The Global Market for Antimicrobial, Antiviral, and Antifungal Nanocoatings 2020

0

Published June 4, 302 pages, 81 tables, 98 figures

When the current global crisis has abated, efforts must turn to future preventative measures. Nanocoatings can demonstrate up to 99.9998% effectiveness against bacteria, formaldehyde, mold and viruses and are up to 1000 times more efficient than previous technologies available on the market. They can work on multiple levels at the same time: antiviral, bacterial and fungal and self-cleaning. Nanocoatings companies are already partnering with global manufacturers and cities to develop anti-viral facemasks, hazard suits and easily applied surface coatings.

Their use makes it possible to provide enhanced antiviral, antibacterial, mold-reducing and TVOC degrading processes, that are non-toxic and environmentally friendly, allowing for exceptional hygiene standards in all areas of work and life. As a result, it is possible create a healthier living and working environment and to offer holistic solutions to people with a diminished immune system. Nano-based surface coatings prevent the spread of bacteria, fungi and viruses via infected surfaces of so called high-traffic objects, such as door and window handles in public places, hospitals, public buildings, schools, elderly homes etc. 

Antimicrobial, Antiviral, and Antifungal Nanocoatings are available in various material compositions, for healthcare and household surfaces, for indoor and outdoor applications, to protect against corrosion and mildew, as well as for water and air purification. Nanocoatings also reduce surface contamination, are self-cleaning, water-repellent and odor-inhibiting, reducing cleaning and maintenance

Antimicrobial, Antiviral, and Antifungal Nanocoatings can be applied by spraying or dipping and adhere to various surfaces such as glass, metals and various alloys, copper and stainless steel, marble and stone slabs, ceramics and tiles, textiles and plastics.

Nanoparticles of different materials  such as metal nanoparticles, carbon nanotubes, metal oxide nanoparticles, and graphene-based materials have demonstrated enhanced anti-microbial and anti-viral activity. The use of inorganic nanomaterials when compared with organic anti-microbial agents is also desirable due to their stability, robustness, and long shelf life. At high temperatures/pressures organic antimicrobial materials are found to be less stable compared to inorganic antimicrobial agents. The various antimicrobial mechanisms of nanomaterials are mostly attributed to their high specific surface area-to-volume ratios, and their distinctive physico-chemical properties.

Anti-viral nanocoatings

Viruses constitute a group of heterogeneous and much simpler organisms. They range in size from 100-300nm, much smaller than bacteria. Viruses are unique in that they have no independent metabolic activities and have to rely solely on infection living hosts to reproduce themselves. Unlike all other life, viruses may contain either DNA or RNA as genetic materials, but not both.

The nucleic materials are surrounded by a protein coat to protect them from harmful agents in the environment. The protein coat also provides the specific binding site necessary for the attachment of virus to its host. Some viruses also contain an outer envelope made up of lipids , polysaccharides , and protein molecules. The lipids and polysaccharides are of host cell organ , and their presence allows a virus to fuse with a host cell and thus gain entry.

A virus not having the outer envelope infects a cell in quit a different manner. Infection is initiated by the attachment of a specialized site on the surface of the protein coat of the virus onto a specific receptor site on the surface of the host cell.

Once this binding is complete viruses can release genetic materials into the host cell and take advantage of the machinery of the host cell to reproduce and assemble themselves. These newly produced viruses are now ready to infect other cells .

Therefore, one of the key processes to disable viruses is through the control of their surface structure, especially their binding sites, so they can no longer recognize the receptor site on the host cells. As many types of nanocoatings attack most effectively on the virus’s surface, they represent an excellent viable technology to destroy the viruses surface structure.

Report contents include:

  • Size in value for the Antimicrobial, Antiviral, and Antifungal Nanocoatings market, and growth rate during the forecast period, 2017-2030. Historical figures are also provided, from 2010.
  • Antimicrobial, Antiviral, and Antifungal Nanocoatings market segments analysis.
  • Size in value for the End-user industries for nanocoatings and growth during the forecast period.
  • Market drivers, trends and challenges, by end user markets.
  • Market outlook for 2020. 
  • In-depth market assessment of opportunities for nanocoatings, by type and markets.
  • Antimicrobial, Antiviral, and Antifungal Nanocoatings applications.
  • In-depth analysis of antiviral, antibacterial and antifungal surface treatments, coatings and films. 
  • In-depth analysis of antibacterial and antiviral treatment for antibacterial mask, filter, gloves, clothes and devices. 
  • Revenue scenarios for COVID-19 response. 
  • 117 company profiles including products, technology base, target markets and contact details. Companies features include Advanced Materials-JTJ s.r.o., Bio-Fence, Bio-Gate AG, Covalon Technologies Ltd., EnvisionSQ, GrapheneCA, Integricote, Nano Came Co. Ltd., NanoTouch Materials, LLC, NitroPep and many more. 

