The Global Market for Antimicrobial, Antiviral, and Antifungal Nanocoatings 2020

0

Published July 28 2020,  315 pages, 81 tables, 100 figures

This report explores how COVID-19 has created a growing market for nanomaterials based coatings to counter health hazards caused by bacteria and viruses. Nanocoatings can demonstrate up to 99.9998% effectiveness against bacteria, formaldehyde, mold and viruses, and are up to 1000 times more efficient than previous technologies available on the market. They can work on multiple levels at the same time: antiviral, antibacterial and antifungal, self-cleaning and anti-corrosion. Nanocoatings companies are already partnering with global manufacturers and cities to develop anti-viral facemasks, hazard suits and easily applied surface coatings.

Their use makes it possible to provide enhanced antiviral, antibacterial, mold-reducing and TVOC degrading processes, that are non-toxic and environmentally friendly, allowing for exceptional hygiene standards in all areas of work and life. As a result, it is possible create a healthier living and working environment and to offer holistic solutions to people with a diminished immune system. Nano-based surface coatings prevent the spread of bacteria, fungi and viruses via infected surfaces of so called high-traffic objects, such as door and window handles in public places, hospitals, public buildings, schools, elderly homes etc. 

Antimicrobial, Antiviral, and Antifungal Nanocoatings are available in various material compositions, for healthcare and household surfaces, for indoor and outdoor applications, to protect against corrosion and mildew, as well as for water and air purification. Nanocoatings also reduce surface contamination, are self-cleaning, water-repellent and odor-inhibiting, reducing cleaning and maintenance

Antimicrobial, Antiviral, and Antifungal Nanocoatings can be applied by spraying or dipping and adhere to various surfaces such as glass, metals and various alloys, copper and stainless steel, marble and stone slabs, ceramics and tiles, textiles and plastics.

Nanoparticles of different materials  such as metal nanoparticles, carbon nanotubes, metal oxide nanoparticles, and graphene-based materials have demonstrated enhanced anti-microbial and anti-viral activity. The use of inorganic nanomaterials when compared with organic anti-microbial agents is also desirable due to their stability, robustness, and long shelf life. At high temperatures/pressures organic antimicrobial materials are found to be less stable compared to inorganic antimicrobial agents. The various antimicrobial mechanisms of nanomaterials are mostly attributed to their high specific surface area-to-volume ratios, and their distinctive physico-chemical properties.

Anti-viral nanocoatings

Viruses constitute a group of heterogeneous and much simpler organisms. They range in size from 100-300nm, much smaller than bacteria. Viruses are unique in that they have no independent metabolic activities and have to rely solely on infection living hosts to reproduce themselves. Unlike all other life, viruses may contain either DNA or RNA as genetic materials, but not both.

The nucleic materials are surrounded by a protein coat to protect them from harmful agents in the environment. The protein coat also provides the specific binding site necessary for the attachment of virus to its host. Some viruses also contain an outer envelope made up of lipids , polysaccharides , and protein molecules. The lipids and polysaccharides are of host cell organ , and their presence allows a virus to fuse with a host cell and thus gain entry.

A virus not having the outer envelope infects a cell in quit a different manner. Infection is initiated by the attachment of a specialized site on the surface of the protein coat of the virus onto a specific receptor site on the surface of the host cell.

Once this binding is complete viruses can release genetic materials into the host cell and take advantage of the machinery of the host cell to reproduce and assemble themselves. These newly produced viruses are now ready to infect other cells .

Therefore, one of the key processes to disable viruses is through the control of their surface structure, especially their binding sites, so they can no longer recognize the receptor site on the host cells. As many types of nanocoatings attack most effectively on the virus’s surface, they represent an excellent viable technology to destroy the viruses surface structure.

Antimicrobial and antiviral nanocoatings applications include, but are not limited to:

  • Medical facilities and laboratories
  • Medical equipment;
  • Fabrics and clothing like face masks;
  • Hospital furniture;
  • Hotels and other public spaces;
  • Window glass;
  • Pharmaceutical labs;
  • Packaging;
  • Food packaging areas and restaurants;
  • Food processing equipment;
  • Transportation, air ducts and air ventilation systems;
  • Appliances;
  • Sporting and exercise equipment;
  • Containers;
  • Aircraft interiors and buildings;
  • Cruise lines and other marine vessels;
  • Restroom accessories;
  • Shower enclosures;
  • Handrails;
  • Schools and childcare facilities;
  • Playgrounds.

