The Global Wearable Technology Market 2026-2036

0

cover

cover

  • Published: July 2025
  • Pages: 1,240
  • Tables: 261
  • Figures: 4467

 

The wearable technology landscape has undergone a remarkable transformation, evolving from simple fitness trackers to sophisticated devices that seamlessly integrate into our daily lives. This rapidly expanding sector is reshaping how we monitor health, interact with digital information, and enhance our productivity, driven by innovations that blur the lines between technology and fashion. Modern wearables have transcended basic step counting to become comprehensive health monitoring systems. Wearable devices provide information on heartbeat monitoring, quality of sleep, blood pressure, cholesterol levels, oxygen levels, calorie burn, and other information required to keep track of health on a daily basis. 

Recent breakthroughs in sensor technology have enabled continuous monitoring capabilities that were previously confined to clinical settings. Blood pressure monitoring has traditionally been a clinical procedure. However, wearables are now offering continuous, non-invasive blood pressure tracking. This advancement represents a paradigm shift toward preventive healthcare, allowing users to receive real-time alerts about potentially dangerous health conditions before they become critical.

One of the most significant trends reshaping the industry is the emergence of ultra-discreet devices, particularly smart rings. One of the biggest trends in 2025 is the push toward minimalism and functionality, particularly with smart rings, which are increasingly becoming the next must-have wearable. These tiny yet powerful devices challenge the dominance of traditional smartwatches by offering comprehensive health tracking in a form factor that resembles everyday jewelry. Smart rings now track heart rate, steps, sleep, and even blood oxygen levels. They provide subtle notifications, allowing users to stay connected without looking at a screen. The appeal lies in their ability to provide continuous monitoring without the bulk or visual distraction of larger devices. Leading brands like Oura, Samsung, and Ultrahuman are driving innovation in this space, with features extending to contactless payments and smart home control.

The integration of artificial intelligence has transformed wearables from passive data collectors to intelligent personal assistants. With AI, wearables now adapt to individual user needs. These devices learn from user data to predict behavior and offer personalized experiences. This evolution enables wearables to provide actionable insights rather than raw data, helping users make informed decisions about their health and lifestyle. In 2024, Realme launched its Realme Watch S2, enabled with AI assistant powered by ChatGPT, which distinguishes this watch from other smartwatches by delivering intelligent answers and assistance directly on the wrist . This represents a broader trend toward conversational interfaces that make technology more accessible and intuitive.

Perhaps the most transformative development in wearables is the maturation of augmented reality glasses. AR wearables have long been seen as the future of interactive tech, but adoption has remained slow up until now due to high costs, clunky designs, and limited real-world uses. However, 2025 is shaping up to be the year when AR glasses and mixed-reality headsets take a significant leap. Major technology companies are investing heavily in making AR glasses more practical and stylish. Meta's collaboration with Ray-Ban has produced smart glasses that seamlessly blend fashion with functionality. The Ray-Ban Meta smart glasses are by far the best AI wearable we've tested, and even on the AI's off-days (or when they're out of charge) the glasses will always be an exceptionally stylish pair of sunglasses. These devices are moving beyond entertainment applications to become powerful productivity tools. Office workers can use AR glasses for immersive meetings, multi-screen computing, and real-time task management, reducing their dependence on traditional displays. In industrial settings, AR wearables are proving valuable for training, remote assistance, and on-the-job guidance.

The convergence of technology and fashion is creating new opportunities for wearable adoption. Tech brands are partnering with fashion designers to make wearables more stylish. Smart rings, bracelets, and fabrics will be designed not just for performance—but also for aesthetics. This trend addresses one of the primary barriers to wearable adoption: the reluctance to wear devices that look overtly technological. Smart textiles and flexible electronics are emerging as new frontiers, promising wearables that conform naturally to the human body. Future developments might include: Flexible and stretchable devices: Wearables that conform to the human body for ultimate comfort. These innovations could lead to entirely new categories of wearables integrated into clothing and accessories.

Wearables are increasingly serving as gateways to digital services, particularly in commerce and smart home control. Contactless payment devices like NFC-enabled rings and bands are replacing wallets. Expect broader adoption of secure, wearable payment tech integrated with banking apps. This functionality transforms wearables from monitoring devices into essential tools for daily interactions.

Despite rapid advancement, the wearable industry faces significant challenges. Privacy and data security concerns remain paramount as devices collect increasingly sensitive biometric information. Battery life continues to be a limiting factor, particularly for feature-rich devices like AR glasses. Additionally, the industry must address sustainability concerns as the number of connected devices grows exponentially. The future promises even more ambitious innovations. Advanced biometrics: Wearables capable of detecting diseases or infections early could revolutionize preventive medicine. Implantable devices may offer continuous monitoring without the need for external hardware, though they raise new questions about privacy and bodily autonomy.

The Global Wearable Technology Market 2026-2036 is a comprehensive 1,200-page market report providing an exhaustive analysis of the wearable technology ecosystem from 2026 to 2036, offering unprecedented insights into market dynamics, emerging technologies, and future growth opportunities across consumer electronics, medical applications, and industrial sectors. As the industry evolves beyond traditional fitness trackers and smartwatches, new form factors including smart rings, AR glasses, electronic textiles, and flexible sensors are reshaping market landscapes. This report delivers critical intelligence on market drivers, technological innovations, competitive positioning, and regulatory challenges that will define the next decade of wearable technology development.