     

 

 

Download Table of contents (PDF)

1              INTRODUCTION                24

  • 1.1          Aims and objectives of the study               24
  • 1.2          Market definition             24
    • 1.2.1      Properties of nanomaterials        25
  • 1.2.2      Categorization   26

 

2              RESEARCH METHODOLOGY        27

 

3              EXECUTIVE SUMMARY  28

  • 3.1          High performance coatings          28
  • 3.2          Nanocoatings    28
  • 3.3          Anti-viral nanoparticles and nanocoatings             31
    • 3.3.1.1   Reusable Personal Protective Equipment (PPE)   33
    • 3.3.1.2   Facemask coatings           33
    • 3.3.1.3   Wipe on coatings             34
    • 3.3.1.4   Long-term mitigation of surface contamination with nanocoatings             34
  • 3.4          Market drivers and trends            36
  • 3.5          Global market size and opportunity to 2030          38
    • 3.5.1      End user market for nanocoatings            38
    • 3.5.2      Global revenues for nanocoatings 2010-2030       41
    • 3.5.3      Global revenues for nanocoatings, by market      42
      • 3.5.3.1   The market in 2018          42
      • 3.5.3.2   The market in 2019          45
      • 3.5.3.3   The market in 2030          47
    • 3.5.4      Global revenues by nanocoatings, by type            48
    • 3.5.5      Regional demand for nanocoatings          53
    • 3.5.6      Demand for antimicrobial and anti-viral nanocoatings post COVID-19 pandemic  55
  • 3.6          Market and technical challenges               57

 

4              NANOCOATINGS TECHNICAL ANALYSIS 59

  • 4.1          Properties of nanocoatings          59
  • 4.2          Benefits of using nanocoatings   60
    • 4.2.1      Types of nanocoatings   61
  • 4.3          Production and synthesis methods          61
    • 4.3.1      Film coatings techniques analysis              62
    • 4.3.2      Superhydrophobic coatings on substrates             64
    • 4.3.3      Electrospray and electrospinning              65
    • 4.3.4      Chemical and electrochemical deposition              66
      • 4.3.4.1   Chemical vapor deposition (CVD)              66
      • 4.3.4.2   Physical vapor deposition (PVD) 67
      • 4.3.4.3   Atomic layer deposition (ALD)    68
      • 4.3.4.4   Aerosol coating 69
      • 4.3.4.5   Layer-by-layer Self-assembly (LBL)            69
      • 4.3.4.6   Sol-gel process  70
      • 4.3.4.7   Etching 72
  • 4.4          Hydrophobic coatings and surfaces          73
    • 4.4.1      Hydrophilic coatings       73
    • 4.4.2      Hydrophobic coatings     73
      • 4.4.2.1   Properties           74
      • 4.4.2.2   Application in facemasks              74
  • 4.5          Superhydrophobic coatings and surfaces               75
    • 4.5.1      Properties           75
      • 4.5.1.1   Antibacterial use              76
    • 4.5.2      Durability issues               77
    • 4.5.3      Nanocellulose   77
  • 4.6          Oleophobic and omniphobic coatings and surfaces           78
  • 4.6.1      SLIPS     78
  • 4.6.2      Covalent bonding             79
  • 4.6.3      Step-growth graft polymerization             79
  • 4.6.4      Applications       79

 

