
cover
- Published: April 2025
- Pages: 361
- Tables: 129
- Figures: 54
The emerging humanoid robotics market represents a significant technological frontier with complex economic implications. Current market projections estimate a potential market value of $38 billion by 2035, driven by advances in artificial intelligence and autonomous systems. Key technological developments are primarily concentrated in the United States and China. Economic disruption is expected in labour markets, with early applications focusing on manufacturing, logistics, and specialized service environments. The technological maturity of humanoid robots remains in early stages, with practical deployment currently limited to controlled industrial settings. Ongoing research and development will be critical in determining the long-term viability and economic impact of humanoid robotic technologies. Significant challenges persist in achieving versatile, cost-effective autonomous systems capable of complex, adaptive human-like interactions.
The Global Humanoid Robots Market 2025-2035 provides an in-depth analysis of the global humanoid robotics sector, offering u insights into technological advancements, market dynamics, and future potential across multiple industries. Contents include:
- Detailed analysis of global humanoid robot market
- Comprehensive technology assessment
- In-depth exploration of end-use markets
- Conservative and optimistic market projections
- Global regulatory landscape examination
- Technical analysis covering:
- Advanced robotics design
- Intelligent control systems
- Sensor and perception technologies
- Materials innovation
- Power and energy management
- Human-robot interaction methodologies
- Extensive market segmentation across critical domains including:
- Healthcare and Assistance
- Education and Research
- Customer Service
- Entertainment
- Manufacturing
- Military and Defense
- Personal and Domestic Applications
- Comprehensive regional analysis including:
- United States market dynamics
- China's technological ecosystem
- Japanese robotics innovations
- Emerging market opportunities
- Company and Technology Landscape. Detailed profiles of 59 humanoid robotics companies including Addverb Technologies, Agibot, Agility Robotics, Apptronik, Baidu, Beijing HRIC, Boardwalk Robotics, Booster Robotics, Boston Dynamics, BXI Robotics, Clone Robotics, Cosine Robots, Dataa Robotics, Dreame Technology, Electron Robots, Elephant Robotics, Embodied, EngineAI, Engineered Arts, EX Robots, FDROBOT, Figure AI, Fourier Intelligence, GAC, Galbot, Generation Robots, Hanson Robotics, Honda, Humanoid, Humanoid Robots (Shanghai) Limited, Kawasaki Heavy Industries, Kepler, K-Scale Labs, Leju Robotics, LimX Dynamics, Macco Robotics, Mentee Robotics, Mimic, Neura Robotics, NVIDIA, 1X Technologies, Oversonic, PAL Robotics, PaXini Technology, Persona AI, Rainbow Robotics, Rhoban Robots, RobotEra and more...
1 INTRODUCTION 17
- 1.1 Humanoid Robots: Definition and Characteristics 17
- 1.2 Historical Overview and Evolution 19
- 1.3 Current State of Humanoid Robots in 2025 20
- 1.4 The Importance of Humanoid Robots 21
- 1.5 Markets and Applications (TRL) 21
- 1.6 Models and Stage of Commercial Development 23
- 1.7 Investments and Funding 25
- 1.8 Costs 28
- 1.8.1 Type 28
- 1.8.2 Components 29
- 1.8.3 Cost Evolution 34
