The Global Advanced (Industrial, Collaborative, Service, Mobile and Humanoid) Robotics Market 2026-2046

0

cover

cover

  • Published: December 2025
  • Pages: 935
  • Tables: 281
  • Figures: 70

 

The global advanced robotics market is experiencing unprecedented growth, driven by technological breakthroughs in artificial intelligence, rising labour shortages, and increasing demand for automation across industries. The market encompasses industrial robots, collaborative robots (cobots), service robots, mobile robots, and the rapidly emerging humanoid robotics segment. Growth is being catalysed by major advances in machine learning, computer vision, and sensor technologies that are enabling robots to operate with increasing autonomy in unstructured environments.

Investment in advanced robotics has surged dramatically in 2025 putting the sector on pace to eclipse previous annual records, with an average deal size of approximately $81 million—up from $68.8 million in 2024. The humanoid robotics segment has emerged as the top funding category, attracting the largest share of investor attention. Major rounds include Apptronik's $403 million Series A, Physical Intelligence's $400 million raise led by Jeff Bezos, and Neuralink's $650 million financing for brain-computer interfaces with robotic applications. Medical and surgical robotics also continues to attract substantial capital, with CMR Surgical securing $200 million and ForSight Robotics closing a $125 million Series B for ophthalmic surgery platforms. Non-humanoid robots—including four-legged inspection bots, AI-enabled appendages, and agricultural robots—are also securing considerable backing.

The Trump administration has signalled a major push to make automation and advanced robotics central to domestic manufacturing strategy. In late November, President Trump signed an executive order launching the Genesis Mission, an initiative aimed at accelerating scientific discovery. Market observers anticipate similar policy frameworks specifically targeting robotics and service automation to strengthen American competitiveness in advanced manufacturing and address persistent labour shortages across key industries.

Industrial robots remain the most established segment. China continues as the largest market, accounting for nearly half of global installations, followed by the Americas and Europe. Manufacturing remains the dominant application, with automotive, electronics, and metal industries leading adoption. Collaborative robots are experiencing exceptional growth, driven by their flexibility, easier programming, and ability to work safely alongside humans. Service robots represent the largest category by volume. Consumer applications, particularly cleaning robots, dominate numerically. Humanoid robots, are forecast to experience the highest compound annual growth rate.

The convergence of physical AI, analytic AI, and generative AI is transforming robotics capabilities. Large language models are increasingly integrated into control systems, enabling natural human-robot communication and semantic understanding of environments. Advanced sensing technologies, including solid-state LiDAR and event-based cameras, are dramatically improving robot perception whilst reducing costs. Despite this momentum, industry veterans counsel patience—deployment at scale consistently takes longer than anticipated. Nevertheless, the combination of substantial investment, supportive policy environments, and technological advancement positions advanced robotics as a defining industry of the next two decades.

The Global Advanced (Industrial, Collaborative, Service, Mobile and Humanoid) Robotics Market 2026-2046 provides an in-depth analysis of the industrial robotics, collaborative robots (cobots), service robots, mobile robots, and humanoid robotics sectors from 2026 to 2046. With market revenues projected to grow to nearly $975 billion by 2046, advanced robotics represents one of the most significant investment opportunities of the coming decades.

The report delivers granular market forecasts segmented by robot type, technology, component, end-use industry, and geography. It examines critical market drivers including global labour shortages, rising wage inflation, productivity demands, and the accelerating adoption of Industry 5.0 principles that prioritise human-robot collaboration. Key restraints such as high initial investment costs, technical limitations, and regulatory challenges are thoroughly analysed alongside emerging opportunities across manufacturing, healthcare, logistics, agriculture, construction, and defence sectors.

Technological advancements covered include the convergence of physical AI, analytic AI, and generative AI in robotics applications. The report explores breakthrough developments in computer vision, sensor fusion, SLAM navigation, edge computing, and advanced materials including soft robotics and smart materials. Detailed analysis of Robot-as-a-Service (RaaS) business models demonstrates how subscription-based and pay-per-use approaches are democratising access to automation for small and medium enterprises.

The humanoid robotics segment receives extensive coverage as the fastest-growing category. Major funding rounds from companies including Figure AI, Apptronik, Physical Intelligence, and Neuralink illustrate the substantial capital flowing into next-generation robotics development. Regional market analysis covers North America, Europe, Japan, China, South Korea, and India, with China maintaining dominance accounting for nearly half of global industrial robot installations. The competitive landscape profiles over 300 leading companies across industrial robot manufacturers, cobot specialists, service robot developers, AI robotics firms, and humanoid robot innovators.

Report contents include: 

  • Global market size and growth forecasts 2026-2046
  • Robot categorisation and technology trends
  • Investment trends and venture capital funding analysis
  • Competitive landscape and leading companies by robot type
  • Technology Landscape
    • Industrial robotics including cobots and articulated robots
    • Service robotics for professional and domestic applications
    • Healthcare and medical robotics including surgical and rehabilitation robots
    • Military and defence unmanned systems (UGVs, UAVs, UUVs)
    • Agricultural robotics and precision farming
    • Construction robotics and 3D printing applications
  • Technology Components and Subsystems
    • AI and machine learning control systems
    • Sensors and perception technologies
    • Vision systems including LiDAR, radar, and thermal imaging
    • Navigation and SLAM technologies
    • Advanced materials and soft robotics
  • End-Use Industry Analysis
    • Manufacturing (automotive, electronics, food and beverage, pharmaceutical)
    • Healthcare and medical applications
    • Logistics and warehousing automation
    • Agriculture and precision farming
    • Construction and infrastructure
    • Retail, hospitality, and consumer applications
    • Military, defence, and security
    • Energy, utilities, and mining
    • Education, research, and entertainment
  • Market Drivers, Restraints, and Opportunities
    • Labour shortage impacts and wage inflation
    • Regulatory landscape and safety standards
    • Technical challenges and implementation barriers
  • Emerging Trends and Future Outlook
    • Swarm robotics and multi-robot coordination
    • Cloud robotics and digital twin integration
    • Neuromorphic computing and brain-computer interfaces
    • Technology roadmap 2026-2046
  • 303 Companies Profiled including 1X Technologies, ABB (Softbank), Adaptronics, Advanced Construction Robotics, Advanced Farm Technologies, AeiRobot, Aescape, Agerpoint, Agersens, Agibot, Agility Robotics, AgroBot, Agtonomy, AheadForm, Aigen, Aion Robotics, AIRSKIN, Alloy, ALTO Robotics, AmbiRobotics, Angsa Robotics, Andromeda, Antioch, ANYbotics AG, Apptronik, Apricity Robotics, ARX Robotics, Asensus Surgical, AssetCool, Atlas Robotics, Aubo Robotics, Aurora, Automated Ag, Axibo, Baidu, Barnstorm Agtec, Bear Robotics, Bedrock Robotics, BeeWise Technologies, Beyond Imagination, BHRIC, Bina Robotics, Bio Bee, Biofeed, BionicHive, Blue Water Autonomy, Blue White Robotics and more......

 

 

1             EXECUTIVE SUMMARY            45

  • 1.1        Market Overview and Size      45
  • 1.2        Robot Categorization                46
  • 1.3        Global Market Forecast           47
    • 1.3.1    Units    47
    • 1.3.2    Revenues          50
  • 1.4        Key Drivers and Restraints    52
  • 1.5        Technology Trends      53
    • 1.5.1    Humanoid Robots      53
    • 1.5.2    Collaborative Robots (Cobots)          56
    • 1.5.3    Physical, Analytic and Generative AI              60
    • 1.5.4    Robotics Evolution Timeline 60
    • 1.5.5    Sustainability and Energy Consumption     61
    • 1.5.6    Addressing Labor Shortages                62
    • 1.5.7    Key Emerging Transitions in Sensing Technologies                62
  • 1.6        Industry Convergence              65
    • 1.6.1    Mobile Robots vs. Fixed Automation              65
    • 1.6.2    Robot-as-a-Service (RaaS) Business Models           66
    • 1.6.3    Industry 5.0 - Transformative Vision               66
    • 1.6.4    Collaborative Robots Driving Industry 5.0  67
    • 1.6.5    Parameter Comparison - Payload vs. Speed             67
  • 1.7        Competitive Landscape         68
    • 1.7.1    Global Competitive Landscape         68
    • 1.7.2    Leading Companies by Robot Type 69
    • 1.7.3    Major Industrial Robot Manufacturers          70
    • 1.7.4    Service Robot Specialists      70
    • 1.7.5    Cobot Manufacturers               71
    • 1.7.6    AI Robotics Companies          71
    • 1.7.7    Sensor and Component Developers               72
    • 1.7.8    End-Effector Suppliers            72
    • 1.7.9    Humanoid Robot Developers              73
  • 1.8        Investment Trends      74
    • 1.8.1    Historic Funding Trends          74
    • 1.8.2    Funding in 2025           75
    • 1.8.3    Venture Capital Funding of Robotics Startups         77

