.8.2 Cooperative Perception 104
- 2.8.3 Vehicle platooning 105
- 2.9 6G Rollout Timeline 107
- 2.9.1 Regional Deployment Timeline 107
- 2.10 6G Spectrum 109
- 2.10.1 6G Candidate Spectrum Bands 109
- 2.10.2 Bands vs Bandwidth 110
- 2.10.3 Bandwidth-Coverage Tradeoff 111
- 2.10.4 6G Spectrum and Deployment 112
- 2.10.4.1 Economic Deployment Model 112
- 2.10.4.1.1 Phase 1: Evolutionary 6G (2029-2034) 113
- 2.10.4.1.2 Phase 2: Revolutionary 6G (2034-2040+) 114
- 2.10.4.1 Economic Deployment Model 112
- 2.11 Frequencies Beyond 100GHz 115
- 2.11.1 Atmospheric Absorption Windows 115
- 2.11.2 Sub-THz Application Viability 117
- 2.11.3 6G Applications 117
- 2.12 Technology Interdependencies 119
- 2.13 Global Trends 120
3 6G RADIO SYSTEMS 122
- 3.1 Technical Targets for High Data-Rate 6G Radios 122
- 3.2 6G Transceiver Architecture 122
- 3.3 Technical Elements in 6G Radio Systems 123
- 3.4 Bandwidth and Modulation 124
- 3.5 Bandwidth Requirements for Supporting 100 Gbps - 1 Tbps Radios 125
- 3.5.1 Practical Bandwidth Allocation 125
- 3.6 Bandwidth and MIMO 125
- 3.7 6G Radio Performance 126
- 3.8 Beyond 100 Gbps 127
- 3.9 Radio Link Range vs System Gain 127
- 3.10 Hardware Gap 128
- 3.11 Saturated Output Power vs Frequency 129
- 3.12 Power consumption 130
- 3.12.1 Power Consumption of PA Scale with Frequency 132
- 3.12.2 Power Consumption on the Transceiver Side (1, 2, 3) 133
- 3.12.2.1 Receive Chain Power Analysis 133
4 BASE STATIONS AND NON-TERRESTRIAL NETWORKS 137
- 4.1 UM-MIMO and Vanishing Base Stations 138
- 4.1.1 Sequence 138
- 4.1.2 RIS-Enabled, Self-Powered 6G UM-MIMO Base Station Design 139
- 4.1.2.1 System Architecture 140
- 4.1.2.2 Power Management 141
- 4.1.2.3 Performance Characteristics 142
- 4.1.3 Base Station Power and Cooling 142
- 4.1.3.1 Power Consumption Drivers 142
- 4.1.3.2 Economic and Environmental Impact 143
- 4.1.3.3 Solutions and Mitigation Strategies 143
- 4.1.4 Semiconductor Technologies for 6G Base Stations 143
- 4.1.4.1 Power Amplifiers 144
- 4.1.4.2 Transceivers and Beamformers 145
- 4.1.4.3 Baseband Processing 145
- 4.1.4.4 RIS Control 145
- 4.1.5 Base Station and MIMO Technology Advances 145
- 4.1.5.1 Integrated Active Antenna Systems 145
- 4.1.5.2 Open RAN Architecture 145
- 4.1.5.3 AI and Machine Learning Integration 146
- 4.1.5.4 Network Slicing 146
- 4.1.5.5 Edge Computing Integration 146
- 4.2 Satellites and Drones 147
- 4.2.1 How Satellites Benefit from 6G 147
- 4.2.2 How 6G Benefits from Satellites 147
- 4.2.3 Drone Integration Benefits 147
- 4.3 Internet of Drones 148
- 4.3.1 Network Architecture 148
- 4.3.2 Technical Challenges 148
- 4.3.3 Market Outlook 149
- 4.4 High Altitude Platform Stations (HAPS) 149
- 4.4.1 HAPS Platforms 149
- 4.4.2 Communications Payload 149
- 4.4.3 Advantages 150
- 4.4.4 Challenges 150
- 4.4.5 Status and Timeline 151
- 4.5 6G Non-Terrestrial Networks (NTN) 151
- 4.5.1 Connectivity Gap 151
- 4.5.1.1 Dimensions of the Gap 151
- 4.5.1.2 Quantification 152
- 4.5.1.3 Regional Characteristics 153
- 4.5.2 Development of LEO NTNs 154
- 4.5.2.1 Major Constellations 154
- 4.5.2.2 Technology Evolution 155
- 4.5.3 NTN Technologies 156
- 4.5.3.1 Geostationary Orbit (GEO) Satellites 156
- 4.5.3.2 Medium Earth Orbit (MEO) Satellites 156
- 4.5.3.3 Low Earth Orbit (LEO) Satellites 156
- 4.5.3.4 Very Low Earth Orbit (VLEO) 156
- 4.5.4 HAPS vs LEO vs GEO 157
- 4.5.4.1 Deployment Speed and Flexibility 157
- 4.5.4.2 Operational Complexity 158
- 4.5.4.3 Coverage Characteristics 158
- 4.5.4.4 Economic Models 159
- 4.5.5 Direct to Cell (D2C) 160
- 4.5.5.1 Technical Challenge 160
- 4.5.5.2 Satellite Solutions 160
- 4.5.5.3 Performance Expectations 160
- 4.5.5.4 Market Positioning 161
- 4.5.6 NTNs for D2C 161
- 4.5.6.1 Link Budget Components 161
- 4.5.6.2 HAPS Analysis 162
- 4.5.6.3 LEO Analysis 162
- 4.5.6.4 MEO and GEO Analysis 162
- 4.5.7 Technologies for Non-Terrestrial Networks 162
- 4.5.7.1 Satellite Bus and Platform Technologies 163
- 4.5.7.2 Phased Array Antennas 163
- 4.5.7.3 Satellite Payload Processing 163
- 4.5.7.4 Inter-Satellite Optical Links 163