- 1.9 Market Drivers 36
- 1.9.1 Advancements in Artificial Intelligence (AI) and Machine Learning (ML) 36
- 1.9.2 Labour force shortages 37
- 1.9.3 Labour force substitution 37
- 1.9.4 Need for Personal Assistance and Companionship 38
- 1.9.5 Exploration of Hazardous and Extreme Environments 38
- 1.10 Challenges 38
- 1.10.1 Commercial Challenges 39
- 1.10.2 Technical Challenges 41
- 1.11 Global regulations 43
- 1.12 Market in Japan 44
- 1.13 Market in United States 45
- 1.14 Market in China 45
2 TECHNOLOGY AND COMPONENT ANALYSIS 48
- 2.1 Advancements in Humanoid Robot Design 48
- 2.2 Critical Components 51
- 2.3 Intelligent Control Systems and Optimization 52
- 2.4 Advanced Robotics and Automation 53
- 2.5 Manufacturing 54
- 2.5.1 Design and Prototyping 54
- 2.5.2 Component Manufacturing 54
- 2.5.3 Assembly and Integration 55
- 2.5.4 Software Integration and Testing 55
- 2.5.5 Quality Assurance and Performance Validation 56
- 2.5.6 Challenges 57
- 2.5.6.1 Actuators 57
- 2.5.6.2 Reducers 57
- 2.5.6.3 Thermal management 58
- 2.5.6.4 Batteries 59
- 2.5.6.5 Cooling 60
- 2.5.6.6 Sensors 60
- 2.6 Brain Computer Interfaces 61
- 2.7 Robotics and Intelligent Health 62
- 2.7.1 Robotic Surgery and Minimally Invasive Procedures 62
- 2.7.2 Rehabilitation and Assistive Robotics 63
- 2.7.3 Caregiving and Assistive Robots 63
- 2.7.4 Intelligent Health Monitoring and Diagnostics 63
- 2.7.5 Telemedicine and Remote Health Management 63
- 2.7.6 Robotics in Mental Health 64
- 2.8 Micro-nano Robots 64
- 2.9 Medical and Rehabilitation Robots 66
- 2.10 Mechatronics and Robotics 67
- 2.11 Image Processing, Robotics and Intelligent Vision 69
- 2.12 Artificial Intelligence and Machine Learning 69
- 2.12.1 Overview 69
- 2.12.2 AI Hardware and Software 69
- 2.12.2.1 Functions 70
- 2.12.2.2 Simulation 71
- 2.12.2.3 Motion Planning and Control 72
- 2.12.2.4 Foundation Models 72
- 2.12.2.5 Synthetic Data Generation 73
- 2.12.2.6 Multi-contact planning and control 74
- 2.12.3 End-to-end AI 75
- 2.12.4 Multi-modal AI algorithms 75
- 2.13 Sensors and Perception Technologies 76
- 2.13.1 Vision Systems 77
- 2.13.1.1 Commerical examples 77
- 2.13.2 Hybrid LiDAR-camera approaches 78
- 2.13.3 Cameras and LiDAR 80
- 2.13.3.1 Cameras (RGB, depth, thermal, event-based) 84
- 2.13.3.2 Stereo vision and 3D perception 85
- 2.13.3.3 Optical character recognition (OCR) 86
- 2.13.3.4 Facial recognition and tracking 87
- 2.13.3.5 Gesture recognition 87
- 2.13.3.6 mmWave Radar 89
- 2.13.4 Tactile and Force Sensors 89
- 2.13.4.1 Value proposition of advanced tactile systems 90
- 2.13.4.2 Commercial examples 92
- 2.13.4.3 Flexible tactile sensors 94
- 2.13.4.4 Tactile sensing for humanoid extremities 94
- 2.13.4.5 Tactile sensors (piezoresistive, capacitive, piezoelectric) 95
- 2.13.4.6 Force/torque sensors (strain gauges, load cells) 96
- 2.13.4.7 Haptic feedback sensors 96
- 2.13.4.8 Skin-like sensor arrays 98
- 2.13.5 Auditory Sensors 100
- 2.13.5.1 Microphones (array, directional, binaural) 101
- 2.13.5.2 Sound Localization and Source Separation 102
- 2.13.5.3 Speech Recognition and Synthesis 104
- 2.13.5.4 Acoustic Event Detection 106
- 2.13.6 Inertial Measurement Units (IMUs) 108
- 2.13.6.1 Accelerometers 108
- 2.13.6.2 Gyroscopes 109
- 2.13.6.3 Magnetometers 111
- 2.13.6.4 Attitude and Heading Reference Systems (AHRS) 113
- 2.13.7 Proximity and Range Sensors 114