 

2             INTRODUCTION TO ADVANCED ROBOTICS             78

  • 2.1        Defining Advanced Robotics               78
    • 2.1.1    Definitions of Key Terms         78
    • 2.1.2    Classification of Robot Types              79
    • 2.1.3    What are Robots?       81
      • 2.1.3.1 Industrial Robots        81
      • 2.1.3.2 Service Robots             81
      • 2.1.3.3 Collaborative Robots                82
      • 2.1.3.4 Mobile Robots               83
      • 2.1.3.5 Humanoid Robots      83
    • 2.1.4    Why Robots?  84
      • 2.1.4.1 Productivity Enhancement   84
      • 2.1.4.2 Labor Shortage Solutions      84
      • 2.1.4.3 Safety Improvements               85
      • 2.1.4.4 Quality and Precision Requirements              86
  • 2.2        Evolution from Traditional to Advanced Robotics  86
    • 2.2.1    Historical Overview and Evolution   86
    • 2.2.2    Current State of Robotics in 2025    87
    • 2.2.3    Three Phases of Robot Adoption       88
    • 2.2.4    Evolution from Industrial to Service Robots              89
  • 2.3        Key Enabling Technologies    90
    • 2.3.1    Artificial Intelligence and Machine Learning             90
      • 2.3.1.1 What is Artificial Intelligence?             90
        • 2.3.1.1.1           Key AI Methods for Robotics 91
      • 2.3.1.2 Deep Learning Approaches  92
      • 2.3.1.3 Convolutional Neural Networks in Robotics             94
    • 2.3.2    Computer Vision         95
      • 2.3.2.1 Image Recognition Technologies      95
      • 2.3.2.2 Object Detection and Tracking          96
      • 2.3.2.3 Scene Understanding              97
    • 2.3.3    Sensor Fusion               97
      • 2.3.3.1 Multi-sensor Integration         98
      • 2.3.3.2 Data Processing for Sensor Fusion  99
    • 2.3.4    Advanced Materials   100
      • 2.3.4.1 Metals 102
      • 2.3.4.2 Plastics and Polymers              103
      • 2.3.4.3 Composites    104
      • 2.3.4.4 Elastomers      105
      • 2.3.4.5 Smart Materials            107
      • 2.3.4.6 Textiles               108
      • 2.3.4.7 Ceramics          110
      • 2.3.4.8 Biomaterials   111
      • 2.3.4.9 Nanomaterials              113
      • 2.3.4.10            Coatings            115
        • 2.3.4.10.1        Self-healing coatings                118
        • 2.3.4.10.2        Conductive coatings 118
      • 2.3.4.11            Flexible and Soft Materials    118
    • 2.3.5    Edge Computing          119
      • 2.3.5.1 Local Processing vs. Cloud Computing        120
      • 2.3.5.2 Real-time Decision Making  122
    • 2.3.6    SLAM - Simultaneous Localization and Mapping   122
      • 2.3.6.1 LiDAR SLAM    123
      • 2.3.6.2 Visual SLAM (vSLAM)                123
      • 2.3.6.3 Hybrid SLAM Approaches     124
    • 2.3.7    Typical Sensors for Object Detection             124
      • 2.3.7.1 Camera-based Detection      126
      • 2.3.7.2 LiDAR-based Detection           128
      • 2.3.7.3 Radar Systems              129
      • 2.3.7.4 Ultrasonic Sensors     131
      • 2.3.7.5 Infrared and Thermal Sensors             132
  • 2.4        Technology Readiness Assessment               134
    • 2.4.1    Technology Readiness Levels (TRL) 135
    • 2.4.2    Roadmap and Maturity Analysis by Industry             137
    • 2.4.3    Readiness Level of Technologies by Application Sector     141
  • 2.5        Standards and Regulations  144
    • 2.5.1    Safety Requirements - Five Main Types         144
      • 2.5.1.1 Power and Force Limiting      144
      • 2.5.1.2 Speed and Separation Monitoring   144
      • 2.5.1.3 Hand Guiding 144
      • 2.5.1.4 Safety Monitored Stop             145
      • 2.5.1.5 Soft Impact Design    145
    • 2.5.2    Regional Safety Standards   146
      • 2.5.2.1 European Standards 146
      • 2.5.2.2 Asian Standards          147
    • 2.5.3    Global Regulatory Landscape            147
      • 2.5.3.1 Authorities Regulating Autonomous Driving              147
      • 2.5.3.2 Regulations for Delivery Robots and Drones             148
      • 2.5.3.3 Industrial Robot Regulations               149
      • 2.5.3.4 Data Privacy and Security Regulations         150
      • 2.5.3.5 Regional Differences in Regulations               151
      • 2.5.3.6 Data Security Requirements                152

 

3             GLOBAL MARKET ANALYSIS  154

  • 3.1        Market Size and Growth Forecast (2025-2046)       154
    • 3.1.1    Historical Market Data (2019-2024)               154
      • 3.1.1.1 Historic Cobot Market Size   154
      • 3.1.1.2 Historic Service Robot Market Size  154
      • 3.1.1.3 Historic Mobile Robot Market Size   155
  • 3.2        Market Segmentation               155
    • 3.2.1    By Robot Type                155
      • 3.2.1.1 Industrial Robots        155
        • 3.2.1.1.1           Units    155
        • 3.2.1.1.2           Revenues          156
      • 3.2.1.2 Collaborative Robots (Cobots)          157
        • 3.2.1.2.1           By revenues     157
        • 3.2.1.2.2           By Payload Capacity 157
        • 3.2.1.2.3           By Degrees of Freedom           157
        • 3.2.1.2.4           By End-Effector Type 158
      • 3.2.1.3 Service Robots             158
        • 3.2.1.3.1           Professional Service Robots                159
          • 3.2.1.3.1.1      Units    159
          • 3.2.1.3.1.2      Revenues          160
        • 3.2.1.3.2           Personal/Domestic Service Robots 160
          • 3.2.1.3.2.1      Units    161
          • 3.2.1.3.2.2      Revenues          161
        • 3.2.1.3.3           Entertainment Robots             161
          • 3.2.1.3.3.1      Units    162
          • 3.2.1.3.3.2      Revenues          162
      • 3.2.1.4 Humanoid Robots      162
        • 3.2.1.4.1           By Type (Full-Size, Medium, Small)  162
        • 3.2.1.4.2           By Application               163
      • 3.2.1.5 Mobile Robots               164
        • 3.2.1.5.1           Autonomous Mobile Robots (AMRs)              164
        • 3.2.1.5.2           Automated Guided Vehicles (AGVs)               165
        • 3.2.1.5.3           Grid-Based Automated Guided Carts (AGCs)          165
        • 3.2.1.5.4           Mobile Picking Robots             166
        • 3.2.1.5.5           Mobile Manipulators 166
        • 3.2.1.5.6           Last-Mile Delivery Robots     167
        • 3.2.1.5.7           Heavy-Duty L4 Autonomous Trucks                167
    • 3.2.2    By Technology                168
      • 3.2.2.1 Navigation and Mapping        168
      • 3.2.2.2 Object Recognition and Tracking      168
      • 3.2.2.3 End-Effector and Manipulation         169
      • 3.2.2.4 Human-Robot Interaction     169
      • 3.2.2.5 Artificial Intelligence 170
    • 3.2.3    By Component              170
      • 3.2.3.1 Hardware          170
        • 3.2.3.1.1           Sensors             170
        • 3.2.3.1.2           Actuators          171
        • 3.2.3.1.3           Power Systems             172
        • 3.2.3.1.4           Control Systems          172
        • 3.2.3.1.5           End-Effectors 173
      • 3.2.3.2 Software            174
        • 3.2.3.2.1           Control Software         174
        • 3.2.3.2.2           Perception Software  174
        • 3.2.3.2.3           Human-Machine Interface    175
      • 3.2.3.3 Services             176
        • 3.2.3.3.1           Installation and Integration   176
        • 3.2.3.3.2           Maintenance and Support     177
    • 3.2.4    By End-use Industry  177
      • 3.2.4.1 Manufacturing              177
      • 3.2.4.2 Healthcare       178
      • 3.2.4.3 Logistics and Warehousing  178
      • 3.2.4.4 Agriculture       179
      • 3.2.4.5 Construction  179
      • 3.2.4.6 Retail and Hospitality               180
      • 3.2.4.7 Military and Defense 180
      • 3.2.4.8 Energy and Utilities    181
      • 3.2.4.9 Education and Research        182
      • 3.2.4.10            Consumer and Domestic      182
      • 3.2.4.11            Entertainment and Leisure   183
  • 3.3        Regional Market Analysis      183
    • 3.3.1    North America              183
    • 3.3.2    Europe                184
    • 3.3.3    Japan  184
    • 3.3.4    China  185
    • 3.3.5    South Korea    186
    • 3.3.6    India    188
  • 3.4        Pricing Analysis and Cost Structure                188
    • 3.4.1    Cost Analysis by Robot Type                188
      • 3.4.1.1 Industrial Robot Costs             188
      • 3.4.1.2 Collaborative Robot Costs    189
      • 3.4.1.3 Service Robot Costs 189
      • 3.4.1.4 Humanoid Robot Costs          189
      • 3.4.1.5 Mobile Robot Costs   190
    • 3.4.2    Cost Analysis by Component              190
      • 3.4.2.1 Sensor Costs 190
      • 3.4.2.2 Actuator and Power System Costs  191
      • 3.4.2.3 Computing and Control System Costs         191
      • 3.4.2.4 End-Effector Costs    191
    • 3.4.3    Payback Time/ROI by Application    192
      • 3.4.3.1 Manufacturing ROI     192
      • 3.4.3.2 Logistics ROI  193
      • 3.4.3.3 Healthcare ROI             193
      • 3.4.3.4 Agricultural ROI            194
    • 3.4.4    Parameter Comparison - Payload vs. Max Traveling Speed              194
      • 3.4.4.1 Industrial Robots Performance Metrics        195
      • 3.4.4.2 Mobile Robots Performance Metrics              196
      • 3.4.4.3 Collaborative Robots Performance Metrics               196

