The Global Industrial Biomanufacturing Market 2026-2036

0
  • cover

    cover

    Published: September 2025
  • Pages: 1,316
  • Tables: 299
  • Figures: 189

 

The global industrial biomanufacturing market represents a transformative force in industrial production. This sector encompasses the production of pharmaceuticals, industrial chemicals, biofuels, biomaterials, and specialty products through biological processes, fundamentally reshaping how humanity approaches manufacturing. Biomanufacturing's significance extends far beyond economic metrics, positioning itself as a cornerstone of sustainable industrial development. Unlike traditional petrochemical manufacturing that relies on finite fossil fuel resources, biomanufacturing utilizes renewable biological feedstocks including agricultural residues, algae, and even carbon dioxide. This transition addresses critical resource scarcity challenges while reducing dependence on volatile petroleum markets.

The sector's contribution to the circular economy is particularly profound. Biomanufacturing processes excel at converting waste streams into valuable products, exemplifying circular economy principles. Agricultural waste becomes biofuels, food processing byproducts transform into specialty chemicals, and municipal solid waste generates bioplastics. This waste-to-value conversion reduces landfill burdens while creating economic value from previously discarded materials.

Environmental benefits are substantial and measurable. Biomanufacturing typically reduces greenhouse gas emissions by 30-80% compared to conventional processes, with some applications achieving carbon neutrality or even carbon negativity. The mild operating conditions of biological processes—typically 20-80°C versus 200-800°C for chemical processes—dramatically reduce energy consumption. Water usage often decreases through closed-loop systems and biological treatment processes that simultaneously purify and utilize water resources.

Biomanufactured drugs, including monoclonal antibodies, vaccines, and gene therapies, have revolutionized medical treatment while establishing robust regulatory frameworks that benefit other sectors. Industrial biotechnology applications are rapidly expanding, with bio-based chemicals, enzymes, and materials increasingly replacing petroleum-derived alternatives. Innovation drivers include advances in synthetic biology, which enable precise engineering of biological systems for specific applications. CRISPR gene editing, artificial intelligence, and automated bioprocessing are accelerating development cycles while reducing costs. These technological advances are making biomanufacturing economically competitive with traditional processes across an expanding range of products.

Regulatory support is strengthening globally, with governments implementing policies that favor bio-based products through tax incentives, carbon pricing, and procurement preferences. Challenges persist, including scale-up complexities, regulatory approval timelines, and competition from established petrochemical industries. However, the convergence of environmental necessity, technological capability, and economic opportunity positions biomanufacturing as an essential component of sustainable industrial development. The circular economy integration is particularly evident in emerging biorefinery concepts that process multiple feedstocks into diverse product portfolios, maximizing resource utilization while minimizing waste generation. These integrated approaches represent the future of sustainable manufacturing, where biological processes serve as the foundation for truly circular industrial ecosystems.

The Global Industrial Biomanufacturing Market 2026-2036 provides an exhaustive analysis of the rapidly expanding biomanufacturing industry. This comprehensive 1,300 page plus market intelligence study examines the transformative shift toward biological production systems across pharmaceuticals, industrial chemicals, biofuels, biomaterials, and specialty applications. The biomanufacturing market represents a critical nexus of sustainability, innovation, and economic growth, addressing global challenges including climate change, resource scarcity, and industrial decarbonization. This sector leverages living systems and biological processes to manufacture products traditionally produced through petrochemical routes, offering superior environmental profiles and often enhanced performance characteristics.

The report analyzes eight primary market segments: biopharmaceuticals, industrial enzymes, biofuels, bioplastics, biochemicals, bio-agritech, specialty chemicals, and emerging applications. Geographic analysis covers North America, Europe, Asia-Pacific, Latin America, and Middle East/Africa markets with detailed country-level assessments. Competitive landscape analysis profiles over 1,050 companies across the value chain, from technology developers to commercial manufacturers. The study identifies key strategic partnerships, mergers and acquisitions, and technology licensing agreements shaping market evolution. Innovation trends including cell-free systems, continuous manufacturing, and circular economy integration receive detailed examination.

  • Executive Summary and Market Overview
    • Global market sizing and growth projections 2026-2036
    • Technology trends and innovation drivers
    • Regulatory landscape and policy impacts
    • Competitive dynamics and market structure
  • Production Technologies and Manufacturing Systems
    • Upstream processing: cell culture, fermentation advances
    • Synthetic biology tools: CRISPR, DNA synthesis, protein engineering
    • Downstream processing improvements and automation
    • Alternative feedstocks and sustainability frameworks
    • Scale-up strategies and commercial manufacturing
  • Biopharmaceuticals Market 
    • Monoclonal antibodies, recombinant proteins, vaccines
    • Cell and gene therapies, nucleic acid therapeutics
    • Generative biology and AI-driven drug discovery
    • Market growth drivers, regulatory frameworks
    • Company profiles of 131 leading organizations
  • Industrial Enzymes and Biocatalysts Market
    • Detergent, food processing, textile applications
    • Bioenergy enzymes and carbon capture technologies
    • Plastics recycling and waste management applications
    • Technology readiness assessments and market forecasts
    • Profiles of 59 specialized enzyme companies
  • Biofuels Market 
    • Bioethanol, biodiesel, biogas production pathways
    • Advanced biofuels: renewable diesel, bio-aviation fuel
    • Feedstock analysis: first through fourth-generation
    • Regional market dynamics and policy frameworks
    • Analysis of 212 biofuel companies globally
  • Bioplastics Market
    • PLA, PHAs, bio-based polyethylene markets
    • Cellulose-based and starch-based alternatives
    • Application markets and performance characteristics
    • Sustainability profiles and end-of-life management
    • Comprehensive profiles of 585 companies
  • Biochemicals Market 
    • Organic acids, amino acids, alcohol production
    • Bio-based monomers and polymer intermediates
    • Beauty and personal care applications
    • Market economics and competitive positioning
    • Analysis of 158 biochemical companies
  • Bio-Agritech Market
    • Biopesticides, biofertilizers, biostimulants
    • Agricultural enzymes and crop enhancement
    • Regulatory frameworks and adoption patterns
    • Market growth projections by application
    • Profiles of 105 bio-agritech innovators

 

Companies Profiled Include: AbbVie, Absci Corp, Advanced Biochemical, Aemetis, AI Proteins, Algal Bio, Algenol, Allozymes, Alnylam Pharmaceuticals, Alto Neuroscience, Amgen, AMSilk GmbH, Amyris, Anellotech, Antheia, Applied Bioplastics, Aquafil, Arzeda, Arsenal Bioyards, AstraZeneca, Atomwise, Avantium, BASF, Bayer CropScience, BenevolentAI, BioAge Labs, Biocatalysts Ltd, Biogen, BioMADE, Biomatter Designs, BioNTech, Biotalys, BitBiome, Bolt Threads, Braskem, Brevel, Bristol Myers Squibb, C16 Biosciences, Carbios, Cargill, Cascade Biocatalysts, Cemvita, Citroniq Chemicals, CJ Biomaterials, Codexis, Conagen, Corteva Agriscience, Cradle, CSL Behring, Danimer Scientific, Deep Genomics, Differential Bio, DSM-Firmenich, DuPont, Ecovative Design, Enduro Genetics, Enzymaster, Evogene, Exscientia, FabricNano, Foray Bioscience, Future Fields, Generate Biomedicines, Genesis Therapeutics, GenesisM, Genomatica, Gevo, Gilead Sciences, Ginkgo Bioworks, Global Bioenergies, Green Earth Institute, Healx, Hydrosome Labs, Iambic Therapeutics, Inari, Indigo Ag, Infinited Fiber Company, Insilico Medicine, InSpek, Insempra, Insitro, Isomorphic Laboratories, Johnson & Johnson, Kalion, Kaneka Corporation, Keel Labs, Kraig Biocraft Laboratories, LanzaTech, Lenzing AG, LG Chem, Locus Agricultural Solutions, Lygos, Mango Materials, Manus, Marrone Bio Innovations, METabolic EXplorer, Moderna, Modern Meadow, MojiaBio, Moolec Science, MycoWorks, Nanollose, NatureWorks, Neste, Novartis, Novomer, Novozymes, Paques Biomaterials, Pfizer, Pivot Bio, Pow.Bio, Prolific Machines, Provectus Algae, Recursion Pharmaceuticals, Regeneron, Renmatix, Roche, Roquette, Samsung Biologics, Sanofi, Solugen, Spiber, Syngenta, Terramera, TotalEnergies Corbion, Tropic Biosciences, Unilever, Vertex Pharmaceuticals, Virent, Zymergen, and Zelixir and many more.....

 

The report includes these components:

  • PDF report download/by email. Print edition also available. 
  • Comprehensive Excel spreadsheet of all data.
  • Mid-year Update

 

The Global Industrial Biomanufacturing Market 2026-2036
The Global Industrial Biomanufacturing Market 2026-2036
PDF download.

The Global Industrial Biomanufacturing Market 2026-2036
The Global Industrial Biomanufacturing Market 2026-2036
PDF download and Two Volume Print Edition (including tracked delivery).

Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer. To order by Bank Transfer (Invoice) select this option from the payment methods menu after adding to cart, or contact info@futuremarketsinc.com

 

 

 

1             EXECUTIVE SUMMARY            60

  • 1.1        Definition and Scope of Industrial Biomanufacturing        60
  • 1.2        Overview of Industrial Biomanufacturing Processes           61
  • 1.3        Key Components of Industrial Biomanufacturing 63
  • 1.4        Importance of Industrial Biomanufacturing in the Global Economy          64
    • 1.4.1    Role in Healthcare and Pharmaceutical Industries              65
    • 1.4.2    Impact on Industrial Biotechnology and Sustainability     66
    • 1.4.3    Food Security 67
    • 1.4.4    Circular Economy       67
  • 1.5        Colours of Biotechnology      68
  • 1.6        Markets              69
    • 1.6.1    Biopharmaceuticals 69
    • 1.6.2    Industrial Enzymes    70
    • 1.6.3    Biofuels             70
    • 1.6.4    Biomaterials and Bioplastics              71
    • 1.6.5    Specialty Chemicals 72
    • 1.6.6    Food and Beverage    72
    • 1.6.7    Agriculture and Animal Health           73
    • 1.6.8    Environmental Biotechnology             74
  • 1.7        AI and Robotics in Biomanufacturing            75
  • 1.8        Other Advanced and Emerging Technologies in Biomanufacturing           76

 

2             PRODUCTION               79

  • 2.1        Microbial Fermentation           79
  • 2.2        Mammalian Cell Culture        79
  • 2.3        Plant Cell Culture        80
  • 2.4        Insect Cell Culture     81
  • 2.5        Transgenic Animals   81
  • 2.6        Transgenic Plants        82
  • 2.7        Technologies  82
    • 2.7.1    Upstream Processing               82
      • 2.7.1.1 Cell Culture     82
        • 2.7.1.1.1           Overview           82
        • 2.7.1.1.2           Types of Cell Culture Systems            83
        • 2.7.1.1.3           Factors Affecting Cell Culture Performance              83
        • 2.7.1.1.4           Advances in Cell Culture Technology             84
          • 2.7.1.1.4.1      Single-use systems   84
          • 2.7.1.1.4.2      Process analytical technology (PAT)               84
          • 2.7.1.1.4.3      Cell line development              84
    • 2.7.2    Fermentation 85
    • 2.7.2.1 Overview           85
      • 2.7.2.1.1           Types of Fermentation Processes    85
      • 2.7.2.1.2           Factors Affecting Fermentation Performance          86
      • 2.7.2.1.3           Advances in Fermentation Technology         86
        • 2.7.2.1.3.1      High-cell-density fermentation          86
        • 2.7.2.1.3.2      Continuous processing           87
        • 2.7.2.1.3.3      Metabolic engineering             87
        • 2.7.2.1.3.4      Synthetic biology applications           87
        • 2.7.2.1.3.5      Cell-free systems        88
        • 2.7.2.1.3.6      Continuous vs batch biomanufacturing      88
    • 2.7.3    Downstream Processing        89
      • 2.7.3.1 Purification      89
        • 2.7.3.1.1           Overview           89
        • 2.7.3.1.2           Types of Purification Methods            89
        • 2.7.3.1.3           Factors Affecting Purification Performance               90
        • 2.7.3.1.4           Advances in Purification Technology              90
          • 2.7.3.1.4.1      Affinity chromatography         90
          • 2.7.3.1.4.2      Membrane chromatography 91
          • 2.7.3.1.4.3      Continuous chromatography              91
          • 2.7.3.1.4.4      Downstream processing (DSP) improvements        92
          • 2.7.3.1.4.5      Tangential flow filtration (TFF) in downstream bioprocessing        92
    • 2.7.4    Formulation    93
      • 2.7.4.1 Overview           93
        • 2.7.4.1.1           Types of Formulation Methods           93
        • 2.7.4.1.2           Factors Affecting Formulation Performance             94
        • 2.7.4.1.3           Advances in Formulation Technology            94
          • 2.7.4.1.3.1      Controlled release      94
          • 2.7.4.1.3.2      Nanoparticle formulation      95
          • 2.7.4.1.3.3      3D printing       95
    • 2.7.5    Bioprocess Development      95
      • 2.7.5.1 Scale-up            95
        • 2.7.5.1.1           Overview           95
        • 2.7.5.1.2           Factors Affecting Scale-up Performance     95
        • 2.7.5.1.3           Scale-up Strategies    96
      • 2.7.5.2 Optimization  97
        • 2.7.5.2.1           Overview           97
        • 2.7.5.2.2           Factors Affecting Optimization Performance            97
        • 2.7.5.2.3           Optimization Strategies           98
        • 2.7.5.2.4           Machine learning to improve biomanufacturing processes            99
        • 2.7.5.2.5           Process intensification and high-cell-density fermentation           100
        • 2.7.5.2.6           Hybrid biotechnological-chemical approaches     100
    • 2.7.6    Analytical Methods    101
      • 2.7.6.1 Quality Control             101
        • 2.7.6.1.1           Overview           101
        • 2.7.6.1.2           Types of Quality Control Tests            102
        • 2.7.6.1.3           Factors Affecting Quality Control Performance      102
      • 2.7.6.2 Characterization          102
        • 2.7.6.2.1           Overview           103
        • 2.7.6.2.2           Types of Characterization Methods 103
        • 2.7.6.2.3           Factors Affecting Characterization Performance   104
    • 2.7.7    Synthetic Biology Tools and Techniques      106
      • 2.7.7.1 DNA synthesis              106
      • 2.7.7.2 CRISPR-Cas9 systems            106
      • 2.7.7.3 Protein/enzyme engineering 107
      • 2.7.7.4 Computer-aided design          108
      • 2.7.7.5 Strain construction and optimization            109
      • 2.7.7.6 Robotics and automation      110
      • 2.7.7.7 Artificial intelligence and machine learning              111
    • 2.7.8    Alternative Feedstocks and Sustainability 112
      • 2.7.8.1 C1 feedstocks: Metabolic pathways               112
      • 2.7.8.2 C2 feedstocks               113
      • 2.7.8.3 Lignocellulosic biomass feedstocks              114
      • 2.7.8.4 Blue biotechnology feedstocks         115
      • 2.7.8.5 Routes for carbon capture in biotechnology             116
  • 2.8        Scale of Production   117
    • 2.8.1    Laboratory Scale         117
      • 2.8.1.1 Overview           117
      • 2.8.1.2 Scale and Equipment               117
      • 2.8.1.3 Advantages     118
      • 2.8.1.4 Disadvantages             118
    • 2.8.2    Pilot Scale        119
      • 2.8.2.1 Overview           119
      • 2.8.2.2 Scale and Equipment               119
      • 2.8.2.3 Advantages     119
      • 2.8.2.4 Disadvantages             120
    • 2.8.3    Commercial Scale      120
      • 2.8.3.1 Overview           120
      • 2.8.3.2 Scale and Equipment               120
      • 2.8.3.3 Advantages     121
      • 2.8.3.4 Disadvantages             122
  • 2.9        Mode of Operation     122
    • 2.9.1    Batch Production        122
      • 2.9.1.1 Overview           122
      • 2.9.1.2 Advantages     123
      • 2.9.1.3 Disadvantages             123
      • 2.9.1.4 Applications   124
    • 2.9.2    Fed-batch Production              124
      • 2.9.2.1 Overview           124
      • 2.9.2.2 Advantages     124
      • 2.9.2.3 Disadvantages             125
      • 2.9.2.4 Applications   125
    • 2.9.3    Continuous Production           126
      • 2.9.3.1 Overview           126
      • 2.9.3.2 Advantages     126
      • 2.9.3.3 Disadvantages             126
      • 2.9.3.4 Applications   126
      • 2.9.3.5 Key fermentation parameter comparison   127
    • 2.9.4    Cell factories for biomanufacturing 128
      • 2.9.4.1 Range of organisms  129
      • 2.9.4.2 Escherichia coli (E.coli)           130
      • 2.9.4.3 Corynebacterium glutamicum (C. glutamicum)     131
      • 2.9.4.4 Bacillus subtilis (B. subtilis) 132
      • 2.9.4.5 Saccharomyces cerevisiae (S. cerevisiae)  133
      • 2.9.4.6 Yarrowia lipolytica (Y. lipolytica)        134
      • 2.9.4.7 Non-model organisms            135
    • 2.9.5    Perfusion Culture        136
      • 2.9.5.1 Overview           136
      • 2.9.5.2 Advantages     136
      • 2.9.5.3 Disadvantages             137
      • 2.9.5.4 Applications   137
      • 2.9.5.5 Perfusion bioreactors               137
    • 2.9.6    Other Modes of Operation     138
      • 2.9.6.1 Immobilized Cell Culture       138
        • 2.9.6.1.1           Immobilized enzymes              139
        • 2.9.6.1.2           Immobilized catalysts              140
      • 2.9.6.2 Two-Stage Production              141
      • 2.9.6.3 Hybrid Systems            141
  • 2.10     Host Organisms          142

 

