The Global 6G Market 2026-2046

0

cover

  • Published: November 2025
  • Pages: 386
  • Tables: 224
  • Figures: 24

 

The global 6G market represents a transformational opportunity evolving from experimental deployments in 2026 through explosive commercial growth during 2030-2031 launch phases, before moderating to sustainable expansion as markets mature through 2046. This evolution reflects fundamental reimagining of wireless infrastructure driven by AI-native network architectures, distributed intelligence through Reconfigurable Intelligent Surfaces, and value-based connectivity models replacing traditional volume-driven pricing. Market composition shifts dramatically throughout the forecast period. Infrastructure hardware dominates early phases but services and devices progressively capture larger shares as the industry transitions from capital-intensive buildouts to recurring managed services, edge computing platforms, and mass-market device adoption. The services transformation proves particularly significant as operators successfully monetize AI-driven optimization, network slicing, and application enablement platforms generating predictable subscription revenues that eventually exceed infrastructure equipment spending.

Technology innovation fundamentally reshapes network economics. Reconfigurable Intelligent Surfaces revolutionize coverage extension through passive signal manipulation costing fractions of traditional base station deployments. Sub-terahertz components, thermal management solutions, and advanced materials address extreme technical challenges of operating at frequencies substantially higher than 5G, creating substantial opportunities for specialized component manufacturers and materials suppliers. Application diversity validates 6G's value proposition across multiple verticals. Enterprise automation, healthcare telemedicine, autonomous vehicles, extended reality experiences, and massive IoT deployments demonstrate compelling use cases that justify infrastructure investments. Industrial and enterprise applications drive early adoption with willingness to pay premium pricing for guaranteed ultra-low latency and reliability, while consumer applications accelerate later as device ecosystems mature and mass-market economics enable broad adoption.

The global 6G communications market is experiencing a transformative convergence of artificial intelligence and wireless infrastructure, exemplified by Nvidia's landmark $1 billion investment in Nokia and their strategic partnership to develop next-generation 6G cellular technology. This collaboration represents far more than a financial transaction—it signals the telecommunications industry's fundamental architectural shift toward AI-native networks where machine learning algorithms are embedded throughout every layer of the network stack, from physical layer signal processing to autonomous network orchestration.

The strategic importance of AI integration stems from 6G's unprecedented complexity. Operating at frequencies from 7 GHz through sub-terahertz bands (100-300 GHz), 6G networks must coordinate massive MIMO antenna arrays with thousands of elements, orchestrate hybrid terrestrial-satellite networks, and dynamically configure metamaterial RIS panels containing thousands of individually controllable elements. Manual network optimization at this scale proves impossible; only AI systems capable of processing vast sensor data streams and making microsecond-level decisions can achieve 6G's ambitious targets: peak rates exceeding 1 Tbps, latency below 100 microseconds, and energy efficiency 100 times greater than 5G.

The Global 6G Market 2026-2046 provides authoritative intelligence on the emerging sixth-generation wireless communications market, delivering comprehensive analysis of technology roadmaps, market forecasts, enabling materials, and competitive dynamics shaping this $830 billion opportunity. This 380-page plus report addresses critical questions facing telecommunications operators, equipment vendors, semiconductor manufacturers, materials suppliers, and investors seeking to capitalize on the transformative shift from 5G to 6G networks expected to commercialize between 2028-2030.

The report delivers granular market forecasts segmented by infrastructure type (base stations, reconfigurable intelligent surfaces, customer premises equipment), devices (smartphones, AR/VR headsets, automotive modules, IoT sensors), components and materials (RF front-end semiconductors, advanced substrates, thermal management solutions), and services (network deployment, managed operations, edge computing platforms). Geographic analysis covers North America, Asia Pacific (China, Japan, South Korea, India), Europe, and emerging markets, with detailed assessment of regional deployment strategies, government funding initiatives, and spectrum allocation progress.

Extensive technical analysis evaluates critical enabling technologies including sub-terahertz semiconductors (InP, GaN, SiGe), reconfigurable intelligent surfaces and metamaterials, massive MIMO and cell-free architectures, AI-native network optimization, zero-energy devices and ambient backscatter communications, advanced packaging approaches (antenna-in-package, antenna-on-chip), and thermal management solutions addressing extreme heat dissipation challenges at 100-300 GHz frequencies. The report identifies technology readiness levels, development bottlenecks, and commercialization timelines for each critical component.

Market driver analysis examines application opportunities across autonomous vehicles, industrial automation, healthcare telemedicine, extended reality experiences, holographic communications, and persistent AR overlays—quantifying bandwidth requirements, latency constraints, and revenue potential for each vertical. Competitive landscape assessment profiles strategies of leading equipment vendors (Huawei, Nokia, Ericsson, Samsung), semiconductor manufacturers (Qualcomm, NXP, Renesas), innovative antenna and metamaterial specialists, and telecommunications operators planning 6G deployments.

Sustainability analysis addresses 6G's ambitious target of 100x improved energy efficiency versus 5G baseline, evaluating power consumption roadmaps, renewable energy integration strategies, and carbon footprint reduction pathways essential for environmental and economic viability. The report incorporates primary research from industry stakeholders, technical publications from standards bodies (3GPP, ITU-R), government research programs, patent analysis, and academic research, providing evidence-based projections through 2046.

Report Contents Include:

  • Market Analysis & Forecasts:
    • Global 6G market revenue forecasts 2026-2046 with annual projections
    • Infrastructure market segmentation by deployment location and region
    • Device market forecasts by category with unit shipment projections
    • Components and materials market analysis by technology type
    • Services market evolution and recurring revenue opportunities
    • Application-specific market sizing across 10+ vertical segments
    • Regional market analysis with country-level detail for major markets
  • Technology Assessment
    • 6G radio system architecture and performance targets
    • Semiconductor technology comparison (InP, GaN, GaAs, SiGe, CMOS)
    • Reconfigurable intelligent surfaces (RIS) and metamaterial roadmaps
    • Phased array antenna technologies and packaging approaches
    • Advanced materials enabling 6G (low-loss dielectrics, thermal management)
    • MIMO evolution from massive to cell-free architectures
    • Zero-energy devices and battery elimination strategies
    • Non-terrestrial networks (satellites, HAPS, drones) integration
  • Strategic Intelligence
    • Government 6G programs and funding initiatives by country
    • Spectrum allocation status and World Radiocommunication Conference roadmap
    • Standards development timeline and technology readiness assessment
    • Competitive positioning of major equipment vendors and semiconductor suppliers
    • Deployment strategies comparing standalone versus non-standalone approaches
    • Open RAN evolution and regional adoption strategies
    • Sustainability targets and power efficiency improvement roadmaps
  • Application Analysis
    • Connected autonomous vehicle systems and cooperative perception
    • Industrial automation and Industry 4.0 applications
    • Healthcare solutions including remote surgery and patient monitoring
    • Extended reality (AR/VR/MR) market opportunities
    • Holographic communications technical requirements and market sizing
    • Persistent AR overlays and ambient intelligence infrastructure
    • Real-time digital twins for manufacturing and infrastructure
  • Materials & Components
    • Advanced substrate materials (LTCC, LCP, glass) for low-loss propagation
    • Thermal management solutions (phase change materials, graphene, diamond)
    • Metamaterials for RIS and electromagnetic manipulation
    • Transparent conductive materials for building-integrated deployments
    • Energy harvesting technologies for zero-power IoT devices
    • Packaging technologies (antenna-in-package, 3D integration)
    • Optical components for fiber-wireless convergence
  • Companies Profiled include AALTO HAPS, AGC Japan, Alcan Systems, Alibaba China, Alphacore, Ampleon, Apple, Atheraxon, Commscope, Echodyne, Ericsson, Fractal Antenna Systems, Freshwave, Fujitsu, Greenerwave, Huawei, Kymeta, Kyocera, LATYS Intelligence, LG Electronics, META, NEC Corporation, Nokia, NTT DoCoMo, NXP Semiconductors, NVIDIA, Omniflow, Orange France, Panasonic, Picocom, Pivotal Commware, Plasmonics, Qualcomm, Radi-Cool, Renesas Electronics Corporation, Samsung, Sekisui, SensorMetrix, SK telecom, Solvay, Sony, Teraview, TMYTEK, Vivo Mobile Communications, and ZTE.

