The Global Aerogels Market 2026-2036

0

cover

cover

  • Published: October 2025
  • Pages: 325
  • Tables: 61
  • Figures: 42

 

The global aerogel industry is experiencing unprecedented transformation as it transitions from a niche specialty materials sector into a mainstream technology platform with applications spanning electric vehicle batteries, building insulation, aerospace systems, and biomedical devices. This dynamic market evolution reflects both the unique properties of aerogels—ultralight materials with exceptional thermal insulation, high surface area, and remarkable porosity—and the growing recognition of their potential to address critical challenges in energy efficiency, thermal management, and sustainable manufacturing.

The aerogel landscape is undergoing rapid restructuring driven by both established players and innovative newcomers. Traditional manufacturers like Aspen Aerogels and Cabot Corporation continue advancing their core silica aerogel technologies while expanding into high-growth applications such as electric vehicle thermal barriers and advanced building insulation systems. Simultaneously, a wave of new entrants—ranging from university spin-offs to established materials companies diversifying their portfolios—are introducing novel products and competing for emerging market opportunities. This competitive environment has accelerated innovation across multiple dimensions. While silica aerogels maintain their position as the dominant commercial product category, polymer and biopolymer aerogels are gaining significant traction. Companies are developing specialized formulations targeting specific applications: carbon aerogels for energy storage electrodes, polymer aerogels for 5G telecommunications infrastructure, and bio-based aerogels for sustainable packaging and biomedical applications.

Manufacturing process innovation represents a critical competitive frontier. Companies are pursuing multiple strategies to reduce production costs and improve scalability, from ambient pressure drying techniques that eliminate expensive supercritical processing to continuous manufacturing systems that enhance throughput. Advanced 3D printing technologies are enabling complex aerogel geometries previously impossible to achieve, while sustainable feedstock development is addressing environmental concerns and supply chain resilience. The integration of digital technologies is significantly enhancing aerogel development and manufacturing. Computational modelling accelerates materials design, while advanced characterization techniques enable precise control over pore structure, thermal properties, and mechanical performance. These capabilities are essential for meeting increasingly stringent application requirements across diverse industries.

Electric vehicle applications have emerged as perhaps the most significant growth driver, with aerogels providing critical thermal management solutions for battery safety and performance. As EV adoption accelerates globally, thermal runaway protection systems incorporating aerogel barriers are becoming standard safety features, creating substantial market opportunities for specialized materials suppliers.

Building and construction applications continue expanding beyond traditional insulation, encompassing high-performance windows, thermal bridge solutions, and integrated building systems designed for net-zero energy performance. The aerospace and defense sectors are adopting aerogels for thermal protection systems, lightweight structural components, and advanced electronics cooling applications. Biomedical applications represent a particularly active research area, with developments in tissue engineering scaffolds, wound healing materials, and controlled drug release systems. Environmental applications, including carbon capture technologies and water purification systems, address global sustainability challenges while creating new commercial opportunities.

The aerogel market's trajectory reflects broader trends toward energy efficiency, sustainability, and advanced materials performance. As manufacturing costs continue declining and application knowledge expands, aerogels are positioned to become mainstream solutions across multiple industries. 

The Global Aerogels Market 2026-2036 provides strategic intelligence for materials manufacturers, end-users, investors, and technology developers navigating this rapidly evolving market. Analysis encompasses silica, polymer, carbon, and bio-based aerogel technologies, examining manufacturing scalability, cost structures, competitive dynamics, and emerging application opportunities through comprehensive company profiles and detailed market forecasts.

 Report Contents include:

