The Global Market for Nanocoatings 2020-2030

0

Published: December 10 2020.   Pages: 658 pages, 164 tables, 180 figures

The Global Market for Nanocoatings 2020-2030 provides a 658 page analysis of market size, applications, growth prospects, impact of COVID-19, market challenges, drivers and opportunities. The use of advanced nanocoatings to mitigate viruses and environmental damage has emerged in 2020.  Applied to high-transmission surfaces the use of nanocoatings offers continuous disinfection. This is one example of the many functionalities nanocoatings offer to a wide range of products and processes. 

Types of nanocoatings covered include:

  • Anti-fingerprint nanocoatings.
  • Anti-microbial and anti-viral nanocoatings.
  • Anti-corrosion nanocoatings.
  • Abrasion & wear-resistant nanocoatings.
  • Barrier nanocoatings. 
  • Anti-fouling and easy-clean nanocoatings.
  • Self-cleaning nanocoatings.
  • Photocatalytic nanocoatings.
  • UV-resistant nanocoatings.
  • Thermal barrier nanocoatings.
  • Flame retardant nanocoatings.
  • Anti-icing and de-icing nanocoatings.
  • Anti-reflective nanocoatings.
  • Self-healing nanocoatings.
  • Shape memory nanocoatings.

 

Market for nanocoatings covered include: 

  • Aviation and aerospace (Thermal protection, Icing prevention, Conductive and anti-static, Corrosion resistant, Insect contamination).
  • Automotive (Anti-scratch nanocoatings, Conductive coatings, Hydrophobic and oleophobic, Anti-corrosion, UV-resistance, Thermal barrier, Flame retardant, Anti-fingerprint , Anti-bacterial and Self-healing). 
  • Buildings and construction (Antimicrobial and antiviral coatings in building interiors, Antimicrobial paint, Protective coatings for glass, concrete and other construction materials, Photocatalytic nano-TiO2 coatings, Anti-graffiti, UV-protection).
  • Consumer electronics (Transparent functional coatings, Anti-reflective coatings for displays, Waterproof coatings, Conductive nanocoatings and films, Anti-fingerprint, Anti-abrasion, Conductive, Self-healing consumer electronic device coatings)
  • Household care and lifestyle (Self-cleaning and easy-to-clean, Antimicrobial, Food preparation and processing, Indoor pollutants and air quality)
  • Marine (Anti-corrosion, Abrasion resistance, Chemical resistance, Fouling control)
  • Medical and healthcare (Anti-fouling coatings, Anti-microbial, anti-viral and infection control, Medical textiles, Nanosilver, Medical device coatings, Light activated Titanium dioxide nanocoatings)
  • Military and defence (Uniforms, Military equipment, Chemical and biological protection, Decontamination, Thermal barrier, EMI/ESD Shielding, Anti-reflection)
  • Packaging (Edible coatings, Barrier films, Anti-microbial, Biobased and active packaging)
  • Textiles and apparel (Protective textiles, UV-resistant textile coatings,  Conductive coatings, Antimicrobial)
  • Energy (Wind energy, Solar, Anti-reflection, Gas turbine coatings 375)
  • Oil and gas (Anti-corrosion pipelines, Drilling)
  • Tools and machining.
  • Anti-counterfeiting. 

 

Report contents include:

  • Production and synthesis methods. 
  • Market analysis by nanocoatings types and end user markets
  • Industry collaborations and licensing agreements. 
  • Analysis of types of nanomaterials used in nanostructured coatings, surfaces and films. 
  • Global revenues, historical and forecast to 2030, by type, end user market and regional markets. 
  • 380 company profiles. Companies profiled include Bio-Gate, Tesla Nanocoatings, HZO, EnvisionSQ, P2i, Swift Coat, HeiQ Materials,  OrganoClick,  Green Earth Nano Science, Reactive Surfaces, Kastus, Advanced Materials JTJ, etc. and many more. Profiles include company description, products, target markets and contact details. 

 

View table of contents (PDF)

 

Contact info@futuremarketsinc.com to request sample content. 

View table of contents (PDF)

1              EXECUTIVE SUMMARY   44

  • 1.1          Why nanocoatings?        44
  • 1.2          Advantages over traditional coatings       44
  • 1.3          Improvements and disruption in coatings markets            46
  • 1.4          Anti-viral nanoparticles and nanocoatings             48
    • 1.4.1.1   Reusable Personal Protective Equipment (PPE)   50
    • 1.4.1.2   Wipe on coatings             50
    • 1.4.1.3   Facemask coatings           50
    • 1.4.1.4   Long-term mitigation of surface contamination with nanocoatings             51
  • 1.5          End user market for nanocoatings            52
  • 1.6          The nanocoatings market in 2020              55
  • 1.7          Global market size, historical and estimated to 2020         55
    • 1.7.1      Global revenues for nanocoatings 2010-2030       55
    • 1.7.2      Regional demand for nanocoatings          56
  • 1.8          Market challenges           57

 

