The Global Market for Anti-microbial, Anti-viral, and Anti-fungal Nanocoatings

0

Published December 10 2020,  325 pages, 78 tables, 86 figures

Nanocoatings can demonstrate up to 99.9998% effectiveness against bacteria, formaldehyde, mold and viruses, and are up to 1000 times more efficient than previous technologies available on the market. They can work on multiple levels at the same time: anti-microbial, anti-viral, and anti-fungal, self-cleaning and anti-corrosion. Nanocoatings companies have partnering with global manufacturers and cities to develop anti-viral facemasks, hazard suits and easily applied surface coatings.

Their use makes it possible to provide enhanced anti-microbial, anti-viral, mold-reducing and TVOC degrading processes, that are non-toxic and environmentally friendly, allowing for exceptional hygiene standards in all areas of work and life. As a result, it is possible create a healthier living and working environment and to offer holistic solutions to people with a diminished immune system. Nano-based surface coatings prevent the spread of bacteria, fungi and viruses via infected surfaces of so called high-traffic objects, such as door and window handles in public places, hospitals, public buildings, schools, elderly homes etc. 

Anti-microbial, Anti-viral, and Anti-fungal Nanocoatings are available in various material compositions, for healthcare and household surfaces, for indoor and outdoor applications, to protect against corrosion and mildew, as well as for water and air purification. Nanocoatings also reduce surface contamination, are self-cleaning, water-repellent and odor-inhibiting, reducing cleaning and maintenance

Anti-microbial, Anti-viral, and Anti-fungal Nanocoatings can be applied by spraying or dipping and adhere to various surfaces such as glass, metals and various alloys, copper and stainless steel, marble and stone slabs, ceramics and tiles, textiles and plastics.

Nanoparticles of different materials  such as metal nanoparticles, carbon nanotubes, metal oxide nanoparticles, and graphene-based materials have demonstrated enhanced anti-microbial and anti-viral activity. The use of inorganic nanomaterials when compared with organic anti-microbial agents is also desirable due to their stability, robustness, and long shelf life. At high temperatures/pressures organic antimicrobial materials are found to be less stable compared to inorganic antimicrobial agents. The various antimicrobial mechanisms of nanomaterials are mostly attributed to their high specific surface area-to-volume ratios, and their distinctive physico-chemical properties..

Anti-microbial, anti-viral and anti-fungal nanocoatings applications include, but are not limited to:

  • Medical facilities and laboratories
  • Medical equipment;
  • Fabrics and clothing like face masks;
  • Hospital furniture;
  • Hotels and other public spaces;
  • Window glass;
  • Pharmaceutical labs;
  • Packaging;
  • Food packaging areas and restaurants;
  • Food processing equipment;
  • Transportation, air ducts and air ventilation systems;
  • Appliances;
  • Sporting and exercise equipment;
  • Containers;
  • Aircraft interiors and buildings;
  • Cruise lines and other marine vessels;
  • Restroom accessories;
  • Shower enclosures;
  • Handrails;
  • Schools and childcare facilities;
  • Playgrounds.

 

Report contents include:

  • Size in value for the Anti-microbial, Anti-viral, and Anti-fungal Nanocoatings market, and growth rate during the forecast period, 2017-2030. Historical figures are also provided, from 2010.
  • Anti-microbial, Anti-viral, and Anti-fungal Nanocoatings market segments analysis.
  • Size in value for the End-user industries for nanocoatings and growth during the forecast period.
  • Market drivers, trends and challenges, by end user markets.
  • Market outlook for 2020-2021. 
  • In-depth market assessment of opportunities for nanocoatings, by type and markets.
  • Anti-microbial, Anti-viral, and Anti-fungal Nanocoatings applications.
  • In-depth analysis of Anti-microbial, Anti-viral, and Anti-fungal surface treatments, coatings and films. 
  • In-depth analysis of antibacterial and antiviral treatment for antibacterial mask, filter, gloves, clothes and devices. 
  • Revenue scenarios for COVID-19 response. 
  • 132 company profiles including products, technology base, target markets and contact details. Companies features include Advanced Materials-JTJ s.r.o., Bio-Fence, Bio-Gate AG, Covalon Technologies Ltd., EnvisionSQ, GrapheneCA, Integricote, Nano Came Co. Ltd., NanoTouch Materials, LLC, NitroPep, OrganoClick, HeiQ Materials, Green Earth Nano Science, Reactive Surfaces, Kastus, Halomine, sdst, myNano and many more.  