  • Comprehensive analysis of aerogel properties including thermal conductivity benchmarking, density comparisons, and mechanical characteristics
  • EV battery pack applications as primary growth driver with detailed thermal runaway protection analysis
  • Competitive landscape assessment covering 54+ global manufacturers
  • Market drivers spanning energy efficiency regulations, thermal management requirements, and sustainability mandates
  • Manufacturing capacity analysis by geography with focus on China's dominance in production versus revenue
  • Technology and market challenges including cost barriers, dust generation concerns, and integration complexities
  • Market forecasts 2026-2036 segmented by aerogel type (silica, polymer, carbon), end-use market, and geographic region
  • Technology & Materials Analysis
    • Detailed aerogel classification covering inorganic, organic, and composite materials
    • Manufacturing processes including supercritical drying, ambient pressure drying, and rapid extraction techniques
    • Silica aerogel products: monoliths, powders, granules, blankets, boards, and renders with SWOT analyses
    • Advanced composites using organic crosslinkers and fiber reinforcement
    • Sustainable feedstock development from food waste, textile waste, and agricultural byproducts
    • Polymer aerogels including polyimide, polyurethane, and resorcinol-formaldehyde systems
    • Bio-based aerogels: cellulose nanofibers, alginate, starch, chitosan, protein, pectin, and agar materials
    • Carbon aerogels, graphene aerogels, and carbon nanotube architectures
    • 3D printing technologies for complex aerogel geometries
    • Hybrid and composite systems including metal-organic framework aerogels
  • Manufacturing & Production
    • Sol-gel chemistry fundamentals and process optimization
    • Supercritical CO₂ drying with closed-loop systems and autoclave technologies
    • Ambient pressure drying innovations reducing production costs
    • Scale-up challenges from laboratory to commercial manufacturing
    • Cost analysis by aerogel type and production method
    • QT-polysiloxane enabler technologies
  • Applications & Markets
    • EV Batteries: Thermal runaway protection, fire safety regulations (UN GTR 20, GB 38031-2020), material intensity analysis, integration strategies, and comprehensive company assessment
    • Oil & Gas: Refinery insulation, cryogenic pipeline applications, LNG facilities
    • Building & Construction: Sustainable insulation materials, panels, renders, plasters, window glazing systems, industrial insulation standards (EN 17956)
    • Energy Storage: Silicon anodes, lithium-sulfur batteries, electrode materials, supercapacitors, hydrogen storage
    • Biomedical: Drug delivery systems, tissue engineering scaffolds, wound dressings, medical implants with sterilization protocols
    • Electronics & Telecommunications: EMI shielding, thermal management, 5G antenna substrates, low-loss dielectric materials
    • Environmental Applications: Water treatment, heavy metal removal, oil spill remediation, CO₂ capture and direct air capture systems
    • Textiles: Winter sports apparel, luxury fashion applications, protective equipment, footwear
    • Aerospace & Defense: Thermal protection systems, vibration suppression, NASA applications, crash absorbers
    • Additional Markets: Cold-chain packaging, cosmetics, catalysts, paints/coatings, food applications, solar energy, passive cooling
  • Patent Landscape
    • Analysis of 2010-2024 patent filings by technology area, assignee, and geography
    • Intellectual property trends and competitive positioning
  • Company Profiles Detailed profiles of 54 aerogel manufacturers including:
    • Production capacity and manufacturing processes
    • Product portfolios and specifications
    • Target markets and applications
    • Recent developments and strategic initiatives
    • Companies profiled include ABIS Aerogel Co., Ltd., Active Aerogels,  Aerobel BV, Aerofybers Technologies SL, aerogel-it GmbH,  Aerogel Core Ltd, Aerogel Technologies LLC, Aerogel Coating Technologies, Aerogel Inside, AeroShield Materials Inc., AGITEC International AG, Armacell International S.A.,  Aspen Aerogels, Inc.,  BASF SE, Blueshift Materials, Inc., Cabot Corporation, Dongjin Semichem, Dragonfly Insulation, Elisto GmbH, Enersens SAS, Fibenol, Fuji Silysia Chemical Ltd., Gelanggang Kencana Sdn. Bhd., Graphene Composites Limited, Guangdong Alison Hi-Tech Co., Ltd., Hebei Jinna Technology Co., Ltd., IBIH Advanced Materials, Hokuetsu Toyo Fibre Co., Ltd.,  JIOS Aerogel, Joda Technology Co., Ltd., Keey Aerogel and more.......

 

Purchasers will receive the following:

  • PDF report download/by email. Print edition also available. 
  • Comprehensive Excel spreadsheet of all data.
  • Mid-year Update

 

The Global Aerogels Market 2026-2036
The Global Aerogels Market 2026-2036
PDF download.

The Global Aerogels Market 2026-2036
The Global Aerogels Market 2026-2036
PDF and Print Edition (including tracked delivery).

Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer. To order by Bank Transfer (Invoice) select this option from the payment methods menu after adding to cart, or contact info@futuremarketsinc.com

 

1             EXECUTIVE SUMMARY            16

  • 1.1        Aerogel Properties      16
  • 1.2        Aerogel Applications 18
  • 1.3        Competitive Factors in the Aerogels Market              19
  • 1.4        Market Drivers and Trends     20
  • 1.5        Aerogel Manufacturer Production Capacity and Manufacturing Processes         23
    • 1.5.1    Technology Evolution Enabling Capacity Growth   24
    • 1.5.2    Cost Reduction Trajectory     24
    • 1.5.3    Regional Capacity Analysis and Utilization Rates  28
      • 1.5.3.1 North America              28
      • 1.5.3.2 China  29
      • 1.5.3.3 Europe                30
      • 1.5.3.4 South Korea    31
      • 1.5.3.5 Japan  32
      • 1.5.3.6 Rest of World 32
  • 1.6        Market and Technology Challenges 33
  • 1.7        Aerogel Market Size and Forecast to 2036  34
    • 1.7.1    2024 Market Composition by Value 34
    • 1.7.2    Company Performance and Market Share Analysis             35
      • 1.7.2.1 Aspen Aerogels, Inc. 35
      • 1.7.2.2 Cabot Corporation     36
      • 1.7.2.3 Armacell International S.A.  36
      • 1.7.2.4 Guangdong Alison Hi-Tech Co., Ltd.               36
    • 1.7.3    By Aerogel Type             37
      • 1.7.3.1 Silica Aerogels               38
        • 1.7.3.1.1           Manufacturing Maturity           39
        • 1.7.3.1.2           Applications   40
        • 1.7.3.1.3           Competitive Dynamics           41
        • 1.7.3.1.4           Technology Trends and Future Development:          41
        • 1.7.3.1.5           Market Share Erosion but Absolute Growth               42
      • 1.7.3.2 Polymer Aerogels         42
        • 1.7.3.2.1           Material Types and Properties             42
        • 1.7.3.2.2           Applications   43
        • 1.7.3.2.3           Manufacturing and Cost Structure   44
        • 1.7.3.2.4           Competitive Landscape         45
        • 1.7.3.2.5           Technology Development Priorities 45
        • 1.7.3.2.6           Market Growth Drivers             46
      • 1.7.3.3 Carbon Aerogels          46
        • 1.7.3.3.1           Material Properties and Characteristics      46
        • 1.7.3.3.2           Cost Structure               47
        • 1.7.3.3.3           Applications   47
        • 1.7.3.3.4           Technology Development Priorities 50
        • 1.7.3.3.5           Market Growth Drivers             51
      • 1.7.3.4 Hybrid/Composite Aerogels: Engineered Multi-Functionality        51
        • 1.7.3.4.1           Material Types and Architectures     51
        • 1.7.3.4.2           Applications   53
        • 1.7.3.4.3           Technology Development Priorities 54
        • 1.7.3.4.4           Market Growth Drivers             54
      • 1.7.3.5 Other Aerogel Types: Emerging Technologies           55
        • 1.7.3.5.1           Material Types               55
    • 1.7.4    By End Use Market      56
    • 1.7.5    EV Battery Thermal Barriers: The Dominant Growth Engine            57
      • 1.7.5.1 Regulatory Drivers      57
      • 1.7.5.2 Market Penetration Dynamics            57
      • 1.7.5.3 Geographic Penetration Patterns      58
      • 1.7.5.4 Technology and Product Evolution  58
      • 1.7.5.5 Content per Vehicle Trends  59
      • 1.7.5.6 Competitive Dynamics and Market Share Evolution            59
      • 1.7.5.7 Growth Projections Methodology and Assumptions           60
      • 1.7.5.8 Alternative Scenarios               61
    • 1.7.6    Oil & Gas Pipeline Insulation               61
      • 1.7.6.1 Market Composition by Pipeline Type            61
        • 1.7.6.1.1           Subsea Oil & Gas Pipelines  61
        • 1.7.6.1.2           Onshore Heated Oil Pipelines             63
        • 1.7.6.1.3           LNG and Cryogenic Applications      63
        • 1.7.6.1.4           Industrial Process Pipelines 64
      • 1.7.6.2 Market Trends and Outlook: 65
    • 1.7.7    By Region         66
      • 1.7.7.1 North America              66
      • 1.7.7.2 Europe                67
      • 1.7.7.3 China  68
      • 1.7.7.4 Japan  70
      • 1.7.7.5 Rest of Asia-Pacific (excluding China and Japan)  71
      • 1.7.7.6 Rest of World (Middle East, Africa, Latin America)                72
  • 1.8        Competitive Landscape         74
    • 1.8.1    Market Structure and Concentration              74
    • 1.8.2    Strategic Group Analysis       74
      • 1.8.2.1 Group 1: Global Technology Leaders             74
      • 1.8.2.2 Group 2: Diversified Insulation Leaders       75
      • 1.8.2.3 Group 3: Chinese Volume Manufacturers  75
      • 1.8.2.4 Group 4: Niche Specialists & Regional Players        76
    • 1.8.3    Competitive Battlegrounds: Where Competition Is Intensifying  77
      • 1.8.3.1 Battleground 1: Mass-Market EV Segment ($30-50K Vehicles)     77
      • 1.8.3.2 Battleground 2: Industrial Insulation Market             78
      • 1.8.3.3 Battleground 3: Particles vs. Blankets Format War               78
      • 1.8.3.4 Battleground 4: Geographic Market Control - China            79