2              OVERVIEW OF NANOCOATINGS 59

  • 2.1          Properties           59
  • 2.2          Benefits of using nanocoatings   60
  • 2.2.1      Types of nanocoatings   61
  • 2.3          Production and synthesis methods          62
  • 2.4          Hydrophobic coatings and surfaces          73
    • 2.4.1      Hydrophilic coatings       73
    • 2.4.2      Hydrophobic coatings     73
      • 2.4.2.1   Properties           74
      • 2.4.2.2   Application in facemasks              74
  • 2.5          Superhydrophobic coatings and surfaces               75
    • 2.5.1      Properties           75
      • 2.5.1.1   Antibacterial use              76
    • 2.5.2      Durability issues               76
    • 2.5.3      Nanocellulose   77
  • 2.6          Oleophobic and omniphobic coatings and surfaces           77
    • 2.6.1      SLIPS     78
    • 2.6.2      Covalent bonding             78
    • 2.6.3      Step-growth graft polymerization             78
    • 2.6.4      Applications       79
  • 2.7          Nanomaterials used in nanocoatings       81
    • 2.7.1      Graphene           83
      • 2.7.1.1   Properties and coatings applications        83
    • 2.7.2      Carbon nanotubes (MWCNT and SWCNT)              90
      • 2.7.2.1   Properties and applications          90
    • 2.7.3      Fullerenes           95
      • 2.7.3.1   Properties           95
      • 2.7.3.2   Antimicrobial activity      95
    • 2.7.4      Silicon dioxide/silica nanoparticles (Nano-SiO2)  96
      • 2.7.4.1   Properties and applications          97
    • 2.7.5      Nanosilver          99
      • 2.7.5.1   Properties and applications          99
      • 2.7.5.2   Silver nanocoatings         100
      • 2.7.5.3   Antimicrobial silver paints            101
    • 2.7.6      Titanium dioxide nanoparticles (nano-TiO2)         103
      • 2.7.6.1   Properties and applications          103
    • 2.7.7      Aluminium oxide nanoparticles (Al2O3-NPs)        111
      • 2.7.7.1   Properties and applications          111
    • 2.7.8      Zinc oxide nanoparticles (ZnO-NPs)          112
      • 2.7.8.1   Properties and applications          112
    • 2.7.9      Dendrimers        116
      • 2.7.9.1   Properties and applications          116
    • 2.7.10    Nanodiamonds 117
      • 2.7.10.1                Properties and applications          117
    • 2.7.11    Nanocellulose (Cellulose nanofibers, cellulose nanocrystals and bacterial cellulose)            121
      • 2.7.11.1                Properties and applications          121
    • 2.7.12    Chitosan nanoparticles  129
      • 2.7.12.1                Properties           129
      • 2.7.12.2                Wound dressings             130
      • 2.7.12.3                Packaging coatings and films       131
      • 2.7.12.4                Food storage      131
    • 2.7.13    Copper nanoparticles     131
      • 2.7.13.1                Properties           131
      • 2.7.13.2                Application in antimicrobial nanocoatings             131

 

3              MARKET ANALYSIS BY NANOCOATINGS TYPE       133

  • 3.1          ANTI-FINGERPRINT NANOCOATINGS       133
    • 3.1.1      Market overview             133
    • 3.1.2      Market assessment        134
    • 3.1.3      Market drivers and trends            135
    • 3.1.4      Applications       137
      • 3.1.4.1   Touchscreens    137
      • 3.1.4.2   Spray-on anti-fingerprint coating               138
    • 3.1.5      Global market size           139
    • 3.1.6      Product developers        140
  • 3.2          ANTI-MICROBIAL AND ANTI-VIRAL NANOCOATINGS         144
    • 3.2.1      Mode of action  144
    • 3.2.2      Anti-viral coatings and surfaces 145
    • 3.2.3      Market overview             147
    • 3.2.4      Market assessment        149
    • 3.2.5      Market drivers and trends            149
    • 3.2.6      Applications       152
    • 3.2.7      Global market size           154
    • 3.2.8      Product developers        155
  • 3.3          ANTI-CORROSION NANOCOATINGS         158
    • 3.3.1      Market overview             158
    • 3.3.2      Market assessment        160
    • 3.3.3      Market drivers and trends            160
    • 3.3.4      Applications       161
      • 3.3.4.1   Smart self-healing coatings          163
      • 3.3.4.2   Superhydrophobic coatings         163
    • 3.3.4.3   Graphene           164
    • 3.3.5      Global market size           165
    • 3.3.6      Product developers        167
  • 3.4          ABRASION & WEAR-RESISTANT NANOCOATINGS 170
    • 3.4.1      Market overview             170
    • 3.4.2      Market assessment        171
    • 3.4.3      Market drivers and trends            172
    • 3.4.4      Applications       173
    • 3.4.5      Global market size           173
    • 3.4.6      Product developers        175
  • 3.5          BARRIER NANOCOATINGS            177
    • 3.5.1      Market assessment        177
    • 3.5.2      Market drivers and trends            177
    • 3.5.3      Applications       178
      • 3.5.3.1   Food and Beverage Packaging    178
      • 3.5.3.2   Moisture protection       178
      • 3.5.3.3   Graphene           179
    • 3.5.4      Global market size           179
    • 3.5.5      Product developers        181
  • 3.6          ANTI-FOULING AND EASY-TO-CLEAN NANOCOATINGS     183
    • 3.6.1      Market overview             183
    • 3.6.2      Market assessment        184
    • 3.6.3      Market drivers and trends            184
    • 3.6.4      Applications       185
      • 3.6.4.1   Hydrophobic and olephobic coatings       185
      • 3.6.4.2   Anti-graffiti         186
    • 3.6.5      Global market size           186
    • 3.6.6      Product developers        188
  • 3.7          SELF-CLEANING NANOCOATINGS              191
    • 3.7.1      Market overview             191
    • 3.7.2      Market assessment        192
    • 3.7.3      Market drivers and trends            193
    • 3.7.4      Applications       193
    • 3.7.5      Global market size           194
    • 3.7.6      Product developers        196
  • 3.8          PHOTOCATALYTIC NANOCOATINGS         198
    • 3.8.1      Market overview             198
    • 3.8.2      Market assessment        199
    • 3.8.3      Market drivers and trends            199
    • 3.8.4      Applications       200
      • 3.8.4.1   Self-Cleaning coatings-glass         201
      • 3.8.4.2   Self-cleaning coatings-building and construction surfaces               201
      • 3.8.4.3   Photocatalytic oxidation (PCO) indoor air filters  203
      • 3.8.4.4   Water treatment             204
      • 3.8.4.5   Medical facilities               204
      • 3.8.4.6   Antimicrobial coating indoor light activation         205
    • 3.8.5      Global market size           205
    • 3.8.6      Product developers        208
  • 3.9          UV-RESISTANT NANOCOATINGS 210
    • 3.9.1      Market overview             210
    • 3.9.2      Market assessment        211
    • 3.9.3      Market drivers and trends            211
    • 3.9.4      Applications       212
      • 3.9.4.1   Textiles 212
      • 3.9.4.2   Wood coatings  212
    • 3.9.5      Global market size           213
    • 3.9.6      Product developers        216
  • 3.10        THERMAL BARRIER AND FLAME RETARDANT NANOCOATINGS     217
    • 3.10.1    Market overview             217
    • 3.10.2    Market assessment        218
    • 3.10.3    Market drivers and trends            218
    • 3.10.4    Applications       219
    • 3.10.5    Global market size           220
    • 3.10.6    Product developers        223
  • 3.11        ANTI-ICING AND DE-ICING NANOCOATINGS         225
    • 3.11.1    Market overview             225
    • 3.11.2    Market assessment        225
    • 3.11.3    Market drivers and trends            226
    • 3.11.4    Applications       228
      • 3.11.4.1                Hydrophobic and superhydrophobic coatings (HSH)          228
      • 3.11.4.2                Heatable coatings            229
      • 3.11.4.3                Anti-freeze protein coatings        230
    • 3.11.5    Global market size           231
    • 3.11.6    Product developers        233
  • 3.12        ANTI-REFLECTIVE NANOCOATINGS           235
    • 3.12.1    Market overview             235
    • 3.12.2    Market drivers and trends            235
    • 3.12.3    Applications       237
    • 3.12.4    Global market size           237
    • 3.12.5    Product developers        239
  • 3.13        SELF-HEALING NANOCOATINGS 241
    • 3.13.1    Market overview             241
      • 3.13.1.1                Extrinsic self-healing       242
      • 3.13.1.2                Capsule-based  242
      • 3.13.1.3                Vascular self-healing      242
      • 3.13.1.4                Intrinsic self-healing       242
      • 3.13.1.5                Healing volume 243
    • 3.13.2    Applications       245
      • 3.13.2.1                Self-healing coatings       246
      • 3.13.2.2                Anti-corrosion   246
      • 3.13.2.3                Scratch repair    246
      • 3.13.2.4                Polyurethane clear coats               247
      • 3.13.2.5                Micro-/nanocapsules     248
      • 3.13.2.6                Microvascular networks 249
      • 3.13.2.7                Reversible polymers       250
      • 3.13.2.8                Click polymerization       250
      • 3.13.2.9                Polyampholyte hydrogels             250
      • 3.13.2.10              Shape memory 251
    • 3.13.3    Global market size           252
    • 3.13.4    Product developers        256