 

4             TECHNOLOGY LANDSCAPE 197

  • 4.1        Industrial Robotics    197
    • 4.1.1    Collaborative Robots (Cobots)          197
      • 4.1.1.1 Six Stages of Human-Robot Interaction (HRI)           197
        • 4.1.1.1.1           Stage One: Non-Collaborative Robots          198
        • 4.1.1.1.2           Stage Two: Non-Collaborative with Virtual Guarding           199
        • 4.1.1.1.3           Stage Three: Laser Scanner Separation        199
        • 4.1.1.1.4           Stage Four: Shared Workspace          200
        • 4.1.1.1.5           Stage Five: Operators and Robots Working Together            200
        • 4.1.1.1.6           Stage Six: Autonomous Mobile Collaborative Robots         201
      • 4.1.1.2 Traditional Industrial Robots vs. Collaborative Robots      201
      • 4.1.1.3 Benefits and Drawbacks of Cobots 202
      • 4.1.1.4 Safety Requirements for Cobots       203
        • 4.1.1.4.1           Power and Force Limiting      204
        • 4.1.1.4.2           Speed and Separation Monitoring   205
        • 4.1.1.4.3           Hand Guiding 205
        • 4.1.1.4.4           Safety-Rated Monitored Stop              206
        • 4.1.1.4.5           Biomechanical Limit Criteria               206
      • 4.1.1.5 Cobot Cost Analysis 207
      • 4.1.1.6 Payload Summary of Cobots               207
      • 4.1.1.7 Overview of Commercialized Cobots            208
        • 4.1.1.7.1           Benchmarking Based on DoF, Payload, Weight       209
        • 4.1.1.7.2           6-DoF Cobots                210
        • 4.1.1.7.3           7-DoF Cobots                210
        • 4.1.1.7.4           Price Categories of Cobots   211
    • 4.1.2    Autonomous Mobile Robots (AMRs)              212
      • 4.1.2.1 Transition from AGVs to AMRs            212
      • 4.1.2.2 Technology Evolution Towards Fully Autonomous Mobile Robots              213
      • 4.1.2.3 AMR Navigation Technologies             213
      • 4.1.2.4 AI-Powered Bin Picking Systems       215
      • 4.1.2.5 Robotic Welding Automation Advances       215
    • 4.1.3    Articulated Robots     216
      • 4.1.3.1 Types and Applications           216
    • 4.1.4    Humanoid Industrial Robots               217
      • 4.1.4.1 Applications in Manufacturing           217
      • 4.1.4.2 Design Considerations            218
  • 4.2        Service Robotics         219
    • 4.2.1    Professional Service Robots                219
      • 4.2.1.1 Market Position of Service Robotics               220
      • 4.2.1.2 Categories and Applications               221
      • 4.2.1.3 Key Technologies         222
    • 4.2.2    Personal/Domestic Service Robots 223
      • 4.2.2.1 Market Overview          223
      • 4.2.2.2 Types and Applications           224
      • 4.2.2.3 Consumer Adoption Trends 226
    • 4.2.3    Entertainment Robots             227
      • 4.2.3.1 Market Overview          227
      • 4.2.3.2 Types and Applications           228
      • 4.2.3.3 Technology Features 230
  • 4.3        Healthcare and Medical Robotics   231
    • 4.3.1    Surgical Robots            231
      • 4.3.1.1 Market Overview          231
      • 4.3.1.2 Key Technologies         232
      • 4.3.1.3 Companies     234
      • 4.3.1.4 Regulatory Considerations   235
    • 4.3.2    Rehabilitation Robots              236
      • 4.3.2.1 Types and Applications           237
      • 4.3.2.2 Market Drivers               238
    • 4.3.3    Hospital Logistics Robots     239
      • 4.3.3.1 Applications   239
      • 4.3.3.2 Market Drivers               242
    • 4.3.4    Care Robots   243
      • 4.3.4.1 Eldercare Applications            243
      • 4.3.4.2 Market Challenges     244
    • 4.3.5    Robotic Surgery and Minimally Invasive Procedures            245
      • 4.3.5.1 Key Technologies         246
      • 4.3.5.2 Market Trends                247
    • 4.3.6    Intelligent Health Monitoring and Diagnostics        249
      • 4.3.6.1 Technologies  250
      • 4.3.6.2 Applications   251
    • 4.3.7    Telemedicine and Remote Health Management    253
      • 4.3.7.1 Technologies  254
      • 4.3.7.2 Applications   256
    • 4.3.8    Robotics in Mental Health     258
      • 4.3.8.1 Applications   258
        • 4.3.8.1.1           Pharmacy Automation             260
        • 4.3.8.1.2           Laboratory Automation           260
      • 4.3.8.2 Market Potential          261
  • 4.4        Military and Defense Robotics           261
    • 4.4.1    Unmanned Ground Vehicles (UGVs)              261
      • 4.4.1.1 Applications   261
      • 4.4.1.2 Technologies  265
    • 4.4.2    Unmanned Aerial Vehicles (UAVs)   267
      • 4.4.2.1 Applications   269
      • 4.4.2.2 Technologies  271
    • 4.4.3    Unmanned Underwater Vehicles (UUVs)    273
      • 4.4.3.1 Applications   274
      • 4.4.3.2 Technologies  276
  • 4.5        Agricultural Robotics                279
    • 4.5.1    Challenges Facing 21st Century Agriculture             282
      • 4.5.1.1 Productivity and Labor Issues            282
      • 4.5.1.2 Labor Shortages and Rising Costs   282
      • 4.5.1.3 Agrochemical Challenges     282
      • 4.5.1.4 Environmental Considerations          283
    • 4.5.2    Agricultural Robot Applications        284
      • 4.5.2.1 Current Uses  284
      • 4.5.2.2 Potential Uses               284
      • 4.5.2.3 Technology Readiness by Application Area                286
    • 4.5.3    Harvesting Robots      290
      • 4.5.3.1 Fresh Fruit Picking Robots    292
        • 4.5.3.1.1           Apple Harvesting Robots       294
        • 4.5.3.1.2           Strawberry Harvesting Robots            294
        • 4.5.3.1.3           Other Fruit Harvesting Robots            294
      • 4.5.3.2 Vegetable Harvesting Robots              295
        • 4.5.3.2.1           Asparagus Harvesting Robots            296
        • 4.5.3.2.2           Other Vegetable Harvesting Robots               296
    • 4.5.4    Seeding and Planting Robots              297
      • 4.5.4.1 Precision Seeding Applications         298
      • 4.5.4.2 Variable Rate Technology       298
    • 4.5.5    Crop Monitoring Robots         298
      • 4.5.5.1 Soil Analysis   299
      • 4.5.5.2 Plant Health Monitoring          300
    • 4.5.6    Weed and Pest Control Robotics      300
      • 4.5.6.1 Commercial Weeding Robots             302
      • 4.5.6.2 "Green-on-Green" vs. "Green-on-Brown" Technology         304
      • 4.5.6.3 Precision Spraying Technologies       304
    • 4.5.7    Agricultural Drones    305
      • 4.5.7.1 Application Pipeline  306
      • 4.5.7.2 Imaging Applications                307
      • 4.5.7.3 Spraying Applications              309
      • 4.5.7.4 Regulatory Approvals by Region        310
    • 4.5.8    Dairy Farming Robots              312
      • 4.5.8.1 Milking Robots              314
      • 4.5.8.2 Feed Pushers 314
      • 4.5.8.3 Market Adoption Trends          315
  • 4.6        Construction Robotics            317
    • 4.6.1    3D Printing Construction Robots      317
      • 4.6.1.1 Technologies  317
      • 4.6.1.2 Applications   318
    • 4.6.2    Demolition Robots     318
      • 4.6.2.1 Technologies  319
      • 4.6.2.2 Applications   319
    • 4.6.3    Bricklaying and Masonry Robots      320
      • 4.6.3.1 Technologies  321
      • 4.6.3.2 Applications   321