3             BIOPHARMACEUTICALS        144

  • 3.1        Overview           144
  • 3.2        Technology/materials analysis          144
    • 3.2.1    Monoclonal Antibodies (mAbs)         144
    • 3.2.2    Recombinant Proteins             145
    • 3.2.3    Vaccines           146
    • 3.2.4    Cell and Gene Therapies        146
    • 3.2.5    Blood Factors 147
    • 3.2.6    Tissue Engineering Products                147
    • 3.2.7    Nucleic Acid Therapeutics    148
    • 3.2.8    Peptide Therapeutics               149
    • 3.2.9    Biosimilars and Biobetters    149
    • 3.2.10 Nanobodies and Antibody Fragments           150
    • 3.2.11 Synthetic biology         151
      • 3.2.11.1            Metabolic engineering             151
        • 3.2.11.1.1        DNA synthesis              152
        • 3.2.11.1.2        CRISPR              152
          • 3.2.11.1.2.1   CRISPR/Cas9-modified biosynthetic pathways      152
      • 3.2.11.2            Protein/Enzyme Engineering                153
      • 3.2.11.3            Strain construction and optimization            155
      • 3.2.11.4            Synthetic biology and metabolic engineering           155
      • 3.2.11.5            Smart bioprocessing 156
      • 3.2.11.6            Cell-free systems        157
      • 3.2.11.7            Chassis organisms    159
      • 3.2.11.8            Biomimetics   160
      • 3.2.11.9            Sustainable materials              161
      • 3.2.11.10         Robotics and automation      161
        • 3.2.11.10.1     Robotic cloud laboratories   162
        • 3.2.11.10.2     Automating organism design              162
        • 3.2.11.10.3     Artificial intelligence and machine learning              163
      • 3.2.11.11         Fermentation Processes        163
    • 3.2.12 Generative Biology     164
      • 3.2.12.1            Generative Adversarial Networks (GANs)    165
        • 3.2.12.1.1        Variational Autoencoders (VAEs)      166
        • 3.2.12.1.2        Normalizing Flows      166
        • 3.2.12.1.3        Autoregressive Models            166
        • 3.2.12.1.4        Evolutionary Generative Models       166
      • 3.2.12.2            Design Optimization 167
        • 3.2.12.2.1        Evolutionary Algorithms (e.g., Genetic Algorithms, Evolutionary Strategies)       167
          • 3.2.12.2.1.1   Genetic Algorithms (GAs)      167
          • 3.2.12.2.1.2   Evolutionary Strategies (ES) 167
        • 3.2.12.2.2        Reinforcement Learning         167
        • 3.2.12.2.3        Multi-Objective Optimization              168
        • 3.2.12.2.4        Bayesian Optimization            168
      • 3.2.12.3            Computational Biology           169
        • 3.2.12.3.1        Molecular Dynamics Simulations    169
        • 3.2.12.3.2        Quantum Mechanical Calculations                170
        • 3.2.12.3.3        Systems Biology Modeling    170
        • 3.2.12.3.4        Metabolic Engineering Modeling       171
      • 3.2.12.4            Data-Driven Approaches       172
        • 3.2.12.4.1        Machine Learning       172
        • 3.2.12.4.2        Graph Neural Networks           172
        • 3.2.12.4.3        Unsupervised Learning           172
        • 3.2.12.4.4        Active Learning and Bayesian Optimization              173
      • 3.2.12.5            Agent-Based Modeling            173
      • 3.2.12.6            Hybrid Approaches    174
  • 3.3        Market analysis            175
    • 3.3.1    Key players and competitive landscape      175
    • 3.3.2    Market Growth Drivers and Trends   176
    • 3.3.3    Regulations     177
    • 3.3.4    Value chain     179
    • 3.3.5    Future outlook              179
    • 3.3.6    Technology Readiness Level (TRL)   180
    • 3.3.7    Addressable Market Size        182
    • 3.3.8    Risks and Opportunities         182
    • 3.3.9    Global revenues           184
      • 3.3.9.1 By application market              184
      • 3.3.9.2 By regional market      184
  • 3.4        Company profiles       186 (131 company profiles)

 

4             INDUSTRIAL ENZYMES (BIOCATALYSTS)      274

  • 4.1        Overview           274
    • 4.1.1    Bio-manufactured enzymes 274
  • 4.2        Technology/materials analysis          275
    • 4.2.1    Detergent Enzymes    275
    • 4.2.2    Food Processing Enzymes    276
    • 4.2.3    Textile Processing Enzymes  276
    • 4.2.4    Paper and Pulp Processing Enzymes             277
    • 4.2.5    Leather Processing Enzymes               277
    • 4.2.6    Biofuel Production Enzymes                278
      • 4.2.6.1 Enzymes for lignocellulosic derived bioethanol      278
      • 4.2.6.2 Cellulases for lignocellulosic bioethanol    280
      • 4.2.6.3 Hemicellulases and synergistic enzyme cocktails                281
      • 4.2.6.4 Thermostable and extremophilic enzymes 282
      • 4.2.6.5 Cost-performance metrics for thermostable enzymes      283
    • 4.2.7    Animal Feed Enzymes              284
    • 4.2.8    Pharmaceutical and Diagnostic Enzymes  284
    • 4.2.9    Waste Management and Bioremediation Enzymes              285
      • 4.2.9.1 Enzymes for plastics recycling           285
      • 4.2.9.2 Enzymatic depolymerization               286
      • 4.2.9.3 Challenges in enzymatic depolymerization               287
    • 4.2.10 Agriculture and Crop Improvement Enzymes           288
    • 4.2.11 Enzymes for Decarbonization and CO₂ Utilization 290
      • 4.2.11.1            Carbonic anhydrase in CO₂ capture technologies 292
      • 4.2.11.2            Formate dehydrogenase and CO₂-to-chemicals pathways             293
      • 4.2.11.3            Selected enzymatic approaches to CO2 capture and conversion              294
  • 4.3        Market analysis            295
    • 4.3.1    Key players and competitive landscape      295
    • 4.3.2    Market Growth Drivers and Trends   296
    • 4.3.3    Technology challenges and opportunities for industrial enzymes               297
    • 4.3.4    Economic competitiveness of enzymatic processing         299
    • 4.3.5    Regulations     300
    • 4.3.6    Value chain     300
    • 4.3.7    Future outlook              301
    • 4.3.8    Technology Readiness Level (TRL)   302
    • 4.3.9    Addressable Market Size        303
    • 4.3.10 Risks and Opportunities         304
    • 4.3.11 Global revenues           304
      • 4.3.11.1            By application market              304
      • 4.3.11.2            By regional market      305
  • 4.4        Company profiles  306 (63 company profiles)

 