 

2             INTRODUCTION          80

  • 2.1        Aerogels            80
    • 2.1.1    Origin of Aerogels        80
    • 2.1.2    Classification 80
    • 2.1.3    Aerogel Forms               82
    • 2.1.4    Commercially available aerogels     84
  • 2.2        Manufacturing processes      86
    • 2.2.1    Supercritical Drying Process               86
      • 2.2.1.1 Closed Loop Systems              86
      • 2.2.1.2 Autoclave Loading and Operational Efficiency        87
    • 2.2.2    Ambient Pressure Drying Process    87
  • 2.3        Silica aerogels               89
    • 2.3.1    Properties         89
      • 2.3.1.1 Thermal conductivity and density    90
      • 2.3.1.2 Mechanical     90
      • 2.3.1.3 Silica aerogel precursors        90
    • 2.3.2    Products           91
      • 2.3.2.1 Monoliths         91
        • 2.3.2.1.1           Properties         91
        • 2.3.2.1.2           Monoliths prepared under ambient pressure           91
        • 2.3.2.1.3           Scalable monolithic sheet production for windows             92
        • 2.3.2.1.4           Alternative monolithic aerogel manufacturing processes                93
      • 2.3.2.2 Powder               94
        • 2.3.2.2.1           Key characteristics    94
        • 2.3.2.2.2           Silica Aerogel powder manufacturing processes   94
        • 2.3.2.2.3           Powders and granules prepared under ambient pressure                95
      • 2.3.2.3 Granules           96
      • 2.3.2.4 Blankets            97
      • 2.3.2.5 Aerogel boards             98
      • 2.3.2.6 Aerogel renders            98
      • 2.3.2.7 Silica aerogel from sustainable feedstocks               99
      • 2.3.2.8 Silica composite aerogels     99
        • 2.3.2.8.1           Organic crosslinkers 100
        • 2.3.2.8.2           Composites from powders and granules    100
        • 2.3.2.8.3           Opacified aerogels     101
        • 2.3.2.8.4           Commercial activity  102
    • 2.3.3    Cost     105
    • 2.3.4    Main Companies and Products         106
  • 2.4        Aerogel-like polymer foams 107
    • 2.4.1    Properties         107
    • 2.4.2    Applications for aerogel-like polymer foams include:         107
  • 2.5        Metal oxide aerogels 108
  • 2.6        Organic aerogels         108
    • 2.6.1    Polymer-based aerogels         108
      • 2.6.1.1 Polyimide-graphene aerogel composites    110
      • 2.6.1.2 Recyclable aerogels  110
    • 2.6.2    Biobased aerogels (bio-aerogels)     111
      • 2.6.2.1 Overview           111
      • 2.6.2.2 Sustainable Feedstocks         112
        • 2.6.2.2.1           Silica aerogels derived from waste sources               112
          • 2.6.2.2.1.1      Food waste  to bioaerogel conversion           113
        • 2.6.2.2.2           Commercial development    113
        • 2.6.2.2.3           Textile waste into high-value aerogel materials       114
      • 2.6.2.3 Cellulose aerogels     116
        • 2.6.2.3.1           Cellulose nanofiber (CNF) aerogels                117
        • 2.6.2.3.2           Cellulose nanocrystal aerogels         117
        • 2.6.2.3.3           Bacterial nanocellulose aerogels     117
      • 2.6.2.4 Lignin aerogels              118
      • 2.6.2.5 Alginate aerogels         118
      • 2.6.2.6 Starch aerogels            119
      • 2.6.2.7 Chitosan aerogels      120
      • 2.6.2.8 Protein aerogels           120
        • 2.6.2.8.1           Albumin aerogels        120
        • 2.6.2.8.2           Casein aerogels           121
        • 2.6.2.8.3           Gelatin aerogels           121
        • 2.6.2.8.4           Whey protein isolate aerogels            121
      • 2.6.2.9 Silk fiber            122
      • 2.6.2.10            Pectin composite aerogels for thermal superinsulation    122
      • 2.6.2.11            Agar aerogels for biomedical applications 123
    • 2.6.3    Carbon aerogels          123
      • 2.6.3.1 Manufacturing and properties            124
      • 2.6.3.2 Carbon nanotube aerogels   126
      • 2.6.3.3 Graphene and graphite aerogels       126
      • 2.6.3.4 MXene materials          127
      • 2.6.3.5 Graphitic Networks on Polyimide Aerogels 128
      • 2.6.3.6 Graphene (Hybrid Systems) 128
      • 2.6.3.7 Carbon aerogel manufacturers         129
  • 2.7        3D printed aerogels   131
    • 2.7.1    3D printing processes and applications       131
    • 2.7.2    Carbon nitride               134
    • 2.7.3    Gold     135
    • 2.7.4    Cellulose          135
    • 2.7.5    Graphene oxide            135
  • 2.8        Hybrid and composite aerogels        136
    • 2.8.1    Mixed oxide aerogels 136
    • 2.8.2    Metal oxide aerogel composites       137
    • 2.8.3    Carbon-based aerogel composites 137
    • 2.8.4    Metal Organic Framework Aerogel Composites (MOFACs)             137
  • 2.9        Technology Readiness Level (TRL)   138