5              NANOMATERIALS USED IN ANTIMICROBIAL, ANTIVIRAL AND ANTIFUNGAL NANOCOATINGS     81

  • 5.1          GRAPHENE         83
    • 5.1.1      Properties           83
    • 5.1.2      Graphene oxide 85
      • 5.1.2.1   Anti-bacterial activity      85
      • 5.1.2.2   Anti-viral activity              86
    • 5.1.3      Reduced graphene oxide (rGO) 86
    • 5.1.4      Markets and applications              87
    • 5.1.5      Commercial activity         87
  • 5.2          SILICON DIOXIDE/SILICA NANOPARTICLES             88
    • 5.2.1      Properties           88
    • 5.2.2      Antimicrobial and antiviral activity            89
    • 5.2.3      Easy-clean and dirt repellent       89
  • 5.3          NANOSILVER     89
    • 5.3.1      Properties           90
    • 5.3.2      Antimicrobial and antiviral activity            90
    • 5.3.3      Markets and applications              91
      • 5.3.3.1   Textiles 91
      • 5.3.3.2   Wound dressings             91
      • 5.3.3.3   Consumer products        92
      • 5.3.3.4   Air filtration        92
    • 5.3.4      Commercial activity         92
  • 5.4          TITANIUM DIOXIDE NANOPARTICLES      92
    • 5.4.1      Properties           93
    • 5.4.2      Exterior and construction glass coatings 94
    • 5.4.3      Outdoor air pollution      96
    • 5.4.4      Interior coatings               97
    • 5.4.5      Improving indoor air quality        97
    • 5.4.6      Medical facilities               98
    • 5.4.7      Wastewater Treatment 98
    • 5.4.8      Antimicrobial coating indoor light activation         99
  • 5.5          ZINC OXIDE NANOPARTICLES      100
    • 5.5.1      Properties           100
    • 5.5.2      Antimicrobial activity      101
  • 5.6          NANOCEULLOSE (CELLULOSE NANOFIBERS AND CELLULOSE NANOCRYSTALS)       103
    • 5.6.1      Properties           103
    • 5.6.2      Antimicrobial activity      104
      • 5.6.2.1   Cellulose nanofibers       104
      • 5.6.2.2   Cellulose nanocrystals (CNC)       104
  • 5.7          CARBON NANOTUBES    105
    • 5.7.1      Properties           105
    • 5.7.2      Antimicrobial activity      105
  • 5.8          FULLERENES       106
    • 5.8.1      Properties           106
    • 5.8.2      Antimicrobial activity      106
  • 5.9          CHITOSAN NANOPARTICLES        107
    • 5.9.1      Properties           107
    • 5.9.2      Wound dressings             109
    • 5.9.3      Packaging coatings and films       109
    • 5.9.4      Food storage      109
  • 5.10        COPPER NANOPARTICLES             110
    • 5.10.1    Properties           110
    • 5.10.2    Application in antimicrobial nanocoatings             110

 

6              NANOCOATINGS MARKET STRUCTURE  111

 

7              MARKET ANALYSIS         113

  • 7.1          ANTI-MICROBIAL AND ANTIVIRAL NANOCOATINGS           114
    • 7.1.1      Market drivers and trends            116
    • 7.1.2      Applications       121
    • 7.1.3      Global market size           122
      • 7.1.3.1   Nanocoatings opportunity           123
      • 7.1.3.2   Global revenues 2010-2030          124
      • 7.1.3.3   Adjusted for COVID-19 market growth scenarios 126
    • 7.1.4      Companies         126
  • 7.2          ANTI-FOULING AND EASY-TO-CLEAN NANOCOATINGS     129
    • 7.2.1      Market drivers and trends            130
    • 7.2.2      Benefits of anti-fouling and easy-to-clean nanocoatings 131
    • 7.2.3      Applications       131
    • 7.2.4      Global market size           131
      • 7.2.4.1   Nanocoatings opportunity           131
      • 7.2.4.2   Global revenues 2010-2030          133
      • 7.2.4.3   Adjusted for COVID-19 market growth scenarios 135
    • 7.2.5      Companies         136
  • 7.3          SELF-CLEANING (BIONIC) NANOCOATINGS            138
    • 7.3.1      Market drivers and trends            139
    • 7.3.2      Benefits of self-cleaning nanocoatings    139
    • 7.3.3      Global market size           140
      • 7.3.3.1   Nanocoatings opportunity           141
      • 7.3.3.2   Global revenues 2010-2030          143
      • 7.3.3.3   Adjusted for COVID-19 market growth scenarios 145
    • 7.3.4      Companies         145
  • 7.4          SELF-CLEANING (PHOTOCATALYTIC) NANOCOATINGS      147
    • 7.4.1      Market drivers and trends            148
    • 7.4.2      Benefits of photocatalytic self-cleaning nanocoatings      148
    • 7.4.3      Applications       149
      • 7.4.3.1   Self-Cleaning Coatings   149
      • 7.4.3.2   Indoor Air Pollution and Sick Building Syndrome 149
      • 7.4.3.3   Outdoor Air Pollution     149
      • 7.4.3.4   Water Treatment             150
    • 7.4.4      Global market size           150
      • 7.4.4.1   Nanocoatings opportunity           150
      • 7.4.4.2   Global revenues 2010-2030          153
      • 7.4.4.3   Adjusted for COVID-19 market growth scenarios 155
    • 7.4.5      Companies         155