 

4              MARKET SEGMENT ANALYSIS, BY END USER MARKET       258

  • 4.1          AVIATION AND AEROSPACE         259
    • 4.1.1      Market drivers and trends            259
    • 4.1.2      Applications       260
      • 4.1.2.1   Thermal protection         262
      • 4.1.2.2   Icing prevention               262
      • 4.1.2.3   Conductive and anti-static            262
      • 4.1.2.4   Corrosion resistant          263
      • 4.1.2.5   Insect contamination      263
    • 4.1.3      Global market size           264
    • 4.1.4      Companies         266
  • 4.2          AUTOMOTIVE   270
    • 4.2.1      Market drivers and trends            270
    • 4.2.2      Applications       270
    • 4.2.2.1   Anti-scratch nanocoatings            271
    • 4.2.2.2   Conductive coatings        271
    • 4.2.2.3   Hydrophobic and oleophobic      272
    • 4.2.2.4   Anti-corrosion   272
    • 4.2.2.5   UV-resistance   272
    • 4.2.2.6   Thermal barrier 273
    • 4.2.2.7   Flame retardant               273
    • 4.2.2.8   Anti-fingerprint 273
    • 4.2.2.9   Anti-bacterial     273
    • 4.2.2.10                Self-healing        274
    • 4.2.3      Global market size           274
    • 4.2.4      Companies         277
  • 4.3          CONSTRUCTION               281
    • 4.3.1      Market drivers and trends            281
    • 4.3.2      Applications       281
      • 4.3.2.1   Protective coatings for glass, concrete and other construction materials  283
      • 4.3.2.2   Photocatalytic nano-TiO2 coatings            283
      • 4.3.2.3   Anti-graffiti         285
      • 4.3.2.4   UV-protection   285
      • 4.3.2.5   Titanium dioxide nanoparticles  285
      • 4.3.2.6   Zinc oxide nanoparticles               286
    • 4.3.3      Global market size           286
    • 4.3.4      Companies         289
  • 4.4          ELECTRONICS     294
    • 4.4.1      Market drivers  294
    • 4.4.2      Applications       295
      • 4.4.2.1   Transparent functional coatings 295
      • 4.4.2.2   Anti-reflective coatings for displays          295
      • 4.4.2.3   Waterproof coatings       296
      • 4.4.2.4   Conductive nanocoatings and films          298
      • 4.4.2.5   Anti-fingerprint 298
      • 4.4.2.6   Anti-abrasion     299
      • 4.4.2.7   Conductive         299
      • 4.4.2.8   Self-healing consumer electronic device coatings               299
      • 4.4.2.9   Flexible and stretchable electronics         300
    • 4.4.3      Global market size           301
    • 4.4.4      Companies         303
  • 4.5          HOUSEHOLD CARE, SANITARY AND INDOOR AIR QUALITY               307
    • 4.5.1      Market drivers and trends            307
    • 4.5.2      Applications       307
      • 4.5.2.1   Self-cleaning and easy-to-clean 307
      • 4.5.2.2   Food preparation and processing              307
      • 4.5.2.3   Indoor pollutants and air quality                308
    • 4.5.3      Global market size           309
    • 4.5.4      Companies         312
  • 4.6          MARINE               315
    • 4.6.1      Market drivers and trends            315
    • 4.6.2      Applications       316
    • 4.6.3      Global market size           317
    • 4.6.4      Companies         319
  • 4.7          MEDICAL & HEALTHCARE              321
    • 4.7.1      Market drivers and trends            321
    • 4.7.2      Applications       322
      • 4.7.2.1   Anti-fouling coatings       323
      • 4.7.2.2   Anti-microbial, anti-viral and infection control     323
      • 4.7.2.3   Medical textiles 323
      • 4.7.2.4   Nanosilver          323
      • 4.7.2.5   Medical device coatings 324
    • 4.7.3      Global market size           326
    • 4.7.4      Companies         329
  • 4.8          MILITARY AND DEFENCE                333
    • 4.8.1      Market drivers and trends            333
    • 4.8.2      Applications       333
      • 4.8.2.1   Textiles 334
      • 4.8.2.2   Military equipment         334
      • 4.8.2.3   Chemical and biological protection           334
      • 4.8.2.4   Decontamination             334
      • 4.8.2.5   Thermal barrier 334
      • 4.8.2.6   EMI/ESD Shielding           335
      • 4.8.2.7   Anti-reflection  335
    • 4.8.3      Global market size           335
    • 4.8.4      Companies         337
  • 4.9          PACKAGING       340
    • 4.9.1      Market drivers and trends            340
    • 4.9.2      Applications       341
      • 4.9.2.1   Barrier films        341
      • 4.9.2.2   Anti-microbial    342
      • 4.9.2.3   Biobased and active packaging   343
    • 4.9.3      Global market size           344
    • 4.9.4      Companies         346
  • 4.10        TEXTILES AND APPAREL 348
    • 4.10.1    Market drivers and trends            348
    • 4.10.2    Applications       348
      • 4.10.2.1                Protective textiles           349
      • 4.10.2.2                UV-resistant textile coatings       354
      • 4.10.2.3                Conductive coatings        354
    • 4.10.3    Global market size           355
    • 4.10.4    Companies         359
  • 4.11        ENERGY                362
    • 4.11.1    Market drivers and trends            362
    • 4.11.2    Applications       362
      • 4.11.2.1                Wind energy      362
      • 4.11.2.2                Solar      363
      • 4.11.2.3                Anti-reflection  365
      • 4.11.2.4                Gas turbine coatings       365
    • 4.11.3    Global market size           365
    • 4.11.4    Companies         369
  • 4.12        OIL AND GAS      371
    • 4.12.1    Market drivers and trends            371
    • 4.12.2    Applications       372
      • 4.12.2.1                Anti-corrosion pipelines 374
      • 4.12.2.2                Drilling in sub-zero climates         375
    • 4.12.3    Global market size           375
    • 4.12.4    Companies         378
  • 4.13        TOOLS AND MACHINING              380
    • 4.13.1    Market drivers and trends            380
    • 4.13.2    Applications       380
    • 4.13.3    Global market size           381
    • 4.13.4    Companies         382
  • 4.14        ANTI-COUNTERFEITING 384
    • 4.14.1    Market drivers and trends            384
    • 4.14.2    Applications       384
    • 4.14.3    Global market size           385
    • 4.14.4    Companies         386