 

3             PRODUCTION METHODS      142

  • 3.1        Overview           142
  • 3.2        Sol-gel process             144
  • 3.3        3D printing of aerogels             145
  • 3.4        Drying methods            146
    • 3.4.1    Overview of drying methods 147
    • 3.4.2    Supercritical Drying   148
      • 3.4.2.1 Closed loop    149
      • 3.4.2.2 Autoclave loading       150
    • 3.4.3    Ambient Pressure Drying       150
    • 3.4.4    Rapid Supercritical Extraction (RSCE)          155
    • 3.4.5    Advantages and disadvantages        155
  • 3.5        Costs  157
  • 3.6        Manufacturing scale-up challenges               161

 

4             MARKETS AND APPLICATIONS FOR AEROGELS     164

  • 4.1        Competitive landscape          164
  • 4.2        EV Batteries     165
    • 4.2.1    Overview           165
    • 4.2.2    EV batteries     166
      • 4.2.2.1 Fire protection               166
      • 4.2.2.2 Thermal barriers          169
      • 4.2.2.3 Regulations     171
      • 4.2.2.4 Challenges      173
      • 4.2.2.5 Integration of aerogels with specialized foam materials   174
      • 4.2.2.6 Companies     174
  • 4.3        Oil and Gas     176
    • 4.3.1    Overview           176
    • 4.3.2    Applications   176
      • 4.3.2.1 Refineries         177
      • 4.3.2.2 Pipelines           177
  • 4.4        Building and Construction    181
    • 4.4.1    Overview           181
    • 4.4.2    Types of sustainable insulation materials   181
    • 4.4.3    Technical Value Proposition in Buildings     182
    • 4.4.4    Application Segments              184
      • 4.4.4.1 Historic Building Renovation               184
        • 4.4.4.1.1           Market Characteristics            184
        • 4.4.4.1.2           Typical Applications  184
        • 4.4.4.1.3           Geographic Distribution         185
        • 4.4.4.1.4           Market Dynamics        185
      • 4.4.4.2 Exterior Insulation Finishing Systems (EIFS) and Facades               186
        • 4.4.4.2.1           Market Characteristics            186
        • 4.4.4.2.2           Applications   187
        • 4.4.4.2.3           Geographic Distribution         187
        • 4.4.4.2.4           Market Dynamics        188
        • 4.4.4.2.5           Technology Development      188
      • 4.4.4.3 Window Glazing and Daylighting Systems  189
        • 4.4.4.3.1           Market Characteristics            189
        • 4.4.4.3.2           Technology Description          189
        • 4.4.4.3.3           Technical Performance           189
        • 4.4.4.3.4           Applications   190
        • 4.4.4.3.5           Geographic Distribution         191
        • 4.4.4.3.6           Market Dynamics        191
        • 4.4.4.3.7           Technology Development      192
      • 4.4.4.4 High-Performance Residential and Commercial Insulation            195
        • 4.4.4.4.1           Market Characteristics            195
        • 4.4.4.4.2           Geographic Distribution         196
        • 4.4.4.4.3           Market Dynamics        196
        • 4.4.4.4.4           Growth Trajectory       197
      • 4.4.4.5 Industrial insulation  197
      • 4.4.4.6 Other Building Applications 198