 

View Table of contents (PDF)

Contact info@futuremarketsinc.com to request sample content. 

View Table of contents (PDF)

1              INTRODUCTION 23

  • 1.1          Aims and objectives of the study               23
  • 1.2          Market definition             24
  • 1.2.1      Properties of nanomaterials        25
  • 1.2.2      Categorization   25

 

2              RESEARCH METHODOLOGY         26

 

3              EXECUTIVE SUMMARY   27

  • 3.1          High performance coatings          28
  • 3.2          Nanocoatings    28
  • 3.3          Anti-viral nanoparticles and nanocoatings             30
    • 3.3.1.1   Reusable Personal Protective Equipment (PPE)   32
    • 3.3.1.2   Wipe on coatings             32
    • 3.3.1.3   Facemask coatings           32
    • 3.3.1.4   Long-term mitigation of surface contamination with nanocoatings             33
    • 3.3.1.5   Sustainable coatings       34
  • 3.4          Market drivers and trends            35
  • 3.5          Global market size and opportunity to 2030          37
    • 3.5.1      End user market for nanocoatings            37
    • 3.5.2      Global revenues for nanocoatings 2010-2030       40
    • 3.5.3      Global revenues for nanocoatings, by market      42
      • 3.5.3.1   The market in 2019          42
      • 3.5.3.2   The market in 2020          44
      • 3.5.3.3   The market in 2030          46
    • 3.5.4      Regional demand for nanocoatings          47
    • 3.5.5      Demand for antimicrobial and anti-viral nanocoatings post COVID-19 pandemic  49
  • 3.6          Market and technical challenges               52
  • 3.7          Toxicity and environmental considerations           53
  • 3.8          Impact of COVID-19 on the market           54
  • 3.9          Future markets outlook 56

 

4              NANOCOATINGS TECHNICAL ANALYSIS  58

  • 4.1          Properties of nanocoatings          58
  • 4.2          Benefits of using nanocoatings   60
    • 4.2.1      Types of nanocoatings   60
  • 4.3          Production and synthesis methods          61

 