 

Report contents include:

  • Size in value for the Antimicrobial, Antiviral, and Antifungal Nanocoatings market, and growth rate during the forecast period, 2017-2030. Historical figures are also provided, from 2010.
  • Antimicrobial, Antiviral, and Antifungal Nanocoatings market segments analysis.
  • Size in value for the End-user industries for nanocoatings and growth during the forecast period.
  • Market drivers, trends and challenges, by end user markets.
  • Market outlook for 2020. 
  • In-depth market assessment of opportunities for nanocoatings, by type and markets.
  • Antimicrobial, Antiviral, and Antifungal Nanocoatings applications.
  • In-depth analysis of antiviral, antibacterial and antifungal surface treatments, coatings and films. 
  • In-depth analysis of antibacterial and antiviral treatment for antibacterial mask, filter, gloves, clothes and devices. 
  • Revenue scenarios for COVID-19 response. 
  • 122 company profiles including products, technology base, target markets and contact details. Companies features include Advanced Materials-JTJ s.r.o., Bio-Fence, Bio-Gate AG, Covalon Technologies Ltd., EnvisionSQ, GrapheneCA, Integricote, Nano Came Co. Ltd., NanoTouch Materials, LLC, NitroPep and many more.  

 

View Table of contents

View Table of contents

1              INTRODUCTION                25

  • 1.1          Aims and objectives of the study               25
  • 1.2          Market definition             25
    • 1.2.1      Properties of nanomaterials        26
  • 1.2.2      Categorization   27

 

2              RESEARCH METHODOLOGY        28

 

3              EXECUTIVE SUMMARY  29

  • 3.1          High performance coatings          29
  • 3.2          Nanocoatings    29
  • 3.3          Impact of COVID-19 on the market           32
  • 3.4          Anti-viral nanoparticles and nanocoatings             33
    • 3.4.1.1   Reusable Personal Protective Equipment (PPE)   35
    • 3.4.1.2   Facemask coatings           35
    • 3.4.1.3   Wipe on coatings             36
    • 3.4.1.4   Long-term mitigation of surface contamination with nanocoatings             37
  • 3.5          Market drivers and trends            39
    • 3.5.1      Need for improved hygiene         39
    • 3.5.2      Smart surfaces to address infection and antimicrobial resistance 39
    • 3.5.3      COVID-19            40
    • 3.5.4      Mitigating Health care–associated infections (HAIs)          41
    • 3.5.5      Growth in use of electronic devices          41
    • 3.5.6      Sustainable coating systems and materials            42
    • 3.5.7      VOC and odour reduction in buildings     42
    • 3.5.8      Chemical to bio-based   42
  • 3.6          Global market size and opportunity to 2030          44
    • 3.6.1      End user market for antimicrobial, antiviral and antifungal nanocoatings 44
    • 3.6.2      Global revenues for antimicrobial, antiviral and antifungal nanocoatings 2010-2030            47
  • 3.6.3      Global revenues for antimicrobial, antiviral and antifungal nanocoatings, by market          48
    • 3.6.3.1   The market in 2019          48
    • 3.6.3.2   The market in 2030          50
  • 3.6.4      Regional demand for antimicrobial, antiviral and antifungal nanocoatings               52
  • 3.6.5      Demand for antimicrobial and anti-viral nanocoatings post COVID-19 pandemic  54
  • 3.7          Market and technical challenges               56

 

4              NANOCOATINGS TECHNICAL ANALYSIS 58

  • 4.1          Properties of nanocoatings          58
  • 4.2          Benefits of using nanocoatings   59
    • 4.2.1      Types of nanocoatings   60
  • 4.3          Production and synthesis methods          60
  • 4.4          Hydrophobic coatings and surfaces          72
    • 4.4.1      Hydrophilic coatings       72
    • 4.4.2      Hydrophobic coatings     72
      • 4.4.2.1   Properties           73
      • 4.4.2.2   Application in facemasks              73
  • 4.5          Superhydrophobic coatings and surfaces               74
    • 4.5.1      Properties           74
      • 4.5.1.1   Antibacterial use              75
    • 4.5.2      Durability issues               76
    • 4.5.3      Nanocellulose   76
  • 4.6          Oleophobic and omniphobic coatings and surfaces           77

 