 

5             TECHNOLOGY COMPONENTS AND SUBSYSTEMS              323

  • 5.1        AI and Control Systems          323
    • 5.1.1    Artificial Intelligence and Machine Learning             323
      • 5.1.1.1 AI Applications in Robotics   323
      • 5.1.1.2 Machine Learning Techniques for Robotics               324
    • 5.1.2    End-to-end AI 324
      • 5.1.2.1 Perception to Action Systems             324
      • 5.1.2.2 Implementation Challenges 325
    • 5.1.3    Multi-modal AI Algorithms    325
      • 5.1.3.1 Vision-Language Models        326
      • 5.1.3.2 Sensor-Fusion AI         326
    • 5.1.4    Intelligent Control Systems and Optimization         327
      • 5.1.4.1 Control Architectures               327
      • 5.1.4.2 Motion Planning           328
      • 5.1.4.3 Foundation Models for Robotics       328
      • 5.1.4.4 World Models and Physical Simulation        329
      • 5.1.4.5 Edge AI Platforms for Robotics           329
      • 5.1.4.6 4D Imaging Radar       329
      • 5.1.4.7 Advanced Tactile Sensing      329
    • 5.1.5    Open-Source Robotics AI Initiatives               330
  • 5.2        Sensors and Perception          331
    • 5.2.1    Sensory Systems in Robots  331
      • 5.2.1.1 Importance of Sensing in Robots     331
      • 5.2.1.2 Typical Sensors Used for Robots      331
    • 5.2.2    Sensors by Functions and Tasks       332
      • 5.2.2.1 Navigation and Mapping        333
      • 5.2.2.2 Object Detection and Recognition  333
      • 5.2.2.3 Safety and Collision Avoidance         334
      • 5.2.2.4 Environmental Sensing           334
    • 5.2.3    Sensors by Robot Type             335
      • 5.2.3.1 Industrial Robotic Arms          335
      • 5.2.3.2 AGVs and AMRs           336
      • 5.2.3.3 Collaborative Robots                337
      • 5.2.3.4 Drones               339
      • 5.2.3.5 Service Robots             341
      • 5.2.3.6 Underwater Robots   342
      • 5.2.3.7 Agricultural Robots    344
      • 5.2.3.8 Cleaning Robots          346
      • 5.2.3.9 Social Robots 347
    • 5.2.4    Vision Systems             349
      • 5.2.4.1 Cameras (RGB, Depth, Thermal, Event-based)       349
        • 5.2.4.1.1           RGB/Visible Light Cameras  350
        • 5.2.4.1.2           Depth Cameras           351
        • 5.2.4.1.3           Thermal Cameras       352
        • 5.2.4.1.4           Event-based Cameras             353
      • 5.2.4.2 CMOS Image Sensors vs. CCD Cameras    354
        • 5.2.4.2.1           Comparative Analysis              354
        • 5.2.4.2.2           Applications in Robotics        354
      • 5.2.4.3 Stereo Vision and 3D Perception       355
        • 5.2.4.3.1           Depth Calculation Methods 355
        • 5.2.4.3.2           3D Reconstruction     356
      • 5.2.4.4 In-Camera Computer Vision                356
        • 5.2.4.4.1           Edge Processing          356
        • 5.2.4.4.2           Applications in Autonomous Vehicles           357
      • 5.2.4.5 Hyperspectral Imaging Sensors        358

 

6             END-USE INDUSTRY ANALYSIS          359

  • 6.1        Manufacturing              359
    • 6.1.1    Automotive      359
      • 6.1.1.1 Opportunities and Challenges           360
      • 6.1.1.2 Applications   361
    • 6.1.2    Electronics      362
      • 6.1.2.1 3C Manufacturing Challenges            362
      • 6.1.2.2 Production Volume Requirements   363
      • 6.1.2.3 Quality Control             364
      • 6.1.2.4 Applications   365
      • 6.1.2.5 Testing and Inspection             367
      • 6.1.2.6 Packaging        368
    • 6.1.3    Food and Beverage    370
      • 6.1.3.1 Industry Challenges and Requirements       370
      • 6.1.3.2 Product Variety             371
    • 6.1.4    Applications   372
      • 6.1.4.1 Palletizing        372
      • 6.1.4.2 Packaging        374
      • 6.1.4.3 Food Processing          374
    • 6.1.5    Pharmaceutical           375
      • 6.1.5.1 Industry Requirements            376
      • 6.1.5.2 Applications   377
  • 6.2        Healthcare       378
    • 6.2.1    Challenges in Healthcare Industry  379
    • 6.2.2    Applications   380
      • 6.2.2.1 Surgical Assistance   381
      • 6.2.2.2 Rehabilitation                381
      • 6.2.2.3 Laboratory Automation           382
      • 6.2.2.4 Medication Management       383
    • 6.2.3    Market Drivers               384
    • 6.2.4    Technology Readiness Level                385
  • 6.3        Logistics and Warehousing  388
    • 6.3.1    Applications   388
      • 6.3.1.1 Material Transport      389
      • 6.3.1.2 Order Picking 390
      • 6.3.1.3 Inventory Management           390
      • 6.3.1.4 Palletizing and Depalletizing                390
    • 6.3.2    Market Drivers               391
    • 6.3.3    Technology Readiness Level                393
    • 6.3.4    Last Mile Delivery Solutions 397
      • 6.3.4.1 Ground-Based Delivery Vehicles      397
      • 6.3.4.2 Delivery Drones            397
  • 6.4        Agriculture       398
    • 6.4.1    Market Drivers               398
    • 6.4.2    Applications   400
    • 6.4.3    Technology Readiness Level                404
    • 6.4.4    Emerging Technologies            412
    • 6.4.5    Sensors in Agricultural Robots           412
      • 6.4.5.1 Imaging Sensors Comparison            413
      • 6.4.5.2 Navigation Sensors    415
      • 6.4.5.3 Environmental Sensors           415
  • 6.5        Construction  415
    • 6.5.1    Market Drivers               415
    • 6.5.2    Applications   417
    • 6.5.3    Technology Readiness Level                420
  • 6.6        Retail and Consumer               423
    • 6.6.1    Customer Service and Hospitality   423
      • 6.6.1.1 Front-of-House Applications               423
      • 6.6.1.2 Back-of-House Applications               424
    • 6.6.2    Market Drivers               424
    • 6.6.3    Applications   426
    • 6.6.4    Technology Readiness Level                429
  • 6.7        Military and Defense 433
    • 6.7.1    Market Drivers               433
    • 6.7.2    Applications   434
    • 6.7.3    Technology Readiness Level                438
  • 6.8        Energy and Utilities    442
    • 6.8.1    Li-ion Battery Industry             442
      • 6.8.1.1 Benefits of Robotics in Li-ion Manufacturing            442
      • 6.8.1.2 Use Cases       442
        • 6.8.1.2.1           Battery Module Inspection    442
        • 6.8.1.2.2           Battery Assembly        443
        • 6.8.1.2.3           End-of-Life Recycling                443
      • 6.8.2    Photovoltaic Industry               444
        • 6.8.2.1 Overview and Use Cases       444
          • 6.8.2.1.1           Robotic Assembly of PV Arrays          444
          • 6.8.2.1.2           Welding Applications               445
          • 6.8.2.1.3           Inspection Systems   445
        • 6.8.2.2 Barriers and Solutions             446
    • 6.8.3    Semiconductor Industry        448
      • 6.8.3.1 Emerging Applications             448
        • 6.8.3.1.1           Photomask Processing           448
        • 6.8.3.1.2           Wafer Handling            449
      • 6.8.3.2 Technical Requirements and Barriers            450
  • 6.9        Mining and Resources              450
    • 6.9.1    Market Drivers               450
    • 6.9.2    Applications   452
    • 6.9.3    Technology Readiness Level                456
  • 6.10     Education and Research        460
    • 6.10.1 Market Drivers               460
    • 6.10.2 Applications   461
    • 6.10.3 Technology Readiness Level                461
  • 6.11     Entertainment and Leisure   462
    • 6.11.1 Market Drivers               462
    • 6.11.2 Applications   463
    • 6.11.3 Technology Readiness Level                463
  • 6.12     Personal Use and Domestic Settings             463
    • 6.12.1 Market Drivers               464
    • 6.12.2 Applications   465
    • 6.12.3 Technology Readiness Level                466
    • 6.12.4 Cleaning and Disinfection Robots   467
      • 6.12.4.1            Floor Cleaning Robots             468
      • 6.12.4.2            Window and Wall Cleaning Robots 469
      • 6.12.4.3            UV-based Disinfection Robots           470