- 4.5.7.5 Ground Segment Infrastructure 163
- 4.5.1 Connectivity Gap 151
5 SEMICONDUCTORS FOR 6G 165
- 5.1 Introduction 165
- 5.2 RF Transistors Performance 166
- 5.3 Si-based Semiconductors 166
- 5.3.1 CMOS 166
- 5.3.1.1 Bulk vs SOI 167
- 5.3.1.2 SiGe 168
- 5.3.1 CMOS 166
- 5.4 GaAs and GaN 169
- 5.4.1 GaN's Opportunity in 6G 169
- 5.4.2 GaN-on-Si, SiC or Diamond for RF 170
- 5.4.3 GaAs Positioning in 6G 171
- 5.4.4 State-of-the-Art GaAs Based Amplifier 172
- 5.4.5 GaAs vs GaN for RF Power Amplifiers 172
- 5.4.6 Power Amplifier Technology Benchmarking 173
- 5.5 InP (Indium Phosphide) 174
- 5.5.1 InP HEMT vs InP HBT 174
- 5.5.1.1 InP Opportunities for 6G 175
- 5.5.2 Heterogeneous Integration of InP with SiGe BiCMOS 175
- 5.5.1 InP HEMT vs InP HBT 174
- 5.6 Semiconductor Challenges for THz Communications 177
- 5.6.1 Mitigation Strategies 177
- 5.7 Semiconductor Supply Chain 178
6 PHASE ARRAY ANTENNAS FOR 6G 180
- 6.1 Key 6G Antenna Requirements 180
- 6.2 Challenges in mmWave Phased Array Systems 180
- 6.2.1 Primary Challenges 180
- 6.3 Antenna Architectures 182
- 6.4 Challenges in 6G Antennas 182
- 6.5 Power and Antenna Array Size 184
- 6.6 5G Phased Array Antenna 185
- 6.7 Antenna Manufacturers 185
- 6.8 Technology Benchmarking 187
- 6.9 GHz Phased Array 187
- 6.10 Antenna Types 189
- 6.11 Phased Array Modules 189
- 6.11.1 Technology Readiness Assessment 190
7 ADVANCED PACKAGING FOR 6G 191
7.1 Evolution Drivers 191
7.2 Packaging Requirements 191
7.2.1 Electrical Performance Demands 192
7.2.2 Thermal Management Imperatives 192
7.3 Antenna Packaging Technology Options 192
7.3.1 Technology Selection Criteria 192
7.4 mmWave Antenna Integration 193
7.4.1 Antenna-on-Board (AoB) 193
7.4.2 Antenna-in-Package (AiP) 193
7.4.3 Antenna-on-Chip (AoC) 194
7.4.4 Performance Analysis 194
7.5 Next Generation Phased Array Targets 195
7.5.1 System-Level Requirements Translation 195
7.5.2 Technology Roadmap Implications 196
7.6 Antenna Packaging vs Operational Frequency 196
7.6.1 Frequency-Dependent Loss Mechanisms 196
7.7 Integration Technologies 197
7.7.1 Performance vs Cost 197
7.7.2 Flexibility vs Optimization 198
7.8 Approaches to Integrate InP on CMOS 198
7.8.1 Integration Challenge 198
7.8.2 Die-to-Die Hybrid Assembly 198
7.8.3 Wafer-Level Bonding 199
7.8.4 Epitaxial Transfer 199
7.9 Antenna Integration Challenges 200
7.9.1 Dimensional Tolerance Requirements 200
7.9.2 Thermal Management Scaling 200
7.9.3 Manufacturing Yield Economics 200
7.10 Substrate Materials for AiP 201
7.11 Antenna on Chip (AoC) for 6G 202
7.12 Evolution of Hardware Components from 5G to 6G 203
8 MATERIALS AND TECHNOLOGIES FOR 6G 204
8.1 Material Challenge Domains 204
8.1.1 Material Property Interdependencies 204
8.2 6G ZED Compounds and Carbon Allotropes 205
8.3 Thermal Cooling and Conductor Materials 205
8.4 Thermal Metamaterials for 6G 206
8.5 Ionogels for 6G 207
8.6 Advanced Heat Shielding and Thermal Insulation 208
8.7 Low-Loss Dielectrics 209
8.8 Optical and Sub-THz 6G Materials 210
8.9 Materials for Metamaterial-Based 6G RIS 210
8.10 Electrically-Functionalized Transparent Glass for 6G OTA, T-RIS 211
8.10.1 Transparent Conductive Oxides (TCO) 211
8.10.2 Metal Meshes 211
8.10.3 Printed Silver Nanowires 211
8.10.4 Graphene 212
8.11 Low-Loss Materials for mmWave and THz 213
8.12 Inorganic Compounds 214
8.12.1 Overview 214
8.12.2 Materials 215
8.13 Elements 216
8.13.1 Overview 216
8.13.2 Materials 216
8.14 Organic Compounds 217
8.14.1 Overview 217
8.14.2 Materials 217
8.15 6G Dielectrics 218
8.15.1 Overview 218
8.15.2 Companies 218
8.15.3 SWOT Analysis 218
8.16 Metamaterials 219
8.16.1 Overview 219
8.16.2 Metamaterials for RIS in Telecommunication 220
8.16.2.1 RIS Operating Principles 220
8.16.3 RIS Performance and Economics 221
8.16.3.1 Passive Beamforming 221
8.16.3.2 Hybrid Beamforming with RIS 222
8.16.3.3 Adaptive Beamforming Techniques 223
8.16.4 Applications 223
8.16.4.1 Reconfigurable Antennas 223
8.16.4.2 Wireless Sensing 224
8.16.4.3 Wi-Fi/Bluetooth 224
8.16.4.4 5G and 6G Metasurfaces for Wireless Communications 224