 

5              NANOCOATINGS COMPANIES    389

 

6              NANOCOATINGS COMPANIES NO LONGER TRADING        635

 

7              RESEARCH METHODOLOGY         636

  • 7.1          Aims and objectives of the study               636
  • 7.2          Market definition             637
  • 7.2.1      Properties of nanomaterials        637
  • 7.2.2      Categorization   638

 

8              REFERENCES       640

 

TABLES

  • Table 1: Properties of nanocoatings.        45
  • Table 2. Market drivers and trends in nanocoatings.         46
  • Table 3: End user markets for nanocoatings.        52
  • Table 4: Global revenues for nanocoatings, 2010-2030, millions USD.        55
  • Table 5: Market and technical challenges for nanocoatings.           57
  • Table 6: Technology for synthesizing nanocoatings agents.            62
  • Table 7: Film coatings techniques.            63
  • Table 8. Contact angles of hydrophilic, super hydrophilic, hydrophobic and superhydrophobic surfaces.   74
  • Table 9: Disadvantages of commonly utilized superhydrophobic coating methods.             76
  • Table 10: Applications of oleophobic & omniphobic coatings.       79
  • Table 11: Nanomaterials used in nanocoatings and applications. 81
  • Table 12: Graphene properties relevant to application in coatings.             84
  • Table 13: Uncoated vs. graphene coated (right) steel wire in corrosive environment solution after 30 days.             85
  • Table 14. Bactericidal characters of graphene-based materials.   87
  • Table 15: Market and applications for SWCNTs in coatings.            93
  • Table 16. Types of carbon-based nanoparticles as antimicrobial agent, their mechanisms of action and characteristics.                96
  • Table 17. Applications of nanosilver in coatings. 100
  • Table 18. Markets and applications for antimicrobial nanosilver nanocoatings.     101
  • Table 19. Antibacterial effects of ZnO NPs in different bacterial species.  114
  • Table 20. Market and applications for NDs in anti-friction and anti-corrosion coatings.      117
  • Table 21. Applications of nanocellulose in coatings.          122
  • Table 22: Applications of cellulose nanofibers(CNF).         123
  • Table 23: Applications of bacterial cellulose (BC).               126
  • Table 24. Mechanism of chitosan antimicrobial action.    130
  • Table 25. Market overview  for anti-fingerprint nanocoatings.      133
  • Table 26: Market assessment for anti-fingerprint nanocoatings.  134
  • Table 27. Market drivers and trends for anti-fingerprint nanocoatings.     135
  • Table 28: Anti-fingerprint coatings product and application developers.  140
  • Table 29. Growth Modes of Bacteria and characteristics. 145
  • Table 30. Anti-microbial nanocoatings-Nanomaterials used, principles, properties and applications             147
  • Table 31. Market assessment for anti-microbial nanocoatings.     149
  • Table 32. Market drivers and trends for anti-microbial and anti-viral nanocoatings.            149
  • Table 33. Nanomaterials used in anti-microbial and anti-viral nanocoatings and applications.         152
  • Table 34: Anti-microbial amd anti-viral nanocoatings product and application developers.              155
  • Table 35. Market overview for anti-corrosion nanocoatings.         158
  • Table 36: Market assessment for anti-corrosion nanocoatings.    160
  • Table 37. Market drivers and trends for use of anti-corrosion nanocoatings.          160
  • Table 38: Superior corrosion protection using graphene-added epoxy coatings, right, as compared to a commercial zinc-rich epoxy primer, left.         164
  • Table 39: Applications for anti-corrosion nanocoatings.   164
  • Table 40: Opportunity for anti-corrosion nanocoatings by 2030.   165
  • Table 41: Anti-corrosion nanocoatings product and application developers.          167
  • Table 42. Market overview for abrasion and wear-resistant nanocoatings.             170
  • Table 43. Market assessment for abrasion and wear-resistant nanocoatings          171
  • Table 44. Market driversaand trends for use of abrasion and wear resistant nanocoatings.              172
  • Table 45. Applications for abrasion and wear-resistant nanocoatings.       173
  • Table 46. Potential addressable market for abrasion and wear-resistant nanocoatings      173
  • Table 47: Abrasion and wear resistant nanocoatings product and application developers. 175
  • Table 48.Market assessment for barrier nanocoatings and films. 177
  • Table 49. Market drivers and trends for barrier nanocoatings       177
  • Table 50. Potential addressable market for barrier nanocoatings.               180
  • Table 51: Barrier nanocoatings product and application developers.         181
  • Table 52: Anti-fouling and easy-to-clean nanocoatings-Nanomaterials used, principles, properties and applications.                183
  • Table 53. Market assessment for anti-fouling and easy-to-clean nanocoatings.     184
  • Table 54. Market drivers and trends for use of anti-fouling and easy to clean nanocoatings.            184
  • Table 55. Anti-fouling and easy-to-clean nanocoatings markets, applications and potential addressable market.   186
  • Table 56: Anti-fouling and easy-to-clean nanocoatings product and application developers.           188
  • Table 57. Market overview for self-cleaning nanocoatings.            191
  • Table 58. Market assessment for self-cleaning (bionic) nanocoatings.       192
  • Table 59. Market drivers and trends for self-cleaning nanocoatings.          193
  • Table 60. Self-cleaning (bionic) nanocoatings-Markets and applications.  194
  • Table 61: Self-cleaning (bionic) nanocoatings product and application developers.             196
  • Table 62. Market overview for photocatalytic nanocoatings.         198
  • Table 63. Market assessment for photocatalytic nanocoatings.    199
  • Table 64. Market drivers and trends in photocatalytic nanocoatings.         200
  • Table 65. Photocatalytic nanocoatings-Markets, applications and potential addressable market size by 2027.          206
  • Table 66: Self-cleaning (photocatalytic) nanocoatings product and application developers.             208
  • Table 67. Market overview for UV resistant nanocoatings.             210
  • Table 68. Market assessment for UV-resistant nanocoatings.       211
  • Table 69: Market assessment for UV-resistant nanocoatings.       211
  • Table 70. Market drivers and trends in UV-resistant nanocoatings.            211
  • Table 71. UV-resistant nanocoatings-Markets, applications and potential addressable market.      213
  • Table 72: UV-resistant nanocoatings product and application developers.              216
  • Table 73. Market overview for thermal barrier and flame retardant nanocoatings.              217
  • Table 74. Market assessment for thermal barrier and flame retardant nanocoatings.         218
  • Table 75. Market drivers and trends in thermal barrier and flame retardant nanocoatings.              218
  • Table 76. Nanomaterials utilized in thermal barrier and flame retardant coatings and benefits thereof.    219
  • Table 77. Thermal barrier and flame retardant nanocoatings-Markets, applications and potential addressable markets.                221
  • Table 78: Thermal barrier and flame retardant nanocoatings product and application developers.               223
  • Table 79. Market overview for anti-icing and de-icing nanocoatings.          225