 

7             MARKET DRIVERS AND RESTRAINTS              473

  • 7.1        Market Drivers               473
    • 7.1.1    Labor Shortages and Wage Inflation               473
      • 7.1.1.1 Global Labor Market Trends 473
      • 7.1.1.2 Industry-Specific Impacts     473
    • 7.1.2    Productivity and Efficiency Demands            473
      • 7.1.2.1 Manufacturing Efficiency       473
      • 7.1.2.2 Logistics Optimization             474
      • 7.1.2.3 Healthcare Productivity          474
    • 7.1.3    Quality and Precision Requirements              474
      • 7.1.3.1 Manufacturing Quality Control           474
      • 7.1.3.2 Healthcare Precision                474
    • 7.1.4    Workplace Safety Concerns 474
      • 7.1.4.1 Hazardous Environment Applications           474
      • 7.1.4.2 Ergonomic Considerations   475
    • 7.1.5    Aging Population         475
      • 7.1.5.1 Healthcare Applications        475
      • 7.1.5.2 Workforce Replacement         475
    • 7.1.6    Advancements in Artificial Intelligence and Machine Learning    475
      • 7.1.6.1 Improved Perception Systems            476
      • 7.1.6.2 Enhanced Decision Making 476
      • 7.1.6.3 Autonomous Capabilities     476
    • 7.1.7    Need for Personal Assistance and Companionship            476
      • 7.1.7.1 Eldercare Applications            476
      • 7.1.7.2 Household Assistance            476
    • 7.1.8    Exploration of Hazardous and Extreme Environments       477
      • 7.1.8.1 Nuclear Applications                477
      • 7.1.8.2 Deep Sea Exploration               477
      • 7.1.8.3 Space Applications   477
    • 7.1.9    E-commerce Growth 477
      • 7.1.9.1 Last-Mile Delivery Challenges            477
      • 7.1.9.2 Warehouse Automation Needs          478
  • 7.2        Market Restraints       478
    • 7.2.1    High Initial Investment Costs              478
      • 7.2.1.1 Robot Hardware Costs            478
      • 7.2.1.2 Integration and Implementation Costs         478
    • 7.2.2    Technical Limitations               479
      • 7.2.2.1 AI and Perception Challenges             479
      • 7.2.2.2 Manipulation Challenges       479
      • 7.2.2.3 Energy and Power Limitations            479
    • 7.2.3    Implementation Challenges 480
      • 7.2.3.1 Integration with Existing Systems     480
      • 7.2.3.2 User Training and Adoption  480
    • 7.2.4    Safety and Regulatory Concerns       481
      • 7.2.4.1 Human-Robot Collaboration Safety               481
      • 7.2.4.2 Autonomous System Regulations    481
    • 7.2.5    Workforce Resistance and Social Acceptance        482
      • 7.2.5.1 Employment Concerns           482
      • 7.2.5.2 Human-Robot Interaction Challenges          482

 

8             EMERGING TRENDS AND DEVELOPMENTS              484

  • 8.1        Swarm Robotics          484
    • 8.1.1    Technologies and Approaches           485
    • 8.1.2    Application Potential 486
    • 8.1.3    Market Outlook            487
  • 8.2        Human-Robot Collaboration               487
    • 8.2.1    Advances in Safe Interaction               488
    • 8.2.2    Intuitive Programming Interfaces     488
    • 8.2.3    Market Implementation Examples   489
  • 8.3        Self-Learning and Adaptive Robots 491
    • 8.3.1    Reinforcement Learning Applications           492
    • 8.3.2    Transfer Learning        494
    • 8.3.3    Continual Learning Systems                494
  • 8.4        Cloud Robotics            495
    • 8.4.1    Distributed Computing for Robotics               496
    • 8.4.3    Remote Operation Capabilities         497
  • 8.5        Digital Twin Integration            497
    • 8.5.1    Simulation and Planning        498
    • 8.5.2    Predictive Maintenance          498
    • 8.5.3    Performance Optimization   499
  • 8.6        Robot-as-a-Service (RaaS) Business Models           499
    • 8.6.1    Subscription-Based Services              500
    • 8.6.2    Pay-Per-Use Models  502
    • 8.6.3    Market Adoption Trends          503
  • 8.7        Soft Robotics 505
    • 8.7.1    Materials and Actuators          506
  • 8.8        Neuromorphic Computing for Robotics       510
    • 8.8.1    Brain-Inspired Computing Architectures     511
    • 8.8.2    Applications in Perception    513
    • 8.8.3    Energy Efficiency Benefits     517
  • 8.9        Micro-nano Robots    520
    • 8.9.1    Technologies and Designs    520
    • 8.9.2    Medical Applications                522
    • 8.9.3    Industrial Applications            527
  • 8.10     Brain Computer Interfaces    528
    • 8.10.1 Non-Invasive BCIs      528
    • 8.10.2 Invasive BCIs 529
    • 8.10.3 Applications in Robot Control             529
  • 8.11     Mobile Cobots              530
    • 8.11.1 Technologies and Designs    530
    • 8.11.2 Applications   530
    • 8.11.3 Market Outlook            531
  • 8.12     Industry 5.0 and Collaborative Robots         532
    • 8.12.1 Human-Machine Collaboration         532
    • 8.12.2 Sustainable Manufacturing  532
    • 8.12.3 Implementation Examples   533
  • 8.13     Low-carbon Robotics Manufacturing            535
    • 8.13.1 Sustainable Design Approaches       535
    • 8.13.2 Energy-Efficient Operation    536
    • 8.13.3 End-of-Life Considerations  536
  • 8.14     Autonomous Navigation and Localization  537
    • 8.14.1 SLAM Advancements               537
    • 8.14.2 Multi-Sensor Fusion  538
    • 8.14.3 GPS-Denied Navigation          539
  • 8.15     Navigation Sensors Driven by Autonomous Mobility           539
    • 8.15.1 LiDAR Innovations      540
    • 8.15.2 Computer Vision Advancements      540
    • 8.15.3 Sensor Fusion Approaches  541

 

9             CHALLENGES AND OPPORTUNITIES             543

  • 9.1        Technical Challenges               543
    • 9.1.1    Perception and Sensing          543
    • 9.1.2    Manipulation and Dexterity   543
    • 9.1.3    Power and Energy Management        544
    • 9.1.4    Human-Robot Interaction     545
  • 9.2        Market Challenges     546
    • 9.2.1    Cost Barriers  546
    • 9.2.2    Skills and Training Gaps          546
    • 9.2.3    Integration Complexity            547
    • 9.2.4    Supply Chain Issues 548
  • 9.3        Regulatory Challenges            549
    • 9.3.1    Regulations for Autonomous Vehicles          549
      • 9.3.1.1 SAE Level 4-5 Regulations     549
      • 9.3.1.2 Testing and Certification Requirements       550
    • 9.3.2    Regulations for Delivery Drones        551
      • 9.3.2.1 Airspace Regulations               552
      • 9.3.2.2 Payload and Distance Limitations   552
    • 9.3.3    Recent Regulatory Updates  553

 

10          FUTURE OUTLOOK    555

  • 10.1     Technology Roadmap (2025-2046) 555
    • 10.1.1 Short-term Developments (2025-2030)       555
    • 10.1.2 Medium-term Developments (2030-2035) 556
    • 10.1.3 Long-term Developments (2035-2046)        558
  • 10.2     Industry Convergence Opportunities             559
    • 10.2.1 Robotics and AI            559
    • 10.2.2 Robotics and IoT          560
    • 10.2.3 Robotics and Advanced Manufacturing       561
  • 10.3     Robotics and the Future of Work      562
    • 10.3.1 Job Transformation    562
    • 10.3.2 New Skill Requirements         562
    • 10.3.3 Human-Robot Collaboration Models             563

 

11          COMPANY PROFILES                565 (303 company profiles)

 

12          REFERENCES 930

 