8.16.4.4.1 5G Applications 224
8.16.4.4.2 6G Evolution 224
8.16.4.5 Hypersurfaces 225
8.16.4.6 Active Material Patterning 225
8.16.4.7 Optical ENZ Metamaterials 225
8.16.4.8 Liquid Crystal Polymers 226
8.16.4.8.1 LCP Applications in 6G 226
8.17 Thermal Management 227
8.17.1 Overview 227
8.17.2 Thermal Materials and Structures for 6G 228
8.17.2.1 Advanced Ceramics 228
8.17.2.2 Diamond-based Materials 228
8.17.2.3 Graphene and Carbon Nanotubes 228
8.17.2.4 Phase Change Materials (PCMs) 229
8.17.2.5 Advanced Polymers 229
8.17.2.6 Metal Matrix Composites 230
8.17.2.7 Two-Dimensional Materials 230
8.17.2.8 Nanofluid Coolants 230
8.17.2.9 Thermal Metamaterials 231
8.17.2.10 Hydrogels 231
8.17.2.11 Aerogels 231
8.17.2.12 Pyrolytic Graphite 231
8.17.2.13 Thermoelectrics 232
8.17.2.13.1 Cooling Applications 232
8.17.2.13.2 Energy Harvesting 232
8.18 Graphene and 2D Materials 234
8.18.1 Overview 234
8.18.2 Applications 234
8.18.2.1 Supercapacitors, LiC and Pseudocapacitors 234
8.18.2.2 Graphene Transistors 234
8.18.2.3 Graphene THz Device Structures 235
8.19 Fiber Optics 235
8.19.1 Overview 235
8.19.2 Materials and Applications in 6G 236
8.19.2.1 Key Optical Materials 236
8.19.2.2 6G Fiber-Wireless Architecture 236
8.20 Smart EM Devices 237
8.20.1 Overview 237
8.20.2 Technical Challenges 237
8.20.3 Current Status 238
8.21 Photoactive Materials 238
8.21.1 Overview 238
8.21.2 Applications in 6G 238
8.21.2.1 Optically-Controlled RIS 238
8.22 Silicon Carbide 239
8.22.1 Overview 239
8.22.2 Applications in 6G 239
8.22.2.1 GaN-on-SiC Power Amplifiers 239
8.22.2.2 Thermal Management 239
8.22.2.3 RF Substrates 239
8.23 Phase-Change Materials 240
8.23.1 Overview 240
8.23.2 Applications in 6G 240
8.23.2.1 Reconfigurable Metamaterials 240
8.23.2.2 Reconfigurable Antennas 240
8.23.2.3 RF Switches 240
8.23.2.3.1 Commercialization Challenges 241
8.24 Vanadium Dioxide 241
8.24.1 Overview 241
8.24.2 Applications in 6G 241
8.24.2.1 Ultrafast RF Switches 241
8.24.2.2 Thermally-Triggered Devices 242
8.24.2.3 Tunable Metamaterials 242
8.25 Micro-mechanics, MEMS and Microfluidics 242
8.25.1 Overview 242
8.25.2 Applications in 6G 242
8.25.2.1 MEMS RF Switches 242
8.25.2.2 MEMS Tunable Capacitors 243
8.25.2.3 MEMS Phase Shifters 243
8.25.2.4 Microfluidic Cooling 243
8.25.2.5 Commercial Status 243
8.26 Solid State Cooling 244
8.26.1 Overview 244
8.26.2 Thermoelectric Cooling 244
8.26.3 Electrocaloric and Magnetocaloric Cooling 244
9 MIMO FOR 6G 244
9.1 MIMO in Wireless Communications 245
9.1.1 MIMO Evolution Timeline 245
9.2 Challenges with mMIMO 246
9.2.1 Channel State Information Acquisition 246
9.2.2 Computational Complexity 246
9.2.3 Hardware Impairments 246
9.2.4 Cost and Power Consumption 246
9.3 Distributed MIMO 247
9.3.1 Architecture 247
9.3.2 Benefits 247
9.3.3 Challenges 247
9.4 Cell-free Massive MIMO (Large-Scale Distributed MIMO) 248
9.4.1 Concept 248
9.4.2 Network Topology 248
9.4.3 Performance Benefits 248
9.5 6G Massive MIMO 249
9.5.1 Frequency-Specific Factors 249
9.5.2 Processing Architecture 249
9.5.3 AI/ML Integration 249
9.5.4 Deployment Strategies 249
9.6 Cell-Free MIMO 249
9.6.1 Cellular System Limitations 250
9.6.2 Cell-Free Solutions 250
9.6.3 Economic Considerations 250
9.6.4 Interpretation 250
9.7 Benefits and Challenges of Cell-Free MIMO 251
9.7.1 Benefits 251
9.7.2 Challenges 251
9.8 Cell-Free Massive MIMO 252
9.8.1 Overview 252
9.8.2 Network MIMO (CoMP - Coordinated Multi-Point) 252
9.8.3 Cell-Free mMIMO Distinctive Features 253
9.8.4 Transition Strategy 253
9.8.5 Commercial Readiness 253
9.8.6 Market Projections 253
10 ZERO ENERGY DEVICES (ZED) AND BATTERY ELIMINATION 254
- 10.1 Overview 254
- 10.1.1 Critical Success Factors 255
- 10.1.2 Market Impact 256
- 10.2 ZED-Related Technology 256
- 10.2.1 Technology Convergence 256
- 10.2.2 Drivers for ZED and Battery-Free 257
- 10.2.2.1 Operational Impossibility 257
- 10.2.2.2 Economic Imperative 257
- 10.2.2.3 Environmental Sustainability 257
- 10.2.2.4 Reliability and Autonomy 257
- 10.2.2.5 Lessons from Deployments 258