- 2.13.7.1 Ultrasonic sensors 115
- 2.13.7.2 Laser range finders (LiDAR) 115
- 2.13.7.3 Radar sensors 116
- 2.13.7.4 Time-of-Flight (ToF) sensors 116
- 2.13.8 Environmental Sensors 117
- 2.13.8.1 Temperature sensors 118
- 2.13.8.2 Humidity sensors 119
- 2.13.8.3 Gas and chemical sensors 119
- 2.13.8.4 Pressure sensors 120
- 2.13.9 Biometric Sensors 121
- 2.13.9.1 Heart rate sensors 122
- 2.13.9.2 Respiration sensors 123
- 2.13.9.3 Electromyography (EMG) sensors 123
- 2.13.9.4 Electroencephalography (EEG) sensors 124
- 2.13.10 Sensor Fusion 125
- 2.13.10.1 Kalman Filters 126
- 2.13.10.2 Particle Filters 126
- 2.13.10.3 Simultaneous Localization and Mapping (SLAM) 126
- 2.13.10.4 Object Detection and Recognition 127
- 2.13.10.5 Semantic Segmentation 128
- 2.13.10.6 Scene Understanding 128
- 2.13.1 Vision Systems 77
- 2.14 Power and Energy Management 129
- 2.14.1 Battery Technologies 133
- 2.14.2 Challenges 137
- 2.14.3 Energy Harvesting and Regenerative Systems 140
- 2.14.3.1 Energy Harvesting Techniques 141
- 2.14.3.2 Regenerative Braking Systems 142
- 2.14.3.3 Hybrid Power Systems 142
- 2.14.4 Power Distribution and Transmission 142
- 2.14.4.1 Efficient Power Distribution Architectures 143
- 2.14.4.2 Advanced Power Electronics and Motor Drive Systems 143
- 2.14.4.3 Distributed Power Systems and Intelligent Load Management 143
- 2.14.5 Thermal Management 145
- 2.14.5.1 Cooling Systems 145
- 2.14.5.2 Thermal Modeling and Simulation Techniques 145
- 2.14.5.3 Advanced Materials and Coatings 146
- 2.14.6 Energy-Efficient Computing and Communication 147
- 2.14.6.1 Low-Power Computing Architectures 148
- 2.14.6.2 Energy-Efficient Communication Protocols and Wireless Technologies 148
- 2.14.6.3 Intelligent Power Management Strategies 148
- 2.14.7 Wireless Power Transfer and Charging 150
- 2.14.8 Energy Optimization and Machine Learning 152
- 2.15 Actuators 153
- 2.15.1 Humanoid robot actuation systems 155
- 2.15.2 Actuators in humanoid joint systems 158
- 2.15.3 Energy transduction mechanism 160
- 2.16 Motors 166
- 2.16.1 Overview 166
- 2.16.2 Frameless motors 168
- 2.16.3 Brushed/Brushless Motors 169
- 2.16.4 Coreless motors 170
- 2.17 Reducers 172
- 2.17.1 Harmonic reducers 174
- 2.17.2 RV (Rotary Vector) reducers 175
- 2.17.3 Planetary gear systems 175
- 2.18 Screws 177
- 2.18.1 Screw-based transmission systems 177
- 2.18.2 Ball screw assemblies 178
- 2.18.3 Planetary Roller Screws 178
- 2.19 Bearings 183
- 2.19.1 Overview 183
- 2.20 Arm Effectors 185
- 2.20.1 Overview 185
- 2.20.2 Hot-swappable end effector systems 189
- 2.20.3 Challenges 190
- 2.21 SoCs for Humanoid Robotics 192
- 2.22 Cloud Robotics and Internet of Robotic Things (IoRT) 193
- 2.23 Human-Robot Interaction (HRI) and Social Robotics 195
- 2.24 Biomimetic and Bioinspired Design 195
- 2.25 Materials for Humanoid Robots 197
- 2.25.1 New materials development 197
- 2.25.2 Metals 197
- 2.25.2.1 Magnesium Alloy 198
- 2.25.3 Shape Memory Alloys 200
- 2.25.4 Plastics and Polymers 200
- 2.25.5 Composites 204
- 2.25.6 Elastomers 205
- 2.25.7 Smart Materials 206
- 2.25.8 Textiles 208
- 2.25.9 Ceramics 209
- 2.25.10 Biomaterials 211
- 2.25.11 Nanomaterials 213
- 2.25.12 Coatings 215
- 2.25.12.1 Self-healing coatings 218
- 2.25.12.2 Conductive coatings 218
- 2.26 Binding Skin Tissue 218
3 END USE MARKETS 220
- 3.1 Market supply chain 220