List of Tables

  • Table 1. Robot Categorization.           47
  • Table 2. Global Unit Sales Forecast 2023-2046 (Million Units), Total.      48
  • Table 3. Global Unit Sales Forecast 2023-2046 (Million USD).     50
  • Table 4. Key Market Drivers and Restraints for Advanced Robotics.          52
  • Table 5. Performance Parameters of Humanoid Robots.  55
  • Table 6. Three Phases of Cobot Adoption    56
  • Table 7. Six Stages of Human-Robot Interaction (HRI)        57
  • Table 8. Traditional Industrial Robots vs. Collaborative Robots    57
  • Table 9. Benefits and Drawbacks of Cobots              58
  • Table 10. Safety Requirements for Cobots 59
  • Table 11. Comparison of Sensing Technologies      63
  • Table 12. Navigation Sensors for Autonomous Mobility     64
  • Table 13. Parameter Comparison - Payload vs. Speed.      67
  • Table 14. Leading Companies by Robot Type.          69
  • Table 15. Major Industrial Robot Manufacturers.   70
  • Table 16. Service Robot Companies.             71
  • Table 17. Collaborative Robot (Cobot) Manufacturer          71
  • Table 18. AI Robotics Companies    71
  • Table 19. Sensor and Component Developers         72
  • Table 20. End Effector Suppliers.      72
  • Table 21. Humanoid Robot Developers.       73
  • Table 22. Humanoid Robot Platform Comparison  74
  • Table 23. Global Robotics Investment by Funding Category 2015-2024 (Billions USD).              75
  • Table 24. Recent investments in advanced robotics companies.               75
  • Table 25. Venture Capital Funding of Robotics Startups.  77
  • Table 26. Classification of Robot Types.       79
  • Table 27. Three Phases of Robot Adoption.                88
  • Table 28. Evolution from Industrial to Service Robots         89
  • Table 29. Key AI Methods for Robotics          91
  • Table 30. Deep Learning Approaches.           93
  • Table 31. Convolutional Neural Networks in Robotics.      94
  • Table 32. Image Recognition Technologies.               96
  • Table 33. Multi-sensor Integration in Advanced Robotics 99
  • Table 34. Advanced Materials in Advanced Robotics.        100
  • Table 35. Types of metals commonly used in advanced robots.  102
  • Table 36. Types of plastics and polymers commonly used in advanced robots.               103
  • Table 37. Types of composites commonly used in advanced robots.       104
  • Table 38. Types of elastomers commonly used in advanced robots.        106
  • Table 39. Types of smart materials in advanced robotics.                107
  • Table 40. Types of textiles commonly used in advanced robots. 109
  • Table 41. Types of ceramics commonly used in advanced robots.             110
  • Table 42. Biomaterials commonly used in advanced robotics.     112
  • Table 43. Types of nanomaterials used in advanced robotics.      114
  • Table 44. Types of coatings used in advanced robotics.    116
  • Table 45. Flexible and soft materials .           119
  • Table 46. Edge Computing in Advanced Robotics. 120
  • Table 47. Local Processing vs. Cloud Computing. 121
  • Table 48. Typical Sensors for Object Detection.      124
  • Table 49. Camera-based Detection Technologies for Advanced Robotics.          127
  • Table 50. LiDAR-based Detection Technologies for Advanced Robotics.               128
  • Table 51. Radar Systems for Advanced Robotics Object Detection.         130
  • Table 52. Ultrasonic Sensor Technologies for Advanced Robotics             131
  • Table 53. Infrared and Thermal Sensor Technologies for Advanced Robotics.    133
  • Table 54. Technology Maturity Status Definitions. 134
  • Table 55. Readiness Level of Technologies by Application Sector.              141
  • Table 56. Regional Safety Standards in North America.     146
  • Table 57. Regional Safety Standards in Europe.      146
  • Table 58. Regional Safety Standards in Europe.      147
  • Table 59. Authorities Regulating Autonomous Driving.      147
  • Table 60. Regulations for Delivery Robots and Drones.     148
  • Table 61. Industrial Robot Regulations.        149
  • Table 62. Data Privacy and Security Regulations.  150
  • Table 63. Regional Differences in Regulations.       151
  • Table 64. Data Security Requirements.        152
  • Table 65. Historic Cobot Market Size 2019-2024 (Millions USD). 154
  • Table 66. Historic Service Robot Market Size 2019-2024 (Millions USD).              154
  • Table 67. Historic Mobile Robot Market Size 2019-2024 (Millions USD). 155
  • Table 68. Global Market for Industrial Robots 2020-2046 (Million Units).              156
  • Table 69. Global market for industrial robots 2020-2046 (Millions USD).              156
  • Table 70. Global market for Cobots by revenues 2025-2046 (US$ Millions).       157
  • Table 71. Global market for Cobots by payload capacity 2025-2046 (US$ Millions).     157
  • Table 72. Global market for Cobots By Degrees of Freedom 2025-2046 (US$ Millions).              158
  • Table 73. Global market for Cobots By End-Effector Type 2025-2046(US$ Millions).    158
  • Table 74. Global Market for Service Robots 2020-2046 (Millions USD).  159
  • Table 75. Global Market for Professional Service Robots 2025-2046 (Million Units).     159
  • Table 76. Global Market for Professional Service Robots 2025-2046 (Billions USD).     160
  • Table 77. Global market for Personal/Domestic Service Robots 2025-2046 (Million Units).     161
  • Table 78. Global Market for Personal/Domestic Service Robots 2025-2046 (Billion USD).        161
  • Table 79. Global market for Entertainment Robots 2025-2046 (Million Units).  162
  • Table 80. Global Market for Entertainment Robots 2025-2046 (Billions USD).   162
  • Table 81. Global market for Humanoid Robots by type 2025-2046 (Million Units).         163
  • Table 82. Global market for Humanoid Robots by Application 2025-2046 (Million Units).         164
  • Table 83. Global Market for Mobile Robots 2020-2046 (Millions USD).   164
  • Table 84. Global Market for Autonomous Mobile Robots (AMRs) 2025-2046 (Million Units).    164
  • Table 85. Global Market for Automated Guided Vehicles (AGVs) 2025-2046 (Million Units)      165
  • Table 86. Global Market for Grid-Based Automated Guided Carts (AGCs) 2025-2046 (Million Units) 165
  • Table 87.  Global Market for Mobile Picking Robots 2025-2046 (Million Units)   166
  • Table 88. Global Market for Mobile Manipulators 2025-2046 (Million Units)       166
  • Table 89. Global Market for Last-Mile Delivery Robots 2025-2046 (Million Units)            167
  • Table 90. Global Market for Heavy-Duty L4 Autonomous Trucks 2025-2046 (Million Units)      167
  • Table 91. Global Market for Robotics Navigation and Mapping 2025-2046 (Billions USD).        168
  • Table 92. Global Market for Robotics Object Recognition and Tracking 2025-2046 (Billions USD).      168
  • Table 93. Global Market for Robotics Manipulation Technologies 2025-2046 (Billions USD)    169
  • Table 94. Global Market for Human-Robot Interaction Technologies 2025-2046.            169
  • Table 95. Global Market for Robotics Artificial Intelligence 2025-2046 (Billions USD)  170
  • Table 96. Global Market for Robotics Sensors 2025-2046 (Billions USD)               171
  • Table 97. Global Market for Robotics Actuators 2025-2046 (Billions USD).         171
  • Table 98. Global Market for Robotics Power Systems 2025-2046 (Billions USD).             172
  • Table 99. Global Market for Robotics Control Systems 2025-2046 (Billions USD).          173
  • Table 100. Global Market for Robotics End-Effectors 2025-2046 (Billions USD)               173
  • Table 101. Global Market for Robotics Control Software 2025-2046 (Billions USD)       174
  • Table 102. Global Market for Robotics Perception Software 2025-2046 (Billions USD).              175
  • Table 103. Global Market for Robotics Human-Machine Interfaces 2025-2046 (Billions USD) 176
  • Table 104. Global Market for Robotics Installation and Integration Services 2025-2046 (Billions USD)                176
  • Table 105. Global Market for Robotics Maintenance and Support Services 2025-2046 (Billions USD)                177
  • Table 106. Global Market for Advanced Robotics in Manufacturing 2025-2046 (Thousands of Units).                178
  • Table 107. Global Market for Advanced Robotics in Healthcare 2025-2046 (Thousands of Units).      178
  • Table 108. Global Market for Advanced Robotics in Logistics and Warehousing 2025-2046 (Thousands of Units).           179
  • Table 109.  Global Market for Advanced Robotics in Agriculture 2025-2046 (Thousands of Units).     179
  • Table 110. Global Market for Advanced Robotics in Construction 2025-2046 (Thousands of Units).  180
  • Table 111. Global Market for Advanced Robotics in Retail and Hospitality 2025-2046 (Thousands of Units). 180
  • Table 112. Global Market for Advanced Robotics in Military and Defense 2025-2046 (Thousands of Units). 181
  • Table 113. Global Market for Advanced Robotics in Energy and Utilities 2025-2046 (Thousands of Units)                181
  • Table 114. Global Market for Advanced Robotics in Education and Research 2025-2046 (Thousands of Units). 182
  • Table 115. Global Market for Advanced Robotics in Consumer and Domestic Applications 2025-2046 (Thousands of Units).               182
  • Table 116. Global Market for Advanced Robotics in Entertainment and Leisure 2025-2046 (Thousands of Units). 183
  • Table 117. Market for Advanced Robotics in North America 2020-2046 (1000 units, by Robot Type). 183
  • Table 118. Market for Advanced Robotics in Europe 2020-2046 (1000 units, by Robot Type).  184
  • Table 119. Market for Advanced Robotics in Japan 2020-2046 (1000 units, by Robot Type).     185
  • Table 120. Market for Advanced Robotics in China 2020-2046 (1000 units, by Robot Type).     185
  • Table 121. Market for Advanced Robotics in China 2020-2046 (1000 units, by End-Use Industry).      186
  • Table 122.South Korea Robotics Market 2020-2045 (1000 units) 187
  • Table 123. Market for Advanced Robotics in India 2020-2046 (1000 units, by Robot Type)         188
  • Table 124.  Average Cost per Unit for Industrial Robots 2025-2046 (Thousands USD). 188
  • Table 125. Average Cost per Unit for Collaborative Robots 2025-2046 (Thousands USD).         189
  • Table 126. Average Cost per Unit for Service Robots 2025-2046 (Thousands USD).      189
  • Table 127. Average Cost per Unit for Humanoid Robots 2025-2046 (Thousands USD) 190
  • Table 128. Average Cost per Unit for Mobile Robots 2025-2046 (Thousands USD)         190
  • Table 129. Average Cost for Robot Sensor Packages 2025-2046 (Thousands USD)        190
  • Table 130. Average Cost for Robot Actuator and Power Systems 2025-2046 (Thousands USD).            191