5              NANOMATERIALS USED IN ANTIMICROBIAL, ANTIVIRAL AND ANTIFUNGAL NANOCOATINGS          72

  • 5.1          GRAPHENE         74
    • 5.1.1      Properties           74
    • 5.1.2      Graphene oxide 76
      • 5.1.2.1   Anti-bacterial activity      76
      • 5.1.2.2   Anti-viral activity              77
    • 5.1.3      Reduced graphene oxide (rGO) 77
    • 5.1.4      Application in anti-microbial and anti-viral nanocoatings 78
      • 5.1.4.1   Anti-microbial wound dressings 79
      • 5.1.4.2   Medical textiles.               79
      • 5.1.4.3   Anti-microbial medical devices and implants        80
  • 5.2          SILICON DIOXIDE/SILICA NANOPARTICLES             81
    • 5.2.1      Properties           81
    • 5.2.2      Antimicrobial and antiviral activity            82
      • 5.2.2.1   Easy-clean and dirt repellent coatings     82
  • 5.3          NANOSILVER     83
    • 5.3.1      Properties           83
    • 5.3.2      Application in anti-microbial and anti-viral nanocoatings 83
      • 5.3.2.1   Textiles 85
      • 5.3.2.2   Wound dressings             85
      • 5.3.2.3   Consumer products        85
      • 5.3.2.4   Air filtration        85
    • 5.3.3      Commercial activity         85
  • 5.4          TITANIUM DIOXIDE NANOPARTICLES      86
    • 5.4.1      Properties           86
    • 5.4.2      Application in anti-microbial and anti-viral nanocoatings 88
      • 5.4.2.1   Exterior and construction glass coatings 88
      • 5.4.2.2   Outdoor air pollution      90
      • 5.4.2.3   Interior coatings               90
      • 5.4.2.4   Improving indoor air quality        90
      • 5.4.2.5   Medical facilities               91
      • 5.4.2.6   Wastewater Treatment 92
      • 5.4.2.7   Antimicrobial coating indoor light activation         92
  • 5.5          ZINC OXIDE NANOPARTICLES      93
    • 5.5.1      Properties           93
    • 5.5.2      Application in anti-microbial and anti-viral nanocoatings 94
      • 5.5.2.1   Sterilization dressings    95
      • 5.5.2.2   Anti-bacterial surfaces in construction and building ceramics and glass     95
      • 5.5.2.3   Antimicrobial packaging 96
      • 5.5.2.4   Anti-bacterial textiles     97
  • 5.6          NANOCEULLOSE (CELLULOSE NANOFIBERS AND CELLULOSE NANOCRYSTALS)       98
    • 5.6.1      Properties           98
    • 5.6.2      Application in anti-microbial and anti-viral nanocoatings 99
      • 5.6.2.1   Cellulose nanofibers       99
      • 5.6.2.2   Cellulose nanocrystals (CNC)       99
  • 5.7          CARBON NANOTUBES    100
    • 5.7.1      Properties           100
    • 5.7.2      Application in anti-microbial and anti-viral nanocoatings 100
  • 5.8          FULLERENES       101
    • 5.8.1      Properties           101
    • 5.8.2      Application in anti-microbial and anti-viral nanocoatings 101
  • 5.9          CHITOSAN NANOPARTICLES        103
    • 5.9.1      Properties           103
    • 5.9.2      Application in anti-microbial and anti-viral nanocoatings 105
      • 5.9.2.1   Wound dressings             105
      • 5.9.2.2   Packaging coatings and films       105
      • 5.9.2.3   Food storage      105
  • 5.10        COPPER NANOPARTICLES             106
    • 5.10.1    Properties           106
    • 5.10.2    Application in anti-microbial and anti-viral nanocoatings 107
  • 5.11        GOLD NANOPARTICLES (AuNPs) 108
    • 5.11.1    Properties           108
  • 5.12        PEROVSKITES     109
    • 5.12.1    Properties           109
    • 5.12.2    Application in anti-microbial and anti-viral nanocoatings 110
  • 5.13        HYDROPHOBUC AND HYDROPHILIC COATINGS AND SURFACES    111
    • 5.13.1    Hydrophilic coatings       112
    • 5.13.2    Hydrophobic coatings     112
      • 5.13.2.1                Properties           112
      • 5.13.2.2                Application in facemasks              113
  • 5.14        SUPERHYDROPHOBIC COATINGS AND SURFACES 114
    • 5.14.1    Properties           114
      • 5.14.1.1                Anti-microbial use            115
  • 5.15        OLEOPHOBIC AND OMNIPHOBIC COATINGS AND SURFACES         117

 

6              ANTIMICROBIAL AND ANTIVIRAL NANOCOATINGS MARKET STRUCTURE  120

 