 

Purchasers will receive the following:

  • PDF report download/by email. 
  • Comprehensive Excel spreadsheet of all data.
  • Mid-year Update

 

The Global 6G Market 2026-2046
The Global 6G Market 2026-2046
PDF-download.

The Global 6G Market 2026-2046
The Global 6G Market 2026-2046
PDF and Print Edition (including tracked delivery).

 

 

 

 

1             EXECUTIVE SUMMARY            24

  • 1.1        From 1G to 6G               24
  • 1.2        The AI-Native 6G Revolution 27
  • 1.3        Evolution from 5G Networks                28
    • 1.3.1    Limitations with 5G    28
    • 1.3.2    Benefits of 6G                30
    • 1.3.3    Advanced materials in 6G     31
    • 1.3.4    Recent hardware developments       32
  • 1.4        The 6G Market in 2025             33
    • 1.4.1    Regional Market Activity          34
    • 1.4.2    Investment Landscape            34
    • 1.4.3    Market Constraints in 2025  35
  • 1.5        Market outlook for 6G               35
    • 1.5.1    Growth of Mobile Traffic         35
      • 1.5.1.1 Optimistic Scenario  36
      • 1.5.1.2 Conservative Scenario            36
      • 1.5.1.3 Regional Divergence  36
      • 1.5.1.4 Implications for 6G    37
    • 1.5.2    Proliferation in Consumer Technology           38
      • 1.5.2.1 Smartphone Evolution             38
      • 1.5.2.2 Beyond Smartphones              39
    • 1.5.3    Industrial and Enterprise Transformation   39
    • 1.5.4    Economic Competitiveness 40
    • 1.5.5    Sustainability 41
      • 1.5.5.1 Energy Efficiency Imperative                41
  • 1.6        Market drivers and trends      42
  • 1.7        Market challenges and bottlenecks                45
    • 1.7.1    Critical Bottlenecks   47
  • 1.8        Key Conclusions for 6G Communications Systems and Hardware            49
  • 1.9        Roadmap         52
    • 1.9.1    Critical Path Analysis               53
  • 1.10     Global Market Revenues to 2046     54
    • 1.10.1 6G Infrastructure Market by Deployment Location               57
    • 1.10.2 6G Infrastructure Market by Region 58
    • 1.10.3 6G Base Station Market           59
    • 1.10.4 Reconfigurable Intelligent Surfaces (RIS) Market   59
    • 1.10.5 6G Thermal Management Market     60
    • 1.10.6 6G Application Markets           61
    • 1.10.7 6G Device Market Forecast by Category      64
    • 1.10.8 6G Components & Materials Market               65
    • 1.10.9 6G Services Market    67
  • 1.11     Applications   69
    • 1.11.1 Connected Autonomous Vehicle Systems 69
    • 1.11.2 Next Generation Industrial Automation        70
    • 1.11.3 Healthcare Solutions               71
    • 1.11.4 Immersive Extended Reality Experiences    73
  • 1.12     Geographical Markets for 6G               74
    • 1.12.1 North America              74
    • 1.12.2 Asia Pacific     76
      • 1.12.2.1            China  76
      • 1.12.2.2            Japan  77
      • 1.12.2.3            South Korea    77
      • 1.12.2.4            India    78
    • 1.12.3 Europe                78
  • 1.13     Main Market Players  79
  • 1.14     6G Projects by Country           81
  • 1.15     Sustainability in 6G    82

 

2             INTRODUCTION          83

  • 2.1        What is 6G?    83
  • 2.2        Evolving Mobile Communications   84
  • 2.3        5G deployment             86
    • 2.3.1    Motivation for 6G         87
    • 2.3.2    Growth in Mobile Data Traffic              88
      • 2.3.2.1 Growth of Mobile Traffic Slows           88
    • 2.3.3    Future of Traffic            90
      • 2.3.3.1 Continued Exponential Growth (Optimist View)     90
      • 2.3.3.2 Structural Deceleration (Realist View)          90
      • 2.3.3.3 Plateau and Decline (Pessimist View)           91
    • 2.3.4    Traffic Growth Plateau in China         92
    • 2.3.5    Video Streaming          93
  • 2.4        Multi-Dimensional Value Proposition            94
  • 2.5        Potential 6G High-Value Applications            95
    • 2.5.1    Holographic Communication             95
    • 2.5.2    Persistent AR Overlays             96
    • 2.5.3    Cooperative Perception for Autonomous Systems               96
    • 2.5.4    Real-Time Digital Twins           97
  • 2.6        Applications and Required Bandwidths      98
  • 2.7        Artificial Intelligence's impact on network traffic   100
    • 2.7.1    AI Workload: On-Device vs Cloud    102
  • 2.8        Autonomous vehicles               103
    • 2.8.1    Autonomous Vehicle Communications       104
    • 2.8.2    Cooperative Perception          104
    • 2.8.3    Vehicle platooning     105
  • 2.9        6G Rollout Timeline   107
    • 2.9.1    Regional Deployment Timeline          107
  • 2.10     6G Spectrum  109
    • 2.10.1 6G Candidate Spectrum Bands        109
    • 2.10.2 Bands vs Bandwidth 110
    • 2.10.3 Bandwidth-Coverage Tradeoff           111
    • 2.10.4 6G Spectrum and Deployment           112
      • 2.10.4.1            Economic Deployment Model            112
        • 2.10.4.1.1        Phase 1: Evolutionary 6G (2029-2034)         113
        • 2.10.4.1.2        Phase 2: Revolutionary 6G (2034-2040+)   114
  • 2.11     Frequencies Beyond 100GHz              115
    • 2.11.1 Atmospheric Absorption Windows  115
    • 2.11.2 Sub-THz Application Viability              117
    • 2.11.3 6G Applications           117
  • 2.12     Technology Interdependencies          119
  • 2.13     Global Trends 120

 