 

8              MARKET SEGMENT ANALYSIS, BY END USER MARKET     158

  • 8.1          CONSTRUCTION               159
    • 8.1.1      Market drivers and trends            159
    • 8.1.2      Applications       160
      • 8.1.2.1   Protective coatings for glass, concrete and other construction materials  161
      • 8.1.2.2   Photocatalytic nano-TiO2 coatings            161
      • 8.1.2.3   Anti-graffiti         163
      • 8.1.2.4   UV-protection   163
      • 8.1.2.5   Titanium dioxide nanoparticles  163
      • 8.1.2.6   Zinc oxide nanoparticles               164
    • 8.1.3      Global market size           164
      • 8.1.3.1   Nanocoatings opportunity           164
      • 8.1.3.2   Global revenues 2010-2030          166
    • 8.1.4      Companies         167
  • 8.2          HOUSEHOLD CARE, SANITARY AND INDOOR AIR QUALITY               172
    • 8.2.1      Market drivers and trends            172
    • 8.2.2      Applications       172
      • 8.2.2.1   Self-cleaning and easy-to-clean 172
      • 8.2.2.2   Food preparation and processing              172
      • 8.2.2.3   Indoor pollutants and air quality                173
    • 8.2.3      Global market size           174
      • 8.2.3.1   Nanocoatings opportunity           174
      • 8.2.3.2   Global revenues 2010-2030          175
    • 8.2.4      Companies         177
  • 8.3          MEDICAL & HEALTHCARE              180
    • 8.3.1      Market drivers and trends            180
    • 8.3.2      Applications       181
      • 8.3.2.1   Anti-fouling        182
      • 8.3.2.2   Anti-microbial and infection control         182
      • 8.3.2.3   Nanosilver          182
      • 8.3.2.4   Medical device coatings 183
    • 8.3.3      Global market size           185
      • 8.3.3.1   Nanocoatings opportunity           185
      • 8.3.3.2   Global revenues 2010-2030          186
    • 8.3.4      Companies         187
  • 8.4          TEXTILES AND APPAREL 191
    • 8.4.1      Market drivers and trends            191
    • 8.4.2      Applications       192
      • 8.4.2.1   Protective textiles           192
    • 8.4.3      Global market size           197
      • 8.4.3.1   Nanocoatings opportunity           197
      • 8.4.3.2   Global market revenues 2010-2030          199
    • 8.4.4      Companies         201
  • 8.5          PACKAGING       204
    • 8.5.1      Market drivers and trends            204
    • 8.5.2      Applications       204
      • 8.5.2.1   Antimicrobial coatings in food processing              205
      • 8.5.2.2   Antimicrobial coatings and films in food packaging            206
    • 8.5.3      Global market size           206
      • 8.5.3.1   Nanocoatings opportunity           207
      • 8.5.3.2   Global revenues 2010-2030          207
    • 8.5.4      Companies         209

 

9              ANTIMICROBIAL, ANTIVIRAL AND ANTIFUNGAL NANOCOATINGS COMPANIES  210 (117 COMPANY PROFILES)

 

10           RECENT RESEARCH IN ACADEMIA             292

 

11           REFERENCES       293

 

