The Global Market for Ice-Resistant Coatings and Surfaces

Table of contents

1 Introduction.. 10
 1.1 Aims and objectives of the study.. 10
 1.2 Market definition.. 10

2 Research methodology.. 11

3 Executive summary.. 12
 3.1 High performance ice-resistant coatings.. 12
 3.2 Advantages of ice-resistant coating systems.. 13
 3.3 Market drivers and trends.. 13
 3.4 Global market size and opportunity to 2030.. 15
 3.4.1 Global revenues for ice-resistant coatings 2010-2030... 15
 3.4.2 Global revenues for ice-resistant coatings, by market... 16
 3.4.3 Regional demand for ice-resistant coatings.. 19
 3.5 Market and technical challenges.. 21

4 Ice-resistant coatings technical analysis.. 23
 4.1 Types of ice-resistant coatings.. 23
 4.1.1 Passive methods... 23
 4.1.2 Active methods.. 24
 4.2 Production and synthesis methods... 26
 4.3 Hydrophobic coatings and surfaces.. 36
 4.3.1 Hydrophilic coatings... 36
4.3.2 Hydrophobic coatings

4.3.2.1 Properties

4.4 Superhydrophobic coatings and surfaces

4.4.1 Properties

4.4.2 Durability issues

4.5 Superhydrophobicity to icephobicity

4.6 Oleophobic and omniphobic coatings and surfaces

4.6.1 SLIPS

4.6.2 Covalent bonding

4.6.3 Step-growth graft polymerization

4.6.4 Applications

4.7 Self-healing materials

4.8 Phase switching materials

4.9 Soft materials

4.10 Heatable coatings

4.11 Anti-freeze protein coatings

4.12 Graphene coatings

5 Ice-resistant coatings market analysis

5.1 Patent analysis

5.2 Global market for ice-resistant coatings-applications, addressable market size and revenues

5.2.1 Global revenues 2010-2030

5.2.2 Global revenues for ice-resistant coatings, by market

© Future Markets, Inc. 2019
5.2.3 Regional demand for ice-resistant coatings.. 53

5.3 Aviation and aerospace... 56
 5.3.1 Icing on engine components, rotors, and wings.. 56
 5.3.2 Unmanned aerial vehicles (UAVs)... 57

5.4 Transport.. 57
 5.4.1 Train... 57
 5.4.2 Automotive.. 57

5.5 Construction and infrastructure.. 58
 5.5.1 Concrete.. 58
 5.5.2 Tunnels and bridges.. 58
 5.5.3 Energy-efficient and energy-harvesting buildings... 58

5.6 Marine... 58

5.7 Energy... 59
 5.7.1 Wind turbines... 59
 5.7.2 Power transmission.. 60
 5.7.3 Heat exchangers.. 61
 5.7.4 Solar panels.. 61

5.8 Oil and gas... 61

6 Notable research in ice-resistant coatings... 62

7 Company profiles... 63-91
 (50 company profiles)

8 References... 92
Tables

Table 1: Applications of ice resistant coatings... 12
Table 2. Market drivers and trends in Ice-resistant coatings... 13
Table 3. Global revenues for ice-resistant coatings, 2010-2030, millions USD.................. 15
Table 4. Global revenues for ice-resistant coatings by market, 2010-2030, millions USD........... 16
Table 5. Global revenues for ice-resistant coatings by region, 2010-2030, millions USD........ 19
Table 6: Market and technical challenges for ice-resistant coatings................................. 21
Table 7. Active and passive methods for icing... 24
Table 8: Types of advanced ice-resistant coatings... 25
Table 9: Film coatings techniques.. 27
Table 10: Contact angles of hydrophilic, super hydrophilic, hydrophobic and superhydrophobic surfaces... 37
Table 11: Disadvantages of commonly utilized superhydrophobic coating methods............. 38
Table 12: Applications of oleophobic & omniphobic coatings... 42
Table 13:Types of self-healing coatings and materials... 43
Table 14. Ice-resistant coatings patent applications, 2001-2018.. 48
Table 15: Ice-resistant coatings -Markets, applications and potential addressable markets... 49
Table 16: Global revenues for ice-resistant coatings, 2010-2030, millions USD.................. 50
Table 17. Global revenues for ice-resistant coatings by market, 2010-2030, millions USD......... 51
Table 18. Global revenues for ice-resistant coatings by region, 2010-2030, millions USD.......... 53
Table 19. Market drivers for ice-resistant coatings and surfaces in aviation and aerospace.. 56
Table 20. Market drivers for ice-resistant coatings and surfaces in marine.......................... 59
Table 21. Market drivers for ice-resistant coatings and surfaces in wind turbines................... 59
Table 22. Market drivers for ice-resistant coatings and surfaces in power transmission........... 60
Table 23. Market drivers for ice-resistant coatings and surfaces in heat exchangers.. 61
Table 24. Research in ice-resistant coatings by organization... 62
Table 25. End user target markets for ice-resistant coatings producers... 63