Our in-depth analysis covers flexible and stretchable electronics, advanced materials including graphene and MXenes, energy harvesting solutions, and breakthrough manufacturing techniques such as 3D printing and roll-to-roll processing. With detailed company profiles of over 700 industry leaders and emerging players, comprehensive market forecasts, and technology roadmaps, this report serves as an essential resource for investors, manufacturers, healthcare providers, and technology developers seeking to capitalize on the $500+ billion wearable technology opportunity.

Report contents include: 

  • Market Leadership Analysis: Comprehensive evaluation of market leaders by segment and shipment volume
  • Continuous Monitoring Trends: Real-time health tracking capabilities and remote patient monitoring evolution
  • Market Mapping: Complete ecosystem mapping of wearable electronics and sensor technologies
  • Flexible Electronics Transition: From rigid circuit boards to stretchable, conformable electronic systems
  • Artificial Skin Development: Emerging technologies for gesture recognition and tactile sensing
  • Metaverse Integration: Role of wearables in virtual and augmented reality ecosystems
  • Textile Industry Convergence: Integration of electronics into traditional textile manufacturing
  • Advanced Materials Innovation: Graphene, carbon nanotubes, and next-generation conductive materials
  • Market Growth Projections: Detailed forecasts for flexible and stretchable electronics segments
  • Investment Analysis: Funding trends, acquisitions, and strategic partnerships 2019-2025
  • Sustainability Initiatives: Environmental impact and circular economy approaches
  • Technology Analysis:
    • Wearable Technology Definitions: Comprehensive classification and sensing capabilities overview
    • Form Factor Evolution: Smart watches, bands, glasses, clothing, patches, rings, hearables, and head-mounted devices
    • Advanced Sensor Technologies: Motion sensors, optical sensors, force sensors, strain sensors, chemical sensors, biosensors, and quantum sensors
    • Cutting-Edge Manufacturing: Printed electronics, 3D electronics, digital/analog printing, in-mold electronics, and roll-to-roll processing
    • Materials Innovation: Conductive inks, printable semiconductors, flexible substrates, thin-film batteries, and energy harvesting solutions
    • Component Integration: Flexible ICs, printed PCBs, sustainable materials, and bio-compatible solutions
  • Consumer Electronics Market Analysis:
    • Market Drivers: Health consciousness, IoT integration, and lifestyle enhancement trends
    • Wearable Sensors: Comprehensive analysis of sensor types, technologies, and market opportunities
    • Consumer Acceptance: Adoption patterns, user preferences, and behavioral insights
    • Wrist-Worn Devices: Smartwatches, fitness trackers, and health monitoring innovations
    • Advanced Biometric Sensing: Blood pressure monitoring, glucose tracking, and respiratory analysis
    • Sports & Fitness Applications: Performance optimization and real-time coaching systems
    • Hearables Market: Audio enhancement, hearing assistance, and biometric monitoring capabilities
    • Sleep Technology: Smart rings, headbands, and comprehensive sleep analysis systems
    • Emerging Segments: Pet wearables, military applications, and industrial monitoring solutions
    • Market Forecasts: Volume and revenue projections by product category 2026-2036
    • Competitive Landscape: Detailed profiles of 131 leading companies and emerging players
  • Medical & Healthcare Applications: 
    • Digital Health Revolution: Regulatory frameworks and clinical validation requirements
    • Electronic Skin Patches: Electrochemical biosensors, temperature monitoring, and drug delivery systems
    • Glucose Monitoring: Continuous monitoring technologies, minimally-invasive sensors, and market outlook
    • Cardiovascular Monitoring: ECG sensors, PPG technology, and remote cardiac care solutions
    • Specialized Applications: Pregnancy monitoring, hydration tracking, and sweat analysis systems
    • Wearable Robotics: Exoskeletons, prosthetics, and rehabilitation technologies
    • Smart Healthcare Devices: Contact lenses, wound care, digital therapeutics, and femtech innovations
    • Market Projections: Healthcare wearables volume and revenue forecasts through 2036
    • Regulatory Challenges: FDA approval processes, data privacy, and clinical trial requirements
    • Company Analysis: 341 detailed profiles of medical device manufacturers and technology innovators
  • Gaming, Entertainment & AR/VR Technologies:
    • Extended Reality Evolution: VR, AR, MR, and XR technology classifications and applications
    • Display Technologies: OLED microdisplays, miniLED, microLED, and transparent display innovations
    • Optical Systems: Combiners, waveguides, and advanced lens technologies for immersive experiences
    • Motion Tracking: Controllers, sensing systems, and spatial computing capabilities
    • Market Forecasts: Gaming and entertainment wearables growth projections 2026-2036
    • Industry Players: 96 company profiles covering major platforms and emerging technologies
  • Electronic Textiles & Smart Apparel:
    • Market Transformation: Integration of electronics into traditional textile manufacturing
    • Manufacturing Innovation: Conductive yarns, inks, polymers, and advanced materials integration
    • Applications Portfolio: Temperature regulation, therapeutic products, sports performance, and military applications
    • Power Solutions: Energy harvesting, flexible batteries, and wireless charging technologies
    • Market Forecasts: E-textiles volume and revenue projections with detailed segmentation
    • Industry Analysis: 152 company profiles spanning textile manufacturers and technology providers
  • Energy Storage & Harvesting Solutions:
    • Battery Innovation: Flexible lithium-ion, printed batteries, solid-state technologies, and stretchable power systems
    • Energy Harvesting: Photovoltaics, thermoelectric, piezoelectric, and triboelectric energy generation
    • Manufacturing Techniques: 3D printing, roll-to-roll processing, and advanced fabrication methods
    • Performance Metrics: Energy density, power density, cycle life, and flexibility characteristics
    • Market Projections: Energy solutions market sizing and growth forecasts
    • Technology Leaders: 45 detailed company profiles covering battery manufacturers and energy harvesting innovators
  • Market Intelligence & Strategic Analysis:
    • Technology Roadmaps: 10-year development timelines for key wearable categories
    • Investment Landscape: Venture capital trends, merger & acquisition activity, and strategic partnerships
    • Regional Analysis: Market development across North America, Europe, Asia-Pacific, and emerging markets
    • Competitive Dynamics: Market share analysis, pricing strategies, and competitive positioning
    • Regulatory Environment: Standards development, safety requirements, and international compliance
    • Supply Chain Analysis: Component sourcing, manufacturing locations, and logistics considerations
    • Risk Assessment: Technology risks, market risks, and regulatory challenges
    • Strategic Recommendations: Market entry strategies, investment priorities, and growth opportunities