- 3.2 Level of commercialization 221
- 3.3 Healthcare and Assistance 223
- 3.4 Education and Research 226
- 3.5 Customer Service and Hospitality 231
- 3.6 Entertainment and Leisure 234
- 3.7 Manufacturing and Industry 237
- 3.7.1 Overview 238
- 3.7.1.1 Assembly and Production 238
- 3.7.1.2 Quality Inspection 239
- 3.7.1.3 Warehouse Assistance 240
- 3.7.2 Automotive 242
- 3.7.2.1 Commercial examples 243
- 3.7.3 Logistics 249
- 3.7.3.1 Warehouse environments 251
- 3.7.3.2 Commercial examples 252
- 3.7.1 Overview 238
- 3.8 Military and Defense 257
- 3.9 Personal Use and Domestic Settings 261
4 GLOBAL MARKET SIZE (UNITS AND REVENUES) 2025-2035 266
- 4.1 Global shipments in units (Total) 266
- 4.2 By type of robot in units 268
- 4.3 By region in units 270
- 4.4 Revenues (Total) 272
- 4.5 Revenues (By end use market) 274
- 4.6 Automotive 277
- 4.6.1 Revenues 277
- 4.6.2 Units 277
- 4.6.3 Deployment 278
- 4.7 Logistics and warehousing 278
- 4.7.1 Revenues 278
- 4.7.2 Units 279
- 4.7.3 Deployment 280
- 4.8 Battery Capacity (GWh) Forecast 280
- 4.9 Hardware Components 282
5 COMPANY PROFILES 284 (59 company profiles)
6 HUMANOID ROBOTS DEVELOPED BY ACADEMIA 352
7 RESEARCH METHODOLOGY 355
8 REFERENCES 356
List of Tables
- Table 1. Core Components of Humanoid Robots. 17
- Table 2. Classification of Humanoid Robots. 18
- Table 3. Historical Overview and Evolution of Humanoid Robots. 19
- Table 4. Importance of humanoid robots by end use. 21
- Table 5. Markets and applications for humanoid robots and TRL. 22
- Table 6. Humanoid Robots under commercial development. 23
- Table 7. Comparison of major humanoid robot prototypes. 24
- Table 8. Humanoid Robot investments 2023-2025. 25
- Table 9. Overall Sector Funding. 27
- Table 10. Cost Breakdown by Humanoid Type. 28
- Table 11. Cost Analysis by Component for Humanoid Robots. 30
- Table 12. Average Unit Cost (Thousands USD) 34
- Table 13. Year-over-Year Cost Reduction (%). 34
- Table 14. Cost Breakdown by Component (% of Total Cost, 2025 vs 2035). 34
- Table 15. Cost Evolution Projections 35
- Table 16. Market drivers for humanoid robots. 36
- Table 17. Market challenges for humanoid robots. 40
- Table 18. Technical challenges for humanoid robots. 42
- Table 19. Global regulatory landscape for humanoid robots. 43
- Table 20. Performance Parameters of Humanoid Robots. 49
- Table 21. Common Actuators in Humanoid Robotics. 67
- Table 22. Software and Functions in Humanoid Robots. 70
- Table 23. Sensors and Perception Technologies for humanoid robotics. 76
- Table 24. Comparison of LiDAR, Cameras, and 1D/3D Ultrasonic Sensors. 79
- Table 25. Categorization of LiDAR in Humanoids 81
- Table 26. LiDAR Costs. 82
- Table 27. LiDAR Costs in Humanoid Robots. 83
- Table 28. Tactile and force sensors for humanoid robots, 89
- Table 29. Benchmarking Tactile Sensors by Technology 91
- Table 30. Challenges of Tactile Sensors and Electronic Skins 99
- Table 31. Auditory sensors for humanoid robots. 100
- Table 32. Inertial Measurement Units (IMUs) for humanoid robots. 108
- Table 33. Key characteristics of proximity and range sensors commonly used in humanoid robots. 114
- Table 34. Environmental Sensors for humanoid robots. 117
- Table 35. Biometric sensors commonly used in humanoid robots: 121
- Table 36. Power and Energy Management in Humanoid Robotics.- Integrated Systems Overview. 129