  • Table 80. Market assessment for anti-icing and de-icing nanocoatings.     226
  • Table 81. Market drivers and trends for use of anti-icing and de-icing nanocoatings.          226
  • Table 82: Nanomaterials utilized in anti-icing coatings and benefits thereof.          230
  • Table 83. Anti-icing and de-icing nanocoatings-Markets, applications and potential addressable markets. 231
  • Table 84: Anti-icing and de-icing nanocoatings product and application developers.           233
  • Table 85: Anti-reflective nanocoatings-Nanomaterials used, principles, properties and applications.           235
  • Table 86. Market drivers and trends in Anti-reflective nanocoatings.         235
  • Table 87. Market opportunity for anti-reflection nanocoatings.   238
  • Table 88: Anti-reflective nanocoatings product and application developers.          239
  • Table 89: Types of self-healing coatings and materials.    244
  • Table 90: Comparative properties of self-healing materials.           245
  • Table 91: Types of self-healing nanomaterials.    247
  • Table 92: Companies producing polyurethane clear coat products for self-healing.             248
  • Table 93. Self-healing materials and coatings markets and applications.   252
  • Table 94: Self-healing nanocoatings product and application developers. 256
  • Table 95. Market drivers and trends for nanocoatings in aviation and aerospace. 259
  • Table 96: Types of nanocoatings utilized in aerospace and application.     261
  • Table 97: Revenues for nanocoatings in the aerospace industry, 2010-2030.           265
  • Table 98: Aerospace nanocoatings product developers.  267
  • Table 99: Market drivers and trends for nanocoatings in the automotive market. 270
  • Table 100: Anti-scratch automotive nanocoatings.            271
  • Table 101: Conductive automotive nanocoatings.              271
  • Table 102: Hydro- and oleophobic automotive nanocoatings.       272
  • Table 103: Anti-corrosion automotive nanocoatings.        272
  • Table 104: UV-resistance automotive nanocoatings.        272
  • Table 105: Thermal barrier automotive nanocoatings.     273
  • Table 106: Flame retardant automotive nanocoatings.    273
  • Table 107: Anti-fingerprint automotive nanocoatings.     273
  • Table 108: Anti-bacterial automotive nanocoatings.         273
  • Table 109: Self-healing automotive nanocoatings.             274
  • Table 110: Revenues for nanocoatings in the automotive industry, 2010-2030, US$, conservative and optimistic estimate.             276
  • Table 111: Automotive nanocoatings product developers.             277
  • Table 112: Market drivers and trends for nanocoatings in the construction market.            281
  • Table 113: Nanocoatings applied in the construction industry-type of coating, nanomaterials utilized and benefits.                282
  • Table 114: Photocatalytic nanocoatings-Markets and applications.             284
  • Table 115: Revenues for nanocoatings in construction, architecture and exterior protection, 2010-2030, US$.        288
  • Table 116: Construction, architecture and exterior protection nanocoatings product developers. 289
  • Table 117: Market drivers for nanocoatings in electronics.             294
  • Table 118: Main companies in waterproof nanocoatings for electronics, products and synthesis methods.              297
  • Table 119: Conductive electronics nanocoatings.               298
  • Table 120: Anti-fingerprint electronics nanocoatings.       298
  • Table 121: Anti-abrasion electronics nanocoatings.           299
  • Table 122: Conductive electronics nanocoatings.               299
  • Table 123: Revenues for nanocoatings in electronics, 2010-2030, US$.     302
  • Table 124: Nanocoatings applications developers in electronics. 303
  • Table 125: Market drivers and trends for nanocoatings in household care and sanitary.    307
  • Table 126: Revenues for nanocoatings in household care, sanitary and indoor air quality, 2010-2030, US$.              311
  • Table 127: Household care, sanitary and indoor air quality nanocoatings product developers.       312
  • Table 128: Market drivers and trends for nanocoatings in the marine industry.     315
  • Table 129: Nanocoatings applied in the marine industry-type of coating, nanomaterials utilized and benefits.        316
  • Table 130: Revenues for nanocoatings in the marine sector, 2010-2030, US$.        317
  • Table 131: Marine nanocoatings product developers.      319
  • Table 132: Market drivers and trends for nanocoatings in medicine and healthcare.           321
  • Table 133: Nanocoatings applied in the medical industry-type of coating, nanomaterials utilized, benefits and applications.       323
  • Table 134: Types of advanced coatings applied in medical devices and implants.  325
  • Table 135: Nanomaterials utilized in medical implants.    325
  • Table 136: Revenues for nanocoatings in medical and healthcare, 2010-2030, US$.            328
  • Table 137: Medical and healthcare nanocoatings product developers.     329
  • Table 138: Market drivers and trends for nanocoatings in the military and defence industry.         333
  • Table 139: Revenues for nanocoatings in military and defence, 2010-2030, US$.  336
  • Table 140: Military and defence nanocoatings product and application developers.           337
  • Table 141: Market drivers and trends for nanocoatings in the packaging industry.               340
  • Table 142: Revenues for nanocoatings in packaging, 2010-2030, US$.       345
  • Table 143: Packaging nanocoatings companies.  346
  • Table 144: Market drivers and trends for nanocoatings in the textiles and apparel industry.           348
  • Table 145: Applications in textiles, by advanced materials type and benefits thereof.        349
  • Table 146: Nanocoatings applied in the textiles industry-type of coating, nanomaterials utilized, benefits and applications.       351
  • Table 147: Applications and benefits of graphene in textiles and apparel.                354
  • Table 148: Revenues for nanocoatings in textiles and apparel, 2010-2030, US$.    358
  • Table 149: Textiles nanocoatings product developers.     359
  • Table 150: Market drivers and trends for nanocoatings in the energy industry.     362
  • Table 151: Revenues for nanocoatings in energy, 2010-2030, US$.             367
  • Table 152: Renewable energy nanocoatings product developers. 369
  • Table 153: Market drivers and trends for nanocoatings in the oil and gas exploration industry.      371
  • Table 154: Desirable functional properties for the oil and gas industry afforded by nanomaterials in coatings.        373
  • Table 155: Revenues for nanocoatings in oil and gas exploration, 2010-2030, US$.              376
  • Table 156: Oil and gas nanocoatings product developers.              378
  • Table 157: Market drivers and trends for nanocoatings in tools and machining.    380
  • Table 158: Revenues for nanocoatings in Tools and manufacturing, 2010-2030, US$.         381
  • Table 159: Tools and manufacturing nanocoatings product and application developers.   382
  • Table 160: Revenues for nanocoatings in anti-counterfeiting, 2010-2030, US$.     385
  • Table 161: Anti-counterfeiting nanocoatings product and application developers.              386
  • Table 162. Photocatalytic coating schematic.       458
  • Table 163. Nanocoatings companies no longer trading.   635
  • Table 164: Categorization of nanomaterials.         638