3             6G RADIO SYSTEMS  122

  • 3.1        Technical Targets for High Data-Rate 6G Radios    122
  • 3.2        6G Transceiver Architecture 122
  • 3.3        Technical Elements in 6G Radio Systems   123
  • 3.4        Bandwidth and Modulation  124
  • 3.5        Bandwidth Requirements for Supporting 100 Gbps - 1 Tbps Radios         125
    • 3.5.1    Practical Bandwidth Allocation          125
  • 3.6        Bandwidth and MIMO              125
  • 3.7        6G Radio Performance            126
  • 3.8        Beyond 100 Gbps        127
  • 3.9        Radio Link Range vs System Gain    127
  • 3.10     Hardware Gap               128
  • 3.11     Saturated Output Power vs Frequency          129
  • 3.12     Power consumption  130
    • 3.12.1 Power Consumption of PA Scale with Frequency   132
    • 3.12.2 Power Consumption on the Transceiver Side (1, 2, 3)         133
      • 3.12.2.1            Receive Chain Power Analysis           133

 

4             BASE STATIONS AND NON-TERRESTRIAL NETWORKS       137

  • 4.1        UM-MIMO and Vanishing Base Stations       138
    • 4.1.1    Sequence         138
    • 4.1.2    RIS-Enabled, Self-Powered 6G UM-MIMO Base Station Design   139
      • 4.1.2.1 System Architecture  140
      • 4.1.2.2 Power Management  141
      • 4.1.2.3 Performance Characteristics              142
    • 4.1.3    Base Station Power and Cooling       142
      • 4.1.3.1 Power Consumption Drivers                142
      • 4.1.3.2 Economic and Environmental Impact           143
      • 4.1.3.3 Solutions and Mitigation Strategies 143
    • 4.1.4    Semiconductor Technologies for 6G Base Stations              143
      • 4.1.4.1 Power Amplifiers         144
      • 4.1.4.2 Transceivers and Beamformers         145
      • 4.1.4.3 Baseband Processing              145
      • 4.1.4.4 RIS Control      145
    • 4.1.5    Base Station and MIMO Technology Advances        145
      • 4.1.5.1 Integrated Active Antenna Systems 145
      • 4.1.5.2 Open RAN Architecture           145
      • 4.1.5.3 AI and Machine Learning Integration              146
      • 4.1.5.4 Network Slicing            146
      • 4.1.5.5 Edge Computing Integration 146
  • 4.2        Satellites and Drones               147
    • 4.2.1    How Satellites Benefit from 6G          147
    • 4.2.2    How 6G Benefits from Satellites        147
    • 4.2.3    Drone Integration Benefits    147
  • 4.3        Internet of Drones       148
    • 4.3.1    Network Architecture                148
    • 4.3.2    Technical Challenges               148
    • 4.3.3    Market Outlook            149
  • 4.4        High Altitude Platform Stations (HAPS)         149
    • 4.4.1    HAPS Platforms            149
    • 4.4.2    Communications Payload     149
    • 4.4.3    Advantages     150
    • 4.4.4    Challenges      150
    • 4.4.5    Status and Timeline   151
  • 4.5        6G Non-Terrestrial Networks (NTN) 151
    • 4.5.1    Connectivity Gap        151
      • 4.5.1.1 Dimensions of the Gap            151
      • 4.5.1.2 Quantification               152
      • 4.5.1.3 Regional Characteristics        153
    • 4.5.2    Development of LEO NTNs   154
      • 4.5.2.1 Major Constellations 154
      • 4.5.2.2 Technology Evolution               155
    • 4.5.3    NTN Technologies       156
      • 4.5.3.1 Geostationary Orbit (GEO) Satellites              156
      • 4.5.3.2 Medium Earth Orbit (MEO) Satellites              156
      • 4.5.3.3 Low Earth Orbit (LEO) Satellites         156
      • 4.5.3.4 Very Low Earth Orbit (VLEO) 156
    • 4.5.4    HAPS vs LEO vs GEO 157
      • 4.5.4.1 Deployment Speed and Flexibility    157
      • 4.5.4.2 Operational Complexity          158
      • 4.5.4.3 Coverage Characteristics      158
      • 4.5.4.4 Economic Models       159
    • 4.5.5    Direct to Cell (D2C)   160
      • 4.5.5.1 Technical Challenge  160
      • 4.5.5.2 Satellite Solutions      160
      • 4.5.5.3 Performance Expectations    160
      • 4.5.5.4 Market Positioning     161
    • 4.5.6    NTNs for D2C 161
      • 4.5.6.1 Link Budget Components      161
      • 4.5.6.2 HAPS Analysis              162
      • 4.5.6.3 LEO Analysis  162
      • 4.5.6.4 MEO and GEO Analysis           162
    • 4.5.7    Technologies for Non-Terrestrial Networks 162
      • 4.5.7.1 Satellite Bus and Platform Technologies      163
      • 4.5.7.2 Phased Array Antennas           163
      • 4.5.7.3 Satellite Payload Processing               163
      • 4.5.7.4 Inter-Satellite Optical Links  163
      • 4.5.7.5 Ground Segment Infrastructure         163

 

5             SEMICONDUCTORS FOR 6G               165

  • 5.1        Introduction    165
  • 5.2        RF Transistors Performance 166
  • 5.3        Si-based Semiconductors     166
    • 5.3.1    CMOS 166
      • 5.3.1.1 Bulk vs SOI      167
      • 5.3.1.2 SiGe     168
  • 5.4        GaAs and GaN              169
    • 5.4.1    GaN's Opportunity in 6G        169
    • 5.4.2    GaN-on-Si, SiC or Diamond for RF   170
    • 5.4.3    GaAs Positioning in 6G            171
    • 5.4.4    State-of-the-Art GaAs Based Amplifier         172
    • 5.4.5    GaAs vs GaN for RF Power Amplifiers            172
    • 5.4.6    Power Amplifier Technology Benchmarking              173
  • 5.5        InP (Indium Phosphide)          174
    • 5.5.1    InP HEMT vs InP HBT 174
      • 5.5.1.1 InP Opportunities for 6G         175
    • 5.5.2    Heterogeneous Integration of InP with SiGe BiCMOS         175
  • 5.6        Semiconductor Challenges for THz Communications       177
    • 5.6.1    Mitigation Strategies  177
  • 5.7        Semiconductor Supply Chain            178

 

6             PHASE ARRAY ANTENNAS FOR 6G  180

  • 6.1        Key 6G Antenna Requirements          180
  • 6.2        Challenges in mmWave Phased Array Systems      180
    • 6.2.1    Primary Challenges   180
  • 6.3        Antenna Architectures             182
  • 6.4        Challenges in 6G Antennas  182
  • 6.5        Power and Antenna Array Size            184
  • 6.6        5G Phased Array Antenna     185
  • 6.7        Antenna Manufacturers          185
  • 6.8        Technology Benchmarking   187
  • 6.9        GHz Phased Array       187
  • 6.10     Antenna Types               189
  • 6.11     Phased Array Modules             189
    • 6.11.1 Technology Readiness Assessment               190

 