      • 4.4.4.7 Manufacturing and Cost Economics for Building Applications     198
        • 4.4.4.7.1           Cost Reduction Pathway        199
      • 4.4.4.8 Regulatory Environment and Building Codes           199
        • 4.4.4.8.1           Regulatory Evolution 200
      • 4.4.4.9 Market Growth Drivers             200
  • 4.5        Energy Storage              204
    • 4.5.1    Overview           204
    • 4.5.2    Applications   204
      • 4.5.2.1 Silicon anodes              204
      • 4.5.2.2 Li-S batteries  205
      • 4.5.2.3 Electrodes        206
      • 4.5.2.4 Thermal insulation     207
      • 4.5.2.5 Supercapacitors          208
  • 4.6        Biomedical      209
    • 4.6.1    Overview           209
    • 4.6.2    Applications   209
      • 4.6.2.1 Drug delivery  209
      • 4.6.2.2 Tissue engineering      210
      • 4.6.2.3 Medical implants        211
      • 4.6.2.4 Wound care    212
  • 4.7        Cold-Chain Packaging            213
    • 4.7.1    Overview           213
  • 4.8        Electronics and Telecommunications           214
    • 4.8.1    Overview           214
    • 4.8.2    Applications   214
      • 4.8.2.1 EMI Shielding 215
      • 4.8.2.2 Thermal insulation     216
      • 4.8.2.3 5G         217
        • 4.8.2.3.1           Antenna modules       217
        • 4.8.2.3.2           High-performance antenna substrates        218
        • 4.8.2.3.3           Advanced low-loss materials              218
  • 4.9        Filtration, Separation, and Sorption                220
    • 4.9.1    Overview           220
    • 4.9.2    Applications   221
      • 4.9.2.1 Sorbents for liquids, hazardous ions (heavy metal ions) (e.g., water treatment)               221
      • 4.9.2.2 Sorbent for oil spills  222
      • 4.9.2.3 Sorbents for gases (CO2, hazardous gases, VOC) 222
  • 4.10     Textiles               224
    • 4.10.1 Overview           224
    • 4.10.2 Applications   224
      • 4.10.2.1            Winter sports apparel              225
      • 4.10.2.2            Consumer apparel     226
      • 4.10.2.3            Protective equipment               228
      • 4.10.2.4            Footwear applications             228
  • 4.11     Food    229
    • 4.11.1 Overview           229
  • 4.12     Catalysts          230
  • 4.13     Paint and Coatings     230
  • 4.14     Aerospace and Defence         231
    • 4.14.1 Overview           231
    • 4.14.2 Applications   233
      • 4.14.2.1            Thermal protection systems 233
      • 4.14.2.2            Crash absorbers          234
      • 4.14.2.3            Applications   235
  • 4.15     Cosmetics       240
    • 4.15.1 Overview           240
  • 4.16     Other markets and applications       241
    • 4.16.1 Sports equipment       241
    • 4.16.2 Fire retardant applications   241
    • 4.16.3 Solar energy collection            242
    • 4.16.4 Knudsen pumps          243
    • 4.16.5 Passive Cooling            244

 

5             AEROGEL PATENTS    245

  • 5.1        Patent applications   245

 

6             AEROGEL COMPANY PROFILES        248 (52 company profiles)

 

7             RESEARCH SCOPE AND METHODOLOGY 318

  • 7.1        Report scope 318
  • 7.2        Research methodology           318

 

8             REFERENCES 319

 