 

FIGURES

  • Figure 1. Schematic of anti-viral coating using nano-actives for inactivation of any adhered virus on the surfaces. 49
  • Figure 2. Face masks coated with antibacterial & antiviral nanocoating.   51
  • Figure 3: Global revenues for nanocoatings, 2010-2030, millions USD.      56
  • Figure 4: Regional demand for nanocoatings, 2019, millions USD.               57
  • Figure 5: Hydrophobic fluoropolymer nanocoatings on electronic circuit boards. 60
  • Figure 6: Nanocoatings synthesis techniques.      62
  • Figure 7: Techniques for constructing superhydrophobic coatings on substrates. 65
  • Figure 8: Electrospray deposition.             66
  • Figure 9: CVD technique.              67
  • Figure 10: Schematic of ALD.       69
  • Figure 11: SEM images of different layers of TiO2 nanoparticles in steel surface.  70
  • Figure 12: The coating system is applied to the surface.The solvent evaporates.  71
  • Figure 13: A first organization takes place where the silicon-containing bonding component (blue dots in figure 2) bonds covalently with the surface and cross-links with neighbouring molecules to form a strong three-dimensional.                71
  • Figure 14: During the curing, the compounds or- ganise themselves in a nanoscale monolayer. The fluorine-containing repellent component (red dots in figure 3) on top makes the glass hydro- phobic and oleophobic.               72
  • Figure 15: (a) Water drops on a lotus leaf.             73
  • Figure 16. A schematic of (a) water droplet on normal hydrophobic surface with contact angle greater than 90° and (b) water droplet on a superhydrophobic surface with a contact angle > 150°.              74
  • Figure 17: Contact angle on superhydrophobic coated surface.   75
  • Figure 18: Self-cleaning nanocellulose dishware. 77
  • Figure 19: SLIPS repellent coatings.          78
  • Figure 20: Omniphobic coatings.                80
  • Figure 21: Graphair membrane coating. 84
  • Figure 22: Antimicrobial activity of Graphene oxide (GO).              86
  • Figure 23: Conductive graphene coatings for rotor blades.             88
  • Figure 24: Water permeation through a brick without (left) and with (right) “graphene paint” coating.       89
  • Figure 25: Graphene heat transfer coating.           90
  • Figure 26 Carbon nanotube cable coatings.           91
  • Figure 27 Formation of a protective CNT-based char layer during combustion of a CNT-modified coating. 92
  • Figure 28. Mechanism of antimicrobial activity of carbon nanotubes.       92
  • Figure 29: Fullerene schematic. 95
  • Figure 30: Hydrophobic easy-to-clean coating.    98
  • Figure 31: Anti-fogging nanocoatings on protective eyewear.       98
  • Figure 32: Silica nanoparticle anti-reflection coating on glass.       99
  • Figure 33 Anti-bacterials mechanism of silver nanoparticle coating.           100
  • Figure 34: Mechanism of photocatalysis on a surface treated with TiO2 nanoparticles.      103
  • Figure 35:  Schematic showing the self-cleaning phenomena on superhydrophilic surface.              104
  • Figure 36: Titanium dioxide-coated glass (left) and ordinary glass (right). 105
  • Figure 37:  Self-Cleaning mechanism utilizing photooxidation.      106
  • Figure 38: Schematic of photocatalytic air purifying pavement.   107
  • Figure 39: Schematic of photocatalytic indoor air purification filter.           108
  • Figure 40: Schematic of photocatalytic water purification.              109
  • Figure 41. Schematic of antibacterial activity of ZnO NPs.               114
  • Figure 42: Types of nanocellulose.            121
  • Figure 43: CNF gel.           122
  • Figure 44: TEM image of cellulose nanocrystals. 124
  • Figure 45: Extracting CNC from trees.      125
  • Figure 46: An iridescent biomimetic cellulose multilayer film remains after water that contains cellulose nanocrystals evaporates.        125
  • Figure 47: CNC slurry.     126
  • Figure 48. TEM images of Burkholderia seminalis treated with (a, c) buffer (control) and (b, d) 2.0 mg/mL chitosan; (A: additional layer; B: membrane damage).               129
  • Figure 50: Anti-fingerprint nanocoating on glass. 133
  • Figure 51: Schematic of anti-fingerprint nanocoatings.    137
  • Figure 52: Toray anti-fingerprint film (left) and an existing lipophilic film (right).   137
  • Figure 53: Types of anti-fingerprint coatings applied to touchscreens.      138
  • Figure 54: Anti-fingerprint nanocoatings applications.      138
  • Figure 55: Revenues for anti-fingerprint nanocoatings, 2019-2030, adjusted for COVID-19 related demand, conservative and high estimates (millions USD). 140
  • Figure 56. Schematic of anti-viral coating using nano-actives for inactivation of any adhered virus on the surfaces.                146
  • Figure 57. Nano-coated self-cleaning touchscreen.           154
  • Figure 58: Revenues for Anti-microbial and anti-viral nanocoatings, 2019-2030, adjusted for COVID-19 related demand, conservative and high estimates (millions USD).              155
  • Figure 59: Nanovate CoP coating.              162
  • Figure 60: 2000 hour salt fog results for Teslan nanocoatings.      162
  • Figure 61: AnCatt proprietary polyaniline nanodispersion and coating structure.  163
  • Figure 62: Hybrid self-healing sol-gel coating.      163
  • Figure 63: Schematic of anti-corrosion via superhydrophobic surface.      163
  • Figure 64: Potential addressable market for anti-corrosion nanocoatings by 2030.               166
  • Figure 65: Revenues for anti-corrosion nanocoatings, 2019-2030, adjusted for COVID-19 related demand, conservative and high estimates (millions USD).           167