- 10.3 Zero-Energy and Battery-Free 6G 258
- 10.3.1 Infrastructure 258
- 10.3.2 Client Devices 259
- 10.4 Electricity consumption of wireless networks 261
- 10.4.1 Network Energy Consumption Trends 261
- 10.4.2 Energy Harvesting 261
- 10.5 Technologies 262
- 10.5.1 On-Board Harvesting Technologies Compared and Prioritized 263
- 10.5.2 6G ZED Design Approaches 264
- 10.5.3 Device Architecture 265
- 10.5.3.1 System Integration 266
- 10.5.3.2 Architecture Variants 266
- 10.5.4 Energy Harvesting 266
- 10.5.4.1 Power Management Optimization 266
- 10.5.4.2 Transducer Efficiency 267
- 10.5.4.3 Impedance Matching 267
- 10.5.5 Device Battery-Free Storage 267
- 10.5.5.1 Supercapacitors 267
- 10.5.5.2 Lithium-Ion Capacitors (LIC) 268
- 10.5.5.3 Selection Guidelines 269
- 10.5.5.4 "Massless Energy" for ZED 269
- 10.5.5.4.1 Performance 269
- 10.5.5.4.2 6G ZED Applications 269
- 10.5.5.4.3 Challenges 270
- 10.5.5.4.4 Status 270
- 10.5.6 Ambient Backscatter Communications AmBC, Crowd Detectable CD-ZED, SWIPT 271
- 10.5.6.1 Performance Characteristics 271
- 10.5.6.2 6G Integration 271
- 10.5.6.3 Crowd Detectable CD-ZED 271
- 10.5.6.4 Simultaneous Wireless Information and Power Transfer (SWIPT) 271
- 10.5.6.5 Performance 272
- 10.6 6G ZED Materials and Technologies 273
- 10.6.1 Metamaterials 273
- 10.6.2 IRS (Intelligent Reflecting Surfaces) 273
- 10.6.3 RIS (Reconfigurable Intelligent Surfaces) 273
- 10.6.4 Simultaneous Wireless Information and Power Transfer (SWIPT) 274
- 10.6.5 Ambient Backscatter Communications (AmBC) 274
- 10.6.5.1 Advanced AmBC Techniques 274
- 10.6.5.2 6G Native Integration 274
- 10.6.6 Energy Harvesting for 6G 275
- 10.6.6.1 Photovoltaics 275
- 10.6.6.1.1 Technology Options 275
- 10.6.6.1.2 Indoor Optimization 275
- 10.6.6.2 Ambient RF 276
- 10.6.6.2.1 Power Availability 276
- 10.6.6.2.2 Rectifier Technology 276
- 10.6.6.2.3 Multi-Band Harvesting 276
- 10.6.6.3 Electrodynamic 277
- 10.6.6.3.1 Characteristics 277
- 10.6.6.3.2 Applications 277
- 10.6.6.4 Piezoelectric materials 277
- 10.6.6.4.1 Materials 277
- 10.6.6.4.2 Harvester Designs 277
- 10.6.6.5 Triboelectric nanogenerators (TENGs 278
- 10.6.6.5.1 Operating Principle 278
- 10.6.6.5.2 Performance 278
- 10.6.6.5.3 6G Applications 278
- 10.6.6.5.4 Challenges 278
- 10.6.6.6 Thermoelectric generators (TEGs) 279
- 10.6.6.6.1 Performance 279
- 10.6.6.6.2 Temperature Sources 279
- 10.6.6.6.3 6G ZED Applications 279
- 10.6.6.7 Pyroelectric materials 279
- 10.6.6.7.1 Mechanism 280
- 10.6.6.7.2 Performance 280
- 10.6.6.7.3 Applications 280
- 10.6.6.7.4 Limitations 280
- 10.6.6.8 Thermal Hydrovoltaic 280
- 10.6.6.8.1 Mechanisms 280
- 10.6.6.8.2 Performance 280
- 10.6.6.8.3 Status 281
- 10.6.6.9 Biofuel Cells 281
- 10.6.6.9.1 Types 281
- 10.6.6.9.2 Performance 281
- 10.6.6.9.3 Applications 281
- 10.6.6.9.4 Challenges 281
- 10.6.6.9.5 Status 281
- 10.6.6.1 Photovoltaics 275
- 10.6.7 Ultra-Low-Power Electronics 282
- 10.6.7.1 Technologies 282
- 10.6.7.2 Future Targets (2030) 282
- 10.6.7.3 Design Techniques 283
- 10.6.7.4 Supercapacitors 283
- 10.6.7.4.1 Advanced Supercapacitor Technologies 283
- 10.6.7.5 Hybrid Approaches 283
- 10.6.7.5.1 Lithium-Ion Capacitors (LIC) 283
- 10.6.7.5.2 Sodium-Ion Batteries 284
- 10.6.7.5.3 Lithium Titanate (LTO) Batteries 284
- 10.6.7.6 Pseudocapacitors 284
- 10.6.7.6.1 Operating Principle 284
- 10.6.7.6.2 Performance 285
- 10.6.7.6.3 6G ZED Applications 285
- 10.6.7.6.4 Status 285
- 10.6.7.6.5 Research Directions 285
11 6G DEVELOPMENT ROADMAPS 286
- 11.1 Spectrum for 6G 287
- 11.2 US Federal Spectrum 288
- 11.3 Regulatory Status (2025) 289
- 11.4 Standalone vs Non-Standalone Rollout 290
- 11.5 Open RAN for 6G 291
- 11.5.1 Regional Open RAN Positioning 292
- 11.6 Competition for Spectrum in Europe 292
- 11.6.1 Key Challenges 293
- 11.7 Global 6G Government Initiatives 294
- 11.7.1 Program Effectiveness Factors 296
- 11.8 6G Development Roadmap - South Korea 297
- 11.8.1 Technology Focus Areas 298
- 11.8.2 South Korea - mmWave Challenges 298
- 11.9 6G Development Roadmap – Japan 299
- 11.9.1 Beyond 5G Program Structure 299