7              MARKET ANALYSIS FOR ANTIMICROBIAL, ANTIVIRAL AND ANTIFUNGAL NANOCOATINGS 122

  • 7.1          ANTI-MICROBIAL, ANTI-VIRAL AND ANTI-FUNGAL NANOCOATINGS           124
    • 7.1.1      Market drivers and trends            126
    • 7.1.2      Applications       131
    • 7.1.3      Global revenues 2010-2030          132
    • 7.1.4      Companies         136
  • 7.2          ANTI-FOULING AND EASY-TO-CLEAN NANOCOATINGS     139
    • 7.2.1      Market drivers and trends            140
    • 7.2.2      Benefits of anti-fouling and easy-to-clean nanocoatings 141
    • 7.2.3      Applications       141
    • 7.2.4      Global revenues 2010-2030          141
    • 7.2.5      Companies         145
  • 7.3          SELF-CLEANING (BIONIC) NANOCOATINGS            147
    • 7.3.1      Market drivers and trends            148
    • 7.3.2      Benefits of self-cleaning nanocoatings    149
    • 7.3.3      Global revenues 2010-2030          150
    • 7.3.4      Companies         154
  • 7.4          SELF-CLEANING (PHOTOCATALYTIC) NANOCOATINGS      156
    • 7.4.1      Market drivers and trends            157
    • 7.4.2      Benefits of photocatalytic self-cleaning nanocoatings      157
    • 7.4.3      Applications       158
      • 7.4.3.1   Self-Cleaning Coatings   158
      • 7.4.3.2   Indoor Air Pollution and Sick Building Syndrome 158
      • 7.4.3.3   Outdoor Air Pollution     158
      • 7.4.3.4   Water Treatment             159
    • 7.4.4      Global revenues 2010-2030          159
    • 7.4.5      Companies         164

 

8              MARKET SEGMENT ANALYSIS, BY END USER MARKET       167

  • 8.1          BUILDINGS AND CONSTRUCTION              168
    • 8.1.1      Market drivers and trends            168
    • 8.1.2      Applications       169
      • 8.1.2.1   Protective coatings for glass, concrete and other construction materials  170
      • 8.1.2.2   High touch surface transmission mitigation           170
      • 8.1.2.3   Photocatalytic nano-TiO2 coatings            171
    • 8.1.3      Global revenues 2010-2030          174
    • 8.1.4      Companies         175
  • 8.2          HOUSEHOLD CARE, SANITARY AND INDOOR AIR QUALITY               180
    • 8.2.1      Market drivers and trends            180
    • 8.2.2      Applications       180
      • 8.2.2.1   Anti-microbial coatings in the household               180
      • 8.2.2.2   Door handles, handrails, and other high-contact objects 181
      • 8.2.2.3   Self-cleaning and easy-to-clean 182
      • 8.2.2.4   Food preparation and processing              182
      • 8.2.2.5   Indoor pollutants and air quality                182
    • 8.2.3      Global revenues 2010-2030          183
    • 8.2.4      Companies         186
  • 8.3          MEDICAL & HEALTHCARE              189
    • 8.3.1      Market drivers and trends            189
    • 8.3.2      Applications       190
      • 8.3.2.1   Anti-fouling, anti-microbial and anti-viral medical device and equipment coatings               192
      • 8.3.2.2   Medical textiles 192
      • 8.3.2.3   Wound dressings and plastic catheters   193
      • 8.3.2.4   Medical implant coatings              193
    • 8.3.3      Global revenues 2010-2030          195
    • 8.3.4      Companies         198
  • 8.4          TEXTILES AND APPAREL 201
    • 8.4.1      Market drivers and trends            201
    • 8.4.2      Applications       202
      • 8.4.2.1   PPE        202
      • 8.4.2.2   Consumer apparel and sports clothing    203
    • 8.4.3      Global revenues 2010-2030          208
    • 8.4.4      Companies         211
  • 8.5          PACKAGING       214
    • 8.5.1      Market drivers and trends            215
    • 8.5.2      Applications       215
      • 8.5.2.1   Antimicrobial coatings and films in food packaging            216
    • 8.5.3      Companies         218

 

9              ANTIMICROBIAL, ANTIVIRAL AND ANTIFUNGAL NANOCOATINGS COMPANIES      220 (132 company profiles)

 

10           RECENT RESEARCH IN ACADEMIA             310

 

11           REFERENCES       313

 