  • Figure 66: Revenues for abrasion and wear resistant nanocoatings, 2019-2030, adjusted for COVID-19 related demand, conservative and high estimates (millions USD). 174
  • Figure 67: Nanocomposite oxygen barrier schematic.      178
  • Figure 68:  Schematic of barrier nanoparticles deposited on flexible substrates.   179
  • Figure 69: Revenues for barrier nanocoatings, 2019-2030, adjusted for COVID-19 related demand, conservative and high estimates (millions USD).    181
  • Figure 70: Anti-fouling treatment for heat-exchangers.   186
  • Figure 71: Removal of graffiti after application of nanocoating.    186
  • Figure 72: Potential addressable market for anti-fouling and easy-to-clean nanocoatings by 2030.                187
  • Figure 73: Revenues for anti-fouling and easy-to-clean nanocoatings, 2019-2030, adjusted for COVID-19 related demand, conservative and high estimates (millions USD).              188
  • Figure 74: Self-cleaning superhydrophobic coating schematic.      193
  • Figure 75: Potential addressable market for self-cleaning (bionic) nanocoatings by 2030.  195
  • Figure 76. Revenues for self-cleaning (bionic) nanocoatings, 2019-2030, US$, adjusted for COVID-19 related demand, conservative and high estimates               196
  • Figure 77.  Schematic showing the self-cleaning phenomena on superhydrophilic surface.              201
  • Figure 78: Schematic of photocatalytic air purifying pavement.   202
  • Figure 79:  Self-Cleaning mechanism utilizing photooxidation.      203
  • Figure 80: Photocatalytic oxidation (PCO) air filter.            204
  • Figure 81: Schematic of photocatalytic water purification.              204
  • Figure 82: Tokyo Station GranRoof. The titanium dioxide coating ensures long-lasting whiteness. 206
  • Figure 83: Potential addressable market for self-cleaning (photocatalytic) nanocoatings by 2030.  207
  • Figure 84. Revenues for self-cleaning (photocatalytic) nanocoatings, 2019-2030, US$, adjusted for COVID-19 related demand, conservative and high estimates             207
  • Figure 85: Markets for UV-resistant nanocoatings, %, 2019.           214
  • Figure 86: Potential addressable market for UV-resistant nanocoatings.  215
  • Figure 87: Revenues for UV-resistant nanocoatings, 2019-2030, adjusted for COVID-19 related demand, conservative and high estimates (millions USD).           216
  • Figure 88: Flame retardant nanocoating.               220
  • Figure 89: Markets for thermal barrier and flame retardant nanocoatings, %, 2019.            221
  • Figure 90: Potential addressable market for thermal barrier and flame retardant nanocoatings by 2030.    222
  • Figure 91: Revenues for thermal barrier and flame retardant  nanocoatings, 2019-2030, adjusted for COVID-19 related demand, conservative and high estimates (millions USD).              223
  • Figure 92: Nanocoated surface in comparison to existing surfaces.             228
  • Figure 93: NANOMYTE® SuperAi, a Durable Anti-ice Coating.         229
  • Figure 94: SLIPS coating schematic.          229
  • Figure 95: Carbon nanotube based anti-icing/de-icing device.      230
  • Figure 96: CNT anti-icing nanocoating.    230
  • Figure 97: Potential addressable market for anti-icing and de-icing nanocoatings by 2030.               232
  • Figure 98: Revenues for anti-icing and de-icing nanocoatings, 2019-2030, adjusted for COVID-19 related demand, conservative and high estimates (millions USD). 232
  • Figure 99: Schematic of AR coating utilizing nanoporous coating. 237
  • Figure 100: Demo solar panels coated with nanocoatings.              237
  • Figure 101: Revenues for anti-reflective nanocoatings, 2019-2030, adjusted for COVID-19 related demand, conservative and high estimates (millions USD). 238
  • Figure 102: Schematic of self-healing polymers. Capsule based (a), vascular (b), and intrinsic (c) schemes for self-healing materials.  Red and blue colours indicate chemical species which react (purple) to heal damage.  241
  • Figure 103: Stages of self-healing mechanism.    241
  • Figure 104: Self-healing mechanism in vascular self-healing systems.        242
  • Figure 105: Comparison of self-healing systems. 243
  • Figure 106: Self-healing coating on glass.               247
  • Figure 107: Schematic of the self-healing concept using microcapsules with a healing agent inside.             249
  • Figure 108: Revenues for self-healing nanocoatings, 2019-2030, adjusted for COVID-19 related demand, conservative and high estimates (millions USD).           253
  • Figure 109: The global market for self-healing coatings and materials to 2027, Millions USD, by market, conservative estimate.             254
  • Figure 110: The global market for self-healing coatings and materials to 2027, Millions USD, by market, high estimate.                255
  • Figure 111 Nanocoatings market by end user sector, 2010-2030, USD.     259
  • Figure 112: Nanocoatings in the aerospace industry, by nanocoatings type %, 2019.           264
  • Figure 113: Potential addressable market for nanocoatings in aerospace by 2030.               265
  • Figure 114: Revenues for nanocoatings in the aerospace industry, 2010-2030, US$.            266
  • Figure 115: Nanocoatings in the automotive industry, by coatings type % 2019.    275
  • Figure 116: Potential addressable market for nanocoatings in the automotive sector by 2030.        275
  • Figure 117: Revenues for nanocoatings in the automotive industry, 2010-2030, US$.         277
  • Figure 118: Mechanism of photocatalytic NOx oxidation on active concrete road.                284
  • Figure 119: Jubilee Church in Rome, the outside coated with nano photocatalytic TiO2 coatings.  284
  • Figure 120: FN® photocatalytic coating, applied in the Project of Ecological Sound Barrier, in Prague.         285