- 11.9.2 Deployment Timeline and Market Strategy 301
- 11.10 Funding Models to Research the Next Mobile Communication Infrastructure 301
- 11.11 6G Development Roadmap – US 303
12 COMPANY PROFILES 306
- 12.1 AALTO HAPS 306
- 12.2 AGC Japan 307
- 12.3 Alcan Systems 308
- 12.4 Alibaba China 310
- 12.5 Alphacore 311
- 12.6 Ampleon 312
- 12.7 Apple 313
- 12.8 Atheraxon 314
- 12.9 Commscope 315
- 12.10 Echodyne 316
- 12.11 Ericsson 317
- 12.12 Fractal Antenna Systems 318
- 12.13 Freshwave 320
- 12.14 Fujitsu 321
- 12.15 Greenerwave 322
- 12.16 Huawei 323
- 12.17 Kymeta 325
- 12.18 Kyocera 326
- 12.19 LATYS Intelligence 327
- 12.20 LG Electronics 328
- 12.21 META 330
- 12.22 NEC Corporation 330
- 12.23 Nokia 333
- 12.24 NTT DoCoMo 336
- 12.25 NXP Semiconductors 340
- 12.26 NVIDIA 342
- 12.27 Omniflow 344
- 12.28 Orange France 346
- 12.29 Panasonic 348
- 12.30 Picocom 350
- 12.31 Pivotal Commware 352
- 12.32 Plasmonics 354
- 12.33 Qualcomm 356
- 12.34 Radi-Cool 358
- 12.35 Renesas Electronics Corporation 360
- 12.36 Samsung 361
- 12.37 Sekisui 363
- 12.38 SensorMetrix 365
- 12.39 SK telecom 367
- 12.40 Solvay 369
- 12.41 Sony 370
- 12.42 Teraview 372
- 12.43 TMYTEK 373
- 12.44 Vivo Mobile Communications 375
- 12.45 ZTE 377
13 RESEARCH METHODOLOGY 380
14 REFERENCES 381
List of Tables
- Table 1. Evolution of Mobile Wireless Communications from 1G to 6G 24
- Table 2. Key Limitations with 5G Networks. 29
- Table 3. Key Differentiators and Benefits of 6G vs 5G. 30
- Table 4. Advanced Materials Enabling 6G Communications. 31
- Table 5. Notable 6G Hardware Demonstrations (2024-2025). 32
- Table 6. 6G Market Readiness Indicators (2025). 33
- Table 7. Global 6G R&D Investment by Source (2023-2025). 34
- Table 8. Global Mobile Data Traffic Growth (2018-2025). 35
- Table 9. Mobile Data Traffic Forecasts - Competing Scenarios (2026-2036). 36
- Table 10. Smartphone Capability Evolution Through 6G Era. 38
- Table 11. Enterprise 6G Market Forecast by Vertical (2030-2036), 40
- Table 12. Government 6G Strategy Approaches by Country. 40
- Table 13. Network Energy Consumption Evolution and 6G Targets. 41
- Table 14. Sustainability Metrics 42
- Table 15. Primary Market Drivers for 6G Adoption (2026-2036). 42
- Table 16. Critical Challenges and Bottlenecks for 6G Market Development. 45
- Table 17. Sub-THz Power Amplifier Technology Gap Analysis. 47
- Table 18. 6G Hardware Technology Readiness Roadmap 53
- Table 19. Global 6G Market Forecast Summary (2026-2046) 56
- Table 20. 6G Infrastructure Market by Deployment Location (2030, 2033, 2036). 58
- Table 21. 6G Infrastructure Market by Region (2030, 2033, 2036) 58
- Table 22. 6G Base Station Market (2029-2046) 59
- Table 23. Reconfigurable Intelligent Surfaces (RIS) Market Forecast (2027-2046) 60
- Table 24. 6G Thermal Management Market Forecast (2029-2046) 60
- Table 25. 6G Application-Specific Markets (2030-2046). 62
- Table 26. 6G Device Market Forecast by Category (2028-2046), Units. 64
- Table 27. 6G Components & Materials Market by Technology (2029-2046) 66
- Table 28. 6G Services Market (2029-2046) 68
- Table 29. Autonomous Vehicle Connectivity Requirements 69
- Table 30. 6G-Connected Autonomous Vehicle Market Forecast. 70
- Table 31. 6G Industrial Automation Market by Segment (2036) 71
- Table 32. 6G Healthcare Market Forecast (2030-2036). 72
- Table 33. XR Experience Tiers and 6G Requirements. 73
- Table 34. 6G-Enabled XR Market (2030-2036). 74
- Table 35. North America 6G Market Forecast (2026-2036). 74
- Table 36. US Operator 6G Investment Profile. 75
- Table 37. Asia Pacific 6G Market Forecast by Sub-Region (2036). 76
- Table 38. Europe 6G Market Forecast by Major Markets (2036). 78
- Table 39. Leading 6G Equipment Vendors. 79
- Table 40. Semiconductor Companies for 6G. 80
- Table 41. Key Materials and Component Suppliers. 80
- Table 42. Major Government-Funded 6G Programs Worldwide 81
- Table 43. 6G Sustainability Targets vs. 5G Baseline. 82
- Table 44. Defining Characteristics of 6G. 83
- Table 45. Common Misconceptions. 84