TABLES

  • Table 1: Categorization of nanomaterials.              25
  • Table 2: Properties of nanocoatings.        29
  • Table 3. Market drivers and trends in antiviral and antimicrobial nanocoatings.    35
  • Table 4: End user markets for nanocoatings.        37
  • Table 5: Global revenues for nanocoatings, 2010-2030, millions USD, conservative estimate.         40
  • Table 6: Global revenues for nanocoatings, 2019, millions USD, by market.            42
  • Table 7: Estimated revenues for nanocoatings, 2020, millions USD, by market.     44
  • Table 8: Estimated revenues for nanocoatings, 2030, millions USD, by market.     46
  • Table 9. Revenues for antimicrobial and antiviral nanocoatings, 2019-2030, US$, adjusted for COVID-19 related demand, conservative and high estimates.           49
  • Table 10. Revenues for Anti-fouling & easy clean nanocoatings, 2019-2030, US$, adjusted for COVID-19 related demand, conservative and high estimates.           50
  • Table 11. Revenues for self-cleaning (bionic) nanocoatings, 2019-2030, US$, adjusted for COVID-19 related demand, conservative and high estimates.              50
  • Table 12. Revenues for self-cleaning (photocatalytic) nanocoatings, 2019-2030, US$, adjusted for COVID-19 related demand, conservative and high estimates.           51
  • Table 13: Market and technical challenges for nanocoatings.        52
  • Table 14: Technology for synthesizing nanocoatings agents.         61
  • Table 15: Film coatings techniques.         62
  • Table 16: Nanomaterials used in nanocoatings and applications. 73
  • Table 17: Graphene properties relevant to application in coatings.             75
  • Table 18. Bactericidal characters of graphene-based materials.   77
  • Table 19. Markets and applications for antimicrobial and antiviral nanocoatings graphene nanocoatings. 78
  • Table 20. Commercial activity in antimicrobial and antiviral nanocoatings graphene nanocoatings.              80
  • Table 21. Markets and applications for antimicrobial nanosilver nanocoatings.     84
  • Table 22. Commercial activity in antimicrobial nanosilver nanocoatings.  86
  • Table 23. Antibacterial effects of ZnO NPs in different bacterial species.  97
  • Table 24. Types of carbon-based nanoparticles as antimicrobial agent, their mechanisms of action and characteristics.                102
  • Table 25. Mechanism of chitosan antimicrobial action.    104
  • Table 26: Contact angles of hydrophilic, super hydrophilic, hydrophobic and superhydrophobic surfaces. 113
  • Table 27: Disadvantages of commonly utilized superhydrophobic coating methods.           115
  • Table 28: Applications of oleophobic & omniphobic coatings.       118
  • Table 29: Antimicrobial and antiviral Nanocoatings market structure.       120
  • Table 30: Anti-microbial, anti-viral and anti-fungal nanocoatings-Nanomaterials used, principles, properties and applications        124
  • Table 31. Nanomaterials utilized in antimicrobial and antiviral nanocoatings coatings-benefits and applications.   130
  • Table 32: Antimicrobial and antiviral nanocoatings markets and applications.        131
  • Table 33: Market assessment of  antimicrobial and antiviral nanocoatings.             133
  • Table 34: Opportunity for antimicrobial and antiviral nanocoatings.           133
  • Table 35: Revenues for antimicrobial and antiviral nanocoatings, 2010-2030, US$.              134
  • Table 36: Antimicrobial and antiviral nanocoatings product and application developers.  136
  • Table 37: Anti-fouling and easy-to-clean nanocoatings-Nanomaterials used, principles, properties and applications.                139
  • Table 38: Market drivers and trends in Anti-fouling and easy-to-clean nanocoatings.         140
  • Table 39: Anti-fouling and easy-to-clean nanocoatings markets, applications and potential addressable market.   142
  • Table 40: Market assessment for anti-fouling and easy-to-clean nanocoatings.     142