 

The report profiles >700 companies across the wearable technology value chain, from component manufacturers to end-product developers. It provides detailed analysis of market leaders and innovative startups advancing the field through technological breakthroughs and novel applications. Companies profiled include Abbott Diabetes Care, AIKON Health, Artinis Medical Systems, Biobeat Technologies, Biosency, BLOOM43, Bosch Sensortec, Cala Health, Cerca Magnetics, Cosinuss, Datwyler, Dexcom, DigiLens, Dispelix, Doublepoint, EarSwitch, Emteq Limited, Epicore Biosystems, Equivital, HTC, IDUN Technologies, IQE, Infi-Tex, Jade Bird Display, Know Labs, Kokoon, Lenovo, LetinAR, Liquid Wire, Lumus, Lynx, Mateligent GmbH, MICLEDI, MICROOLED, Mojo Vision, Nanoleq, Nanusens, NeuroFusion, Oorym, Optinvent, OQmented, Orpyx, Ostendo Technologies, Output Sports, PKVitality, PragmatIC, PROPHESEE, Pulsetto, Quantune, RayNeo (TCL), Raynergy Tek, Rebee Health, Rhaeos Inc, Sefar, Segotia, Sony, STMicroelectronics, StretchSense, Tacterion, TDK, Teveri, The Metaverse Standards Forum, TriLite Technologies, TruLife Optics, UNA Watch, Valencell, Vitality, VitreaLab, VividQ, Wearable Devices Ltd., WHOOP, Wisear, Withings Health Solutions, XSensio, Xpanceo, Zero Point Motion, Zimmer and Peacock and more......

This comprehensive report combines quantitative market data with qualitative insights, featuring over 400 figures and tables, detailed SWOT analyses, and expert commentary on emerging trends. Essential for stakeholders across the wearable technology value chain seeking to understand market dynamics and capitalize on growth opportunities in this rapidly evolving industry.

 

 

 

1             EXECUTIVE SUMMARY            75

  • 1.1        The evolution of electronics 77
  • 1.2        The wearables revolution       79
  • 1.3        The wearable technology market      82
  • 1.4        Wearable market leaders       84
  • 1.5        Continuous monitoring           84
  • 1.6        Key trends in wearable technology  85
    • 1.6.1    The Rise of Biointegrated Computing            85
    • 1.6.2    Neural Interface Evolution and Brain-Computer Symbiosis           85
    • 1.6.3    Ambient and Invisible Computing Integration          85
    • 1.6.4    Precision Health and Predictive Analytics  86
    • 1.6.5    Extended Reality and Spatial Computing    86
    • 1.6.6    Emotional and Mental State Monitoring      86
    • 1.6.7    Sustainable and Biodegradable Wearables               87
    • 1.6.8    Collective Intelligence and Swarm Computing       87
    • 1.6.9    Advanced Materials and Flexible Electronics           87
    • 1.6.10 Privacy-Preserving and Edge Computing    87
    • 1.6.11 Integration with Smart Environments            88
  • 1.7        Market map for wearable electronics and sensors               89
  • 1.8        From rigid to flexible and stretchable             90
  • 1.9        Flexible and stretchable electronics in wearables 91
  • 1.10     Stretchable artificial skin       93
  • 1.11     Role in the metaverse               94
  • 1.12     Wearable electronics in the textiles industry            94
  • 1.13     New conductive materials    96
  • 1.14     Entertainment               99
  • 1.15     Growth in flexible and stretchable electronics market       99
    • 1.15.1 Recent growth in Printed, flexible and stretchable products          99
    • 1.15.2 Future growth 99
    • 1.15.3 Advanced materials as a market driver         100
    • 1.15.4 Growth in remote health monitoring and diagnostics         100
  • 1.16     Innovations at CES 2021-2025          102
  • 1.17     Investment funding and buy-outs 2019-2025          107
  • 1.18     Flexible hybrid electronics (FHE)      113
  • 1.19     Sustainability in wearable technology           116

 