5              NANOMATERIALS USED IN ANTIMICROBIAL, ANTIVIRAL AND ANTIFUNGAL NANOCOATINGS     80

  • 5.1          GRAPHENE         82
    • 5.1.1      Properties           82
    • 5.1.2      Graphene oxide 84
      • 5.1.2.1   Anti-bacterial activity      84
      • 5.1.2.2   Anti-viral activity              85
    • 5.1.3      Reduced graphene oxide (rGO) 85
    • 5.1.4      Markets and applications              86
    • 5.1.5      Commercial activity         86
  • 5.2          SILICON DIOXIDE/SILICA NANOPARTICLES             87
    • 5.2.1      Properties           87
    • 5.2.2      Antimicrobial and antiviral activity            88
    • 5.2.3      Easy-clean and dirt repellent       88
  • 5.3          NANOSILVER     88
    • 5.3.1      Properties           89
    • 5.3.2      Antimicrobial and antiviral activity            89
    • 5.3.3      Markets and applications              90
      • 5.3.3.1   Textiles 90
      • 5.3.3.2   Wound dressings             90
      • 5.3.3.3   Consumer products        91
      • 5.3.3.4   Air filtration        91
    • 5.3.4      Commercial activity         91
  • 5.4          TITANIUM DIOXIDE NANOPARTICLES      91
    • 5.4.1      Properties           92
    • 5.4.2      Exterior and construction glass coatings 93
    • 5.4.3      Outdoor air pollution      95
    • 5.4.4      Interior coatings               96
    • 5.4.5      Improving indoor air quality        96
    • 5.4.6      Medical facilities               97
    • 5.4.7      Wastewater Treatment 97
    • 5.4.8      Antimicrobial coating indoor light activation         98
  • 5.5          ZINC OXIDE NANOPARTICLES      99
    • 5.5.1      Properties           99
    • 5.5.2      Antimicrobial activity      100
  • 5.6          NANOCEULLOSE (CELLULOSE NANOFIBERS AND CELLULOSE NANOCRYSTALS)       102
    • 5.6.1      Properties           102
    • 5.6.2      Antimicrobial activity      103
      • 5.6.2.1   Cellulose nanofibers       103
      • 5.6.2.2   Cellulose nanocrystals (CNC)       103
  • 5.7          CARBON NANOTUBES    104
    • 5.7.1      Properties           104
    • 5.7.2      Antimicrobial activity      104
  • 5.8          FULLERENES       105
    • 5.8.1      Properties           105
    • 5.8.2      Antimicrobial activity      105
  • 5.9          CHITOSAN NANOPARTICLES        106
    • 5.9.1      Properties           106
    • 5.9.2      Wound dressings             108
    • 5.9.3      Packaging coatings and films       108
    • 5.9.4      Food storage      108
  • 5.10        COPPER NANOPARTICLES             109
    • 5.10.1    Properties           109
    • 5.10.2    Application in antimicrobial nanocoatings             109

 

6              NANOCOATINGS MARKET STRUCTURE  110

 

7              MARKET ANALYSIS         112

  • 7.1          ANTI-MICROBIAL AND ANTIVIRAL NANOCOATINGS           113
    • 7.1.1      Market drivers and trends            115
    • 7.1.2      Applications       120
      • 7.1.2.1   Repelling bacterial attachment or biofilm development  122
      • 7.1.2.2   Release of antibacterial agents   123
      • 7.1.2.3   Contact killing surfaces  125
      • 7.1.2.4   Stimuli responsive surfaces         125
    • 7.1.3      Global market size           126
      • 7.1.3.1   Nanocoatings opportunity           126
      • 7.1.3.2   Global revenues 2010-2030          127
      • 7.1.3.3   Adjusted for COVID-19 market growth scenarios 130
    • 7.1.4      Companies         130
  • 7.2          ANTI-FOULING AND EASY-TO-CLEAN NANOCOATINGS     133
    • 7.2.1      Market drivers and trends            134
    • 7.2.2      Benefits of anti-fouling and easy-to-clean nanocoatings 135
    • 7.2.3      Applications       135
    • 7.2.4      Global market size           135
      • 7.2.4.1   Nanocoatings opportunity           135
      • 7.2.4.2   Global revenues 2010-2030          137
      • 7.2.4.3   Adjusted for COVID-19 market growth scenarios 139
    • 7.2.5      Companies         140
  • 7.3          SELF-CLEANING (BIONIC) NANOCOATINGS            142
    • 7.3.1      Market drivers and trends            143
    • 7.3.2      Benefits of self-cleaning nanocoatings    143
    • 7.3.3      Global market size           144
      • 7.3.3.1   Nanocoatings opportunity           145
      • 7.3.3.2   Global revenues 2010-2030          147
      • 7.3.3.3   Adjusted for COVID-19 market growth scenarios 149
    • 7.3.4      Companies         149
  • 7.4          SELF-CLEANING (PHOTOCATALYTIC) NANOCOATINGS      151
    • 7.4.1      Market drivers and trends            152
    • 7.4.2      Benefits of photocatalytic self-cleaning nanocoatings      152
    • 7.4.3      Applications       153
      • 7.4.3.1   Self-Cleaning Coatings   153
      • 7.4.3.2   Indoor Air Pollution and Sick Building Syndrome 153
      • 7.4.3.3   Outdoor Air Pollution     153
      • 7.4.3.4   Water Treatment             154
    • 7.4.4      Global market size           154
      • 7.4.4.1   Nanocoatings opportunity           154
      • 7.4.4.2   Global revenues 2010-2030          157
      • 7.4.4.3   Adjusted for COVID-19 market growth scenarios 159
    • 7.4.5      Companies         159