- Table 46. Evolution of Mobile Communications Focus. 85
- Table 47. Global 5G Deployment Status (2025). 86
- Table 48. 5G Performance - Promised vs. Delivered (2025). 86
- Table 49. Application Requirements Exceeding 5G Capabilities. 87
- Table 50. Global Mobile Data Traffic Evolution (2015-2025) 88
- Table 51. Per Capita Data Usage - Developed Markets (2020-2025). 88
- Table 52. China Mobile Data Traffic Evolution (2018-2025). 92
- Table 53. Video Streaming Traffic Share Evolution. 93
- Table 54. Video Streaming Bandwidth Requirements. 93
- Table 55. Applications Requiring >1 Gbps Sustained Bandwidth. 94
- Table 56. Comprehensive Application Bandwidth Requirements. 98
- Table 57. Net AI Impact on Mobile Data Traffic (2025-2036). 102
- Table 58. AI Workload Distribution Evolution. 102
- Table 59. Autonomous Vehicle Communication Requirements by Level. 103
- Table 60. Autonomous Vehicle 6G Connectivity Market Forecast. 105
- Table 61. Platooning Benefits and Requirements. 105
- Table 62. Platooning Connectivity Market. 106
- Table 63. Key 5G Lessons and 6G Responses 106
- Table 64. Comprehensive 6G Development and Deployment Timeline. 107
- Table 65. 6G Commercial Launch Timeline by Region. 107
- Table 66. 6G Candidate Spectrum Bands. 109
- Table 67. Regional Spectrum Priorities for 6G. 110
- Table 68. Bandwidth Availability by Frequency Range. 111
- Table 69. Achievable Data Rates by Spectrum Allocation. 111
- Table 70. Path Loss Comparison Across Frequencies. 112
- Table 71. Deployment Strategy by Frequency Band. 112
- Table 72. Detailed 5G vs 6G Performance Comparison 114
- Table 73. Characteristics of >100 GHz Frequency Bands. 115
- Table 74. Atmospheric Windows for Sub-THz Communications. 115
- Table 75. Application Suitability for >100 GHz. 117
- Table 76. 6G Application Portfolio. 117
- Table 77. Core 6G Enabling Technologies. 118
- Table 78. 6G Radio System Technical Targets 122
- Table 79. 6G Transceiver Component Requirements. 123
- Table 80. Bandwidth Requirements for Target Data Rates. 124
- Table 81. Spectrum Allocation Scenarios for Extreme Data Rates. 125
- Table 82. MIMO Configuration Trade-offs. 126
- Table 83. Critical 6G Radio Performance Parameters 126
- Table 84. Notable 100+ Gbps Wireless Demonstrations (2023-2025) 127
- Table 85. Range vs Frequency Analysis for 6G 128
- Table 86. Power Amplifier Output Power vs Frequency 129
- Table 87. Semiconductor Technology Comparison for Sub-THz Power Amplifiers 129
- Table 88. Power Budget for 140 GHz Base Station Radio Unit 130
- Table 89. Power Scaling with Array Size 131
- Table 90. PA Efficiency vs Frequency Trend 132
- Table 91. Transmission Distance vs Frequency for Fixed Power Budget 133
- Table 92. Receiver Power Breakdown by Function 134
- Table 93. Power Comparison - 5G mmWave vs 6G Sub-THz 134
- Table 94. Terrestrial vs Non-Terrestrial 6G Infrastructure Comparison 137
- Table 95. Base Station Power Consumption Evolution and Cooling Requirements 142
- Table 96. Critical Semiconductor Technologies for 6G Base Stations 144
- Table 97. Drone Network Applications and Requirements 148
- Table 98. HAPS Characteristics and Comparison with Alternatives 150
- Table 99. Connectivity Gap Analysis by Region (2025) 152
- Table 100. Major LEO Constellation Status and Plans (2025) 155
- Table 101. Comprehensive NTN Technology Performance Comparison 157
- Table 102. Qualitative Feature Comparison - HAPS vs LEO vs GEO 159
- Table 103. Link Budget Summary for Direct-to-Cell Scenarios 161
- Table 104. Critical NTN Enabling Technologies and Status 164
- Table 105. Semiconductor Selection Criteria Priority Matrix 165
- Table 106. RF Transistor Technology Benchmark (2025) 166
- Table 107. Bulk CMOS vs SOI Comparison 167
- Table 108. Advanced CMOS RF Performance by Process Node 167
- Table 109. SiGe Technology Evolution for 6G 168
- Table 110. Major SiGe BiCMOS Foundries and Capabilities 168
- Table 111. Wide Bandgap Semiconductor Properties 169
- Table 112. GaN Substrate Comparison 170
- Table 113. Best Reported GaN PA Performance (2024-2025) 171