5             BIOFUELS        346

  • 5.1        Overview           346
  • 5.2        Technology/materials analysis          348
    • 5.2.1    Role in the circular economy               348
    • 5.2.2    The global biofuels market    350
    • 5.2.3    Feedstocks      350
      • 5.2.3.1 First-generation (1-G)               351
      • 5.2.3.2 Second-generation (2-G)       352
        • 5.2.3.2.1           Lignocellulosic wastes and residues             353
        • 5.2.3.2.2           Biorefinery lignin         354
      • 5.2.3.3 Third-generation (3-G)             358
        • 5.2.3.3.1           Algal biofuels 358
          • 5.2.3.3.1.1      Properties         359
          • 5.2.3.3.1.2      Advantages     359
      • 5.2.3.4 Fourth-generation (4-G)          360
      • 5.2.3.5 Advantages and disadvantages, by generation        361
    • 5.2.4    Bioethanol       362
      • 5.2.4.1 First-generation bioethanol (from sugars and starches)    362
      • 5.2.4.2 Second-generation bioethanol (from lignocellulosic biomass)   362
      • 5.2.4.3 Third-generation bioethanol (from algae)    363
    • 5.2.5    Biodiesel           364
      • 5.2.5.1 Biodiesel by generation           364
      • 5.2.5.2 SWOT analysis              365
      • 5.2.5.3 Production of biodiesel and other biofuels 366
        • 5.2.5.3.1           Pyrolysis of biomass 366
        • 5.2.5.3.2           Vegetable oil transesterification       369
        • 5.2.5.3.3           Vegetable oil hydrogenation (HVO)  370
          • 5.2.5.3.3.1      Production process   370
        • 5.2.5.3.4           Biodiesel from tall oil                371
        • 5.2.5.3.5           Fischer-Tropsch BioDiesel     371
        • 5.2.5.3.6           Hydrothermal liquefaction of biomass         373
        • 5.2.5.3.7           CO2 capture and Fischer-Tropsch (FT)          374
        • 5.2.5.3.8           Dymethyl ether (DME)              374
      • 5.2.5.4 Prices  374
      • 5.2.5.5 Global production and consumption            375
    • 5.2.6    Biogas 376
      • 5.2.6.1 Feedstocks      378
      • 5.2.6.2 Biomethane    378
        • 5.2.6.2.1           Production pathways                380
          • 5.2.6.2.1.1      Landfill gas recovery 380
          • 5.2.6.2.1.2      Anaerobic digestion  381
          • 5.2.6.2.1.3      Thermal gasification 382
      • 5.2.6.3 SWOT analysis              382
      • 5.2.6.4 Global production      383
      • 5.2.6.5 Prices  383
        • 5.2.6.5.1           Raw Biogas     383
        • 5.2.6.5.2           Upgraded Biomethane            383
      • 5.2.6.6 Bio-LNG             384
        • 5.2.6.6.1           Markets              384
          • 5.2.6.6.1.1      Trucks 384
          • 5.2.6.6.1.2      Marine 384
        • 5.2.6.6.2           Production       384
        • 5.2.6.6.3           Plants 385
      • 5.2.6.7 bio-CNG (compressed natural gas derived from biogas)  385
      • 5.2.6.8 Carbon capture from biogas               385
      • 5.2.6.9 Biosyngas        386
        • 5.2.6.9.1           Production       386
        • 5.2.6.9.2           Prices  387
    • 5.2.7    Biobutanol      388
      • 5.2.7.1 Production       389
      • 5.2.7.2 Prices  389
    • 5.2.8    Biohydrogen   390
      • 5.2.8.1 Description     390
      • 5.2.8.1.1           Dark fermentation      390
      • 5.2.8.1.2           Photofermentation     391
      • 5.2.8.1.3           Biophotolysis (direct and indirect)   391
        • 5.2.8.1.3.1      Direct Biophotolysis: 392
        • 5.2.8.1.3.2      Indirect Biophotolysis:            392
      • 5.2.8.2 SWOT analysis              393
      • 5.2.8.3 Production of biohydrogen from biomass  394
        • 5.2.8.3.1           Biological Conversion Routes             394
          • 5.2.8.3.1.1      Bio-photochemical Reaction              394
          • 5.2.8.3.1.2      Fermentation and Anaerobic Digestion        395
        • 5.2.8.3.2           Thermochemical conversion routes               395
          • 5.2.8.3.2.1      Biomass Gasification               395
          • 5.2.8.3.2.2      Biomass Pyrolysis      395
          • 5.2.8.3.2.3      Biomethane Reforming           396
      • 5.2.8.4 Applications   396
      • 5.2.8.5 Prices  397
    • 5.2.9    Biomethanol  397
      • 5.2.9.1 Gasification-based biomethanol     397
      • 5.2.9.2 Biosynthesis-based biomethanol    398
      • 5.2.9.3 SWOT analysis              399
      • 5.2.9.4 Methanol-to gasoline technology     399
        • 5.2.9.4.1           Production processes              400
          • 5.2.9.4.1.1      Anaerobic digestion  401
          • 5.2.9.4.1.2      Biomass gasification 402
          • 5.2.9.4.1.3      Power to Methane       402
    • 5.2.10 Bio-oil and Biochar    403
      • 5.2.10.1            Pyrolysis-based bio-oil            403
      • 5.2.10.2            Hydrothermal liquefaction-based bio-oil    404
      • 5.2.10.3            Biochar from pyrolysis and gasification processes               405
      • 5.2.10.4            Advantages of bio-oils             406
      • 5.2.10.5            Production       408
        • 5.2.10.5.1        Fast Pyrolysis 408
        • 5.2.10.5.2        Costs of production  408
        • 5.2.10.5.3        Upgrading        408
      • 5.2.10.6            SWOT analysis              409
      • 5.2.10.7            Applications   410
      • 5.2.10.8            Bio-oil producers         410
      • 5.2.10.9            Prices  411
    • 5.2.11 Renewable Diesel and Jet Fuel           412
      • 5.2.11.1            Renewable diesel        412
        • 5.2.11.1.1        Production       412
        • 5.2.11.1.2        SWOT analysis              413
        • 5.2.11.1.3        Global consumption 414
        • 5.2.11.1.4        Prices  415
      • 5.2.11.2            Bio-aviation fuel (bio-jet fuel, sustainable aviation fuel, renewable jet fuel or aviation biofuel)              415
        • 5.2.11.2.1        Description     415
        • 5.2.11.2.2        SWOT analysis              416
        • 5.2.11.2.3        Global production and consumption            417
        • 5.2.11.2.4        Production pathways                417
        • 5.2.11.2.5        Prices  419
        • 5.2.11.2.6        Bio-aviation fuel production capacities       419
        • 5.2.11.2.7        Challenges      420
        • 5.2.11.2.8        Global consumption 420
    • 5.2.12 Algal biofuels 421
      • 5.2.12.1            Conversion pathways               421
      • 5.2.12.2            SWOT analysis              422
      • 5.2.12.3            Production       423
      • 5.2.12.4            Market challenges      424
      • 5.2.12.5            Prices  425
      • 5.2.12.6            Producers         426
  • 5.3        Market analysis            427
    • 5.3.1    Key players and competitive landscape      427
    • 5.3.2    Market Growth Drivers and Trends   428
    • 5.3.3    Regulations     428
    • 5.3.4    Value chain     429
    • 5.3.5    Future outlook              430
    • 5.3.6    Technology Readiness Level (TRL)   431
    • 5.3.7    Addressable Market Size        433
    • 5.3.8    Risks and Opportunities         434
    • 5.3.9    Global revenues           434
    • 5.3.9.1 By biofuel type               434
    • 5.3.9.2 Applications Market  434
    • 5.3.9.3 By regional market      435
  • 5.4        Company profiles       436 (233 company profiles)

 

6             BIOPLASTICS 592

  • 6.1        Overview           592
  • 6.2        Technology/materials analysis          593
    • 6.2.1    Polylactic acid (PLA) 593
    • 6.2.2    Polyhydroxyalkanoates (PHAs)          595
      • 6.2.2.1 Types   596
      • 6.2.2.2 Polyhydroxybutyrate (PHB)   600
      • 6.2.2.3 Polyhydroxyvalerate (PHV)    600
    • 6.2.3    Bio-based polyethylene (PE)                601
    • 6.2.4    Bio-based polyethylene terephthalate (PET)             601
    • 6.2.5    Bio-based polyurethanes (PUs)         602
    • 6.2.6    Starch-based plastics              604
    • 6.2.7    Cellulose-based plastics       605
  • 6.3        Market analysis            606
    • 6.3.1    Key players and competitive landscape      606
    • 6.3.2    Market Growth Drivers and Trends   607
    • 6.3.3    Regulations     607
    • 6.3.4    Value chain     608
    • 6.3.5    Future outlook              609
    • 6.3.6    Technology Readiness Level (TRL)   610
    • 6.3.7    Addressable Market Size        612
    • 6.3.8    Risks and Opportunities         613
    • 6.3.9    Global revenues           613
      • 6.3.9.1 By type                613
      • 6.3.9.2 By application market              614
      • 6.3.9.3 By regional market      614
  • 6.4        Company profiles       615 (581 company profiles)

 

7             BIOCHEMICALS           1023

  • 7.1        Overview           1023
  • 7.2        Technology/materials analysis          1024
    • 7.2.1    Organic acids 1028
      • 7.2.1.1 Lactic acid       1028
        • 7.2.1.1.1           D-lactic acid   1028
        • 7.2.1.1.2           L-lactic acid    1029
      • 7.2.1.2 Succinic acid 1029
      • 7.2.1.3 Itaconic acid  1030
      • 7.2.1.4 Citric acid        1031
      • 7.2.1.5 Acetic acid      1031
    • 7.2.2    Amino acids   1032
      • 7.2.2.1 Glutamic acid                1032
      • 7.2.2.2 Lysine 1033
      • 7.2.2.3 Threonine         1034
      • 7.2.2.4 Methionine      1035
      • 7.2.2.5 Vitamins produced using biotechnology     1036
        • 7.2.2.5.1           Vitamin B2 (Riboflavin)            1036
        • 7.2.2.5.2           Vitamin B12 (Cobalamin)      1037
        • 7.2.2.5.3           Vitamin C (Ascorbic Acid)      1038
        • 7.2.2.5.4           Vitamin B7 (Biotin)     1038
        • 7.2.2.5.5           Vitamin B3 (Niacin / Nicotinic Acid) 1039
        • 7.2.2.5.6           Vitamin B9 (Folic Acid / Folate)          1040
    • 7.2.3    Alcohols            1040
      • 7.2.3.1 Ethanol              1040
      • 7.2.3.2 Butanol              1041
      • 7.2.3.3 Isobutanol       1042
      • 7.2.3.4 Propanediol    1043
    • 7.2.4    Surfactants     1044
      • 7.2.4.1 Biosurfactants (e.g., rhamnolipids, sophorolipids)              1044
        • 7.2.4.1.1           Rhamnolipids 1044
        • 7.2.4.1.2           Sophorolipids                1046
        • 7.2.4.1.3           Mannosylerythritol lipids (MELs)      1047
        • 7.2.4.1.4           Cellobiose lipids          1048
        • 7.2.4.1.5           Designer glycolipids and lipopeptides via synthetic biology           1049
      • 7.2.4.2 Alkyl polyglucosides (APGs) 1050
    • 7.2.5    Solvents            1050
      • 7.2.5.1 Ethyl lactate    1050
      • 7.2.5.2 Dimethyl carbonate   1051
      • 7.2.5.3 Glycerol             1052
    • 7.2.6    Flavours and fragrances         1052
      • 7.2.6.1 Vanillin               1052
      • 7.2.6.2 Nootkatone     1053
      • 7.2.6.3 Limonene         1054
      • 7.2.6.4 Bio-manufactured fragrances and aromatics          1056
      • 7.2.6.5 Biotech-derived fragrance precursors           1057
      • 7.2.6.6 Ambroxan        1057
      • 7.2.6.7 Flavour enhancers      1058
      • 7.2.6.8 Disodium Inosinate (IMP)      1059
      • 7.2.6.9 Disodium Guanylate (GMP)  1060
      • 7.2.6.10            Monatin             1061
    • 7.2.7    Bio-based monomers and intermediates    1062
      • 7.2.7.1 Succinic acid 1062
      • 7.2.7.2 1,4-Butanediol (BDO)              1063
      • 7.2.7.3 Isoprene            1063
      • 7.2.7.4 Ethylene            1064
      • 7.2.7.5 Propylene         1065
      • 7.2.7.6 Adipic acid      1066
      • 7.2.7.7 Acrylic acid     1066
      • 7.2.7.8 Sebacic acid  1067
    • 7.2.8    Bio-based polymers  1067
      • 7.2.8.1 Polybutylene succinate (PBS)             1067
      • 7.2.8.2 Polyamides (nylons)  1069
      • 7.2.8.3 Polyethylene furanoate (PEF)              1069
      • 7.2.8.4 Polytrimethylene terephthalate (PTT)            1070
      • 7.2.8.5 Polyethylene isosorbide terephthalate (PEIT)           1072
    • 7.2.9    Bio-based composites and blends  1073
      • 7.2.9.1 Wood-plastic composites (WPCs)  1073
      • 7.2.9.2 Biofiller-reinforced plastics  1074
      • 7.2.9.3 Biofiber-reinforced plastics  1075
      • 7.2.9.4 Polymer blends with bio-based components           1076
    • 7.2.10 Beauty and Personal Care Chemicals           1077
      • 7.2.10.1            Hyaluronic acid production  1077
      • 7.2.10.2            Squalene and Squalane alternatives              1078
      • 7.2.10.3            Collagen           1079
      • 7.2.10.4            Bio-based UV filters and photoprotective compounds      1080
      • 7.2.10.5            Melanin             1081
      • 7.2.10.6            Emollients       1082
    • 7.2.11 Waste 1083
      • 7.2.11.1            Food waste      1083
      • 7.2.11.2            Agricultural waste       1084
      • 7.2.11.3            Forestry waste               1085
      • 7.2.11.4            Aquaculture/fishing waste    1085
      • 7.2.11.5            Municipal solid waste              1086
      • 7.2.11.6            Industrial waste           1086
      • 7.2.11.7            Waste oils        1087
    • 7.2.12 Microbial and mineral sources           1087
      • 7.2.12.1            Microalgae      1087
      • 7.2.12.2            Macroalgae     1088
      • 7.2.12.3            Cyanobacteria              1088
      • 7.2.12.4            Mineral sources            1089
    • 7.2.13 Other Bio-manufactured Products  1090
      • 7.2.13.1            Cement alternatives from biomanufacturing           1090
      • 7.2.13.2            Precision fermentation products      1091
  • 7.3        Market analysis            1092
    • 7.3.1    Key players and competitive landscape      1092
      • 7.3.1.1 Company landscape in specialty chemicals biotechnology          1093
      • 7.3.1.2 Bio-manufactured beauty ingredient production capacities          1094
    • 7.3.2    Market Growth Drivers and Trends   1095
      • 7.3.2.1 Trends and drivers in biotechnology               1096
      • 7.3.2.2 Government support of biotechnology         1096
      • 7.3.2.3 Carbon taxes  1098
    • 7.3.3    Regulations     1098
    • 7.3.4    Value chain     1099
      • 7.3.4.1 Economic viability factors     1100
      • 7.3.4.2 Effect of feedstock prices      1101
      • 7.3.4.3 Scale-up effects on cost        1102
    • 7.3.5    Future outlook              1103
    • 7.3.6    Technology Readiness Level (TRL)   1105
    • 7.3.7    Addressable Market Size        1106
    • 7.3.8    Risks and Opportunities         1107
    • 7.3.9    Major market challenges        1107
    • 7.3.10 Technical challenges 1108
    • 7.3.11 Global revenues           1109
      • 7.3.11.1            By type                1109
      • 7.3.11.2            By application market              1110
      • 7.3.11.3            By regional market      1110
  • 7.4        Company profiles       1111 (138 company profiles)