  • Table 131. Average Cost for Robot Computing and Control Systems 2025-2046 (Thousands USD).   191
  • Table 132. Average Cost for Robot End-Effectors 2025-2046 (Thousands USD).              192
  • Table 133. Payback Time for Advanced Robotics in Manufacturing 2025-2046 (Months).          192
  • Table 134. Payback Time for Advanced Robotics in Logistics 2025-2046 (Months).       193
  • Table 135. Payback Time for Advanced Robotics in Healthcare 2025-2046 (Months). 194
  • Table 136. Payback Time for Advanced Robotics in Agriculture 2025-2046 (Months).  194
  • Table 137. Payload and Speed Capabilities by Robot Type 2025-2046.  195
  • Table 138. Key Performance Metrics for Industrial Robots 2025-2046.  195
  • Table 139. Mobile Robots Performance Metrics.    196
  • Table 140. Key Performance Metrics for Collaborative Robots 2025-2046.          197
  • Table 141. Six Stages of Human-Robot Interaction (HRI). 197
  • Table 142. Benefits and Drawbacks of Cobots.       202
  • Table 143. Safety Requirements for Cobots.             203
  • Table 144. Cobot Cost Analysis.       207
  • Table 145. Payload Summary of Cobots.     207
  • Table 146. Commercialized Cobots.              208
  • Table 147. Benchmarking Based on DoF, Payload, Weight.             209
  • Table 148. Price Categories of Cobots.         211
  • Table 149. AMR Navigation Technologies    213
  • Table 150. Articulated Robots Types and Applications.     216
  • Table 151. Applications in Manufacturing for Humanoid Industrial Robots.        217
  • Table 152. Design Considerations for Humanoid Industrial Robots.         219
  • Table 153. Categories and Applications of Professional Service Robots.              221
  • Table 154. Types and Applications of Personal/Domestic Service Robots.          224
  • Table 155. Consumer Adoption Trends in Personal/Domestic Service Robots. 226
  • Table 156. Entertainment Robots Types and Applications.             228
  • Table 157. Technology Features in Entertainment Robots.              230
  • Table 158. Key Technologies in Surgical Robots.    232
  • Table 159. Surgical robotics companies.    234
  • Table 160. Rehabilitation Robots Types and Applications.              237
  • Table 161. Hospital Logistics Robots Types and Applications       240
  • Table 162. Market challenges in care robots.           244
  • Table 163. Key Technologies in Robotic Surgery and Minimally Invasive Procedures.    246
  • Table 164. Market Trends in in Robotic Surgery and Minimally Invasive Procedures.      248
  • Table 165. Intelligent Health Monitoring and Diagnostics Technologies.                250
  • Table 166. Intelligent Health Monitoring and Diagnostics Applications. 251
  • Table 167. Telemedicine and Remote Health Management Technologies.           254
  • Table 168. Telemedicine and Remote Health Management Applications.            256
  • Table 169. Robotics in Mental Health Applications.             259
  • Table 170. Unmanned Ground Vehicles (UGVs) Applications.      263
  • Table 171. Unmanned Ground Vehicles (UGVs) Technologies.     265
  • Table 172. Unmanned Aerial Vehicles (UAVs) Applications.           269
  • Table 173. Unmanned Aerial Vehicles (UAVs) Technologies.          271
  • Table 174. Unmanned Underwater Vehicles (UUVs) Applications.             274
  • Table 175. Unmanned Underwater Vehicles (UUVs) Technologies.            277
  • Table 176. Agricultural Robot Products.       279
  • Table 177. Technology Readiness by Application Area for Agricultural Robots. 286
  • Table 178. Fresh Fruit Picking Robots.          292
  • Table 179. Vegetable Harvesting Robots.    295
  • Table 180. Seeding and Planting Robots.    297
  • Table 181. Crop Monitoring Robots.               299
  • Table 182. Commercial Weeding Robots.   302
  • Table 183. Precision Spraying Technologies.             304
  • Table 184. Agricultural Drone Application Pipeline.             306
  • Table 185.  Agricultural Drones Imaging Applications.       307
  • Table 186. Regulatory Approvals for Agricultural Drones by Region.         310
  • Table 187. Dairy Farming Robots.    312
  • Table 188. Market Adoption Trends in Dairy Farming Robots.        315
  • Table 189. 3D Printing Construction Robot Technologies.               317
  • Table 190. Applications of 3D Printing Construction Robots.        318
  • Table 191. Demolition Robot Technologies.              319
  • Table 192. Applications of Demolition Robots.       319
  • Table 193. Bricklaying and Masonry Robot Technologies. 321
  • Table 194. Applications of Bricklaying and Masonry Robots.         321
  • Table 195. AI Applications in Robotics.        323
  • Table 196. Machine Learning Techniques for Robotics.     324
  • Table 197. Foundation Models for Robotics              330
  • Table 198. Typical Sensors Used for Robots.            331
  • Table 199. Sensors by Functions and Tasks.             332
  • Table 200. Sensors for Industrial Robotic Arms      335
  • Table 201. Sensors for AGVs and AMRs.      336
  • Table 202. Sensors for Collaborative Robots.          337
  • Table 203. Sensors for Drones            339
  • Table 204. Sensors for Service Robots          341
  • Table 205. Sensors for Underwater Robots.              342
  • Table 206. Sensors for Agricultural Robots 344
  • Table 207. Sensors for Cleaning Robots      346
  • Table 208. Sensors for Social Robots            347
  • Table 209. Cameras (RGB, Depth, Thermal, Event-based).             350
  • Table 210. RGB/Visible Light Cameras.        351
  • Table 211. Depth cameras.  351
  • Table 212. Thermal cameras.              352
  • Table 213. Event-based cameras.    353
  • Table 214. CMOS Image Sensors vs. CCD Cameras            354
  • Table 215. Edge Processing Technologies for Robotic Vision.        356
  • Table 216. In-camera Computer Vision in Autonomous Vehicles                357
  • Table 217. Automotive Industry Robotics Opportunities and Challenges              360
  • Table 218. Advanced Robotics Applications in Automotive Manufacturing         361
  • Table 219. Miniaturization Challenges and Robotic Solutions in Electronics Manufacturing   362
  • Table 220. Production Volume Challenges in Electronics Manufacturing             363
  • Table 221. Quality Control Challenges in Electronics Manufacturing      364
  • Table 222. Advanced Robotics in Electronics Component Assembly      366
  • Table 223. Advanced Robotics in Electronics Testing and Inspection      367
  • Table 224. Advanced Robotics in Electronics Packaging  368
  • Table 225. Hygiene and Safety Requirements for Food Robotics 370
  • Table 226. Product Variety Challenges in Food Robotics  371
  • Table 227. Applications of Advanced Robots in Palletizing              372
  • Table 228. Industry Requirements for Pharmaceutical Robotics 376
  • Table 229. Applications of Advanced Robotics in Pharmaceuticals          377
  • Table 230. Challenges in Healthcare Robotics        379
  • Table 231. Market Drivers for Robots in Healthcare              384
  • Table 232. Technology Readiness Level for Advanced Robots in Healthcare       385
  • Table 233. Applications of Advanced Robots in Logistics and Warehousing       388
  • Table 234. Market Drivers for Advanced Robots in Logistics and Warehousing 391
  • Table 235. Technology Readiness Level for Advanced Robots in Logistics and Warehousing  393
  • Table 236. Market Drivers for Advanced Robots in Agriculture      398
  • Table 237. Advanced Robotics Applications in Agriculture              400
  • Table 238. Imaging Sensors Comparison.  413
  • Table 239. Market Drivers for Advanced Robotics in Construction.           415
  • Table 240. Applications of Advanced Robotics in Construction   417
  • Table 241. Market Drivers for Advanced Robotics in Retail and Consumer           424
  • Table 242. Applications for Advanced Robotics in Retail and Consumer               426
  • Table 243. Market Drivers for Advanced Robotics in Military and Defense            433
  • Table 244. Applications for Advanced Robotics in Military and Defense 434
  • Table 245. Barriers and Solutions for Advanced Robots in PV Industry   446
  • Table 246. Market Drivers for Advanced Robots in Mining and Resources             450
  • Table 247. Applications of Advanced Robots in Mining and Resources   452
  • Table 248. Market Drivers for Advanced Robotics in Education and Research   460
  • Table 249. Applications of Advanced Robotics in Education and Research         461
  • Table 250. Market Drivers for Advanced Robotics in Entertainment and Leisure               462
  • Table 251. Applications of Advanced Robotics in Entertainment and Leisure     463
  • Table 252. Market drivers for Advanced Robotics in Personal Use and Domestic Settings.       464
  • Table 253. Applications of Advanced Robotics in Personal Use and Domestic Settings.             465
  • Table 254. Cleaning and Disinfection Robots.         467
  • Table 255. UV-based disinfection robots.   470
  • Table 256. Swarm Robotics: Technologies and Approaches          485
  • Table 257. Market Implementation Examples for Human-Robot Collaboration.               489
  • Table 258. Reinforcement Learning Applications for Self-Learning and Adaptive Robots           492
  • Table 259. Robot-as-a-Service (RaaS)  Subscription-based services.      500
  • Table 260. Pay-per-use models .       502
  • Table 261. Market adoption of Robot-as-a-Service.             504
  • Table 262. Materials and actuators.                507
  • Table 263. Control systems for soft robots.               509
  • Table 264. Brain-inspired computing architectures.            511
  • Table 265. Applications in Perception.          515
  • Table 266. Neuromorphic computing Energy Efficiency Benefits.               518
  • Table 267. Micro-nano robots medical applications.          523
  • Table 268. Industrial Applications of Micro-Nano Robots .              527
  • Table 269. BCIs in Robot Control Applications        529
  • Table 270. Technologies and Designs in Mobile Cobots.  530
  • Table 271. Mobile Cobots in Industry.           531
  • Table 272. Sustainable Manufacturing.       533
  • Table 273. Implementation Examples.         534
  • Table 274. Sustainable Design Approaches in Low-Carbon Robotics Manufacturing. 536
  • Table 275. SLAM Advancements in Autonomous Navigation and Localization. 538
  • Table 276. LiDAR Innovations in Advanced Robotics.         540
  • Table 277. Computer Vision Advancements in Advanced Robotics.         541
  • Table 278. Sensor Fusion Approaches in Advanced Robotics.     541
  • Table 279.  SAE Level 4-5 Regulations.          550
  • Table 280.  Testing and Certification Requirements              551
  • Table 281. Recent Regulatory Updates.       553