7             ADVANCED PACKAGING FOR 6G     191

7.1        Evolution Drivers         191

7.2        Packaging Requirements       191

7.2.1    Electrical Performance Demands    192

7.2.2    Thermal Management Imperatives  192

7.3        Antenna Packaging Technology Options      192

7.3.1    Technology Selection Criteria             192

7.4        mmWave Antenna Integration            193

7.4.1    Antenna-on-Board (AoB)       193

7.4.2    Antenna-in-Package (AiP)      193

7.4.3    Antenna-on-Chip (AoC)          194

7.4.4    Performance Analysis              194

7.5        Next Generation Phased Array Targets          195

7.5.1    System-Level Requirements Translation     195

7.5.2    Technology Roadmap Implications 196

7.6        Antenna Packaging vs Operational Frequency         196

7.6.1    Frequency-Dependent Loss Mechanisms 196

7.7        Integration Technologies        197

7.7.1    Performance vs Cost 197

7.7.2    Flexibility vs Optimization     198

7.8        Approaches to Integrate InP on CMOS          198

7.8.1    Integration Challenge               198

7.8.2    Die-to-Die Hybrid Assembly 198

7.8.3    Wafer-Level Bonding 199

7.8.4    Epitaxial Transfer         199

7.9        Antenna Integration Challenges        200

7.9.1    Dimensional Tolerance Requirements          200

7.9.2    Thermal Management Scaling            200

7.9.3    Manufacturing Yield Economics       200

7.10     Substrate Materials for AiP    201

7.11     Antenna on Chip (AoC) for 6G             202

7.12     Evolution of Hardware Components from 5G to 6G             203

8             MATERIALS AND TECHNOLOGIES FOR 6G 204

8.1        Material Challenge Domains               204

8.1.1    Material Property Interdependencies             204

8.2        6G ZED Compounds and Carbon Allotropes             205

8.3        Thermal Cooling and Conductor Materials 205

8.4        Thermal Metamaterials for 6G            206

8.5        Ionogels for 6G             207

8.6        Advanced Heat Shielding and Thermal Insulation 208

8.7        Low-Loss Dielectrics 209

8.8        Optical and Sub-THz 6G Materials   210

8.9        Materials for Metamaterial-Based 6G RIS   210

8.10     Electrically-Functionalized Transparent Glass for 6G OTA, T-RIS 211

8.10.1 Transparent Conductive Oxides (TCO)          211

8.10.2 Metal Meshes 211

8.10.3 Printed Silver Nanowires        211

8.10.4 Graphene         212

8.11     Low-Loss Materials for mmWave and THz  213

8.12     Inorganic Compounds             214

8.12.1 Overview           214

8.12.2 Materials           215

8.13     Elements          216

8.13.1 Overview           216

8.13.2 Materials           216

8.14     Organic Compounds 217

8.14.1 Overview           217

8.14.2 Materials           217

8.15     6G Dielectrics                218

8.15.1 Overview           218

8.15.2 Companies     218

8.15.3 SWOT Analysis             218

8.16     Metamaterials               219

8.16.1 Overview           219

8.16.2 Metamaterials for RIS in Telecommunication           220

8.16.2.1            RIS Operating Principles         220

8.16.3 RIS Performance and Economics     221

8.16.3.1            Passive Beamforming              221

8.16.3.2            Hybrid Beamforming with RIS             222

8.16.3.3            Adaptive Beamforming Techniques 223

8.16.4 Applications   223

8.16.4.1            Reconfigurable Antennas      223

8.16.4.2            Wireless Sensing         224

8.16.4.3            Wi-Fi/Bluetooth            224

8.16.4.4            5G and 6G Metasurfaces for Wireless Communications  224

8.16.4.4.1        5G Applications           224

8.16.4.4.2        6G Evolution   224

8.16.4.5            Hypersurfaces               225

8.16.4.6            Active Material Patterning      225

8.16.4.7            Optical ENZ Metamaterials  225

8.16.4.8            Liquid Crystal Polymers          226

8.16.4.8.1        LCP Applications in 6G            226

8.17     Thermal Management             227

8.17.1 Overview           227

8.17.2 Thermal Materials and Structures for 6G     228

8.17.2.1            Advanced Ceramics  228

8.17.2.2            Diamond-based Materials    228

8.17.2.3            Graphene and Carbon Nanotubes  228

8.17.2.4            Phase Change Materials (PCMs)       229

8.17.2.5            Advanced Polymers   229

8.17.2.6            Metal Matrix Composites      230

8.17.2.7            Two-Dimensional Materials 230

8.17.2.8            Nanofluid Coolants   230

8.17.2.9            Thermal Metamaterials           231

8.17.2.10         Hydrogels         231

8.17.2.11         Aerogels            231

8.17.2.12         Pyrolytic Graphite       231

8.17.2.13         Thermoelectrics           232

8.17.2.13.1     Cooling Applications 232

8.17.2.13.2     Energy Harvesting      232

8.18     Graphene and 2D Materials 234

8.18.1 Overview           234

8.18.2 Applications   234

8.18.2.1            Supercapacitors, LiC and Pseudocapacitors           234

8.18.2.2            Graphene Transistors               234

8.18.2.3            Graphene THz Device Structures      235

8.19     Fiber Optics    235

8.19.1 Overview           235

8.19.2 Materials and Applications in 6G      236

8.19.2.1            Key Optical Materials               236

8.19.2.2            6G Fiber-Wireless Architecture          236

8.20     Smart EM Devices       237

8.20.1 Overview           237

8.20.2 Technical Challenges               237

8.20.3 Current Status               238

8.21     Photoactive Materials              238

8.21.1 Overview           238

8.21.2 Applications in 6G      238

8.21.2.1            Optically-Controlled RIS        238

8.22     Silicon Carbide             239

8.22.1 Overview           239

8.22.2 Applications in 6G      239

8.22.2.1            GaN-on-SiC Power Amplifiers            239

8.22.2.2            Thermal Management             239

8.22.2.3            RF Substrates 239

8.23     Phase-Change Materials        240

8.23.1 Overview           240

8.23.2 Applications in 6G      240

8.23.2.1            Reconfigurable Metamaterials           240

8.23.2.2            Reconfigurable Antennas      240

8.23.2.3            RF Switches    240

8.23.2.3.1        Commercialization Challenges         241

8.24     Vanadium Dioxide      241

8.24.1 Overview           241

8.24.2 Applications in 6G      241

8.24.2.1            Ultrafast RF Switches               241

8.24.2.2            Thermally-Triggered Devices                242

8.24.2.3            Tunable Metamaterials           242

8.25     Micro-mechanics, MEMS and Microfluidics              242

8.25.1 Overview           242

8.25.2 Applications in 6G      242

8.25.2.1            MEMS RF Switches    242

8.25.2.2            MEMS Tunable Capacitors   243

8.25.2.3            MEMS Phase Shifters                243

8.25.2.4            Microfluidic Cooling  243

8.25.2.5            Commercial Status    243

8.26     Solid State Cooling    244

8.26.1 Overview           244

8.26.2 Thermoelectric Cooling          244

8.26.3 Electrocaloric and Magnetocaloric Cooling              244

9             MIMO FOR 6G                244

9.1        MIMO in Wireless Communications               245

9.1.1    MIMO Evolution Timeline       245

9.2        Challenges with mMIMO        246

9.2.1    Channel State Information Acquisition        246

9.2.2    Computational Complexity  246

9.2.3    Hardware Impairments           246

9.2.4    Cost and Power Consumption           246

9.3        Distributed MIMO       247

9.3.1    Architecture    247

9.3.2    Benefits             247

9.3.3    Challenges      247

9.4        Cell-free Massive MIMO (Large-Scale Distributed MIMO) 248

9.4.1    Concept            248

9.4.2    Network Topology       248

9.4.3    Performance Benefits              248

9.5        6G Massive MIMO       249

9.5.1    Frequency-Specific Factors 249

9.5.2    Processing Architecture          249

9.5.3    AI/ML Integration         249

9.5.4    Deployment Strategies            249

9.6        Cell-Free MIMO            249

9.6.1    Cellular System Limitations 250

9.6.2    Cell-Free Solutions    250

9.6.3    Economic Considerations    250

9.6.4    Interpretation 250

9.7        Benefits and Challenges of Cell-Free MIMO             251

9.7.1    Benefits             251

9.7.2    Challenges      251

9.8        Cell-Free Massive MIMO        252

9.8.1    Overview           252

9.8.2    Network MIMO (CoMP - Coordinated Multi-Point) 252

9.8.3    Cell-Free mMIMO Distinctive Features         253

9.8.4    Transition Strategy      253

9.8.5    Commercial Readiness          253

9.8.6    Market Projections     253

 

10          ZERO ENERGY DEVICES (ZED) AND BATTERY ELIMINATION          254

  • 10.1     Overview           254
    • 10.1.1 Critical Success Factors        255
    • 10.1.2 Market Impact               256
  • 10.2     ZED-Related Technology        256
    • 10.2.1 Technology Convergence       256
    • 10.2.2 Drivers for ZED and Battery-Free       257
      • 10.2.2.1            Operational Impossibility      257
      • 10.2.2.2            Economic Imperative                257
      • 10.2.2.3            Environmental Sustainability              257
      • 10.2.2.4            Reliability and Autonomy       257
      • 10.2.2.5            Lessons from Deployments 258
  • 10.3     Zero-Energy and Battery-Free 6G     258
    • 10.3.1 Infrastructure 258
    • 10.3.2 Client Devices               259
  • 10.4     Electricity consumption of wireless networks          261
    • 10.4.1 Network Energy Consumption Trends           261
    • 10.4.2 Energy Harvesting      261
  • 10.5     Technologies  262
    • 10.5.1 On-Board Harvesting Technologies Compared and Prioritized     263
    • 10.5.2 6G ZED Design Approaches 264
    • 10.5.3 Device Architecture   265
      • 10.5.3.1            System Integration     266
      • 10.5.3.2            Architecture Variants               266
    • 10.5.4 Energy Harvesting      266
      • 10.5.4.1            Power Management Optimization   266
      • 10.5.4.2            Transducer Efficiency               267
      • 10.5.4.3            Impedance Matching               267
    • 10.5.5 Device Battery-Free Storage 267
      • 10.5.5.1            Supercapacitors          267
      • 10.5.5.2            Lithium-Ion Capacitors (LIC)               268
      • 10.5.5.3            Selection Guidelines 269
      • 10.5.5.4            "Massless Energy" for ZED    269
        • 10.5.5.4.1        Performance  269
        • 10.5.5.4.2        6G ZED Applications 269
        • 10.5.5.4.3        Challenges      270
        • 10.5.5.4.4        Status 270
    • 10.5.6 Ambient Backscatter Communications AmBC, Crowd Detectable CD-ZED, SWIPT      271
      • 10.5.6.1            Performance Characteristics              271
      • 10.5.6.2            6G Integration                271
      • 10.5.6.3            Crowd Detectable CD-ZED   271
      • 10.5.6.4            Simultaneous Wireless Information and Power Transfer (SWIPT)                271
      • 10.5.6.5            Performance  272
  • 10.6     6G ZED Materials and Technologies                273
    • 10.6.1 Metamaterials               273
    • 10.6.2 IRS (Intelligent Reflecting Surfaces)                273
    • 10.6.3 RIS (Reconfigurable Intelligent Surfaces)    273
    • 10.6.4 Simultaneous Wireless Information and Power Transfer (SWIPT)                274
    • 10.6.5 Ambient Backscatter Communications (AmBC)   274
      • 10.6.5.1            Advanced AmBC Techniques              274
      • 10.6.5.2            6G Native Integration                274
    • 10.6.6 Energy Harvesting for 6G        275
      • 10.6.6.1            Photovoltaics 275
        • 10.6.6.1.1        Technology Options  275
        • 10.6.6.1.2        Indoor Optimization  275
      • 10.6.6.2            Ambient RF     276
        • 10.6.6.2.1        Power Availability        276
        • 10.6.6.2.2        Rectifier Technology  276
        • 10.6.6.2.3        Multi-Band Harvesting             276
      • 10.6.6.3            Electrodynamic            277
        • 10.6.6.3.1        Characteristics             277
        • 10.6.6.3.2        Applications   277
      • 10.6.6.4            Piezoelectric materials            277
        • 10.6.6.4.1        Materials           277
        • 10.6.6.4.2        Harvester Designs      277
      • 10.6.6.5            Triboelectric nanogenerators (TENGs            278
        • 10.6.6.5.1        Operating Principle    278
        • 10.6.6.5.2        Performance  278
        • 10.6.6.5.3        6G Applications           278
        • 10.6.6.5.4        Challenges      278
      • 10.6.6.6            Thermoelectric generators (TEGs)   279
        • 10.6.6.6.1        Performance  279
        • 10.6.6.6.2        Temperature Sources               279
        • 10.6.6.6.3        6G ZED Applications 279
      • 10.6.6.7            Pyroelectric materials              279
        • 10.6.6.7.1        Mechanism     280
        • 10.6.6.7.2        Performance  280
        • 10.6.6.7.3        Applications   280
        • 10.6.6.7.4        Limitations      280
      • 10.6.6.8            Thermal Hydrovoltaic               280
        • 10.6.6.8.1        Mechanisms  280
        • 10.6.6.8.2        Performance  280
        • 10.6.6.8.3        Status 281
      • 10.6.6.9            Biofuel Cells   281
        • 10.6.6.9.1        Types   281
        • 10.6.6.9.2        Performance  281
        • 10.6.6.9.3        Applications   281
        • 10.6.6.9.4        Challenges      281
        • 10.6.6.9.5        Status 281
    • 10.6.7 Ultra-Low-Power Electronics               282
    • 10.6.7.1            Technologies  282
    • 10.6.7.2            Future Targets (2030) 282
    • 10.6.7.3            Design Techniques     283
    • 10.6.7.4            Supercapacitors          283
      • 10.6.7.4.1        Advanced Supercapacitor Technologies     283
    • 10.6.7.5            Hybrid Approaches    283
      • 10.6.7.5.1        Lithium-Ion Capacitors (LIC)               283
      • 10.6.7.5.2        Sodium-Ion Batteries                284
      • 10.6.7.5.3        Lithium Titanate (LTO) Batteries         284
    • 10.6.7.6            Pseudocapacitors      284
      • 10.6.7.6.1        Operating Principle    284
      • 10.6.7.6.2        Performance  285
      • 10.6.7.6.3        6G ZED Applications 285
      • 10.6.7.6.4        Status 285
      • 10.6.7.6.5        Research Directions  285