 

8              MARKET SEGMENT ANALYSIS, BY END USER MARKET     162

  • 8.1          CONSTRUCTION               163
    • 8.1.1      Market drivers and trends            163
    • 8.1.2      Applications       164
      • 8.1.2.1   Antimicrobial and antiviral coatings in building interiors  165
      • 8.1.2.2   Antimicrobial paint          165
      • 8.1.2.3   Protective coatings for glass, concrete and other construction materials  166
      • 8.1.2.4   Photocatalytic nano-TiO2 coatings            166
      • 8.1.2.5   Door handles an handrails            168
      • 8.1.2.6   Anti-graffiti         168
      • 8.1.2.7   UV-protection   169
      • 8.1.2.8   Titanium dioxide nanoparticles  169
      • 8.1.2.9   Zinc oxide nanoparticles               169
    • 8.1.3      Global market size           170
      • 8.1.3.1   Nanocoatings opportunity           170
      • 8.1.3.2   Global revenues 2010-2030          171
    • 8.1.4      Companies         173
  • 8.2          HOUSEHOLD CARE, SANITARY AND INDOOR AIR QUALITY               178
    • 8.2.1      Market drivers and trends            178
    • 8.2.2      Applications       178
      • 8.2.2.1   Self-cleaning and easy-to-clean 178
      • 8.2.2.2   Food preparation and processing              178
      • 8.2.2.3   Indoor pollutants and air quality                179
    • 8.2.3      Global market size           180
      • 8.2.3.1   Nanocoatings opportunity           180
      • 8.2.3.2   Global revenues 2010-2030          181
    • 8.2.4      Companies         183
  • 8.3          MEDICAL & HEALTHCARE              186
    • 8.3.1      Market drivers and trends            186
    • 8.3.2      Applications       187
      • 8.3.2.1   Anti-fouling coatings on medical devices               188
      • 8.3.2.2   Medical textiles 188
      • 8.3.2.3   Nanosilver          189
      • 8.3.2.4   Antimicrobial medical implant coatings  189
      • 8.3.2.5   Light activated Titanium dioxide nanocoatings    191
    • 8.3.3      Global market size           191
      • 8.3.3.1   Nanocoatings opportunity           191
      • 8.3.3.2   Global revenues 2010-2030          193
    • 8.3.4      Companies         194
  • 8.4          TEXTILES AND APPAREL 198
    • 8.4.1      Market drivers and trends            198
    • 8.4.2      Applications       199
      • 8.4.2.1   Protective textiles           199
    • 8.4.3      Global market size           204
      • 8.4.3.1   Nanocoatings opportunity           204
      • 8.4.3.2   Global market revenues 2010-2030          206
    • 8.4.4      Companies         208
  • 8.5          PACKAGING       211
    • 8.5.1      Market drivers and trends            211
    • 8.5.2      Applications       211
      • 8.5.2.1   Antimicrobial coatings in food processing              212
      • 8.5.2.2   Antimicrobial coatings and films in food packaging            213
    • 8.5.3      Global market size           213
      • 8.5.3.1   Nanocoatings opportunity           214
      • 8.5.3.2   Global revenues 2010-2030          214
    • 8.5.4      Companies         216

 