- Table 37. Energy Management Strategies for Humanoid Robots. 131
- Table 38. Advanced Power Management Technologies. 132
- Table 39. Battery technologies for humanoid robotics. 133
- Table 40. Battery Capacity per Humanoid Robot for Industrial Applications. 134
- Table 41. Humanoid Batteries - Parameters Comparison. 135
- Table 42. Challenges of Batteries in Humanoid Robots. 138
- Table 43. Energy Harvesting and Regenerative Systems in Humanoid Robots. 141
- Table 44.Power Distribution and Transmission Techniques in Humanoid Robots 144
- Table 45. Thermal Management Techniques for Humanoid Robots 146
- Table 46. Energy-Efficient Computing and Communication Techniques for Humanoid Robots 149
- Table 47. Wireless Power Transfer and Charging for Humanoid Robots. 151
- Table 48. Actuator Components. 153
- Table 49. Actuator Types. 155
- Table 50. Pros and Cons Comparison. 157
- Table 51. Joint Application Matrix. 158
- Table 52. Comparison of Electric, Hydraulic, and Pneumatic Actuators. 161
- Table 53. Actuator challenges. 162
- Table 54. Direct Drive vs. Geared Comparison 165
- Table 55. Motors for Commercial Humanoid Robots. 166
- Table 56. Benefits and Drawbacks of Coreless Motors. 170
- Table 57. Benchmarking of Reducers. 173
- Table 58. Bearings for Humanoids. 184
- Table 59. Actuation Methods of Humanoid's Hands. 185
- Table 60. Technical barriers of humanoid's hands 190
- Table 61. Key aspects of Cloud Robotics and Internet of Robotic Things (IoRT) for humanoid robotics. 194
- Table 62. Examples of Biomimetic Design for Humanoid Robots. 196
- Table 63. Examples of Bioinspired Design for Humanoid Robots. 196
- Table 64. Types of metals commonly used in humanoid robots. 197
- Table 65. Types of plastics and polymers commonly used in humanoid robots. 200
- Table 66. PEEK - Costs and Technical Properties. 202
- Table 67. Types of composites commonly used in humanoid. 204
- Table 68. Types of elastomers commonly used in humanoid robots. 205
- Table 69. Types of smart materials in humanoid robotics. 207
- Table 70. Types of textiles commonly used in humanoid robots. 208
- Table 71. Types of ceramics commonly used in humanoid robots. 210
- Table 72. Biomaterials commonly used in humanoid robotics. 211
- Table 73. Types of nanomaterials used in humanoid robotics. 214
- Table 74. Types of coatings used in humanoid robotics. 216
- Table 75. Industry Segment Adoption Timeline. 220
- Table 76. Level of commercialization of humanoid robots by application 221
- Table 77. Market Drivers in healthcare and assistance. 223
- Table 78. Applications of humanoid robots in healthcare and assistance. 224
- Table 79. Technology Readiness Level (TRL) Table; humanoid robots in healthcare and assistance. 224
- Table 80. Market Drivers in education and research. 227
- Table 81. Applications of humanoid robots in education and research. 228
- Table 82. Technology Readiness Level (TRL) for humanoid robots in education and research. 228
- Table 83. Market Drivers in Customer Service and Hospitality. 231
- Table 84. Technology Readiness Level (TRL) for humanoid robots in Customer Service and Hospitality. 232
- Table 85. Market Drivers in Entertainment and Leisure. 234
- Table 86. Applications of humanoid robots in Entertainment and Leisure. 235
- Table 87. Technology Readiness Level (TRL) for humanoid robots in Entertainment and Leisure. 236