 

8             BIO-AGRITECH             1200

  • 8.1        Overview           1200
  • 8.2        Technology/materials analysis          1201
    • 8.2.1    Biopesticides 1201
      • 8.2.1.1 Semiochemical            1202
      • 8.2.1.2 Macrobial Biological Control Agents              1203
      • 8.2.1.3 Microbial pesticides  1205
      • 8.2.1.4 Biochemical pesticides          1206
      • 8.2.1.5 Plant-incorporated protectants (PIPs)           1206
    • 8.2.2    Biofertilizers   1207
    • 8.2.3    Biostimulants 1208
      • 8.2.3.1 Microbial biostimulants         1208
        • 8.2.3.1.1           Nitrogen Fixation         1211
        • 8.2.3.1.2           Formulation Challenges         1212
      • 8.2.3.2 Natural Product Biostimulants          1213
      • 8.2.3.3 Manipulating the Microbiome             1216
      • 8.2.3.4 Synthetic Biology        1217
      • 8.2.3.5 Non-microbial biostimulants             1218
    • 8.2.4    Agricultural Enzymes                1219
      • 8.2.4.1 Types of Agricultural Enzymes            1219
  • 8.3        Market analysis            1221
    • 8.3.1    Key players and competitive landscape      1221
    • 8.3.2    Market Growth Drivers and Trends   1222
    • 8.3.3    Regulations     1222
    • 8.3.4    Value chain     1223
    • 8.3.5    Future outlook              1224
    • 8.3.6    Addressable Market Size        1225
    • 8.3.7    Risks and Opportunities         1225
    • 8.3.8    Global revenues           1226
      • 8.3.8.1 By application market              1226
      • 8.3.8.2 By regional market      1226
  • 8.4        Company profiles       1227 (105 company profiles)

 

9             RESEARCH METHODOLOGY              1302

 

10          REFERENCES 1303

 