TABLES

  • Table 1: Categorization of nanomaterials.              26
  • Table 2: Properties of nanocoatings.        29
  • Table 3. Market drivers and trends in antiviral and antimicrobial nanocoatings.    36
  • Table 4: End user markets for nanocoatings.        38
  • Table 5: Global revenues for nanocoatings, 2010-2030, millions USD, conservative estimate.         41
  • Table 6: Global revenues for nanocoatings, 2018, millions USD, by market.            42
  • Table 7: Estimated revenues for nanocoatings, 2019, millions USD, by market.     45
  • Table 8: Estimated revenues for nanocoatings, 2030, millions USD, by market.     47
  • Table 9: Global revenues for nanocoatings, 2018, millions USD, by type.  48
  • Table 10: Estimated global revenues for nanocoatings, 2019, millions USD, by type.           50
  • Table 11: Estimated revenues for nanocoatings, 2030, millions USD, by type.        51
  • Table 12. Revenues for antimicrobial and antiviral nanocoatings, 2019-2030, US$, adjusted for COVID-19 related demand, conservative and high estimates.           55
  • Table 13. Revenues for Anti-fouling & easy clean nanocoatings, 2019-2030, US$, adjusted for COVID-19 related demand, conservative and high estimates.           56
  • Table 14. Revenues for self-cleaning (bionic) nanocoatings, 2019-2030, US$, adjusted for COVID-19 related demand, conservative and high estimates.              56
  • Table 15. Revenues for self-cleaning (photocatalytic) nanocoatings, 2019-2030, US$, adjusted for COVID-19 related demand, conservative and high estimates.           57
  • Table 16: Market and technical challenges for nanocoatings.        57
  • Table 17: Technology for synthesizing nanocoatings agents.         61
  • Table 18: Film coatings techniques.         62
  • Table 19: Contact angles of hydrophilic, super hydrophilic, hydrophobic and superhydrophobic surfaces. 74
  • Table 20: Disadvantages of commonly utilized superhydrophobic coating methods.           76
  • Table 21: Applications of oleophobic & omniphobic coatings.       79
  • Table 22: Nanomaterials used in nanocoatings and applications. 81
  • Table 23: Graphene properties relevant to application in coatings.             84
  • Table 24. Bactericidal characters of graphene-based materials.   86
  • Table 25. Markets and applications for antimicrobial and antiviral nanocoatings graphene nanocoatings. 87
  • Table 26. Commercial activity in antimicrobial and antiviral nanocoatings graphene nanocoatings.              87
  • Table 27. Markets and applications for antimicrobial nanosilver nanocoatings.     91
  • Table 28. Commercial activity in antimicrobial nanosilver nanocoatings.  92
  • Table 29. Antibacterial effects of ZnO NPs in different bacterial species.  102
  • Table 30. Types of carbon-based nanoparticles as antimicrobial agent, their mechanisms of action and characteristics.                107
  • Table 31. Mechanism of chitosan antimicrobial action.    108
  • Table 32: Nanocoatings market structure.             111
  • Table 33: Anti-microbial and antiviral nanocoatings-Nanomaterials used, principles, properties and applications   114
  • Table 34. Nanomaterials utilized in antimicrobial and antiviral nanocoatings coatings-benefits and applications.   120
  • Table 35: Antimicrobial and antiviral nanocoatings markets and applications.        121
  • Table 36: Market assessment of  antimicrobial and antiviral nanocoatings.             123
  • Table 37: Opportunity for antimicrobial and antiviral nanocoatings.           123
  • Table 38: Revenues for antimicrobial and antiviral nanocoatings, 2010-2030, US$.              124
  • Table 39: Antimicrobial and antiviral nanocoatings product and application developers.  126
  • Table 40: Anti-fouling and easy-to-clean nanocoatings-Nanomaterials used, principles, properties and applications.                129
  • Table 41: Market drivers and trends in Anti-fouling and easy-to-clean nanocoatings.         130
  • Table 42: Anti-fouling and easy-to-clean nanocoatings markets, applications and potential addressable market.   132