- Table 88. Market Drivers manufacturing and industry. 237
- Table 89. Applications for humanoid robots in manufacturing and industry. 238
- Table 90. Humanoid Robots in the Automotive Sector. 243
- Table 91. Implementation of humanoids in automotive manufacturing. 246
- Table 92. Humanoid robots in the logistics industry. 250
- Table 93. Timeline of Tasks Handled by Humanoid Robots in Logistics. 254
- Table 94. Market Drivers in Military and Defense. 257
- Table 95. Applications for humanoid robots in Military and Defense. 258
- Table 96. Technology Readiness Level (TRL) for humanoid robots in Military and Defense. 259
- Table 97. Market Drivers in Personal Use and Domestic Settings. 261
- Table 98. Applications in humanoid robots in Personal Use and Domestic Settings. 262
- Table 99. Technology Readiness Level (TRL) humanoid robots in Personal Use and Domestic Settings. 262
- Table 100. Global humanoid robot shipments (1,000 units) 2024-2035, conservative estimate. 266
- Table 101. Global humanoid robot shipments (Millions units) 2024-2035, optimistic estimate. 267
- Table 102. Global humanoid robot shipments by type (Million units) 2024-2035, conservative estimate. 268
- Table 103. Global humanoid robot shipments by type (Million units) 2024-2035, optimistic estimate. 269
- Table 104. Global humanoid robot shipments by region (Million units) 2024-2035, conservative estimate. 270
- Table 105. Global humanoid robot shipments by region (Million units) 2024-2035, optimistic estimate. 271
- Table 106. Global humanoid robot shipments (Millions USD) 2024-2035, conservative estimate. 272
- Table 107. Global humanoid robot shipments (Millions USD) 2024-2035, optimistic estimate. 273
- Table 108. Global humanoid robot shipments by end use market (Millions USD) 2024-2035, conservative estimate. 274
- Table 109. Global humanoid robot shipments by end use market (Millions USD) 2024-2035, optimistic estimate. 275
- Table 110. Global Market Revenues for Humanoid Robots in the Automotive Industry: 2025-2035. 277
- Table 111. Global market forecast of humanoid robots in the Automotive industry: 2025-2035 277
- Table 112.Deployment Distribution by 2035 (Conservative Estimate). 278
- Table 113. Deployment Distribution by 2035 (Optimistic Estimate). 278
- Table 114. Market Size Forecast of Humanoid Robots in the Logistics and Warehousing Industry: 2025-2035, Conservative Estimate 278
- Table 115. Market Size Forecast of Humanoid Robots in the Logistics and Warehousing Industry: 2025-2035, Optimistic Estimate. 279
- Table 116. Global Volume Forecast of Humanoid Robots in the Logistics and Warehousing Industry: 2025-2035, Conservative Estimate. 279
- Table 117. Global Volume Forecast of Humanoid Robots in the Logistics and Warehousing Industry: 2025-2035, Conservative Estimate, Optimistic Estimate. 279
- Table 118. Market Value Distribution by Application Area (2035, Conservative). 280
- Table 119. Market Value Distribution by Application Area (2035, Optimistic). 280
- Table 120. Battery Capacity (GWh) Forecast for Humanoid Robots Used for Industries 2025-2035 280
- Table 121. Battery Capacity by Industry Segment (GWh, 2035) 281
- Table 122.Average Battery Capacity per Humanoid Robot (kWh) 281
- Table 123. Humanoid Robot Hardware Component Volume Forecast, 2025-2035 282