List of Tables

  • Table 1. Biomanufacturing revolutions and representative products.      60
  • Table 2. Industrial Biomanufacturing categories.  61
  • Table 3. Overview of Biomanufacturing Processes.             62
  • Table 4. Continuous vs batch biomanufacturing   63
  • Table 5. Key Components of Industrial Biomanufacturing.             64
  • Table 6. Colours of biotechnology.  69
  • Table 7. AI and Robotics Applications in Biomanufacturing           75
  • Table 8. Advanced Technologies in Biomanufacturing Applications.       77
  • Table 9. Types of Cell Culture Systems.       83
  • Table 10. Factors Affecting Cell Culture Performance.      84
  • Table 11. Types of Fermentation Processes.             85
  • Table 12. Factors Affecting Fermentation Performance.   86
  • Table 13. Advances in Fermentation Technology.   86
  • Table 14. Continuous vs Batch Biomanufacturing Comparison. 89
  • Table 15. Types of Purification Methods in Downstream Processing.       89
  • Table 16. Factors Affecting Purification Performance.        90
  • Table 17. Advances in Purification Technology.       90
  • Table 18. Downstream Processing Technology Improvements.    92
  • Table 19. TFF Applications in Downstream Processing.    93
  • Table 20. Common formulation methods used in biomanufacturing.     93
  • Table 21. Factors Affecting Formulation Performance.      94
  • Table 22. Advances in Formulation Technology.     94
  • Table 23. Factors Affecting Scale-up Performance in Biomanufacturing.             96
  • Table 24. Scale-up Strategies in Biomanufacturing.            96
  • Table 25. Factors Affecting Optimization Performance in Biomanufacturing.    98
  • Table 26. Optimization Strategies in Biomanufacturing.   98
  • Table 27. Machine Learning Applications in Biomanufacturing   99
  • Table 28. High-Cell-Density Fermentation Parameters and Targets.         100
  • Table 29. Hybrid Biotechnological-Chemical Process Applications.        101
  • Table 30. Types of Quality Control Tests in Biomanufacturing.     102
  • Table 31.Factors Affecting Quality Control Performance in Biomanufacturing  102
  • Table 32. Types of Characterization Methods in Biomanufacturing.         104
  • Table 33. Factors Affecting Characterization Performance in Biomanufacturing             105
  • Table 34. DNA Synthesis Technologies and Capabilities. 106
  • Table 35. CRISPR-Cas9 Applications in Biomanufacturing.           107
  • Table 36. Protein Engineering Strategies and Applications.             108
  • Table 37. Computer-Aided Design Tools in Biotechnology.              109
  • Table 38. Strain Engineering Strategies and Targets.            110
  • Table 39. Automation Applications in Biotechnology.         111
  • Table 40. AI/ML Applications in Biomanufacturing Systems.         112
  • Table 41. C1 Feedstock Utilization Pathways and Characteristics.            113
  • Table 42. C2 Feedstock Processing and Applications.       114
  • Table 43. Lignocellulosic Biomass Processing Technologies.        115
  • Table 44. Blue Biotechnology Feedstock Characteristics and Applications.       116
  • Table 45. Carbon Capture and Utilization Pathways in Biotechnology.   117
  • Table 46. Key fermentation parameters in batch vs continuous biomanufacturing processes.              123
  • Table 47. Key fermentation parameter comparison             127
  • Table 48.  Major microbial cell factories used in industrial biomanufacturing.  128
  • Table 49. Organism Categories and Production Capabilities.       130
  • Table 50. E. coli Characteristics for Biomanufacturing Applications.      131
  • Table 51. C. glutamicum Production Capabilities and Characteristics.  132
  • Table 52. B. subtilis Production Systems and Applications.           133
  • Table 53. S. cerevisiae Capabilities and Industrial Applications. 134
  • Table 54. Y. lipolytica Production Capabilities and Process Parameters.               135
  • Table 55. Non-Model Organisms and Specialized Applications. 136
  • Table 56. Perfusion Bioreactor Technologies and Performance.  138
  • Table 57. Enzyme Immobilization Methods and Characteristics. 139
  • Table 58. Immobilized Catalyst Systems and Applications.            140
  • Table 59. Comparison of Modes of Operation.        141
  • Table 60. Host organisms commonly used in biomanufacturing.               142
  • Table 61. Types of biopharmaceuticals.      144
  • Table 62. Types of Monoclonal Antibodies. 145
  • Table 63. Types of Recombinant Proteins.  145
  • Table 64. Types of biopharma vaccines.      146
  • Table 65. Types of Cell and Gene Therapies              146
  • Table 66. Types of Blood Factors.     147
  • Table 67. Types of Tissue Engineering Products.     147
  • Table 68. Types of Nucleic Acid Therapeutics.         148
  • Table 69. Types of Peptide Therapeutics.    149
  • Table 70. Types of Biosimilars and Biobetters.         149
  • Table 71. Types of Nanobodies and Antibody Fragments. 150
  • Table 72. Types of Synthetic Biology Applications in Biopharmaceuticals.          151
  • Table 73. Engineered proteins in industrial applications. 154
  • Table 74. Cell-free versus cell-based systems         158
  • Table 75. White biotechnology fermentation processes.  163
  • Table 76. Key players in biopharmaceuticals.          175
  • Table 77. Market Growth Drivers and Trends in Biopharmaceuticals.      176
  • Table 78. Biopharmaceuticals Regulations.              177
  • Table 79. Value chain: Biopharmaceuticals.            179
  • Table 80. Technology Readiness Level (TRL): Biopharmaceuticals.          180
  • Table 81. Addressable market size for biopharmaceuticals.          182
  • Table 82. Risks and Opportunities in biopharmaceuticals.             182
  • Table 83. Global revenues for biopharmaceuticals, by applications market (2020-2036), billions USD.                184
  • Table 84. Global revenues for biopharmaceuticals, by regional market (2020-2036), billions USD.    184
  • Table 85. Types of industrial enzymes.          274
  • Table 86. Types of Detergent Enzymes.        275
  • Table 87.Types of Food Processing Enzymes             276
  • Table 88. Types of Textile Processing Enzymes.      276
  • Table 89. Types of Paper and Pulp Processing Enzymes.  277
  • Table 90. Types of Leather Processing Enzymes.   277
  • Table 91. Types of Biofuel Production Enzymes.     278
  • Table 92. Lignocellulosic Enzyme Systems and Performance.      279
  • Table 93. Cellulase Component Functions and Characteristics. 280
  • Table 94. Hemicellulase Systems and Substrate Specificity.         281
  • Table 95. Thermostable Enzyme Sources and Characteristics.    282
  • Table 96. Thermostable Enzyme Economic Analysis Framework.               283
  • Table 97. Types of Animal Feed Enzymes.   284
  • Table 98. Types of Pharmaceutical and Diagnostic Enzymes.       284
  • Table 99. Types of Waste Management and Bioremediation Enzymes.   285
  • Table 100. Enzymes for Plastics Recycling Applications.  286
  • Table 101. Challenges in Enzymatic Depolymerization.     287
  • Table 102. Types of Agriculture and Crop Improvement Enzymes.             288
  • Table 103. Comparison of enzyme types.    288
  • Table 104. Enzymes for Decarbonization and CO₂ Utilization.      291
  • Table 105. Carbonic Anhydrase Applications in CO₂ Capture.      293
  • Table 106. Formate Dehydrogenase Systems for CO₂ Conversion.            294
  • Table 107. Enzymatic CO₂ Capture and Conversion Technologies.            295
  • Table 108. Key players in industrial enzymes.          295
  • Table 109. Market Growth Drivers and Trends in industrial enzymes.       296
  • Table 110. Technology Challenges and Opportunities for Industrial Enzymes.  297
  • Table 111. Industrial enzymes Regulations.              300
  • Table 112. Value chain: Industrial enzymes.             300
  • Table 113. Technology Readiness Level (TRL): Biocatalysts.          303
  • Table 114. Addressable market size for industrial enzymes.          303
  • Table 115. Risks and Opportunities in industrial enzymes.             304
  • Table 116. Global revenues for industrial enzymes, by applications market (2020-2036), billions USD.                304
  • Table 117. Global revenues for industrial enzymes, by regional market (2020-2036), billions USD.     305
  • Table 118. Types of biofuel, by generation. 346
  • Table 119. Comparison of biofuels. 349
  • Table 120. Classification of biomass feedstock.    350
  • Table 121. Biorefinery feedstocks.   351
  • Table 122. Feedstock conversion pathways.             351
  • Table 123. First-Generation Feedstocks.     351
  • Table 124.  Lignocellulosic ethanol plants and capacities.             354
  • Table 125. Comparison of pulping and biorefinery lignins.              355
  • Table 126. Commercial and pre-commercial biorefinery lignin production facilities and  processes 355
  • Table 127. Operating and planned lignocellulosic biorefineries and industrial flue gas-to-ethanol.   357
  • Table 128. Properties of microalgae and macroalgae.       359
  • Table 129. Yield of algae and other biodiesel crops.            360
  • Table 130. Advantages and disadvantages of biofuels, by generation.    361
  • Table 131. Biodiesel by generation. 364
  • Table 132. Biodiesel production techniques.            366
  • Table 133. Summary of pyrolysis technique under different operating conditions.         367
  • Table 134. Biomass materials and their bio-oil yield.          368
  • Table 135. Biofuel production cost from the biomass pyrolysis process.              368
  • Table 136. Properties of vegetable oils in comparison to diesel.  370
  • Table 137. Main producers of HVO and capacities.              371
  • Table 138. Example commercial Development of BtL processes.              372
  • Table 139. Pilot or demo projects for biomass to liquid (BtL) processes.               372
  • Table 140. Global biodiesel consumption, 2010-2036 (M litres/year).     376
  • Table 141. Biogas feedstocks.            378
  • Table 142. Existing and planned bio-LNG production plants.        385
  • Table 143. Methods for capturing carbon dioxide from biogas.    386
  • Table 144. Comparison of different Bio-H2 production pathways.             394
  • Table 145. Markets and applications for biohydrogen.       396
  • Table 146. Comparison of biogas, biomethane and natural gas. 401
  • Table 147. Summary of applications of biochar in energy.               406
  • Table 148. Typical composition and physicochemical properties reported for bio-oils and heavy petroleum-derived oils.          407
  • Table 149. Properties and characteristics of pyrolysis liquids derived from biomass versus a fuel oil.                407
  • Table 150. Main techniques used to upgrade bio-oil into higher-quality fuels.   409