9              OTHER  218

  • 9.1          Touchscreens    218
  • 9.2          Air conditioning and ventilation systems 220
  • 9.3          Disinfection technologies             221

 

10           ANTIMICROBIAL, ANTIVIRAL AND ANTIFUNGAL NANOCOATINGS COMPANIES  221 (122 COMPANY PROFILES)

 

11           RECENT RESEARCH IN ACADEMIA             307

 

12           REFERENCES       308

 

TABLES

  • Table 1. Categorization of nanomaterials.              26
  • Table 2. Properties of nanocoatings.        30
  • Table 4. End user markets for antimicrobial, antiviral and antifungal nanocoatings.             43
  • Table 5. Global revenues for antimicrobial, antiviral and antifungal nanocoatings, 2010-2030, millions USD, conservative estimate.  46
  • Table 7. Estimated revenues for antimicrobial, antiviral and antifungal nanocoatings, 2019, millions USD, by market.                48
  • Table 8. Estimated revenues for antimicrobial, antiviral and antifungal nanocoatings, 2030, millions USD, by market.                49
  • Table 12. Revenues for antimicrobial and antiviral nanocoatings, 2019-2030, US$, adjusted for COVID-19 related demand, conservative and high estimates.           53
  • Table 13. Revenues for Anti-fouling & easy clean nanocoatings, 2019-2030, US$, adjusted for COVID-19 related demand, conservative and high estimates.           53
  • Table 14. Revenues for self-cleaning (bionic) nanocoatings, 2019-2030, US$, adjusted for COVID-19 related demand, conservative and high estimates.              54
  • Table 15. Revenues for self-cleaning (photocatalytic) nanocoatings, 2019-2030, US$, adjusted for COVID-19 related demand, conservative and high estimates.           54
  • Table 16: Market and technical challenges for nanocoatings.        55
  • Table 17: Technology for synthesizing nanocoatings agents.         59
  • Table 18: Film coatings techniques.         60
  • Table 19: Contact angles of hydrophilic, super hydrophilic, hydrophobic and superhydrophobic surfaces. 72
  • Table 20: Disadvantages of commonly utilized superhydrophobic coating methods.           74
  • Table 21: Applications of oleophobic & omniphobic coatings.       77
  • Table 22: Nanomaterials used in nanocoatings and applications. 79
  • Table 23: Graphene properties relevant to application in coatings.             82
  • Table 24. Bactericidal characters of graphene-based materials.   84
  • Table 25. Markets and applications for antimicrobial and antiviral nanocoatings graphene nanocoatings. 85
  • Table 26. Commercial activity in antimicrobial and antiviral nanocoatings graphene nanocoatings.              85
  • Table 27. Markets and applications for antimicrobial nanosilver nanocoatings.     89
  • Table 28. Commercial activity in antimicrobial nanosilver nanocoatings.  90
  • Table 29. Antibacterial effects of ZnO NPs in different bacterial species.  100
  • Table 30. Types of carbon-based nanoparticles as antimicrobial agent, their mechanisms of action and characteristics.                105
  • Table 31. Mechanism of chitosan antimicrobial action.    106
  • Table 32: Nanocoatings market structure.             109
  • Table 33: Anti-microbial and antiviral nanocoatings-Nanomaterials used, principles, properties and applications   112
  • Table 34. Nanomaterials utilized in antimicrobial and antiviral nanocoatings coatings-benefits and applications.   118
  • Table 35: Antimicrobial and antiviral nanocoatings markets and applications.        120
  • Table 36: Market assessment of  antimicrobial and antiviral nanocoatings.             125
  • Table 37: Opportunity for antimicrobial and antiviral nanocoatings.           126
  • Table 38: Revenues for antimicrobial and antiviral nanocoatings, 2010-2030, US$.              126
  • Table 39: Antimicrobial and antiviral nanocoatings product and application developers.  129
  • Table 40: Anti-fouling and easy-to-clean nanocoatings-Nanomaterials used, principles, properties and applications.                132
  • Table 41: Market drivers and trends in Anti-fouling and easy-to-clean nanocoatings.         133