  • Table 43: Market assessment for anti-fouling and easy-to-clean nanocoatings.     132
  • Table 44: Revenues for anti-fouling and easy-to-clean nanocoatings, 2010-2030, US$.       133
  • Table 45: Anti-fouling and easy-to-clean nanocoatings product and application developers.           136
  • Table 46: Self-cleaning (bionic) nanocoatings-Nanomaterials used, principles, properties and applications.              138
  • Table 47: Market drivers and trends in Self-cleaning (bionic) nanocoatings.            139
  • Table 48: Self-cleaning (bionic) nanocoatings-Markets and applications.  141
  • Table 49: Market assessment for self-cleaning (bionic) nanocoatings.       142
  • Table 50: Revenues for self-cleaning nanocoatings, 2010-2030, US$.         143
  • Table 51: Self-cleaning (bionic) nanocoatings product and application developers.             145
  • Table 52: Self-cleaning (photocatalytic) nanocoatings-Nanomaterials used, principles, properties and applications.                147
  • Table 53: Market drivers and trends in photocatalytic nanocoatings.         148
  • Table 54: Photocatalytic nanocoatings-Markets, applications and potential addressable market size by 2027.          151
  • Table 55: Market assessment for self-cleaning (photocatalytic) nanocoatings.      152
  • Table 56: Revenues for self-cleaning (photocatalytic) nanocoatings, 2010-2030, US$.         153
  • Table 57: Self-cleaning (photocatalytic) nanocoatings product and application developers.             155
  • Table 58: Market drivers and trends for antimicrobial, antiviral and antifungal nanocoatings in the construction market. 159
  • Table 59: Nanocoatings applied in the construction industry-type of coating, nanomaterials utilized and benefits. 160
  • Table 60: Photocatalytic nanocoatings-Markets and applications.               162
  • Table 61: Revenues for nanocoatings in construction, architecture and exterior protection, 2010-2030, US$.          166
  • Table 62: Construction, architecture and exterior protection nanocoatings product developers.   167
  • Table 63: Market drivers and trends for antimicrobial, antiviral and antifungal nanocoatings in household care and sanitary.               172
  • Table 64: Revenues for nanocoatings in household care, sanitary and indoor air quality, 2010-2030, US$. 175
  • Table 65: Household care, sanitary and indoor air quality nanocoatings product developers.         177
  • Table 66: Market drivers and trends for antimicrobial, antiviral and antifungal nanocoatings in medicine and healthcare.         180
  • Table 67: Nanocoatings applied in the medical industry-type of coating, nanomaterials utilized, benefits and applications.       182
  • Table 68: Types of advanced coatings applied in medical devices and implants.    183
  • Table 69: Nanomaterials utilized in medical implants.      184
  • Table 70: Revenues for nanocoatings in medical and healthcare, 2010-2030, US$.               186
  • Table 71: Medical and healthcare nanocoatings product developers.        188
  • Table 72: Market drivers and trends for antimicrobial, antiviral and antifungal nanocoatings s in the textiles and apparel industry.              191
  • Table 73: Applications in textiles, by advanced materials type and benefits thereof.           193
  • Table 74: Nanocoatings applied in the textiles industry-type of coating, nanomaterials utilized, benefits and applications.       194
  • Table 75: Revenues for nanocoatings in textiles and apparel, 2010-2030, US$.      199
  • Table 76: Textiles nanocoatings product developers.       201
  • Table 77: Market drivers and trends for nanocoatings in the packaging market.   204
  • Table 78: Revenues for nanocoatings in packaging, 2010-2030, US$.          207
  • Table 79: Food packaging nanocoatings product developers.        209
  • Table 80. Photocatalytic coating schematic.          232
  • Table 81. Antimicrobial, antiviral and antifungal nanocoatings development in academia.                292