2             INTRODUCTION          118

  • 2.1        Introduction    118
    • 2.1.1    What is wearable technology?           118
      • 2.1.1.1 Wearable sensing       119
        • 2.1.1.1.1           Types   120
        • 2.1.1.1.2           Market trends in wearable sensors 120
        • 2.1.1.1.3           Markets              121
  • 2.2        Form factors   122
    • 2.2.1    Smart Watches             124
    • 2.2.2    Smart Bands  125
    • 2.2.3    Smart Glasses              126
    • 2.2.4    Smart Clothing             126
    • 2.2.5    Smart Patches               127
    • 2.2.6    Smart Rings    128
    • 2.2.7    Hearables        129
    • 2.2.8    Head-Mounted             129
    • 2.2.9    Smart Insoles 131
  • 2.3        Wearable sensors       131
    • 2.3.1    Motion Sensors            131
      • 2.3.1.1 Overview           131
      • 2.3.1.2 Technology and Components             131
        • 2.3.1.2.1           Inertial Measurement Units (IMUs) 131
          • 2.3.1.2.1.1      MEMs accelerometers             132
          • 2.3.1.2.1.2      MEMS Gyroscopes     132
          • 2.3.1.2.1.3      IMUs in smart-watches           132
        • 2.3.1.2.2           Tunneling magnetoresistance sensors (TMR)          133
      • 2.3.1.3 Applications   134
    • 2.3.2    Optical Sensors           135
      • 2.3.2.1 Overview           135
      • 2.3.2.2 Technology and Components             135
        • 2.3.2.2.1           Photoplethysmography (PPG)             135
        • 2.3.2.2.2           Spectroscopy 136
        • 2.3.2.2.3           Photodetectors             137
      • 2.3.2.3 Applications   138
        • 2.3.2.3.1           Heart Rate Optical Sensors  138
        • 2.3.2.3.2           Pulse Oximetry Optical Sensors        140
          • 2.3.2.3.2.1      Blood oxygen measurement 140
          • 2.3.2.3.2.2      Wellness and Medical Applications                140
          • 2.3.2.3.2.3      Consumer Pulse Oximetry    140
          • 2.3.2.3.2.4      Pediatric Applications              141
          • 2.3.2.3.2.5      Skin Patches   141
        • 2.3.2.3.3           Blood Pressure Optical Sensors        141
          • 2.3.2.3.3.1      Commercialization    141
          • 2.3.2.3.3.2      Oscillometric blood pressure measurement            142
          • 2.3.2.3.3.3      Combination of PPG and ECG            142
          • 2.3.2.3.3.4      Non-invasive Blood Pressure Sensing           142
          • 2.3.2.3.3.5      Blood Pressure Hearables     143
        • 2.3.2.3.4           Non-Invasive Glucose Monitoring Optical Sensors              144
          • 2.3.2.3.4.1      Overview           144
          • 2.3.2.3.4.2      Other Optical Approaches    144
        • 2.3.2.3.5           fNIRS Optical Sensors             145
          • 2.3.2.3.5.1      Overview           145
          • 2.3.2.3.5.2      Brain-Computer Interfaces   146
    • 2.3.3    Force Sensors               147
      • 2.3.3.1 Overview           147
        • 2.3.3.1.1           Piezoresistive force sensing 147
        • 2.3.3.1.2           Thin film pressure sensors    147
      • 2.3.3.2 Technology and Components             148
        • 2.3.3.2.1           Materials           149
        • 2.3.3.2.2           Piezoelectric polymers            149
        • 2.3.3.2.3           Temperature sensing and Remote Patient Monitoring (RPM) integration 149
        • 2.3.3.2.4           Wearable force and pressure sensors           150
    • 2.3.4    Strain Sensors               150
      • 2.3.4.1 Overview           150
      • 2.3.4.2 Technology and Components             150
      • 2.3.4.3 Applications   150
        • 2.3.4.3.1           Healthcare       151
        • 2.3.4.3.2           Wearable Strain Sensors        151
        • 2.3.4.3.3           Temperature Sensors               151
    • 2.3.5    Chemical Sensors      153
      • 2.3.5.1 Overview           153
      • 2.3.5.2 Optical Chemical Sensors    155
      • 2.3.5.3 Technology and Components             155
        • 2.3.5.3.1           Continuous Glucose Monitoring       155
        • 2.3.5.3.2           Commercial CGM systems  156
      • 2.3.5.4 Applications   157
        • 2.3.5.4.1           Sweat-based glucose monitoring    158
        • 2.3.5.4.2           Tear glucose measurement  158
        • 2.3.5.4.3           Salivary glucose monitoring 158
        • 2.3.5.4.4           Breath analysis for glucose monitoring        159
        • 2.3.5.4.5           Urine glucose monitoring      159
    • 2.3.6    Biosensors      159
      • 2.3.6.1 Overview           159
      • 2.3.6.2 Applications   160
        • 2.3.6.2.1           Wearable Alcohol Sensors    160
        • 2.3.6.2.2           Wearable Lactate Sensors    160
        • 2.3.6.2.3           Wearable Hydration Sensors               160
        • 2.3.6.2.4           Smart diaper technology        161
        • 2.3.6.2.5           Ultrasound technology            161
        • 2.3.6.2.6           Microneedle technology for continuous fluid sampling    161
    • 2.3.7    Quantum Sensors      162
      • 2.3.7.1 Magnetometry              162
      • 2.3.7.2 Tunneling magnetoresistance sensors         164
      • 2.3.7.3 Chip-scale atomic clocks      165
    • 2.3.8    Wearable Electrodes 166
      • 2.3.8.1 Overview           166
      • 2.3.8.2 Applications   167
        • 2.3.8.2.1           Skin Patches and E-textiles   168
      • 2.3.8.3 Technology and Components             168
        • 2.3.8.3.1           Electrode Selection   169
        • 2.3.8.3.2           E-textiles           169
        • 2.3.8.3.3           Microneedle electrodes          169
        • 2.3.8.3.4           Electronic Skins           171
      • 2.3.8.4 Applications   172
        • 2.3.8.4.1           Electrocardiogram (ECG) wearable electrodes        173
        • 2.3.8.4.2           Electroencephalography (EEG) wearable electrodes represent   174
        • 2.3.8.4.3           Electromyography (EMG) wearable electrodes        174
        • 2.3.8.4.4           Bioimpedance wearable electrodes               175