- Table 114. GaN Manufacturing Capacity for 6G (2025) 171
- Table 115. GaAs Application Opportunities in 6G 171
- Table 116. Advanced GaAs Amplifier Performance (2025) 172
- Table 117. Direct Technology Comparison - GaAs vs GaN 172
- Table 118. Comprehensive PA Technology Comparison at Key 6G Frequencies 173
- Table 119. InP Technology State-of-the-Art (2025) 174
- Table 120. InP Device Type Comparison 174
- Table 121. InP Market Forecast for 6G (2030-2036) 175
- Table 122. InP-SiGe Integration Methods 175
- Table 123. Leading InP PA Demonstrations (2024-2025) 176
- Table 124. Silicon vs III-V Compound Semiconductor Comparison 176
- Table 125. Critical Semiconductor Challenges for 6G Sub-THz 177
- Table 126. Semiconductor Technology Recommendation by Application 177
- Table 127. 6G Semiconductor Supply Chain - Capacity and Constraints (2025) 178
- Table 128. 6G Antenna Requirements vs 5G Comparison 180
- Table 129. mmWave/Sub-THz Phased Array Challenges and Solutions 181
- Table 130. Antenna Element Size vs Frequency 181
- Table 131. 6G Antenna Architecture Comparison 182
- Table 132. Critical 6G Antenna Design Challenges 182
- Table 133. Theoretical vs Practical Antenna Array Gain 183
- Table 134. Power-Array Size Trade-off Analysis for 100m Range at 140 GHz 184
- Table 135. Commercial 5G mmWave Phased Array Antenna Specifications (2024-2025) 185
- Table 136. Major Antenna and Phased Array Module Suppliers for 6G 185
- Table 137. Nokia 90 GHz Array Performance Summary 186
- Table 138. Comparative Analysis - 28 GHz vs 90 GHz vs 140 GHz Arrays 187
- Table 139. 140 GHz Transceiver Module Component Budget (16-element array) 187
- Table 140. Semiconductor Technology Selection for 140 GHz Array Components 188
- Table 141. Detailed Antenna Element Types for 6G Phased Arrays 189
- Table 142. Commercial Readiness Assessment of D-band Phased Arrays (2025) 190
- Table 143. 5G to 6G Antenna Module Evolution 191
- Table 144. Packaging Technology Selection Matrix for 6G 193
- Table 145. Antenna Integration Approach Comparison 194
- Table 146. Technology Benchmark 195
- Table 147. Next-Generation Phased Array Packaging Targets 196
- Table 148. Packaging Technology Viability by Frequency 197
- Table 149. Integration Technology Trade-off Matrix 198
- Table 150. InP-CMOS Integration Approaches 199
- Table 151. AiP vs Discrete Antenna Techniques 201
- Table 152. Substrate Material Performance Comparison at 140 GHz 201
- Table 153. Manufacturing Technology Comparison 202
- Table 154. AoC vs AiP Performance 202
- Table 155. Hardware Evolution Comparison. 203
- Table 156. 6G Material Requirements vs Current Capabilities 204
- Table 157. Low/Zero Expansion Materials for 6G. 205
- Table 158. Thermal Management Material Ranking for 6G 205
- Table 159. Thermal Management Evolution 5G to 6G 207
- Table 160. Ionogel vs Alternatives for Tunable RF 207
- Table 161. Thermal Insulation Material Comparison 208
- Table 162. Low-Loss Dielectric Material Priority Ranking 209
- Table 163. Dielectric Constant (Dk) and Loss Factor (Df) Requirements 209
- Table 164. Optical and Sub-THz Material Requirements. 210
- Table 165. RIS Material Comparison 210
- Table 166. Transparent Conductor Comparison 212
- Table 167. Low-Loss Materials for 6G. 213
- Table 168. Commercial Availability and Roadmap 214
- Table 169. Low-Loss Materials SWOT for 6G 214
- Table 170. Key Inorganic Compounds for 6G 215
- Table 171. Elemental Materials for 6G Applications 216
- Table 172. Organic Materials for 6G Applications 217
- Table 173. 6G Dielectrics Market SWOT 218
- Table 174. RIS Metamaterial Implementation Approaches 220
- Table 175. Metamaterial Manufacturing Approaches 221
- Table 176. Adaptive Beamforming Techniques. 223
- Table 177. Metasurface Performance Evolution 5G to 6G 224
- Table 178. Liquid Crystal Materials for 6G 226
- Table 179. Metamaterials SWOT for 6G 227
- Table 180. Thermal Management for 6G SWOT 232
- Table 181. Graphene THz Devices Performance and Status 235
- Table 182. Optical Component Requirements for 6G Fronthaul 237