 

11          6G DEVELOPMENT ROADMAPS         286

  • 11.1     Spectrum for 6G          287
  • 11.2     US Federal Spectrum                288
  • 11.3     Regulatory Status (2025)       289
  • 11.4     Standalone vs Non-Standalone Rollout       290
  • 11.5     Open RAN for 6G         291
    • 11.5.1 Regional Open RAN Positioning        292
  • 11.6     Competition for Spectrum in Europe             292
    • 11.6.1 Key Challenges             293
  • 11.7     Global 6G Government Initiatives    294
    • 11.7.1 Program Effectiveness Factors          296
  • 11.8     6G Development Roadmap - South Korea  297
    • 11.8.1 Technology Focus Areas         298
    • 11.8.2 South Korea - mmWave Challenges               298
  • 11.9     6G Development Roadmap – Japan                299
    • 11.9.1 Beyond 5G Program Structure             299
    • 11.9.2 Deployment Timeline and Market Strategy 301
  • 11.10  Funding Models to Research the Next Mobile Communication Infrastructure   301
  • 11.11  6G Development Roadmap – US       303

 

12          COMPANY PROFILES                306

  • 12.1     AALTO HAPS   306
  • 12.2     AGC Japan       307
  • 12.3     Alcan Systems              308
  • 12.4     Alibaba China                310
  • 12.5     Alphacore         311
  • 12.6     Ampleon           312
  • 12.7     Apple   313
  • 12.8     Atheraxon         314
  • 12.9     Commscope  315
  • 12.10  Echodyne         316
  • 12.11  Ericsson            317
  • 12.12  Fractal Antenna Systems       318
  • 12.13  Freshwave        320
  • 12.14  Fujitsu 321
  • 12.15  Greenerwave  322
  • 12.16  Huawei               323
  • 12.17  Kymeta               325
  • 12.18  Kyocera              326
  • 12.19  LATYS Intelligence       327
  • 12.20  LG Electronics               328
  • 12.21  META   330
  • 12.22  NEC Corporation         330
  • 12.23  Nokia  333
  • 12.24  NTT DoCoMo 336
  • 12.25  NXP Semiconductors               340
  • 12.26  NVIDIA                342
  • 12.27  Omniflow         344
  • 12.28  Orange France               346
  • 12.29  Panasonic       348
  • 12.30  Picocom            350
  • 12.31  Pivotal Commware    352
  • 12.32  Plasmonics     354
  • 12.33  Qualcomm      356
  • 12.34  Radi-Cool        358
  • 12.35  Renesas Electronics Corporation     360
  • 12.36  Samsung          361
  • 12.37  Sekisui               363
  • 12.38  SensorMetrix  365
  • 12.39  SK telecom      367
  • 12.40  Solvay 369
  • 12.41  Sony     370
  • 12.42  Teraview             372
  • 12.43  TMYTEK             373
  • 12.44  Vivo Mobile Communications            375
  • 12.45  ZTE        377

 

13          RESEARCH METHODOLOGY              380

 

14          REFERENCES 381

 