 

3             MANUFACTURING METHODS            177

  • 3.1        Comparative analysis              177
  • 3.2        Printed electronics     178
    • 3.2.1    Technology description           178
    • 3.2.2    SWOT analysis              179
  • 3.3        3D electronics               180
    • 3.3.1    Technology description           180
    • 3.3.2    SWOT analysis              182
  • 3.4        Analogue printing        183
    • 3.4.1    Technology description           183
    • 3.4.2    SWOT analysis              185
  • 3.5        Digital printing               186
    • 3.5.1    Technology description           186
    • 3.5.2    SWOT analysis              188
  • 3.6        In-mold electronics (IME)      189
    • 3.6.1    Technology description           189
    • 3.6.2    SWOT analysis              192
  • 3.7        Roll-to-roll (R2R)         192
    • 3.7.1    Technology description           192
    • 3.7.2    SWOT analysis              195

 

4             MATERIALS AND COMPONENTS       196

  • 4.1        Component attachment materials  197
    • 4.1.1    Conductive adhesives             198
    • 4.1.2    Biodegradable adhesives      198
    • 4.1.3    Magnets            199
    • 4.1.4    Bio-based solders      199
    • 4.1.5    Bio-derived solders   199
    • 4.1.6    Recycled plastics       199
    • 4.1.7    Nano adhesives           200
    • 4.1.8    Shape memory polymers       200
    • 4.1.9    Photo-reversible polymers    201
    • 4.1.10 Conductive biopolymers        202
    • 4.1.11 Traditional thermal processing methods     202
    • 4.1.12 Low temperature solder          203
    • 4.1.13 Reflow soldering          205
    • 4.1.14 Induction soldering    206
    • 4.1.15 UV curing          207
    • 4.1.16 Near-infrared (NIR) radiation curing 207
    • 4.1.17 Photonic sintering/curing       207
    • 4.1.18 Hybrid integration       208
  • 4.2        Conductive inks           208
    • 4.2.1    Metal-based conductive inks              211
    • 4.2.2    Nanoparticle inks       212
    • 4.2.3    Silver inks         212
    • 4.2.4    Particle-Free conductive ink 213
    • 4.2.5    Copper inks    213
    • 4.2.6    Gold (Au) ink   215
    • 4.2.7    Conductive polymer inks       215
    • 4.2.8    Liquid metals 216
    • 4.2.9    Companies     216
  • 4.3        Printable semiconductors     220
    • 4.3.1    Technology overview 220
    • 4.3.2    Advantages and disadvantages        221
    • 4.3.3    SWOT analysis              222
  • 4.4        Printable sensing materials  223
    • 4.4.1    Overview           223
    • 4.4.2    Types   223
    • 4.4.3    SWOT analysis              225
  • 4.5        Flexible Substrates     226
    • 4.5.1    Flexible plastic substrates    228
      • 4.5.1.1 Types of materials      229
      • 4.5.1.2 Flexible (bio) polyimide PCBs             229
    • 4.5.2    Paper substrates         230
      • 4.5.2.1 Overview           230
    • 4.5.3    Glass substrates         231
      • 4.5.3.1 Overview           231
    • 4.5.4    Textile substrates        232
  • 4.6        Flexible ICs      232
    • 4.6.1    Description     232
    • 4.6.2    Flexible metal oxide ICs          233
    • 4.6.3    Comparison of flexible integrated circuit technologies      234
    • 4.6.4    SWOT analysis              234
  • 4.7        Printed PCBs  235
    • 4.7.1    Description     235
    • 4.7.2    High-Speed PCBs       238
    • 4.7.3    Flexible PCBs 238
    • 4.7.4    3D Printed PCBs          239
    • 4.7.5    Sustainable PCBs       240
  • 4.8        Thin film batteries       241
    • 4.8.1    Technology description           241
    • 4.8.2    SWOT analysis              242
  • 4.9        Energy harvesting       242
    • 4.9.1    Approaches    242
    • 4.9.2    Perovskite photovoltaics        243
    • 4.9.3    Applications   244
    • 4.9.4    SWOT analysis              244

 