- Table 183. Phase-Change Materials for 6G Tuning 241
- Table 184. MEMS vs Solid-State RF Components for 6G 243
- Table 185. MIMO Technology Evolution Across Wireless Generations 245
- Table 186. Massive MIMO Scaling Challenges 247
- Table 187. Cell-Free Massive MIMO vs Traditional Cellular 248
- Table 188. Cellular vs Cell-Free Architecture Comparison 250
- Table 189. Cell-Free MIMO Deployment Challenges and Solutions 251
- Table 190. MIMO Architecture Evolution Summary 252
- Table 191. Zero Energy Device Vision for 6G IoT 255
- Table 192. ZED-Related Technology Landscape 256
- Table 193. Real-World Battery-Free Device Examples 258
- Table 194. 6G Device Power Requirements and ZED Viability 259
- Table 195. ZED Strategy Combination Examples 260
- Table 196. 6G Technology Investment Priorities 261
- Table 197. Energy Harvesting Technology Comparison 263
- Table 198. ZED Technology Readiness Assessment (2025) 264
- Table 199. ZED Design Target Examples by Application Class 264
- Table 200. ZED System Architecture Components 265
- Table 201. Energy Harvesting Enhancement Techniques 267
- Table 202. Energy Storage Comparison for ZED 268
- Table 203. SWOT Appraisal of Battery-Less Storage Technologies. 270
- Table 204. Zero-Power Communication Methods Comparison 272
- Table 205. Critical ZED Research Areas and Priorities (2025-2030) 272
- Table 206. SWIPT Implementation Comparison 274
- Table 207. Photovoltaic Technologies for 6G ZED 275
- Table 208. Piezoelectric Harvester Comparison 278
- Table 209. Thermoelectric Harvesting Scenarios 279
- Table 210. Ultra-Low-Power Component Performance (2025) 282
- Table 211. Hybrid Storage Device Comparison 284
- Table 212. Major 6G Equipment Vendor Positioning (2025) 286
- Table 213. World Radiocommunication Conference 6G Timeline 287
- Table 214. National/Regional 6G Spectrum Proposals (WRC-27) 287
- Table 215. Upper 6 GHz Regulatory Status by Region. 289
- Table 216.NSA vs SA Deployment Comparison 290
- Table 217. Open RAN Evolution - 5G to 6G 291
- Table 218.Regional Open RAN Strategies for 6G 292
- Table 219. European 6G Spectrum Coordination Status (2025). 293
- Table 220. Major Government 6G Programs. 295
- Table 221.South Korea 6G Development Timeline and Milestones 297
- Table 222.Japan Beyond 5G Technology Priorities and Status 300
- Table 223.6G Funding Models - International Comparison. 301
- Table 224.US 6G Development - Key Programs and Participants 304
List of Figures
- Figure 1. Evolution of Mobile Networks: From 1G to 6G. 25
- Figure 2. Comparison between 5G and 6G wireless systems in terms of key-performance indicators. 29
- Figure 3. Nokia spectrum vision in the 6G era. 38
- Figure 4. 6G Systems, Materials and Standards Roadmaps 2026-2046. 53
- Figure 5. Global 6G Market Forecast Summary (2026-2046). 57
- Figure 6. 6G Thermal Management Market Forecast (2029-2046). 61
- Figure 7. 6G Application-Specific Markets (2030-2046). 63
- Figure 8. 6G Device Market Forecast by Category (2028-2046), Units. 65
- Figure 9. 6G Components & Materials Market by Technology (2029-2046). 67
- Figure 10. 6G Services Market (2029-2046). 68
- Figure 11. 6G Healthcare Market Forecast (2030-2036). 73
- Figure 12. North America 6G Market Forecast (2026-2036). 75
- Figure 13. Power efficiency roadmap . 136
- Figure 14. RIS-assisted wireless communication. 140
- Figure 15. RIS-enabled, self-sufficient ultra-massive 6G UM-MIMO base station design. 141
- Figure 16. Lumotive advanced beam steering concept. 220
- Figure 17. FM/R technology. 319
- Figure 18. Metablade antenna. 320
- Figure 19.Millimeter-wave mobile network utilizing a radio-over-fiber system 332
- Figure 20. D-Band (110 to 175 Hz) Phased-Array-on-Glass Modules from Nokia 334
- Figure 21. Left) Image of beamforming using phased-array wireless device. (Right) Comparison of previously reported transmission with beamforming wireless devices. 337
- Figure 22. NTT DOCOMO transparent RIS. 339
- Figure 23. Radi-cool metamaterial film. 358
- Figure 24. 140 GHz THz prototype from Samsung and UCSB 362