List of Tables

  • Table 1. Evolution of Mobile Wireless Communications from 1G to 6G   24
  • Table 2. Key Limitations with 5G Networks.               29
  • Table 3. Key Differentiators and Benefits of 6G vs 5G.        30
  • Table 4. Advanced Materials Enabling 6G Communications.        31
  • Table 5. Notable 6G Hardware Demonstrations (2024-2025).      32
  • Table 6. 6G Market Readiness Indicators (2025).  33
  • Table 7. Global 6G R&D Investment by Source (2023-2025).         34
  • Table 8. Global Mobile Data Traffic Growth (2018-2025). 35
  • Table 9. Mobile Data Traffic Forecasts - Competing Scenarios (2026-2036).      36
  • Table 10. Smartphone Capability Evolution Through 6G Era.         38
  • Table 11. Enterprise 6G Market Forecast by Vertical (2030-2036),             40
  • Table 12. Government 6G Strategy Approaches by Country.          40
  • Table 13. Network Energy Consumption Evolution and 6G Targets.           41
  • Table 14. Sustainability Metrics         42
  • Table 15. Primary Market Drivers for 6G Adoption (2026-2036).  42
  • Table 16. Critical Challenges and Bottlenecks for 6G Market Development.       45
  • Table 17. Sub-THz Power Amplifier Technology Gap Analysis.      47
  • Table 18. 6G Hardware Technology Readiness Roadmap 53
  • Table 19. Global 6G Market Forecast Summary (2026-2046)        56
  • Table 20. 6G Infrastructure Market by Deployment Location (2030, 2033, 2036).           58
  • Table 21. 6G Infrastructure Market by Region (2030, 2033, 2036)              58
  • Table 22. 6G Base Station Market (2029-2046)       59
  • Table 23. Reconfigurable Intelligent Surfaces (RIS) Market Forecast (2027-2046)           60
  • Table 24. 6G Thermal Management Market Forecast (2029-2046)             60
  • Table 25. 6G Application-Specific Markets (2030-2046). 62
  • Table 26. 6G Device Market Forecast by Category (2028-2046), Units.   64
  • Table 27. 6G Components & Materials Market by Technology (2029-2046)          66
  • Table 28. 6G Services Market (2029-2046) 68
  • Table 29. Autonomous Vehicle Connectivity Requirements           69
  • Table 30. 6G-Connected Autonomous Vehicle Market Forecast. 70
  • Table 31. 6G Industrial Automation Market by Segment (2036)    71
  • Table 32. 6G Healthcare Market Forecast (2030-2036).    72
  • Table 33. XR Experience Tiers and 6G Requirements.         73
  • Table 34. 6G-Enabled XR Market (2030-2036).        74
  • Table 35. North America 6G Market Forecast (2026-2036).            74
  • Table 36. US Operator 6G Investment Profile.          75
  • Table 37. Asia Pacific 6G Market Forecast by Sub-Region (2036).              76
  • Table 38. Europe 6G Market Forecast by Major Markets (2036).  78
  • Table 39. Leading 6G Equipment Vendors. 79
  • Table 40. Semiconductor Companies for 6G.          80
  • Table 41. Key Materials and Component Suppliers.             80
  • Table 42. Major Government-Funded 6G Programs Worldwide    81
  • Table 43. 6G Sustainability Targets vs. 5G Baseline.            82
  • Table 44. Defining Characteristics of 6G.    83
  • Table 45. Common Misconceptions.             84
  • Table 46. Evolution of Mobile Communications Focus.     85
  • Table 47. Global 5G Deployment Status (2025).    86
  • Table 48. 5G Performance - Promised vs. Delivered (2025).           86
  • Table 49. Application Requirements Exceeding 5G Capabilities. 87
  • Table 50. Global Mobile Data Traffic Evolution (2015-2025)           88
  • Table 51. Per Capita Data Usage - Developed Markets (2020-2025).       88
  • Table 52. China Mobile Data Traffic Evolution (2018-2025).           92
  • Table 53. Video Streaming Traffic Share Evolution.               93
  • Table 54. Video Streaming Bandwidth Requirements.        93
  • Table 55. Applications Requiring >1 Gbps Sustained Bandwidth.              94
  • Table 56. Comprehensive Application Bandwidth Requirements.              98
  • Table 57. Net AI Impact on Mobile Data Traffic (2025-2036).         102
  • Table 58. AI Workload Distribution Evolution.          102
  • Table 59. Autonomous Vehicle Communication Requirements by Level.              103
  • Table 60. Autonomous Vehicle 6G Connectivity Market Forecast.             105
  • Table 61. Platooning Benefits and Requirements. 105
  • Table 62. Platooning Connectivity Market.  106
  • Table 63. Key 5G Lessons and 6G Responses          106
  • Table 64. Comprehensive 6G Development and Deployment Timeline. 107
  • Table 65. 6G Commercial Launch Timeline by Region.      107
  • Table 66. 6G Candidate Spectrum Bands. 109
  • Table 67. Regional Spectrum Priorities for 6G.        110
  • Table 68. Bandwidth Availability by Frequency Range.       111
  • Table 69. Achievable Data Rates by Spectrum Allocation.               111
  • Table 70. Path Loss Comparison Across Frequencies.       112
  • Table 71. Deployment Strategy by Frequency Band.            112
  • Table 72. Detailed 5G vs 6G Performance Comparison     114
  • Table 73. Characteristics of >100 GHz Frequency Bands.               115
  • Table 74. Atmospheric Windows for Sub-THz Communications. 115
  • Table 75. Application Suitability for >100 GHz.        117
  • Table 76. 6G Application Portfolio.  117
  • Table 77. Core 6G Enabling Technologies.  118
  • Table 78. 6G Radio System Technical Targets           122
  • Table 79. 6G Transceiver Component Requirements.         123
  • Table 80. Bandwidth Requirements for Target Data Rates.              124
  • Table 81. Spectrum Allocation Scenarios for Extreme Data Rates.            125
  • Table 82. MIMO Configuration Trade-offs.  126
  • Table 83. Critical 6G Radio Performance Parameters         126
  • Table 84. Notable 100+ Gbps Wireless Demonstrations (2023-2025)     127
  • Table 85. Range vs Frequency Analysis for 6G         128
  • Table 86. Power Amplifier Output Power vs Frequency       129
  • Table 87. Semiconductor Technology Comparison for Sub-THz Power Amplifiers           129
  • Table 88. Power Budget for 140 GHz Base Station Radio Unit        130
  • Table 89. Power Scaling with Array Size        131
  • Table 90. PA Efficiency vs Frequency Trend                132
  • Table 91. Transmission Distance vs Frequency for Fixed Power Budget  133
  • Table 92. Receiver Power Breakdown by Function 134
  • Table 93. Power Comparison - 5G mmWave vs 6G Sub-THz           134
  • Table 94. Terrestrial vs Non-Terrestrial 6G Infrastructure Comparison    137
  • Table 95. Base Station Power Consumption Evolution and Cooling Requirements         142
  • Table 96. Critical Semiconductor Technologies for 6G Base Stations      144
  • Table 97. Drone Network Applications and Requirements               148
  • Table 98. HAPS Characteristics and Comparison with Alternatives           150
  • Table 99. Connectivity Gap Analysis by Region (2025)       152
  • Table 100. Major LEO Constellation Status and Plans (2025)        155
  • Table 101. Comprehensive NTN Technology Performance Comparison 157
  • Table 102. Qualitative Feature Comparison - HAPS vs LEO vs GEO           159
  • Table 103. Link Budget Summary for Direct-to-Cell Scenarios     161
  • Table 104. Critical NTN Enabling Technologies and Status              164
  • Table 105. Semiconductor Selection Criteria Priority Matrix           165
  • Table 106. RF Transistor Technology Benchmark (2025)   166
  • Table 107. Bulk CMOS vs SOI Comparison 167
  • Table 108. Advanced CMOS RF Performance by Process Node    167
  • Table 109. SiGe Technology Evolution for 6G            168
  • Table 110. Major SiGe BiCMOS Foundries and Capabilities           168