  • Table 151. Markets and applications for bio-oil.     410
  • Table 152. Bio-oil producers.              410
  • Table 153. Global renewable diesel consumption, 2010-2036 (M litres/year).   414
  • Table 154. Renewable diesel price ranges. 415
  • Table 155. Advantages and disadvantages of Bio-aviation fuel.   415
  • Table 156. Production pathways for Bio-aviation fuel.        417
  • Table 157. Current and announced Bio-aviation fuel facilities and capacities. 419
  • Table 158. Global bio-jet fuel consumption 2019-2036 (Million litres/year).       421
  • Table 159. Algae-derived biofuel producers.             426
  • Table 160. Key players in biofuels.   427
  • Table 161. Market Growth Drivers and Trends in biofuels.               428
  • Table 162. Biofuels Regulations.       428
  • Table 163. Value chain: Biofuels.      429
  • Table 164. Technology Readiness Level (TRL): Biofuels.   431
  • Table 165. Addressable market size for biofuels.   433
  • Table 166. Risks and Opportunities in biofuels       434
  • Table 167. Global revenues for biofuels, by type (2020-2036), billions USD.       434
  • Table 168. Global Revenues for Biofuels, by Applications Market (2020-2036), billions USD. 434
  • Table 169. Global revenues for biofuels, by regional market (2020-2036), billions USD.             435
  • Table 170. Granbio Nanocellulose Processes.        502
  • Table 171. Types of bioplastics:        592
  • Table 172. Polylactic acid (PLA) market analysis-manufacture, advantages, disadvantages and applications.  593
  • Table 173.Types of PHAs and properties.     597
  • Table 174. Commercially available PHAs.  598
  • Table 175. Markets and applications for PHAs.       599
  • Table 176. Bio-based Polyethylene (Bio-PE) market analysis- manufacture, advantages, disadvantages and applications.        601
  • Table 177. Bio-based Polyethylene terephthalate (Bio-PET) market analysis- manufacture, advantages, disadvantages and applications.     602
  • Table 178. Bio-based Polyethylene terephthalate (PET) producers and production capacities,             602
  • Table 179. Key players in Bioplastics.            606
  • Table 180. Market Growth Drivers and Trends in Bioplastics.        607
  • Table 181. Bioplastics Regulations. 607
  • Table 182. Value chain: Bioplastics.               608
  • Table 183. Technology Readiness Level (TRL): Bioplastics.            610
  • Table 184. Addressable market size for Bioplastics.            612
  • Table 185. Risks and Opportunities in Bioplastics.              613
  • Table 186. Global revenues for bioplastics, by type (2020-2036), billions USD. 613
  • Table 187. Global revenues for bioplastics, by applications market (2020-2036), billions USD.            614
  • Table 188. Global revenues for bioplastics, by regional market (2020-2036), billions USD.      614
  • Table 189. Lactips plastic pellets.    829
  • Table 190. Oji Holdings CNF products.         896
  • Table 191. Types of biochemicals.   1023
  • Table 192. Plant-based feedstocks and biochemicals produced.               1024
  • Table 193. Waste-based feedstocks and biochemicals produced.            1025
  • Table 194. Microbial and mineral-based feedstocks and biochemicals produced.         1026
  • Table 195. Biobased feedstock sources for Succinic acid.              1029
  • Table 196. Applications of succinic acid.    1030
  • Table 197. Biobased feedstock sources for itaconic acid.               1030
  • Table 198. Applications of bio-based itaconic acid.            1030
  • Table 199. Feedstock Sources for Citric Acid Production.               1031
  • Table 200. Applications of Citric Acid.           1031
  • Table 201. Feedstock Sources for Acetic Acid Production.             1032
  • Table 202. Applications of Acetic Acid.         1032
  • Table 203. Feedstock Sources for Acetic Acid Production.             1032
  • Table 204. Applications of Acetic Acid.         1033
  • Table 205. Common lysine sources that can be used as feedstocks for producing biochemicals.      1033
  • Table 206. Applications of  lysine as a feedstock for biochemicals.          1034
  • Table 207. Feedstock Sources for Threonine Production. 1034
  • Table 208. Applications of Threonine.           1035
  • Table 209.Feedstock Sources for Methionine Production.              1035
  • Table 210. Applications of Methionine.        1035
  • Table 211. Vitamins Produced Using Biotechnology.          1036
  • Table 212. Biobased feedstock sources for ethanol.           1041
  • Table 213. Applications of bio-based ethanol.        1041
  • Table 214. Feedstock Sources for Butanol Production.     1041
  • Table 215. Applications of Butanol. 1042
  • Table 216. Biobased feedstock sources for isobutanol.    1042
  • Table 217. Applications of bio-based isobutanol. 1043
  • Table 218. Applications of bio-based 1,3-Propanediol (1,3-PDO).             1043
  • Table 219. Types of Biosurfactants. 1044
  • Table 220. Feedstock Sources for Biosurfactant Production          1044
  • Table 221. Applications of Biosurfactants  1044
  • Table 222. Rhamnolipid Production and Application Characteristics.     1045
  • Table 223. Sophorolipid Types and Application Properties.             1046
  • Table 224. Mannosylerythritol Lipid Variants and Properties.        1047
  • Table 225. Cellobiose Lipid Development and Applications.         1048
  • Table 226. Designer Biosurfactant Engineering Strategies               1049
  • Table 227.Feedstock Sources for APG Production 1050
  • Table 228. Applications of Alkyl Polyglucosides (APGs)     1050
  • Table 229. Feedstock Sources for Ethyl Lactate Production.         1050
  • Table 230. Applications of Ethyl Lactate.     1051
  • Table 231. Feedstock Sources for Dimethyl Carbonate Production           1051
  • Table 232. Applications of Dimethyl Carbonate      1051
  • Table 233. Markets and applications for bio-based glycerol.          1052
  • Table 234. Bio-manufactured Fragrances and Aromatics.               1056
  • Table 235. Biotech-derived Fragrance Precursors.                1057
  • Table 236. Bio-manufactured Enhancers.  1059
  • Table 237.Feedstock Sources for Succinic Acid Production           1062
  • Table 238. Applications of Succinic Acid.   1062
  • Table 239. Applications of bio-based 1,4-Butanediol (BDO).        1063
  • Table 240. Feedstock Sources for Isoprene Production.   1063
  • Table 241. Applications of Isoprene.              1064
  • Table 242. Applications of bio-based ethylene.       1064
  • Table 243. Applications of bio-based propylene.   1065
  • Table 244. Applications of bio-based adipic acid. 1066
  • Table 245. Applications of bio-based acrylic acid.                1067
  • Table 246. Bio-PBS market analysis-manufacture, advantages, disadvantages and applications.      1068
  • Table 247. Leading PBS producers and production capacities.   1068
  • Table 248. Polyethylene furanoate (PEF) market analysis-manufacture, advantages, disadvantages and applications.  1069
  • Table 249. FDCA and PEF producers.            1070
  • Table 250. Polytrimethylene terephthalate (PTT) market analysis-manufacture, advantages, disadvantages and applications.     1071
  • Table 251. Production capacities of Polytrimethylene terephthalate (PTT), by leading producers.       1072
  • Table 252. Types of Wood-Plastic Composites (WPCs).    1074
  • Table 253. Types of Biofiber-Reinforced Plastics.  1075
  • Table 254. Types of Polymer Blends with Bio-based Components.           1077
  • Table 255. Hyaluronic Acid Production Parameters and Applications     1078
  • Table 256. Squalene/Squalane Production Methods and Characteristics.           1079
  • Table 257. Collagen Production Systems and Applications.          1080
  • Table 258. Bio-based UV Filter Compounds and Characteristics.              1081
  • Table 259. Melanin Production and Application Parameters.        1082
  • Table 260. Bio-manufactured Emollient Categories and Properties.         1083
  • Table 261. Mineral source products and applications.       1090
  • Table 262. Cement Alternatives from Biomanufacturing. 1091
  • Table 263. Precision Fermentation Products.           1092
  • Table 264. Key players in Biochemicals.      1092
  • Table 265. Bio-manufactured Beauty Ingredient Production Capacities                1095
  • Table 266. Market Growth Drivers and Trends in Biochemicals.  1095
  • Table 267. Trends and Drivers in Biotechnology.    1096
  • Table 268. Government Support of Biotechnology.              1097
  • Table 269. Biochemicals Regulations.          1098
  • Table 270. Value chain: Biochemicals.         1099
  • Table 271. Economic Viability Assessment Framework.   1101
  • Table 272. Feedstock Price Impact Analysis for Biotechnology Production.        1102
  • Table 273. Scale-up Cost Impact Analysis.               1103
  • Table 274. Addressable market size for Biochemicals.      1106
  • Table 275. Risks and Opportunities in Biochemicals.         1107
  • Table 276. Market Challenge Assessment and Mitigation Strategies.       1108
  • Table 277. Technical Challenge Assessment and Solutions.         1109
  • Table 278. Global revenues for biochemicals, by type (2020-2036), billions USD.          1109
  • Table 279. Global revenues for biochemicals, by applications market (2020-2036), billions USD.       1110
  • Table 280. Global revenues for biochemicals, by regional market (2020-2036), billions USD. 1110
  • Table 281. Bio-agritech categories. 1200
  • Table 282. Biopesticides: Pros and Cons.   1201
  • Table 283. Semiochemicals: Advantages and Disadvantages.    1202
  • Table 284.Biological Pest Control: Advantages and Disadvantages.        1203
  • Table 285. Global regulations on biopesticides.     1204
  • Table 286. Main types of microbial pesticides.        1205
  • Table 287. Main types of biochemical pesticides. 1206
  • Table 288. Main types of biofertilizers.          1207
  • Table 289. Types of Microbial Biostimulants.           1214
  • Table 290. Main types of non-microbial biostimulants.     1218
  • Table 291. Types of Agricultural Enzymes   1219
  • Table 292. Key players in Bio Agritech.          1221
  • Table 293. Market Growth Drivers and Trends in Bio Agritech        1222
  • Table 294. Bio Agritech Regulations.              1222
  • Table 295. Value chain: Bio Agritech.             1223
  • Table 296. Addressable market size for Bio Agritech.          1225
  • Table 297. Risks and Opportunities in Bio Agritech.             1225
  • Table 298. Global revenues for Bio Agritech products, by applications market (2020-2036), billions USD.                1226
  • Table 299. Global revenues for Bio Agritech products, by regional market (2020-2036), billions USD.                1226