5             CONSUMER ELECTRONICS WEARABLE TECHNOLOGY   246

  • 5.1        Market drivers and trends      246
  • 5.2        Wearable sensors       249
    • 5.2.1    Types   249
    • 5.2.2    Wearable sensor technologies           249
    • 5.2.3    Opportunities 251
    • 5.2.4    Consumer acceptance            251
    • 5.2.5    Healthcare       251
    • 5.2.6    Trends 255
  • 5.3        Wearable actuators   257
    • 5.3.1    Applications   257
    • 5.3.2    Types   258
    • 5.3.3    Electrical stimulation technologies 259
    • 5.3.4    Regulations     260
    • 5.3.5    Batteries            261
    • 5.3.6    Wireless communication technologies        262
  • 5.4        Recent market developments             263
  • 5.5        Wrist-worn wearables              264
    • 5.5.1    Overview           264
    • 5.5.2    Recent developments and future outlook  264
    • 5.5.3    Wrist-worn sensing technologies     265
    • 5.5.4    Activity tracking           266
    • 5.5.5    Advanced biometric sensing               267
      • 5.5.5.1 Blood oxygen and respiration rate    267
      • 5.5.5.2 Established sensor hardware              268
      • 5.5.5.3 Blood Pressure             268
      • 5.5.5.4 Spectroscopic technologies                269
      • 5.5.5.5 Non-Invasive Glucose Monitoring    270
      • 5.5.5.6 Minimally invasive glucose monitoring         271
    • 5.5.6    Wrist-worn communication technologies  272
    • 5.5.7    Luxury and traditional watch industry           273
    • 5.5.8    Smart-strap technologies      274
    • 5.5.9    Driver monitoring technologies          275
    • 5.5.10 Sports-watches, smart-watches and fitness trackers         276
      • 5.5.10.1            Sensing              276
      • 5.5.10.2            Actuating          278
      • 5.5.10.3            SWOT analysis              282
    • 5.5.11 Health monitoring      283
    • 5.5.12 Energy harvesting for powering smartwatches        284
    • 5.5.13 Main producers and products            285
  • 5.6        Sports and fitness      286
    • 5.6.1    Overview           286
    • 5.6.2    Wearable devices and apparel           287
    • 5.6.3    Skin patches   287
    • 5.6.4    Products           288
  • 5.7        Hearables        290
    • 5.7.1    Hearing assistance technologies     293
      • 5.7.1.1 Products           295
    • 5.7.2    Technology advancements   296
    • 5.7.3    Assistive Hearables   297
      • 5.7.3.1 Biometric Monitoring 297
    • 5.7.4    SWOT analysis              299
    • 5.7.5    Health & Fitness Hearables  300
    • 5.7.6    Multimedia Hearables             300
    • 5.7.7    Artificial Intelligence (AI)        300
    • 5.7.8    Biometric Monitoring 301
      • 5.7.8.1 Sensors             301
      • 5.7.8.2 Heart Rate Monitoring in Sports Headphones          303
      • 5.7.8.3 Integration into hearing assistance 303
      • 5.7.8.4 Advanced Sensing Technologies       304
      • 5.7.8.5 Blood pressure hearables     304
      • 5.7.8.6 Sleep monitoring market        305
    • 5.7.9    Companies and products      307
  • 5.8        Sleep trackers and wearable monitors         309
    • 5.8.1    Built in function in smart watches and fitness trackers      309
    • 5.8.2    Smart rings      310
    • 5.8.3    Headbands     311
    • 5.8.4    Sleep monitoring devices       313
      • 5.8.4.1 Companies and products      315
  • 5.9        Pet and animal wearables     316
  • 5.10     Military wearables      320
  • 5.11     Industrial and workplace monitoring             320
    • 5.11.1 Products           321
  • 5.12     Global market forecasts         323
    • 5.12.1 Volume              323
    • 5.12.2 Revenues          326
  • 5.13     Market challenges      328
  • 5.14     Company profiles       329 (131 company profiles)

 

6             MEDICAL AND HEALTHCARE WEARABLE TECHNOLOGY 412

  • 6.1        Market drivers                412
  • 6.2        Current state of the art            414
    • 6.2.1    Wearables for Digital Health                414
    • 6.2.2    Wearable medical device products 415
    • 6.2.3    Temperature and respiratory rate monitoring           417
  • 6.3        Wearable and health monitoring and rehabilitation             418
    • 6.3.1    Market overview           418
    • 6.3.2    Companies and products      419
  • 6.4        Electronic skin patches           424
    • 6.4.1    Electrochemical biosensors                425
    • 6.4.2    Printed pH sensors    426
    • 6.4.3    Printed batteries          427
    • 6.4.4    Materials           428
      • 6.4.4.1 Summary of advanced materials      428
    • 6.4.5    Temperature and respiratory rate monitoring           429
      • 6.4.5.1 Market overview           429
      • 6.4.5.2 Companies and products      430
    • 6.4.6    Continuous glucose monitoring (CGM)        432
      • 6.4.6.1 Market overview           432
    • 6.4.7    Minimally-invasive CGM sensors     432
      • 6.4.7.1 Technologies  433
    • 6.4.8    Non-invasive CGM sensors  435
      • 6.4.8.1 Commercial devices 435
      • 6.4.8.2 Companies and products      437
    • 6.4.9    Cardiovascular monitoring   439
      • 6.4.9.1 Market overview           439
      • 6.4.9.2 ECG sensors  440
        • 6.4.9.2.1           Companies and products      440
      • 6.4.9.3 PPG sensors   443
        • 6.4.9.3.1           Companies and products      443
    • 6.4.10 Pregnancy and newborn monitoring              444
      • 6.4.10.1            Market overview           444
      • 6.4.10.2            Companies and products      444
    • 6.4.11 Hydration sensors      446
      • 6.4.11.1            Market overview           446
      • 6.4.11.2            Companies and products      447
    • 6.4.12 Wearable sweat sensors (medical and sports)        448
      • 6.4.12.1            Market overview           448
      • 6.4.12.2            Companies and products      450
  • 6.5        Wearable drug delivery            451
    • 6.5.1    Companies and products      452
  • 6.6        Cosmetics patches    454
    • 6.6.1    Companies and products      455
  • 6.7        Femtech devices         456
    • 6.7.1    Companies and products      458
  • 6.8        Smart footwear for health monitoring           460
    • 6.8.1    Companies and products      461
  • 6.9        Smart contact lenses and smart glasses for visually impaired     462
    • 6.9.1    Companies and products      462
  • 6.10     Smart woundcare       462
    • 6.10.1 Companies and products      464
  • 6.11     Smart diapers                465
    • 6.11.1 Companies and products      466
  • 6.12     Wearable robotics-exo-skeletons, bionic prostheses, exo-suits, and body worn collaborative robots 467
    • 6.12.1 Companies and products      467
  • 6.13     Global market forecasts         485
    • 6.13.1 Volume              485
    • 6.13.2 Revenues          487
  • 6.14     Market challenges      489
  • 6.15     Company profiles       490 (341 company profiles)