  • Table 42: Anti-fouling and easy-to-clean nanocoatings markets, applications and potential addressable market.   135
  • Table 43: Market assessment for anti-fouling and easy-to-clean nanocoatings.     135
  • Table 44: Revenues for anti-fouling and easy-to-clean nanocoatings, 2010-2030, US$.       136
  • Table 45: Anti-fouling and easy-to-clean nanocoatings product and application developers.           139
  • Table 46: Self-cleaning (bionic) nanocoatings-Nanomaterials used, principles, properties and applications.              141
  • Table 47: Market drivers and trends in Self-cleaning (bionic) nanocoatings.            142
  • Table 48: Self-cleaning (bionic) nanocoatings-Markets and applications.  144
  • Table 49: Market assessment for self-cleaning (bionic) nanocoatings.       145
  • Table 50: Revenues for self-cleaning nanocoatings, 2010-2030, US$.         146
  • Table 51: Self-cleaning (bionic) nanocoatings product and application developers.             148
  • Table 52: Self-cleaning (photocatalytic) nanocoatings-Nanomaterials used, principles, properties and applications.                150
  • Table 53: Market drivers and trends in photocatalytic nanocoatings.         151
  • Table 54: Photocatalytic nanocoatings-Markets, applications and potential addressable market size by 2027.          154
  • Table 55: Market assessment for self-cleaning (photocatalytic) nanocoatings.      155
  • Table 56: Revenues for self-cleaning (photocatalytic) nanocoatings, 2010-2030, US$.         156
  • Table 57: Self-cleaning (photocatalytic) nanocoatings product and application developers.             158
  • Table 58: Market drivers and trends for antimicrobial, antiviral and antifungal nanocoatings in the construction market. 162
  • Table 59: Nanocoatings applied in the construction industry-type of coating, nanomaterials utilized and benefits. 163
  • Table 60: Photocatalytic nanocoatings-Markets and applications.               166
  • Table 61: Revenues for nanocoatings in construction, architecture and exterior protection, 2010-2030, US$.          171
  • Table 62: Construction, architecture and exterior protection nanocoatings product developers.   172
  • Table 63: Market drivers and trends for antimicrobial, antiviral and antifungal nanocoatings in household care and sanitary.               177
  • Table 64: Revenues for nanocoatings in household care, sanitary and indoor air quality, 2010-2030, US$. 180
  • Table 65: Household care, sanitary and indoor air quality nanocoatings product developers.         182
  • Table 66: Market drivers and trends for antimicrobial, antiviral and antifungal nanocoatings in medicine and healthcare.         185
  • Table 67: Nanocoatings applied in the medical industry-type of coating, nanomaterials utilized, benefits and applications.       187
  • Table 68: Types of advanced coatings applied in medical devices and implants.    189
  • Table 69: Nanomaterials utilized in medical implants.      189
  • Table 70: Revenues for nanocoatings in medical and healthcare, 2010-2030, US$.               192
  • Table 71: Medical and healthcare nanocoatings product developers.        194
  • Table 72: Market drivers and trends for antimicrobial, antiviral and antifungal nanocoatings s in the textiles and apparel industry.              197
  • Table 73: Applications in textiles, by advanced materials type and benefits thereof.           199
  • Table 74: Nanocoatings applied in the textiles industry-type of coating, nanomaterials utilized, benefits and applications.       200
  • Table 75: Revenues for nanocoatings in textiles and apparel, 2010-2030, US$.      205
  • Table 76: Textiles nanocoatings product developers.       207
  • Table 77: Market drivers and trends for nanocoatings in the packaging market.   210
  • Table 78: Revenues for nanocoatings in packaging, 2010-2030, US$.          213
  • Table 79: Food packaging nanocoatings product developers.        215
  • Table 80. Photocatalytic coating schematic.          240
  • Table 81. Antimicrobial, antiviral and antifungal nanocoatings development in academia.                304