Figures

Figure 1. Global revenues for ice-resistant coatings, 2010-2030, millions USD.. 16
Figure 2. Global revenues for ice-resistant coatings by market, 2010-2030, millions USD.. 17
Figure 3. End user markets for ice-resistant coatings 2018, %... 18
Figure 4. End user markets for ice-resistant coatings 2030, %... 19
Figure 5. Global revenues for ice-resistant coatings by region, 2010-2030, millions USD... 20
Figure 6. Regional demand for ice-resistant coatings, 2018... 20
Figure 7. Regional demand for ice-resistant coatings, 2030... 21
Figure 8. Ice/snow removal methods-active and passive.. 23
Figure 9. Schematic of anti-icing surfaces... 24
Figure 10: Coatings synthesis techniques.. 26
Figure 11: Techniques for constructing superhydrophobic coatings on substrates... 28
Figure 12: Electrospray deposition.. 30
Figure 13: CVD technique.. 30
Figure 14: Schematic of ALD... 32
Figure 15: SEM images of different layers of TiO2 nanoparticles in steel surface... 33
Figure 16: The coating system is applied to the surface. The solvent evaporates.. 34
Figure 17: A first organization takes place where the silicon-containing bonding component (blue dots in figure 2) bonds covalently with the surface and cross-links with neighbouring molecules to form a strong three-dimensional...... 34
Figure 18: During the curing, the compounds organise themselves in a nanoscale monolayer. The fluorine-containing repellent component (red dots in figure 3) on top makes the glass hydrophobic and oleophobic. 34

Figure 19. Magnetic slippery surface (MAGSS). 35

Figure 20: (a) Water drops on a lotus leaf. 36

Figure 21: A schematic of (a) water droplet on normal hydrophobic surface with contact angle greater than 90° and (b) water droplet on a superhydrophobic surface with a contact angle > 150°. 37

Figure 22: Contact angle on superhydrophobic coated surface. 38

Figure 23: Nanocoated surface in comparison to existing surfaces. 40

Figure 24: NANOMYTE® SuperAi, a Durable Anti-icing Coating. 40

Figure 25: SLIPS repellent coatings. 41

Figure 26: SLIPS coating schematic. 41

Figure 27: Omniphobic coatings. 42

Figure 28: Schematic of self-healing polymers. Capsule based (a), vascular (b), and intrinsic (c) schemes for self-healing materials. Red and blue colours indicate chemical species which react (purple) to heal damage. 43

Figure 29. Schematic representation of the PCM de-icing. 45

Figure 30: Carbon nanotube based anti-icing/de-icing device. 46

Figure 31. Ice-resistant coatings patent applications, 2001-2018. 49

Figure 32: Global revenues for ice-resistant coatings, 2010-2030, millions USD. 51

Figure 33. Global revenues for ice-resistant coatings by market, 2010-2030, millions USD. 52

Figure 34. Global revenues for ice-resistant coatings by region, 2010-2030, millions USD. 54

Figure 35: Regional demand for ice-resistant coatings, 2018. 54

Figure 36: Regional demand for ice-resistant coatings, 2030. 55

Figure 37. HeatCoat™ technology. 57

Figure 38. Low-E coatings on windshield. 58

Figure 39. SLIPS coating in anti-icing. 65

Figure 40. GraphON coating on quartz. 72
Figure 41. ISurGuard® ice repellant coating on satellite dish... 78
Figure 42. HybridShield Icephobic.. 80
Figure 43. NANOMYTE® SuperAi Anti-ice Coatings... 81
Figure 44. Clean wind turbine blade with WIPS heating elements... 91