 

7             GAMING AND ENTERTAINMENT WEARABLE TECHNOLOGY (VR/AR/MR)              714

  • 7.1        Introduction    714
  • 7.2        Classification of VR, AR, MR, and XR             715
    • 7.2.1    XR controllers and sensing systems               717
    • 7.2.2    XR positional and motion tracking systems               717
    • 7.2.3    Wearable technology for XR 719
    • 7.2.4    Wearable Gesture Sensors for XR    720
    • 7.2.5    Edge Sensing and AI  720
    • 7.2.6    VR Technology               720
      • 7.2.6.1 Overview           720
      • 7.2.6.2 VR Headset Types       721
      • 7.2.6.3 Future outlook for VR technology     721
      • 7.2.6.4 VR Lens Technology   722
      • 7.2.6.5 VR challenges                722
      • 7.2.6.6 Market growth               723
    • 7.2.7    AR Technology               723
      • 7.2.7.1 Overview           723
      • 7.2.7.2 AR and MR distinction             723
      • 7.2.7.3 AR for Assistive Technology  724
      • 7.2.7.4 Consumer AR market               724
      • 7.2.7.5 Optics Technology for AR and VR      728
        • 7.2.7.5.1           Optical Combiners    730
      • 7.2.7.6 AR display technology              730
      • 7.2.7.7 Challenges      731
    • 7.2.8    Metaverse         731
    • 7.2.9    Mixed Reality (MR) smart glasses     732
    • 7.2.10 OLED microdisplays 733
      • 7.2.10.1            MiniLED             733
        • 7.2.10.1.1        High dynamic range miniLED displays          735
        • 7.2.10.1.2        Quantum dot films for miniLED displays     736
      • 7.2.10.2            MicroLED          737
        • 7.2.10.2.1        Integration       739
        • 7.2.10.2.2        Transfer technologies               740
        • 7.2.10.2.3        MicroLED display specifications       744
        • 7.2.10.2.4        Advantages     744
        • 7.2.10.2.5        Transparency 746
        • 7.2.10.2.6        Costs  747
        • 7.2.10.2.7        MicroLED contact lenses       747
        • 7.2.10.2.8        Products           748
        • 7.2.10.2.9        VR and AR MicroLEDs              748
  • 7.3        Global market forecasts         749
    • 7.3.1    Volume              749
    • 7.3.2    Revenues          751
  • 7.4        Company profiles       753 (96 company profiles)

 