  • Table 41: Revenues for anti-fouling and easy-to-clean nanocoatings, 2010-2030, US$.       143
  • Table 42: Anti-fouling and easy-to-clean nanocoatings product and application developers.           145
  • Table 43: Self-cleaning (bionic) nanocoatings-Nanomaterials used, principles, properties and applications.              147
  • Table 44: Market drivers and trends in Self-cleaning (bionic) nanocoatings.            148
  • Table 45: Self-cleaning (bionic) nanocoatings-Markets and applications.  150
  • Table 46: Market assessment for self-cleaning (bionic) nanocoatings.       151
  • Table 47: Revenues for self-cleaning nanocoatings, 2010-2030, US$.         152
  • Table 48: Self-cleaning (bionic) nanocoatings product and application developers.             154
  • Table 49: Self-cleaning (photocatalytic) nanocoatings-Nanomaterials used, principles, properties and applications.                156
  • Table 50: Market drivers and trends in photocatalytic nanocoatings.         157
  • Table 51: Photocatalytic nanocoatings-Markets, applications and potential addressable market size by 2027.          160
  • Table 52: Market assessment for self-cleaning (photocatalytic) nanocoatings.      161
  • Table 53: Revenues for self-cleaning (photocatalytic) nanocoatings, 2010-2030, US$.         162
  • Table 54: Self-cleaning (photocatalytic) nanocoatings product and application developers.             164
  • Table 55: Market drivers and trends for antimicrobial, antiviral and antifungal nanocoatings in the buildings and construction market.      168
  • Table 56: Nanocoatings applied in the building and construction industry-type of coating, nanomaterials utilized and benefits.              169
  • Table 57: Photocatalytic nanocoatings-Markets and applications.               171
  • Table 58: Revenues for nanocoatings in construction, architecture and exterior protection, 2010-2030, US$.          174
  • Table 59: Construction, architecture and exterior protection nanocoatings product developers.   175
  • Table 60: Market drivers and trends for antimicrobial, antiviral and antifungal nanocoatings in household care and sanitary.               180
  • Table 61: Revenues for nanocoatings in household care, sanitary and indoor air quality, 2010-2030, US$. 185
  • Table 62: Household care, sanitary and indoor air quality nanocoatings product developers.         186
  • Table 63: Market drivers and trends for antimicrobial, antiviral and antifungal nanocoatings in medicine and healthcare.         189
  • Table 64: Nanocoatings applied in the medical industry-type of coating, nanomaterials utilized, benefits and applications.       191
  • Table 65: Types of advanced coatings applied in medical devices and implants.    194
  • Table 66: Nanomaterials utilized in medical implants.      194
  • Table 67: Revenues for nanocoatings in medical and healthcare, 2010-2030, US$.               196
  • Table 68: Medical and healthcare nanocoatings product developers.        198
  • Table 69: Market drivers and trends for antimicrobial, antiviral and antifungal nanocoatings s in the textiles and apparel industry.              201
  • Table 70: Applications in textiles, by advanced materials type and benefits thereof.           204
  • Table 71: Nanocoatings applied in the textiles industry-type of coating, nanomaterials utilized, benefits and applications.       205
  • Table 72: Revenues for nanocoatings in textiles and apparel, 2010-2030, US$.      210
  • Table 73: Textiles nanocoatings product developers.       212
  • Table 74: Market drivers and trends for nanocoatings in the packaging market.   215
  • Table 75: Revenues for nanocoatings in packaging, 2010-2030, US$.          217
  • Table 76: Food packaging nanocoatings product developers.        218
  • Table 77. Photocatalytic coating schematic.          243
  • Table 78. Antimicrobial, antiviral and antifungal nanocoatings development in academia.                310