  • Table 111. Wide Bandgap Semiconductor Properties         169
  • Table 112. GaN Substrate Comparison        170
  • Table 113. Best Reported GaN PA Performance (2024-2025)        171
  • Table 114. GaN Manufacturing Capacity for 6G (2025)      171
  • Table 115. GaAs Application Opportunities in 6G  171
  • Table 116. Advanced GaAs Amplifier Performance (2025)              172
  • Table 117. Direct Technology Comparison - GaAs vs GaN               172
  • Table 118. Comprehensive PA Technology Comparison at Key 6G Frequencies                173
  • Table 119. InP Technology State-of-the-Art (2025) 174
  • Table 120. InP Device Type Comparison      174
  • Table 121. InP Market Forecast for 6G (2030-2036)             175
  • Table 122. InP-SiGe Integration Methods     175
  • Table 123. Leading InP PA Demonstrations (2024-2025)  176
  • Table 124. Silicon vs III-V Compound Semiconductor Comparison          176
  • Table 125. Critical Semiconductor Challenges for 6G Sub-THz    177
  • Table 126. Semiconductor Technology Recommendation by Application             177
  • Table 127. 6G Semiconductor Supply Chain - Capacity and Constraints (2025)              178
  • Table 128. 6G Antenna Requirements vs 5G Comparison               180
  • Table 129. mmWave/Sub-THz Phased Array Challenges and Solutions  181
  • Table 130. Antenna Element Size vs Frequency       181
  • Table 131. 6G Antenna Architecture Comparison 182
  • Table 132. Critical 6G Antenna Design Challenges               182
  • Table 133. Theoretical vs Practical Antenna Array Gain     183
  • Table 134. Power-Array Size Trade-off Analysis for 100m Range at 140 GHz         184
  • Table 135. Commercial 5G mmWave Phased Array Antenna Specifications (2024-2025)         185
  • Table 136. Major Antenna and Phased Array Module Suppliers for 6G     185
  • Table 137. Nokia 90 GHz Array Performance Summary     186
  • Table 138. Comparative Analysis - 28 GHz vs 90 GHz vs 140 GHz Arrays               187
  • Table 139. 140 GHz Transceiver Module Component Budget (16-element array)             187
  • Table 140. Semiconductor Technology Selection for 140 GHz Array Components          188
  • Table 141. Detailed Antenna Element Types for 6G Phased Arrays             189
  • Table 142. Commercial Readiness Assessment of D-band Phased Arrays (2025)           190
  • Table 143. 5G to 6G Antenna Module Evolution      191
  • Table 144. Packaging Technology Selection Matrix for 6G 193
  • Table 145. Antenna Integration Approach Comparison     194
  • Table 146. Technology Benchmark  195
  • Table 147. Next-Generation Phased Array Packaging Targets        196
  • Table 148. Packaging Technology Viability by Frequency   197
  • Table 149. Integration Technology Trade-off Matrix               198
  • Table 150. InP-CMOS Integration Approaches         199
  • Table 151. AiP vs Discrete Antenna Techniques      201
  • Table 152. Substrate Material Performance Comparison at 140 GHz       201
  • Table 153. Manufacturing Technology Comparison             202
  • Table 154. AoC vs AiP Performance 202
  • Table 155. Hardware Evolution Comparison.           203
  • Table 156. 6G Material Requirements vs Current Capabilities      204
  • Table 157. Low/Zero Expansion Materials for 6G.  205
  • Table 158. Thermal Management Material Ranking for 6G               205
  • Table 159. Thermal Management Evolution 5G to 6G          207
  • Table 160. Ionogel vs Alternatives for Tunable RF   207
  • Table 161. Thermal Insulation Material Comparison           208
  • Table 162. Low-Loss Dielectric Material Priority Ranking 209
  • Table 163. Dielectric Constant (Dk) and Loss Factor (Df) Requirements                209
  • Table 164. Optical and Sub-THz Material Requirements.  210
  • Table 165. RIS Material Comparison              210
  • Table 166. Transparent Conductor Comparison    212
  • Table 167. Low-Loss Materials for 6G.          213
  • Table 168. Commercial Availability and Roadmap               214
  • Table 169. Low-Loss Materials SWOT for 6G             214
  • Table 170. Key Inorganic Compounds for 6G            215
  • Table 171. Elemental Materials for 6G Applications             216
  • Table 172. Organic Materials for 6G Applications  217
  • Table 173. 6G Dielectrics Market SWOT       218
  • Table 174. RIS Metamaterial Implementation Approaches             220
  • Table 175. Metamaterial Manufacturing Approaches         221
  • Table 176. Adaptive Beamforming Techniques.      223
  • Table 177. Metasurface Performance Evolution 5G to 6G 224
  • Table 178. Liquid Crystal Materials for 6G  226
  • Table 179. Metamaterials SWOT for 6G        227
  • Table 180. Thermal Management for 6G SWOT       232
  • Table 181. Graphene THz Devices Performance and Status           235
  • Table 182. Optical Component Requirements for 6G Fronthaul  237
  • Table 183. Phase-Change Materials for 6G Tuning 241
  • Table 184. MEMS vs Solid-State RF Components for 6G   243
  • Table 185. MIMO Technology Evolution Across Wireless Generations      245
  • Table 186. Massive MIMO Scaling Challenges         247
  • Table 187. Cell-Free Massive MIMO vs Traditional Cellular              248
  • Table 188. Cellular vs Cell-Free Architecture Comparison              250
  • Table 189. Cell-Free MIMO Deployment Challenges and Solutions           251
  • Table 190. MIMO Architecture Evolution Summary              252
  • Table 191. Zero Energy Device Vision for 6G IoT      255
  • Table 192. ZED-Related Technology Landscape     256
  • Table 193. Real-World Battery-Free Device Examples        258
  • Table 194. 6G Device Power Requirements and ZED Viability        259
  • Table 195. ZED Strategy Combination Examples    260
  • Table 196. 6G Technology Investment Priorities      261
  • Table 197. Energy Harvesting Technology Comparison     263
  • Table 198.  ZED Technology Readiness Assessment (2025)           264
  • Table 199. ZED Design Target Examples by Application Class       264
  • Table 200.  ZED System Architecture Components              265
  • Table 201.  Energy Harvesting Enhancement Techniques 267
  • Table 202. Energy Storage Comparison for ZED      268
  • Table 203. SWOT Appraisal of Battery-Less Storage Technologies.            270
  • Table 204. Zero-Power Communication Methods Comparison   272
  • Table 205. Critical ZED Research Areas and Priorities (2025-2030)          272
  • Table 206.  SWIPT Implementation Comparison    274
  • Table 207. Photovoltaic Technologies for 6G ZED  275
  • Table 208. Piezoelectric Harvester Comparison    278
  • Table 209. Thermoelectric Harvesting Scenarios   279
  • Table 210. Ultra-Low-Power Component Performance (2025)     282
  • Table 211. Hybrid Storage Device Comparison       284
  • Table 212. Major 6G Equipment Vendor Positioning (2025)            286
  • Table 213. World Radiocommunication Conference 6G Timeline               287
  • Table 214. National/Regional 6G Spectrum Proposals (WRC-27)               287
  • Table 215. Upper 6 GHz Regulatory Status by Region.        289
  • Table 216.NSA vs SA Deployment Comparison      290
  • Table 217. Open RAN Evolution - 5G to 6G 291
  • Table 218.Regional Open RAN Strategies for 6G     292
  • Table 219. European 6G Spectrum Coordination Status (2025). 293
  • Table 220. Major Government 6G Programs.            295
  • Table 221.South Korea 6G Development Timeline and Milestones            297
  • Table 222.Japan Beyond 5G Technology Priorities and Status       300
  • Table 223.6G Funding Models - International Comparison.           301
  • Table 224.US 6G Development - Key Programs and Participants 304
  •  