 

FIGURES

  • Figure 1. Schematic of anti-viral coating using nano-actives for inactivation of any adhered virus on the surfaces. 34
  • Figure 2. Global revenues for antimicrobial, antiviral and antifungal nanocoatings, 2010-2030, millions USD, conservative estimate.  48
  • Figure 5. Estimated market revenues for antimicrobial, antiviral and antifungal nanocoatings 2019, millions USD, by market. 49
  • Figure 6. Estimated market revenues for antimicrobial, antiviral and antifungal nanocoatings 2030, millions USD, by market. 50
  • Figure 7. Markets for antimicrobial, antiviral and antifungal nanocoatings 2030, %.            51
  • Figure 14: Regional demand for antimicrobial, antiviral and antifungal nanocoatings, 2019.             52
  • Figure 15: Regional demand for nanocoatings, 2030.         52
  • Figure 16: Hydrophobic fluoropolymer nanocoatings on electronic circuit boards.               58
  • Figure 17: Nanocoatings synthesis techniques.   60
  • Figure 18: Techniques for constructing superhydrophobic coatings on substrates.              62
  • Figure 19: Electrospray deposition.          64
  • Figure 20: CVD technique.            65
  • Figure 21: Schematic of ALD.       67
  • Figure 22: SEM images of different layers of TiO2 nanoparticles in steel surface.  68
  • Figure 23: The coating system is applied to the surface. The solvent evaporates. 69
  • Figure 24: A first organization takes place where the silicon-containing bonding component (blue dots in figure 2) bonds covalently with the surface and cross-links with neighbouring molecules to form a strong three-dimensional.                69
  • Figure 25: During the curing, the compounds organise themselves in a nanoscale monolayer. The fluorine-containing repellent component (red dots in figure) on top makes the glass hydro- phobic and oleophobic.  70
  • Figure 26: (a) Water drops on a lotus leaf.             71
  • Figure 27: A schematic of (a) water droplet on normal hydrophobic surface with contact angle greater than 90° and (b) water droplet on a superhydrophobic surface with a contact angle > 150°.              72
  • Figure 28: Contact angle on superhydrophobic coated surface.   73
  • Figure 29: Self-cleaning nanocellulose dishware. 75
  • Figure 30: SLIPS repellent coatings.          77
  • Figure 31: Omniphobic coatings.                78
  • Figure 32: Graphair membrane coating. 82
  • Figure 33: Antimicrobial activity of Graphene oxide (GO).              83
  • Figure 34: Hydrophobic easy-to-clean coating.    87
  • Figure 35 Anti-bacterial mechanism of silver nanoparticle coating.             88
  • Figure 36: Mechanism of photocatalysis on a surface treated with TiO2 nanoparticles.      91
  • Figure 37:  Schematic showing the self-cleaning phenomena on superhydrophilic surface.              92
  • Figure 38: Titanium dioxide-coated glass (left) and ordinary glass (right). 93
  • Figure 39:  Self-Cleaning mechanism utilizing photooxidation.      94
  • Figure 40: Schematic of photocatalytic air purifying pavement.   95
  • Figure 41: Schematic of photocatalytic indoor air purification filter.           96
  • Figure 42: Schematic of photocatalytic water purification.              97
  • Figure 43. Schematic of antibacterial activity of ZnO NPs.               99
  • Figure 44: Types of nanocellulose.            102
  • Figure 45. Mechanism of antimicrobial activity of carbon nanotubes.       103
  • Figure 46: Fullerene schematic. 104
  • Figure 47. TEM images of Burkholderia seminalis treated with (a, c) buffer (control) and (b, d) 2.0 mg/mL chitosan; (A: additional layer; B: membrane damage).               106
  • Figure 48: Schematic of typical commercialization route for nanocoatings producer.          109
  • Figure 49 Nanocoatings market by nanocoatings type, 2010-2030, USD.  111
  • Figure 50: Market drivers and trends in antimicrobial and antiviral nanocoatings. 114
  • Figure 51. Classes of antibacterial coatings.          121
  • Figure 52. Core-shell architecture of a responsive (nano)material and the possible constituents of the core and shell.                125
  • Figure 53. Nano-coated self-cleaning touchscreen.           125
  • Figure 54: Revenues for antimicrobial and antiviral nanocoatings, 2010-2030, US$.             128
  • Figure 55. Revenues for antimicrobial and antiviral nanocoatings, 2019-2030, US$, adjusted for COVID-19 related demand, conservative and high estimates.           129
  • Figure 56: Anti-fouling treatment for heat-exchangers.   134
  • Figure 57: Markets for anti-fouling and easy clean nanocoatings, by %.    135
  • Figure 58: Potential addressable market for anti-fouling and easy-to-clean nanocoatings by 2030.                136
  • Figure 59: Revenues for anti-fouling and easy-to-clean nanocoatings 2010-2030, millions USD.     138