 

FIGURES

  • Figure 1. Schematic of anti-viral coating using nano-actives for inactivation of any adhered virus on the surfaces. 31
  • Figure 2: Global revenues for nanocoatings, 2010-2030, millions USD, conservative estimate.       41
  • Figure 3: Global market revenues for nanocoatings 2019, millions USD, by market.             43
  • Figure 4: Markets for nanocoatings 2019, %.        44
  • Figure 5: Estimated market revenues for nanocoatings 2020, millions USD, by market.      45
  • Figure 6: Estimated market revenues for nanocoatings 2030, millions USD, by market.      46
  • Figure 7: Markets for nanocoatings 2030, %.        47
  • Figure 8: Regional demand for nanocoatings, 2019-2030.                48
  • Figure 9: Hydrophobic fluoropolymer nanocoatings on electronic circuit boards. 59
  • Figure 10: Nanocoatings synthesis techniques.   62
  • Figure 11: Techniques for constructing superhydrophobic coatings on substrates.              64
  • Figure 12: Electrospray deposition.          65
  • Figure 13: CVD technique.            66
  • Figure 14: Schematic of ALD.       68
  • Figure 15: SEM images of different layers of TiO2 nanoparticles in steel surface.  69
  • Figure 16: The coating system is applied to the surface. The solvent evaporates. 70
  • Figure 17: A first organization takes place where the silicon-containing bonding component (blue dots in figure 2) bonds covalently with the surface and cross-links with neighbouring molecules to form a strong three-dimensional.                71
  • Figure 18: During the curing, the compounds organise themselves in a nanoscale monolayer. The fluorine-containing repellent component (red dots in figure) on top makes the glass hydro- phobic and oleophobic.  71
  • Figure 19: Graphair membrane coating. 75
  • Figure 20: Antimicrobial activity of Graphene oxide (GO).              77
  • Figure 21: Hydrophobic easy-to-clean coating.    83
  • Figure 22 Anti-bacterial mechanism of silver nanoparticle coating.             84
  • Figure 23: Mechanism of photocatalysis on a surface treated with TiO2 nanoparticles.      87
  • Figure 24:  Schematic showing the self-cleaning phenomena on superhydrophilic surface.              87
  • Figure 25: Titanium dioxide-coated glass (left) and ordinary glass (right). 89
  • Figure 26:  Self-Cleaning mechanism utilizing photooxidation.      89
  • Figure 27: Schematic of photocatalytic air purifying pavement.   90
  • Figure 28: Schematic of photocatalytic indoor air purification filter.           91
  • Figure 29: Schematic of photocatalytic water purification.              92
  • Figure 30. Schematic of antibacterial activity of ZnO NPs.               97
  • Figure 31: Types of nanocellulose.            99
  • Figure 32. Mechanism of antimicrobial activity of carbon nanotubes.       100
  • Figure 33: Fullerene schematic. 101
  • Figure 34. TEM images of Burkholderia seminalis treated with (a, c) buffer (control) and (b, d) 2.0 mg/mL chitosan; (A: additional layer; B: membrane damage).               104
  • Figure 35: (a) Water drops on a lotus leaf.             112
  • Figure 36: A schematic of (a) water droplet on normal hydrophobic surface with contact angle greater than 90° and (b) water droplet on a superhydrophobic surface with a contact angle > 150°.              113
  • Figure 37: Contact angle on superhydrophobic coated surface.   114
  • Figure 38: Self-cleaning nanocellulose dishware. 116
  • Figure 39: SLIPS repellent coatings.          118
  • Figure 40: Omniphobic coatings.                119
  • Figure 41: Schematic of typical commercialization route for nanocoatings producer.          120
  • Figure 42 Antimicrobial, antiviral and antifungal anocoatings market by nanocoatings type, 2010-2030, USD.         123
  • Figure 43: Market drivers and trends in antimicrobial and antiviral nanocoatings. 126
  • Figure 44. Nano-coated self-cleaning touchscreen.           133
  • Figure 45: Revenues for antimicrobial and antiviral nanocoatings, 2010-2030, US$.             135
  • Figure 46. Revenues for antimicrobial and antiviral nanocoatings, 2019-2030, US$, adjusted for COVID-19 related demand, conservative and high estimates.           136
  • Figure 47: Anti-fouling treatment for heat-exchangers.   141
  • Figure 48: Markets for anti-fouling and easy clean nanocoatings, by %.    141
  • Figure 49: Potential addressable market for anti-fouling and easy-to-clean nanocoatings by 2030.                143