 

List of Figures

  • Figure 1. Global Market Size by Robot Type 2023-2046 (Million Units).   49
  • Figure 2. Global Market Size by Robot Type 2023-2046 (Million USD).     51
  • Figure 3. Historical progression of humanoid robots.         54
  • Figure 4. Robotics Evolution Timeline.          61
  • Figure 5. Service Robot in Japan.      82
  • Figure 6. Technology Readiness Levels (TRL) for Advanced Robotics       137
  • Figure 7. Roadmap and Maturity Analysis by Industry.       140
  • Figure 8. TRL for advanced robotics in agriculture.               411
  • Figure 9. TRL for advanced robotics in construction.          422
  • Figure 10. TRL for advanced robotics in Retail and Consumer.     432
  • Figure 11. TRL for advanced robotics in Military and Defense.      441
  • Figure 12. TRL for advanced robotics in Mining and Resources.  459
  • Figure 13. TRL for advanced robotics in Education and Research.             461
  • Figure 14. TRL for advanced robotics in Entertainment and Leisure.        463
  • Figure 15. TRL for advanced robotics in Personal Use and Domestic Settings.  467
  • Figure 16. Robot swarms.      484
  • Figure 17. System architecture of cloud robotics. 495
  • Figure 18. Micro-bot. 521
  • Figure 19. Robotics Technology Roadmap: Short-term Developments (2025-2030)      556
  • Figure 20. Robotics Technology Roadmap: Medium-term Developments (2030-2035).              558
  • Figure 21. Robotics Technology Roadmap: Long-term Developments (2035-2046)       559
  • Figure 22. EVE/NEO.  565
  • Figure 8. Alice: A bipedal walking humanoid robot from AeiRobot.            575
  • Figure 23. RAISE-A1.  581
  • Figure 24. Agibot product line-up.    581
  • Figure 25. Digit humanoid robot.      583
  • Figure 26. ANYbotics robot.  596
  • Figure 27. Apptronick Apollo.              597
  • Figure 28. Aubo Robotics - i series. 602
  • Figure 29. Alex.              621
  • Figure 30. BR002.       622
  • Figure 31. Atlas.           624
  • Figure 32. XR-4.            658
  • Figure 33. Dreame Technology's second-generation bionic robot dog and general-purpose humanoid robot.  674
  • Figure 34. Mercury X1.             681
  • Figure 35. Mirokaï robots.      682
  • Figure 36. Ameca.       691
  • Figure 37. Prototype Ex-Robots humanoid robots.               696
  • Figure 38. F&P Personal Robotics - P-Rob. 699
  • Figure 39. Figure.ai humanoid robot.             706
  • Figure 40. Figure 02 humanoid robot.            706
  • Figure 41. GR-1.            712
  • Figure 42. Sophia.       726
  • Figure 43. Honda ASIMO.       730
  • Figure 27. HMND 01 Alpha.  732
  • Figure 44. IntuiCell quadruped robot.            740
  • Figure 45. Kaleido.      747
  • Figure 46. Forerunner.              749
  • Figure 47. Keyper.        753
  • Figure 48. KUKA - LBR iiwa series.    764
  • Figure 49. Kuafu.         766
  • Figure 50. CL-1.            772
  • Figure 51. MagicHand S01    784
  • Figure 52. Monumental construction robot.              796
  • Figure 53. Neura Robotics - Cognitive Cobots.        811
  • Figure 54. Omron - TM5-700 and TM5X-700.             821
  • Figure 55.  Tora-One. 828
  • Figure 56. Perceptive dental robotic system.            829
  • Figure 57. HUBO2.     838
  • Figure 58. XBot-L.        853
  • Figure 59. Sanctuary AI Phoenix.      863
  • Figure 60. Pepper Humanoid Robot.              874
  • Figure 61. Astribot S1.              878
  • Figure 62. Stäubli - TX2touch series.              880
  • Figure 63. Tesla Optimus Gen 2.       898
  • Figure 64. Toyota T-HR3           905
  • Figure 65. UBTECH Walker.   907
  • Figure 66. G1 foldable robot.               907
  • Figure 67. WANDA.     910
  • Figure 68. Unitree H1.              914
  • Figure 69. CyberOne.                924
  • Figure 70. PX5.              925

 

 

Purchasers will receive the following:

  • PDF report download/by email. 
  • Comprehensive Excel spreadsheet of all data.
  • Mid-year Update

 

The Global Advanced (Industrial, Collaborative, Service, Mobile and Humanoid) Robotics Market 2026-2046
The Global Advanced (Industrial, Collaborative, Service, Mobile and Humanoid) Robotics Market 2026-2046
PDF download/by email.

 

Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer. To order by Bank Transfer (Invoice) select this option from the payment methods menu after adding to cart, or contact info@futuremarketsinc.com