  • Figure 121 Smart window film coatings based on indium tin oxide nanocrystals.  286
  • Figure 122: Nanocoatings in construction, architecture and exterior protection, by coatings type %, 2018.                287
  • Figure 123: Potential addressable market for nanocoatings in the construction, architecture and exterior coatings sector by 2030.  288
  • Figure 124: Revenues for nanocoatings in construction, architecture and exterior protection, 2010-2030, US$.      289
  • Figure 125: Reflection of light on anti-glare coating for display.    296
  • Figure 126: Nanocoating submerged in water.    296
  • Figure 127: Phone coated in WaterBlock submerged in water tank.           297
  • Figure 128: Self-healing patent schematic.            300
  • Figure 129: Self-healing glass developed at the University of Tokyo.          300
  • Figure 130: Royole flexible display.           301
  • Figure 131: Potential addressable market for nanocoatings in electronics by 2030.              302
  • Figure 132: Revenues for nanocoatings in electronics, 2010-2030, US$, conservative and optimistic estimates.      303
  • Figure 133: Nanocoatings in household care, sanitary and indoor air quality, by coatings type %, 2018.      310
  • Figure 134: Potential addressable market for nanocoatings in household care, sanitary and indoor air filtration by 2030.     310
  • Figure 135: Revenues for nanocoatings in household care, sanitary and indoor air quality, 2010-2030, US$.             312
  • Figure 136: Potential addressable market for nanocoatings in the marine sector by 2030.                 317
  • Figure 137: Revenues for nanocoatings in the marine sector, 2010-2030, US$.      318
  • Figure 138: Anti-bacertial sol-gel nanoparticle silver coating.        324
  • Figure 139: Nanocoatings in medical and healthcare, by coatings type %, 2019.    327
  • Figure 140: Potential addressable market for nanocoatings in medical & healthcare by 2030.         327
  • Figure 141: Revenues for nanocoatings in medical and healthcare, 2010-2030, US$.           329
  • Figure 142: Nanocoatings in military and defence, by nanocoatings type %, 2018.                335
  • Figure 143: Potential addressable market nanocoatings in military and defence by 2030.  336
  • Figure 144: Revenues for nanocoatings in military and defence, 2010-2030, US$. 337
  • Figure 145: Nanocomposite oxygen barrier schematic.    342
  • Figure 146: Oso fresh food packaging incorporating antimicrobial silver.  342
  • Figure 147: Potential addressable market for nanocoatings in packaging by 2030.                344
  • Figure 148: Revenues for nanocoatings in packaging, 2010-2030, US$.      346
  • Figure 149: Omniphobic-coated fabric.   349
  • Figure 150: Work out shirt incorporating ECG sensors, flexible lights and heating elements.           355
  • Figure 151: Nanocoatings in textiles and apparel, by coatings type %, 2018.            357
  • Figure 152: Potential addressable market for nanocoatings in textiles and apparel by 2030.             357
  • Figure 153: Revenues for nanocoatings in textiles and apparel, 2010-2030, US$.  359
  • Figure 154: Self-Cleaning Hydrophobic Coatings on solar panels. 364
  • Figure 155: Znshine Graphene Series solar coatings.         364
  • Figure 156: Nanocoating for solar panels.              364
  • Figure 157: Nanocoatings in renewable energy, by coatings type %.          366
  • Figure 158: Potential addressable market for nanocoatings in renewable energy by 2030.                367
  • Figure 159: Revenues for nanocoatings in energy, 2010-2030, US$.            368
  • Figure 160: Oil-Repellent self-healing nanocoatings.         374
  • Figure 161: Nanocoatings in oil and gas exploration, by coatings type %. 376
  • Figure 162: Potential addressable market for nanocoatings in oil and gas exploration by 2030.       376
  • Figure 163: Revenues for nanocoatings in oil and gas exploration, 2010-2030, US$.            378
  • Figure 164: Revenues for nanocoatings in Tools and manufacturing, 2010-2030, US$.        382
  • Figure 165: Security tag developed by Nanotech Security.             384
  • Figure 166: Revenues for nanocoatings in anti-counterfeiting, 2010-2030, US$.    386
  • Figure 167. Lab tests on DSP coatings.     449
  • Figure 168: Self-healing mechanism of SmartCorr coating.             457
  • Figure 169. GrapheneCA anti-bacterial and anti-viral coating.       472
  • Figure 170. Microlyte® Matrix bandage for surgical wounds.         490
  • Figure 171. Self-cleaning nanocoating applied to face masks.        497
  • Figure 172: Carbon nanotube paint product.        507
  • Figure 173. NanoSeptic surfaces.              545
  • Figure 174. NascNanoTechnology personnel shown applying MEDICOAT to airport luggage carts. 552
  • Figure 175: Nippon Paper Industries’ adult diapers.          560
  • Figure 176: 2 wt.% CNF suspension.       603
  • Figure 177. BiNFi-s Dry Powder. 604
  • Figure 178. BiNFi-s Dry Powder and Propylene (PP) Complex Pellet.          604
  • Figure 179: Silk nanofiber (right) and cocoon of raw material.       605
  • Figure 180. Applications of Titanystar.     632

 

 

The Global Market for Nanocoatings 2020-2030
The Global Market for Nanocoatings 2020-2030
PDF download.

The Global Market for Nanocoatings 2020-2030
The Global Market for Nanocoatings 2020-2030
Print edition (including tracked delivery).

The Global Market for Nanocoatings 2020-2030
The Global Market for Nanocoatings 2020-2030
PDF and print edition (including tracked delivery).

Payment methods: Visa, Mastercard, American Express, Alipay, Paypal. 

To purchase by invoice (bank transfer or cheque) contact info@futuremarketsinc.com