- Table 124. Humanoid Robot Hardware Component Market Size Forecast: 2025-2035, Conservative Estimate (Millions USD) 282
- Table 125. Humanoid Robot Hardware Component Market Size Forecast: 2025-2035, Optimistic Estimate (Millions USD). 283
- Table 126. Component Market Share (Conservative Estimate). 283
- Table 127. Component Market Share (Optimistic Estimate) 283
- Table 128. Average Component Cost per Robot (Thousands USD). 284
- Table 129. Humanoid Robots Developed by Academia. 353
List of Figures
- Figure 1. Core components of a humanoid robot. 18
- Figure 2. Status of humanoid robots. 20
- Figure 3. Humanoid robot for railroad maintenance to be implemented by West Japan Railway Co. 37
- Figure 4. Historical progression of humanoid robots. 48
- Figure 5. Event-based cameras. 85
- Figure 6. Humanoid Robots Market Supply Chain. 220
- Figure 7. Global humanoid robot shipments (1,000 units) 2024-2035, conservative estimate. 266
- Figure 8. Global humanoid robot shipments (1,000 units) 2024-2035, optimistic estimate. 267
- Figure 9. Global humanoid robot shipments by type (Million units) 2024-2035, conservative estimate. 268
- Figure 10. Global humanoid robot shipments by type (Million units) 2024-2035, optimistic estimate. 269
- Figure 11. Global humanoid robot shipments by region (Million units) 2024-2035, conservative estimate. 270
- Figure 12. Global humanoid robot shipments by region (Million units) 2024-2035, optimistic estimate. 271
- Figure 13. Global humanoid robot shipments (Millions USD) 2024-2035, conservative estimate. 272
- Figure 14. Global humanoid robot shipments (Millions USD) 2024-2035, optimistic estimate. 273
- Figure 15. Global humanoid robot shipments by end use market (Millions USD) 2024-2035, conservative estimate. 275
- Figure 16. Global humanoid robot shipments by end use market (Millions USD) 2024-2035, optimistic estimate. 276
- Figure 17. RAISE-A1. 285
- Figure 18. Digit humanoid robot. 286
- Figure 19. Apptronick Apollo. 288
- Figure 20. Alex. 290
- Figure 21. BR002. 292
- Figure 22. Atlas. 293
- Figure 23. XR-4. 297
- Figure 24. Dreame Technology's second-generation bionic robot dog and general-purpose humanoid robot. 301
- Figure 25. Mercury X1. 303
- Figure 26. Mirokaï robots. 304
- Figure 27. Ameca. 307
- Figure 28. Prototype Ex-Robots humanoid robots. 308
- Figure 29. Figure.ai humanoid robot. 310
- Figure 30. Figure 02 humanoid robot. 310
- Figure 31. GR-1. 311
- Figure 32. Sophia. 313
- Figure 33. Honda ASIMO. 315
- Figure 34. Kaleido. 316
- Figure 35. Forerunner. 317
- Figure 36. Kuafu. 319
- Figure 37. CL-1. 320
- Figure 38. MagicHand S01 322
- Figure 39. EVE/NEO. 326
- Figure 40. Tora-One. 328
- Figure 41. HUBO2. 331
- Figure 42. XBot-L. 336
- Figure 43. Sanctuary AI Phoenix. 338
- Figure 44. Pepper Humanoid Robot. 339
- Figure 45. Astribot S1. 340
- Figure 46. Tesla Optimus Gen 2. 341
- Figure 47. Toyota T-HR3 345
- Figure 48. UBTECH Walker. 346
- Figure 49. G1 foldable robot. 346
- Figure 50. Unitree H1. 348
- Figure 51. WANDA. 349
- Figure 52. CyberOne. 350
- Figure 53. PX5. 351
- Figure 54. Q Family robots from the Institute of Automation, Chinese Academy of Sciences. 352
Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer. To order by Bank Transfer (Invoice) select this option from the payment methods menu after adding to cart, or contact info@futuremarketsinc.com