 

FIGURES

  • Figure 1. Schematic of anti-viral coating using nano-actives for inactivation of any adhered virus on the surfaces. 32
  • Figure 2: Global revenues for nanocoatings, 2010-2030, millions USD, conservative estimate.       42
  • Figure 3: Global market revenues for nanocoatings 2018, millions USD, by market.             44
  • Figure 4: Markets for nanocoatings 2018, %.        45
  • Figure 5: Estimated market revenues for nanocoatings 2019, millions USD, by market.      46
  • Figure 6: Estimated market revenues for nanocoatings 2030, millions USD, by market.      47
  • Figure 7: Markets for nanocoatings 2030, %.        48
  • Figure 8: Global revenues for nanocoatings, 2018, millions USD, by type. 49
  • Figure 9: Markets for nanocoatings 2018, by nanocoatings type, %.           50
  • Figure 10: Estimated global revenues for nanocoatings, 2019, millions USD, by type.         51
  • Figure 11: Market for nanocoatings 2030, by nanocoatings type, US$.      52
  • Figure 12: Market for nanocoatings 2030, by nanocoatings type, %.           53
  • Figure 13: Regional demand for nanocoatings, 2018.         54
  • Figure 14: Regional demand for nanocoatings, 2019.         54
  • Figure 15: Regional demand for nanocoatings, 2030.         55
  • Figure 16: Hydrophobic fluoropolymer nanocoatings on electronic circuit boards.               60
  • Figure 17: Nanocoatings synthesis techniques.   62
  • Figure 18: Techniques for constructing superhydrophobic coatings on substrates.              64
  • Figure 19: Electrospray deposition.          66
  • Figure 20: CVD technique.            67
  • Figure 21: Schematic of ALD.       69
  • Figure 22: SEM images of different layers of TiO2 nanoparticles in steel surface.  70
  • Figure 23: The coating system is applied to the surface. The solvent evaporates. 71
  • Figure 24: A first organization takes place where the silicon-containing bonding component (blue dots in figure 2) bonds covalently with the surface and cross-links with neighbouring molecules to form a strong three-dimensional.                71
  • Figure 25: During the curing, the compounds organise themselves in a nanoscale monolayer. The fluorine-containing repellent component (red dots in figure) on top makes the glass hydro- phobic and oleophobic.  72
  • Figure 26: (a) Water drops on a lotus leaf.             73
  • Figure 27: A schematic of (a) water droplet on normal hydrophobic surface with contact angle greater than 90° and (b) water droplet on a superhydrophobic surface with a contact angle > 150°.              74
  • Figure 28: Contact angle on superhydrophobic coated surface.   75
  • Figure 29: Self-cleaning nanocellulose dishware. 77
  • Figure 30: SLIPS repellent coatings.          79
  • Figure 31: Omniphobic coatings.                80
  • Figure 32: Graphair membrane coating. 84
  • Figure 33: Antimicrobial activity of Graphene oxide (GO).              85
  • Figure 34: Hydrophobic easy-to-clean coating.    89
  • Figure 35 Anti-bacterial mechanism of silver nanoparticle coating.             90
  • Figure 36: Mechanism of photocatalysis on a surface treated with TiO2 nanoparticles.      93
  • Figure 37:  Schematic showing the self-cleaning phenomena on superhydrophilic surface.              94
  • Figure 38: Titanium dioxide-coated glass (left) and ordinary glass (right). 95
  • Figure 39:  Self-Cleaning mechanism utilizing photooxidation.      96
  • Figure 40: Schematic of photocatalytic air purifying pavement.   97
  • Figure 41: Schematic of photocatalytic indoor air purification filter.           98
  • Figure 42: Schematic of photocatalytic water purification.              99
  • Figure 43. Schematic of antibacterial activity of ZnO NPs.               101
  • Figure 44: Types of nanocellulose.            104
  • Figure 45. Mechanism of antimicrobial activity of carbon nanotubes.       105
  • Figure 46: Fullerene schematic. 106
  • Figure 47. TEM images of Burkholderia seminalis treated with (a, c) buffer (control) and (b, d) 2.0 mg/mL chitosan; (A: additional layer; B: membrane damage).               108
  • Figure 48: Schematic of typical commercialization route for nanocoatings producer.          111
  • Figure 49 Nanocoatings market by nanocoatings type, 2010-2030, USD.  113
  • Figure 50: Market drivers and trends in antimicrobial and antiviral nanocoatings. 116
  • Figure 51. Nano-coated self-cleaning touchscreen.           123
  • Figure 52: Revenues for antimicrobial and antiviral nanocoatings, 2010-2030, US$.             125
  • Figure 53. Revenues for antimicrobial and antiviral nanocoatings, 2019-2030, US$, adjusted for COVID-19 related demand, conservative and high estimates.           126
  • Figure 54: Anti-fouling treatment for heat-exchangers.   131
  • Figure 55: Markets for anti-fouling and easy clean nanocoatings, by %.    132