List of Figures

  • Figure 1. Evolution of Mobile Networks: From 1G to 6G.   25
  • Figure 2. Comparison between 5G and 6G wireless systems in terms of key-performance indicators.                29
  • Figure 3. Nokia spectrum vision in the 6G era.         38
  • Figure 4.  6G Systems, Materials and Standards Roadmaps 2026-2046.              53
  • Figure 5. Global 6G Market Forecast Summary (2026-2046).        57
  • Figure 6. 6G Thermal Management Market Forecast (2029-2046).            61
  • Figure 7. 6G Application-Specific Markets (2030-2046).  63
  • Figure 8. 6G Device Market Forecast by Category (2028-2046), Units.    65
  • Figure 9. 6G Components & Materials Market by Technology (2029-2046).         67
  • Figure 10. 6G Services Market (2029-2046).             68
  • Figure 11. 6G Healthcare Market Forecast (2030-2036).  73
  • Figure 12. North America 6G Market Forecast (2026-2036).          75
  • Figure 13. Power efficiency roadmap .          136
  • Figure 14. RIS-assisted wireless communication. 140
  • Figure 15. RIS-enabled, self-sufficient ultra-massive 6G UM-MIMO base station design.          141
  • Figure 16. Lumotive advanced beam steering concept.    220
  • Figure 17. FM/R technology. 319
  • Figure 18. Metablade antenna.          320
  • Figure 19.Millimeter-wave mobile network utilizing a radio-over-fiber system   332
  • Figure 20. D-Band (110 to 175 Hz) Phased-Array-on-Glass Modules from Nokia              334
  • Figure 21. Left) Image of beamforming using phased-array wireless device. (Right) Comparison of previously reported transmission with beamforming wireless devices.  337
  • Figure 22. NTT DOCOMO transparent RIS. 339
  • Figure 23. Radi-cool metamaterial film.      358
  • Figure 24. 140 GHz THz prototype from Samsung and UCSB         362

 

 

 

 

 

Purchasers will receive the following:

  • PDF report download/by email. 
  • Comprehensive Excel spreadsheet of all data.
  • Mid-year Update

 

The Global 6G Market 2026-2046
The Global 6G Market 2026-2046
PDF-download.

The Global 6G Market 2026-2046
The Global 6G Market 2026-2046
PDF and Print Edition (including tracked delivery).