  • Figure 60. Revenues for anti-fouling and easy-to-clean nanocoatings, 2019-2030, US$, adjusted for COVID-19 related demand, conservative and high estimates             139
  • Figure 61: Self-cleaning superhydrophobic coating schematic.      143
  • Figure 62: Markets for self-cleaning nanocoatings, %, 2018.           144
  • Figure 63: Potential addressable market for self-cleaning (bionic) nanocoatings by 2030.  145
  • Figure 64: Revenues for self-cleaning nanocoatings, 2010-2030, US$.        147
  • Figure 65. Revenues for self-cleaning (bionic) nanocoatings, 2019-2030, US$, adjusted for COVID-19 related demand, conservative and high estimates               148
  • Figure 66: Principle of superhydrophilicity.           152
  • Figure 67: Schematic of photocatalytic air purifying pavement.   153
  • Figure 68: Tokyo Station GranRoof. The titanium dioxide coating ensures long-lasting whiteness. 154
  • Figure 69: Markets for self-cleaning (photocatalytic) nanocoatings 2019, %.           154
  • Figure 70: Potential addressable market for self-cleaning (photocatalytic) nanocoatings by 2030.  155
  • Figure 71: Revenues for self-cleaning (photocatalytic) nanocoatings, 2010-2030, US$.       157
  • Figure 72. Revenues for self-cleaning (photocatalytic) nanocoatings, 2019-2030, US$, adjusted for COVID-19 related demand, conservative and high estimates             158
  • Figure 73 Nanocoatings market by end user sector, 2010-2030, USD.        162
  • Figure 74: Mechanism of photocatalytic NOx oxidation on active concrete road.  166
  • Figure 75: Jubilee Church in Rome, the outside coated with nano photocatalytic TiO2 coatings.    166
  • Figure 76: FN® photocatalytic coating, applied in the Project of Ecological Sound Barrier, in Prague.           168
  • Figure 77 Smart window film coatings based on indium tin oxide nanocrystals.     169
  • Figure 78: Nanocoatings in construction, architecture and exterior protection, by coatings type %, 2019.  170
  • Figure 79: Potential addressable market for nanocoatings in the construction, architecture and exterior coatings sector by 2030.  170
  • Figure 80: Revenues for nanocoatings in construction, architecture and exterior protection, 2010-2030, US$.         172
  • Figure 81: Nanocoatings in household care, sanitary and indoor air quality, by coatings type %, 2019.         180
  • Figure 82: Potential addressable market for nanocoatings in household care, sanitary and indoor air filtration by 2030.                180
  • Figure 83: Revenues for nanocoatings in household care, sanitary and indoor air quality, 2010-2030, US$.               182
  • Figure 84: Anti-bacterial sol-gel nanoparticle silver coating.           188
  • Figure 85: Nanocoatings in medical and healthcare, by coatings type %, 2019.       191
  • Figure 86: Potential addressable market for nanocoatings in medical & healthcare by 2030.            192
  • Figure 87: Revenues for nanocoatings in medical and healthcare, 2010-2030, US$.             193
  • Figure 88: Omniphobic-coated fabric.     198
  • Figure 89: Nanocoatings in textiles and apparel, by coatings type %, 2019.              204
  • Figure 90: Potential addressable market for nanocoatings in textiles and apparel by 2030.               205
  • Figure 91: Revenues for nanocoatings in textiles and apparel, 2010-2030, US$.     206
  • Figure 92: Oso fresh food packaging incorporating antimicrobial silver.    212
  • Figure 93: Potential addressable market for nanocoatings in packaging.   213
  • Figure 94: Revenues for nanocoatings in packaging, 2010-2030, US$.        214
  • Figure 95. Lab tests on DSP coatings.       239
  • Figure 96. GrapheneCA anti-bacterial and anti-viral coating.          246
  • Figure 97. Microlyte® Matrix bandage for surgical wounds.           253
  • Figure 98. Self-cleaning nanocoating applied to face masks.          255
  • Figure 99. NanoSeptic surfaces. 276
  • Figure 100. NascNanoTechnology personnel shown applying MEDICOAT to airport luggage carts. 281

 

The Global Market for Antimicrobial, Antiviral and Antifungal Nanocoatings 2020
The Global Market for Antimicrobial, Antiviral and Antifungal Nanocoatings 2020
PDF download.

The Global Market for Antimicrobial, Antiviral and Antifungal Nanocoatings 2020
The Global Market for Antimicrobial, Antiviral and Antifungal Nanocoatings 2020
Print edition (including tracked delivery).

The Global Market for Antimicrobial, Antiviral and Antifungal Nanocoatings 2020
The Global Market for Antimicrobial, Antiviral and Antifungal Nanocoatings 2020
PDF and print edition (including tracked delivery).

To purchase by invoice (bank transfer or cheque) contact info@futuremarketsinc.com or select this option after adding to cart.