 

List of Figures

  • Figure 1. CRISPR/Cas9 & Targeted Genome Editing.           153
  • Figure 2. Genetic Circuit-Assisted Smart Microbial Engineering. 157
  • Figure 3. Cell-free and cell-based protein synthesis systems.      159
  • Figure 4. Microbial Chassis Development for Natural Product Biosynthesis.     160
  • Figure 5. The design-make-test-learn loop of generative biology.                165
  • Figure 6. XtalPi’s automated and robot-run workstations.               272
  • Figure 7. Light Bio Bioluminescent plants. 334
  • Figure 8. Corbion FDCA production process.           342
  • Figure 9.  Schematic of a biorefinery for production of carriers and chemicals.                355
  • Figure 10. Hydrolytic lignin powder. 358
  • Figure 11. SWOT analysis for biodiesel.       365
  • Figure 12. Flow chart for biodiesel production.       369
  • Figure 13. Biodiesel (B20) average prices, current and historical, USD/litre.       375
  • Figure 14. Biogas and biomethane pathways.          377
  • Figure 15. Overview of biogas utilization.    379
  • Figure 16. Biogas and biomethane pathways.          380
  • Figure 17. Schematic overview of anaerobic digestion process for biomethane production.   381
  • Figure 18. Schematic overview of biomass gasification for biomethane production.    382
  • Figure 19. SWOT analysis for biogas.             383
  • Figure 20. Total syngas market by product in MM Nm³/h of Syngas, 2024.           387
  • Figure 21. Properties of petrol and biobutanol.       388
  • Figure 22. Biobutanol production route.      389
  • Figure 23. SWOT analysis for biohydrogen. 394
  • Figure 24. SWOT analysis biomethanol.      399
  • Figure 25. Renewable Methanol Production Processes from Different Feedstocks.       400
  • Figure 26. Production of biomethane through anaerobic digestion and upgrading.        401
  • Figure 27. Production of biomethane through biomass gasification and methanation.               402
  • Figure 28. Production of biomethane through the Power to methane process.  403
  • Figure 29. Bio-oil upgrading/fractionation techniques.      408
  • Figure 30. SWOT analysis for bio-oils.           410
  • Figure 31. SWOT analysis for renewable iesel.         414
  • Figure 32. SWOT analysis for Bio-aviation fuel.       416
  • Figure 33. Global bio-jet fuel consumption to 2019-2036 (Million litres/year).   420
  • Figure 34.  Pathways for algal biomass conversion to biofuels.    422
  • Figure 35. SWOT analysis for algae-derived biofuels.         423
  • Figure 36. Algal biomass conversion process for biofuel production.      424
  • Figure 37. ANDRITZ Lignin Recovery process.          442
  • Figure 38. ChemCyclingTM prototypes.       449
  • Figure 39. ChemCycling circle by BASF.       450
  • Figure 40. FBPO process        461
  • Figure 41. Direct Air Capture Process.          465
  • Figure 42. CRI process.           467
  • Figure 43. Cassandra Oil  process.  470
  • Figure 44. Colyser process.  478
  • Figure 45. ECFORM electrolysis reactor schematic.            483
  • Figure 46. Dioxycle modular electrolyzer.    484
  • Figure 47. Domsjö process.  485
  • Figure 48. FuelPositive system.         496
  • Figure 49. INERATEC unit.     513
  • Figure 50. Infinitree swing method. 514
  • Figure 51. Audi/Krajete unit. 521
  • Figure 52. Enfinity cellulosic ethanol technology process.              548
  • Figure 53: Plantrose process.              556
  • Figure 54. Sunfire process for Blue Crude production.       571
  • Figure 55. Takavator.  574
  • Figure 56. O12 Reactor.           578
  • Figure 57. Sunglasses with lenses made from CO2-derived materials.  578
  • Figure 58. CO2 made car part.           578
  • Figure 59. The Velocys process.        582
  • Figure 60. Goldilocks process and applications.   584
  • Figure 61. The Proesa® Process.        586
  • Figure 62. PHA family.              597
  • Figure 63. Pluumo.     619
  • Figure 64. ANDRITZ Lignin Recovery process.          632
  • Figure 65. Anpoly cellulose nanofiber hydrogel.     634
  • Figure 66. MEDICELLU™.         634
  • Figure 67. Asahi Kasei CNF fabric sheet.     643
  • Figure 68. Properties of Asahi Kasei cellulose nanofiber nonwoven fabric.          644
  • Figure 69. CNF nonwoven fabric.      645
  • Figure 70. Roof frame made of natural fiber.             653
  • Figure 71. Beyond Leather Materials product.          657
  • Figure 72. BIOLO e-commerce mailer bag made from PHA.           663
  • Figure 73. Reusable and recyclable foodservice cups, lids, and straws from Joinease Hong Kong Ltd., made with plant-based NuPlastiQ BioPolymer from BioLogiQ, Inc.          664
  • Figure 74. Fiber-based screw cap.   679
  • Figure 75: Celluforce production process. 696
  • Figure 76: NCCTM Process.  697
  • Figure 77: CNC produced at Tech Futures’ pilot plant; cloudy suspension (1 wt.%), gel-like (10 wt.%), flake-like crystals, and very fine powder. Product advantages include:  697
  • Figure 78. formicobio™ technology. 703
  • Figure 79. nanoforest-S.         706
  • Figure 80. nanoforest-PDP.   706
  • Figure 81. nanoforest-MB.     707
  • Figure 82. sunliquid® production process. 716
  • Figure 83. CuanSave film.     718
  • Figure 84. Celish.        720
  • Figure 85. Trunk lid incorporating CNF.         721
  • Figure 86. ELLEX products.   723
  • Figure 87. CNF-reinforced PP compounds.               723
  • Figure 88. Kirekira! toilet wipes.         724
  • Figure 89. Color CNF.               725
  • Figure 90. Rheocrysta spray.                731
  • Figure 91. DKS CNF products.            731
  • Figure 92. Domsjö process.  733
  • Figure 93. Mushroom leather.              744
  • Figure 94. CNF based on citrus peel.             746
  • Figure 95. Citrus cellulose nanofiber.            746
  • Figure 96. Filler Bank CNC products.             760
  • Figure 97. Fibers on kapok tree and after processing.         763
  • Figure 98.  TMP-Bio Process.               765
  • Figure 99. Flow chart of the lignocellulose biorefinery pilot plant in Leuna.         766
  • Figure 100. Water-repellent cellulose.           768
  • Figure 101. Cellulose Nanofiber (CNF) composite with polyethylene (PE).          769
  • Figure 102. PHA production process.            771
  • Figure 103. CNF products from Furukawa Electric.              772
  • Figure 104. AVAPTM process.              783
  • Figure 105. GreenPower+™ process.               783
  • Figure 106. Cutlery samples (spoon, knife, fork) made of nano cellulose and biodegradable plastic composite materials.               786
  • Figure 107. Non-aqueous CNF dispersion "Senaf" (Photo shows 5% of plasticizer).     789
  • Figure 108. CNF gel.  796
  • Figure 109. Block nanocellulose material. 797
  • Figure 110. CNF products developed by Hokuetsu.             797
  • Figure 111. Marine leather products.             801
  • Figure 112. Inner Mettle Milk products.        804
  • Figure 113. Kami Shoji CNF products.           817
  • Figure 114. Dual Graft System.          819
  • Figure 115. Engine cover utilizing Kao CNF composite resins.      820
  • Figure 116. Acrylic resin blended with modified CNF (fluid) and its molded product (transparent film), and image obtained with AFM (CNF 10wt% blended).        820
  • Figure 117. Kel Labs yarn.      821
  • Figure 118. 0.3% aqueous dispersion of sulfated esterified CNF and dried transparent film (front side).                825
  • Figure 119. Lignin gel.               834
  • Figure 120. BioFlex process. 838
  • Figure 121. Nike Algae Ink graphic tee.          839
  • Figure 122. LX Process.           842
  • Figure 123. Made of Air's HexChar panels. 845
  • Figure 124. TransLeather.       846
  • Figure 125. Chitin nanofiber product.            851
  • Figure 126. Marusumi Paper cellulose nanofiber products.           852
  • Figure 127. FibriMa cellulose nanofiber powder.    853
  • Figure 128. METNIN™ Lignin refining technology.    857
  • Figure 129. IPA synthesis method.   861
  • Figure 130. MOGU-Wave panels.      863
  • Figure 131. CNF slurries.        865
  • Figure 132. Range of CNF products.               865
  • Figure 133. Reishi.      869
  • Figure 134. Compostable water pod.             885
  • Figure 135. Leather made from leaves.         886
  • Figure 136. Nike shoe with beLEAF™.              887
  • Figure 137. CNF clear sheets.             896
  • Figure 138. Oji Holdings CNF polycarbonate product.       897
  • Figure 139. Enfinity cellulosic ethanol technology process.           911
  • Figure 140.  Precision Photosynthesis™ technology.            914
  • Figure 141. Fabric consisting of 70 per cent wool and 30 per cent Qmilk.             916
  • Figure 142. XCNF.       924
  • Figure 143: Plantrose process.           925
  • Figure 144. LOVR hemp leather.         929
  • Figure 145. CNF insulation flat plates.          931
  • Figure 146. Hansa lignin.       938
  • Figure 147. Manufacturing process for STARCEL.  941
  • Figure 148. Manufacturing process for STARCEL.  945
  • Figure 149. 3D printed cellulose shoe.          953
  • Figure 150. Lyocell process. 956
  • Figure 151. North Face Spiber Moon Parka.              960
  • Figure 152. PANGAIA LAB NXT GEN Hoodie.             961
  • Figure 153. Spider silk production.  962
  • Figure 154. Stora Enso lignin battery materials.      966
  • Figure 155. 2 wt.% CNF suspension.            967
  • Figure 156. BiNFi-s Dry Powder.         968
  • Figure 157. BiNFi-s Dry Powder and Propylene (PP) Complex Pellet.        968
  • Figure 158. Silk nanofiber (right) and cocoon of raw material.       969
  • Figure 159. Sulapac cosmetics containers.              970
  • Figure 160.  Sulzer equipment for PLA polymerization processing.            971
  • Figure 161. Solid Novolac Type lignin modified phenolic resins. 972
  • Figure 162. Teijin bioplastic film for door handles. 981
  • Figure 163. Corbion FDCA production process.     989
  • Figure 164. Comparison of weight reduction effect using CNF.    990
  • Figure 165. CNF resin products.        994
  • Figure 166. UPM biorefinery process.            995
  • Figure 167. Vegea production process.        1000
  • Figure 168. The Proesa® Process.     1001
  • Figure 169. Goldilocks process and applications. 1003
  • Figure 170. Visolis’ Hybrid Bio-Thermocatalytic Process. 1006
  • Figure 171. HefCel-coated wood (left) and untreated wood (right) after 30 seconds flame test.            1009
  • Figure 172. Worn Again products.    1014
  • Figure 173. Zelfo Technology GmbH CNF production process.    1018
  • Figure 174. Schematic of biorefinery processes.   1028
  • Figure 175. Production capacities of Polyethylene furanoate (PEF) to 2025.       1070
  • Figure 176. Technology Readiness Level (TRL): Biochemicals.     1106
  • Figure 177. formicobio™ technology.              1131
  • Figure 178. Domsjö process.               1136
  • Figure 179.  TMP-Bio Process.             1142
  • Figure 180. Lignin gel.               1164
  • Figure 181. BioFlex process. 1167
  • Figure 182. LX Process.           1169
  • Figure 183. METNIN™ Lignin refining technology.    1173
  • Figure 184. Enfinity cellulosic ethanol technology process.           1179
  • Figure 185.  Precision Photosynthesis™ technology.            1181
  • Figure 186. Fabric consisting of 70 per cent wool and 30 per cent Qmilk.             1182
  • Figure 187. UPM biorefinery process.            1196
  • Figure 188. The Proesa® Process.     1197
  • Figure 189. Goldilocks process and applications. 1198
  •  

 

 

 

The report includes these components:

  • PDF report download/by email. Print edition also available. 
  • Comprehensive Excel spreadsheet of all data.
  • Mid-year Update

 

The Global Industrial Biomanufacturing Market 2026-2036
The Global Industrial Biomanufacturing Market 2026-2036
PDF download.

The Global Industrial Biomanufacturing Market 2026-2036
The Global Industrial Biomanufacturing Market 2026-2036
PDF download and Two Volume Print Edition (including tracked delivery).

Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer. To order by Bank Transfer (Invoice) select this option from the payment methods menu after adding to cart, or contact info@futuremarketsinc.com