Tables

  • Table 1. General properties and value of aerogels.               17
  • Table 2. Aerogel Thermal Conductivity and Density Benchmarking.         17
  • Table 3. Market drivers for aerogels.               20
  • Table 4. Aerogel Manufacturer Production Capacity and Manufacturing Processes (2024)      24
  • Table 5. Planned Aerogel Production Expansions (2024-2027)    26
  • Table 6. Market and technology challenges in aerogels.   33
  • Table 7. Global Aerogel Market Forecast 2021-2036 by Aerogel Type (Million USD).       37
  • Table 8. Global Aerogel Market 2024-2036 by Application (Million USD) 56
  • Table 9. Global Aerogel Market 2024-2036 by Region (Million USD)           72
  • Table 10. Aerogel Form Factors.        82
  • Table 11. Commercially Available Aerogel Products.          84
  • Table 12. Silica aerogel properties . 89
  • Table 13. Chemical precursors used to synthesize silica aerogels.           90
  • Table 14. Alternative Monolithic Aerogel Manufacturing Processes           93
  • Table 15. Silica Aerogel Powder Manufacturing Processes              95
  • Table 16. Commercially available aerogel-enhanced blankets.   98
  • Table 17. Silica Composite Aerogels Formed from Powder and Granules - Players and Progress          101
  • Table 18. Commercial Silica Composite Aerogels.               103
  • Table 19. Main manufacturers of silica aerogels and product offerings. 106
  • Table 20. Typical structural properties of metal oxide aerogels.  108
  • Table 21. Polymer aerogels companies.      110
  • Table 22. Types of biobased aerogels.           114
  • Table 23. Agar Aerogels for Biomedical Applications          123
  • Table 24. Carbon aerogel companies.          125
  • Table 25. Carbon aerogel manufacturers.  129
  • Table 26.  3D printing processes and applications.              133
  • Table 27. Synthesis methods-Aerogels synthesised, advantages and disadvantages. 143
  • Table 28. Silica Aerogel Powder Manufacturing Processes Using Ambient Drying.          152
  • Table 29. Drying methods for aerogel production. 153
  • Table 30. Advantages and disadvantages of drying methods.       155
  • Table 31. Silica Composite Aerogels - Cost Analysis.         157
  • Table 32. Cost Analysis by Aerogel Type.     160
  • Table 33. Manufacturing scale-up challenges.        161
  • Table 34. Market overview of aerogels in automotive-market drivers, types of aerogels utilized, motivation for use of aerogels, applications, TRL. 165
  • Table 35. Properties of Aerogels and Other Fire Protection Materials.      166
  • Table 36. Types of Fire Protection Materials.             168
  • Table 37. Thermally Insulating Fire Protection Products for EVs. 169
  • Table 38. Comparison of Aerogels vs Other Fire Protection Materials.    169
  • Table 39. Comparison of Aerogel Fire Protection Materials for EV Batteries.       170
  • Table 40. Companies producing  Aerogels for EV Batteries.            174
  • Table 41. Market overview of aerogels in oil and gas-market drivers, types of aerogels utilized, motivation for use of aerogels, applications, TRL. 176
  • Table 42. Aerogel Products for Cryogenic Insulation.          179
  • Table 43. Thermal Performance Comparison.         182
  • Table 44. Aerogel Products for Windows/Daylighting.         192
  • Table 45. Aerogel Materials for Building & Construction Applications.    202
  • Table 46. Market overview of aerogels in energy conversion and storage-market drivers, types of aerogels utilized, motivation for use of aerogels, applications, TRL.         204
  • Table 47. Market overview of aerogels in drug delivery-market drivers, types of aerogels utilized, motivation for use of aerogels, applications, TRL. 210
  • Table 48. Market overview of aerogels in tissue engineering-market drivers, types of aerogels utilized, motivation for use of aerogels, applications, TRL. 210
  • Table 49. Market overview of aerogels in medical implants-market drivers, types of aerogels utilized, motivation for use of aerogels, applications, TRL. 211
  • Table 50. Market overview of aerogels in wound care-market drivers, types of aerogels utilized, motivation for use of aerogels, applications, TRL. 212
  • Table 51. Market overview of aerogels in cold-chain packaging-market drivers, types of aerogels utilized, motivation for use of aerogels, applications, TRL. 213
  • Table 52. Market overview of aerogels in electronics and Telecommunications-market drivers, types of aerogels utilized, motivation for use of aerogels, applications, TRL.         214
  • Table 53. Aerogel Products for Electronic Appliances.       214
  • Table 54. Market overview of aerogels in filtration, separation, and sorption-market drivers, types of aerogels utilized, motivation for use of aerogels, applications.    220
  • Table 55. Market overview of aerogels in textiles- market drivers, types of aerogels utilized, motivation for use of aerogels, applications.     228
  • Table 56. Market overview of aerogels in food- market drivers, types of aerogels utilized, motivation for use of aerogels, applications.            229
  • Table 57. Market overview of aerogels in catalysts-market drivers, types of aerogels utilized, motivation for use of aerogels, applications.     230
  • Table 58. Market overview of aerogels in paints and coatings-market drivers, types of aerogels utilized, motivation for use of aerogels, applications.            230
  • Table 59. Market overview of aerogels in aerospace and defence-market drivers, types of aerogels utilized, motivation for use of aerogels, applications.        235
  • Table 60. Market overview of aerogels in cosmetics-market drivers, types of aerogels utilized, motivation for use of aerogels, applications.            240
  • Table 61. Aerogel patents 2010-2024.          245