  • Figure 50: Revenues for anti-fouling and easy-to-clean nanocoatings 2010-2030, millions USD.     144
  • Figure 51. Revenues for anti-fouling and easy-to-clean nanocoatings, 2019-2030, US$, adjusted for COVID-19 related demand, conservative and high estimates             145
  • Figure 52: Self-cleaning superhydrophobic coating schematic.      149
  • Figure 53: Markets for self-cleaning nanocoatings, %, 2018.           150
  • Figure 54: Potential addressable market for self-cleaning (bionic) nanocoatings by 2030.  152
  • Figure 55: Revenues for self-cleaning nanocoatings, 2010-2030, US$.        153
  • Figure 56. Revenues for self-cleaning (bionic) nanocoatings, 2019-2030, US$, adjusted for COVID-19 related demand, conservative and high estimates               154
  • Figure 57: Principle of superhydrophilicity.           158
  • Figure 58: Schematic of photocatalytic air purifying pavement.   159
  • Figure 59: Tokyo Station GranRoof. The titanium dioxide coating ensures long-lasting whiteness. 160
  • Figure 60: Markets for self-cleaning (photocatalytic) nanocoatings 2019, %.           160
  • Figure 61: Potential addressable market for self-cleaning (photocatalytic) nanocoatings by 2030.  162
  • Figure 62: Revenues for self-cleaning (photocatalytic) nanocoatings, 2010-2030, US$.       163
  • Figure 63. Revenues for self-cleaning (photocatalytic) nanocoatings, 2019-2030, US$, adjusted for COVID-19 related demand, conservative and high estimates             164
  • Figure 64 Nanocoatings market by end user sector, 2010-2030, USD.        168
  • Figure 65: Nanocoatings in construction, architecture and exterior protection, by coatings type %, 2019.  173
  • Figure 66: Potential addressable market for nanocoatings in the construction, architecture and exterior coatings sector by 2030.  173
  • Figure 67: Revenues for nanocoatings in construction, architecture and exterior protection, 2010-2030, US$.         175
  • Figure 68: Nanocoatings in household care, sanitary and indoor air quality, by coatings type %, 2019.         184
  • Figure 69: Potential addressable market for nanocoatings in household care, sanitary and indoor air filtration by 2030.                184
  • Figure 70: Revenues for nanocoatings in household care, sanitary and indoor air quality, 2010-2030, US$.               186
  • Figure 71: Anti-bacterial sol-gel nanoparticle silver coating.           193
  • Figure 72: Nanocoatings in medical and healthcare, by coatings type %, 2019.       196
  • Figure 73: Potential addressable market for nanocoatings in medical & healthcare by 2030.            196
  • Figure 74: Revenues for nanocoatings in medical and healthcare, 2010-2030, US$.             198
  • Figure 75: Omniphobic-coated fabric.     203
  • Figure 76: Nanocoatings in textiles and apparel, by coatings type %, 2019.              209
  • Figure 77: Potential addressable market for nanocoatings in textiles and apparel by 2030.               210
  • Figure 78: Revenues for nanocoatings in textiles and apparel, 2010-2030, US$.     211
  • Figure 79: Oso fresh food packaging incorporating antimicrobial silver.    217
  • Figure 80: Revenues for nanocoatings in packaging, 2010-2030, US$.        218
  • Figure 81. Lab tests on DSP coatings.       242
  • Figure 82. GrapheneCA anti-bacterial and anti-viral coating.          250
  • Figure 83. Microlyte® Matrix bandage for surgical wounds.           257
  • Figure 84. Self-cleaning nanocoating applied to face masks.          260
  • Figure 85. NanoSeptic surfaces. 281
  • Figure 86. NascNanoTechnology personnel shown applying MEDICOAT to airport luggage carts.   286

 

 

 

 

The Global Market for Antimicrobial, Antiviral and Antifungal Nanocoatings 2020
The Global Market for Antimicrobial, Antiviral and Antifungal Nanocoatings 2020
PDF download.

The Global Market for Antimicrobial, Antiviral and Antifungal Nanocoatings 2020
The Global Market for Antimicrobial, Antiviral and Antifungal Nanocoatings 2020
Print edition (including tracked delivery).

The Global Market for Antimicrobial, Antiviral and Antifungal Nanocoatings 2020
The Global Market for Antimicrobial, Antiviral and Antifungal Nanocoatings 2020
PDF and print edition (including tracked delivery).

Payment methods: Visa, Mastercard, American Express, Alipay, Paypal. 

To purchase by invoice (bank transfer or cheque) contact info@futuremarketsinc.com