  • Figure 56: Potential addressable market for anti-fouling and easy-to-clean nanocoatings by 2030.                133
  • Figure 57: Revenues for anti-fouling and easy-to-clean nanocoatings 2010-2030, millions USD.     135
  • Figure 58. Revenues for anti-fouling and easy-to-clean nanocoatings, 2019-2030, US$, adjusted for COVID-19 related demand, conservative and high estimates             136
  • Figure 59: Self-cleaning superhydrophobic coating schematic.      140
  • Figure 60: Markets for self-cleaning nanocoatings, %, 2018.           141
  • Figure 61: Potential addressable market for self-cleaning (bionic) nanocoatings by 2030.  142
  • Figure 62: Revenues for self-cleaning nanocoatings, 2010-2030, US$.        144
  • Figure 63. Revenues for self-cleaning (bionic) nanocoatings, 2019-2030, US$, adjusted for COVID-19 related demand, conservative and high estimates               145
  • Figure 64: Principle of superhydrophilicity.           149
  • Figure 65: Schematic of photocatalytic air purifying pavement.   150
  • Figure 66: Tokyo Station GranRoof. The titanium dioxide coating ensures long-lasting whiteness. 151
  • Figure 67: Markets for self-cleaning (photocatalytic) nanocoatings 2019, %.           151
  • Figure 68: Potential addressable market for self-cleaning (photocatalytic) nanocoatings by 2030.  152
  • Figure 69: Revenues for self-cleaning (photocatalytic) nanocoatings, 2010-2030, US$.       154
  • Figure 70. Revenues for self-cleaning (photocatalytic) nanocoatings, 2019-2030, US$, adjusted for COVID-19 related demand, conservative and high estimates             155
  • Figure 71 Nanocoatings market by end user sector, 2010-2030, USD.        159
  • Figure 72: Mechanism of photocatalytic NOx oxidation on active concrete road.  162
  • Figure 73: Jubilee Church in Rome, the outside coated with nano photocatalytic TiO2 coatings.    162
  • Figure 74: FN® photocatalytic coating, applied in the Project of Ecological Sound Barrier, in Prague.           163
  • Figure 75 Smart window film coatings based on indium tin oxide nanocrystals.     164
  • Figure 76: Nanocoatings in construction, architecture and exterior protection, by coatings type %, 2019.  165
  • Figure 77: Potential addressable market for nanocoatings in the construction, architecture and exterior coatings sector by 2030.  165
  • Figure 78: Revenues for nanocoatings in construction, architecture and exterior protection, 2010-2030, US$.         167
  • Figure 79: Nanocoatings in household care, sanitary and indoor air quality, by coatings type %, 2019.         175
  • Figure 80: Potential addressable market for nanocoatings in household care, sanitary and indoor air filtration by 2030.                175
  • Figure 81: Revenues for nanocoatings in household care, sanitary and indoor air quality, 2010-2030, US$.               177
  • Figure 82: Anti-bacterial sol-gel nanoparticle silver coating.           183
  • Figure 83: Nanocoatings in medical and healthcare, by coatings type %, 2019.       185
  • Figure 84: Potential addressable market for nanocoatings in medical & healthcare by 2030.            186
  • Figure 85: Revenues for nanocoatings in medical and healthcare, 2010-2030, US$.             187
  • Figure 86: Omniphobic-coated fabric.     192
  • Figure 87: Nanocoatings in textiles and apparel, by coatings type %, 2019.              198
  • Figure 88: Potential addressable market for nanocoatings in textiles and apparel by 2030.               199
  • Figure 89: Revenues for nanocoatings in textiles and apparel, 2010-2030, US$.     200
  • Figure 90: Oso fresh food packaging incorporating antimicrobial silver.    206
  • Figure 91: Potential addressable market for nanocoatings in packaging.   207
  • Figure 92: Revenues for nanocoatings in packaging, 2010-2030, US$.        208
  • Figure 93. Lab tests on DSP coatings.       231
  • Figure 94. GrapheneCA anti-bacterial and anti-viral coating.          238
  • Figure 95. Microlyte® Matrix bandage for surgical wounds.           245
  • Figure 96. Self-cleaning nanocoating applied to face masks.          247
  • Figure 97. NanoSeptic surfaces. 266
  • Figure 98. NascNanoTechnology personnel shown applying MEDICOAT to airport luggage carts.   271
  •  

The Global Market for Antimicrobial, Antiviral and Antifungal Nanocoatings 2020
The Global Market for Antimicrobial, Antiviral and Antifungal Nanocoatings 2020
PDF download.

The Global Market for Antimicrobial, Antiviral and Antifungal Nanocoatings 2020
The Global Market for Antimicrobial, Antiviral and Antifungal Nanocoatings 2020
Print edition (including tracked delivery).

The Global Market for Antimicrobial, Antiviral and Antifungal Nanocoatings 2020
The Global Market for Antimicrobial, Antiviral and Antifungal Nanocoatings 2020
PDF and print edition (including tracked delivery).

To purchase by invoice (bank transfer or cheque) contact info@futuremarketsinc.com or select this option after adding to cart.