 

Figures

  • Figure 1. Classification of aerogels. 17
  • Figure 2. SLENTEX® thermal insulation.       19
  • Figure 3. Global Aerogel Market Forecast 2021-2036 by Aerogel Type (Million USD).     38
  • Figure 4. Global Aerogel Market 2024-2036 by Application (Million USD).             56
  • Figure 5. Global Aerogel Market 2024-2036 by Region (Million USD).       73
  • Figure 6. Main characteristics of aerogel type materials.  80
  • Figure 7. Classification of aerogels. 81
  • Figure 8. Canada Goose luxury footwear.   83
  • Figure 9. Flower resting on a piece of silica aerogel suspended in mid air by the flame of a bunsen burner.                89
  • Figure 10. Monolithic aerogel.            91
  • Figure 11. Aerogel granules. 96
  • Figure 12. Internal aerogel granule applications.   97
  • Figure 13. Slentite.      105
  • Figure 14. Methods for producing bio-based aerogels.      116
  • Figure 15. Types of cellulose aerogel.            116
  • Figure 16. Lignin-based aerogels.     118
  • Figure 17. Fabrication routes for starch-based aerogels. 119
  • Figure 18. Schematic of silk fiber aerogel synthesis.           122
  • Figure 19. Graphene aerogel.              127
  • Figure 20. Commonly employed printing technologies for aerogels.        132
  • Figure 21. Schematic for direct ink writing of silica aerogels.        132
  • Figure 22. 3D printed aerogel.             132
  • Figure 23. Schematic of silica aerogels synthesis.                143
  • Figure 24. Formation of aerogels, cryogels and xerogels. 144
  • Figure 25. Aerogel engineering strategies.  145
  • Figure 26. 3D printed aerogels.          146
  • Figure 27. SEM images of the microstructures of (a) alginate and (b) pectin aerogels obtained by supercritical drying, (c) cellulose aerogels by freeze-drying, and (d) silica-cellulose composite aerogels by ambient drying.     147
  • Figure 28. Methods of gel drying.      148
  • Figure 29. Pyrogel insulation on a heat-exchange vessel in a petrochemical plant.        176
  • Figure 30. Aerogel construction applications.         181
  • Figure 31. Incorporation of aerogels into textiles.  225
  • Figure 32. Aerogel dust collector.     236
  • Figure 33. Thermal Conductivity Performance of ArmaGel HT.     261
  • Figure 34. SLENTEX® roll (piece).      265
  • Figure 35. CNF gel.     281
  • Figure 36. Block nanocellulose material.    282
  • Figure 37. Keey Aerogel.          286
  • Figure 38. Fire-resistance in Keey Aerogel. 287
  • Figure 39. Melodea CNC suspension.           294
  • Figure 40. Insulation of various aerogel fibres illustrated using the example of a cushion.        301
  • Figure 41. Sunthru Aerogel pane.     303
  • Figure 42. Quartzene®.             306

 

   

Purchasers will receive the following:

  • PDF report download/by email. Print edition also available. 
  • Comprehensive Excel spreadsheet of all data.
  • Mid-year Update

 

The Global Aerogels Market 2026-2036
The Global Aerogels Market 2026-2036
PDF download.

The Global Aerogels Market 2026-2036
The Global Aerogels Market 2026-2036
PDF and Print Edition (including tracked delivery).

Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer. To order by Bank Transfer (Invoice) select this option from the payment methods menu after adding to cart, or contact info@futuremarketsinc.com