8             ELECTRONIC TEXTILES (E-TEXTILES) AND SMART APPAREL           819

  • 8.1        Macro-trends 819
  • 8.2        Market drivers                820
  • 8.3        SWOT analysis              822
  • 8.4        Performance requirements for E-textiles     823
  • 8.5        Growth prospects for electronic textiles      824
  • 8.6        Textiles in the Internet of Things        827
  • 8.7        Types of E-Textile products   829
    • 8.7.1    Embedded e-textiles 830
    • 8.7.2    Laminated e-textiles  831
  • 8.8        Materials and components  831
    • 8.8.1    Integrating electronics for E-Textiles               831
      • 8.8.1.1 Textile-adapted             833
      • 8.8.1.2 Textile-integrated         833
      • 8.8.1.3 Textile-based  833
    • 8.8.2    Manufacturing of E-textiles   833
      • 8.8.2.1 Integration of conductive polymers and inks            834
      • 8.8.2.2 Integration of conductive yarns and conductive filament fibers   835
      • 8.8.2.3 Integration of conductive sheets       836
    • 8.8.3    Flexible and stretchable electronics               836
    • 8.8.4    E-textiles materials and components            839
      • 8.8.4.1 Conductive and stretchable fibers and yarns           840
        • 8.8.4.1.1           Production       843
        • 8.8.4.1.2           Metals 843
        • 8.8.4.1.3           Carbon materials and nanofibers    844
          • 8.8.4.1.3.1      Graphene         846
          • 8.8.4.1.3.2      Carbon nanotubes     847
        • 8.8.4.1.3.3      Nanofibers      849
      • 8.8.4.2 Mxenes              850
      • 8.8.4.3 Hexagonal boron-nitride (h-BN)/Bboron nitride nanosheets (BNNSs)     851
      • 8.8.4.4 Conductive polymers               853
        • 8.8.4.4.1           PDMS  856
        • 8.8.4.4.2           PEDOT: PSS     856
        • 8.8.4.4.3           Polypyrrole (PPy)          856
        • 8.8.4.4.4           Conductive polymer composites     857
        • 8.8.4.4.5           Ionic conductive polymers    857
      • 8.8.4.5 Conductive inks           857
        • 8.8.4.5.1           Aqueous-Based Ink   859
        • 8.8.4.5.2           Solvent-Based Ink      860
        • 8.8.4.5.3           Oil-Based Ink 860
        • 8.8.4.5.4           Hot-Melt Ink    861
        • 8.8.4.5.5           UV-Curable Ink             861
        • 8.8.4.5.6           Metal-based conductive inks              862
          • 8.8.4.5.6.1      Nanoparticle ink          863
          • 8.8.4.5.6.2      Silver inks         863
            • 8.8.4.5.6.2.1  Silver flake       864
            • 8.8.4.5.6.2.2  Silver nanoparticle ink             864
            • 8.8.4.5.6.2.3  Formulation    865
            • 8.8.4.5.6.2.4  Conductivity   866
            • 8.8.4.5.6.2.5  Particle-Free silver conductive ink   866
          • 8.8.4.5.6.3      Copper inks    867
            • 8.8.4.5.6.3.1  Properties         867
            • 8.8.4.5.6.3.2  Silver-coated copper 868
          • 8.8.4.5.6.4      Gold (Au) ink   869
            • 8.8.4.5.6.4.1  Properties         869
        • 8.8.4.5.7           Carbon-based conductive inks         869
          • 8.8.4.5.7.1      Carbon nanotubes     869
          • 8.8.4.5.7.2      Single-walled carbon nanotubes      871
          • 8.8.4.5.7.3      Graphene         872
        • 8.8.4.5.8           Liquid metals 876
          • 8.8.4.5.8.1      Properties         876
      • 8.8.4.6 Electronic filaments  877
      • 8.8.4.7 Phase change materials         877
        • 8.8.4.7.1           Temperature controlled fabrics         877
      • 8.8.4.8 Shape memory materials      878
      • 8.8.4.9 Metal halide perovskites        880
      • 8.8.4.10            Nanocoatings in smart textiles           880
      • 8.8.4.11            3D printing       883
        • 8.8.4.11.1        Fused Deposition Modeling (FDM)  883
        • 8.8.4.11.2        Selective Laser Sintering (SLS)           883
        • 8.8.4.11.3        Products           884
    • 8.8.5    E-textiles components            885
      • 8.8.5.1 Sensors and actuators            885
        • 8.8.5.1.1           Physiological sensors              886
        • 8.8.5.1.2           Environmental sensors           887
        • 8.8.5.1.3           Pressure sensors         887
          • 8.8.5.1.3.1      Flexible capacitive sensors  887
          • 8.8.5.1.3.2      Flexible piezoresistive sensors           887
          • 8.8.5.1.3.3      Flexible piezoelectric sensors            888
        • 8.8.5.1.4           Activity sensors            888
        • 8.8.5.1.5           Strain sensors               889
          • 8.8.5.1.5.1      Resistive sensors        889
          • 8.8.5.1.5.2      Capacitive strain sensors      890
        • 8.8.5.1.6           Temperature sensors                890
        • 8.8.5.1.7           Inertial measurement units (IMUs)  890
      • 8.8.5.2 Electrodes        890
      • 8.8.5.3 Connectors     891
  • 8.9        Applications, markets and products              891
    • 8.9.1    Current E-textiles and smart clothing products      892
    • 8.9.2    Temperature monitoring and regulation       893
      • 8.9.2.1 Heated clothing           893
      • 8.9.2.2 Heated gloves               895
      • 8.9.2.3 Heated insoles             896
      • 8.9.2.4 Heated jacket and clothing products             897
      • 8.9.2.5 Materials used in flexible heaters and applications             898
    • 8.9.3    Stretchable E-fabrics                899
    • 8.9.4    Therapeutic products               899
    • 8.9.5    Sport & fitness              900
      • 8.9.5.1 Products           903
    • 8.9.6    Smart footwear             905
      • 8.9.6.1 Companies and products      906
    • 8.9.7    Wearable displays      907
    • 8.9.8    Military               909
    • 8.9.9    Textile-based lighting                910
      • 8.9.9.1 OLEDs 910
    • 8.9.10 Smart gloves  910
    • 8.9.11 Powering E-textiles     911
      • 8.9.11.1            Advantages and disadvantages of main battery types for E-textiles          913
      • 8.9.11.2            Bio-batteries   914
      • 8.9.11.3            Challenges for battery integration in smart textiles               914
      • 8.9.11.4            Textile supercapacitors           915
      • 8.9.11.5            Energy harvesting       916
        • 8.9.11.5.1        Photovoltaic solar textiles     917
        • 8.9.11.5.2        Energy harvesting nanogenerators  919
          • 8.9.11.5.2.1   TENGs 919
          • 8.9.11.5.2.2   PENGs                920
        • 8.9.11.5.3        Radio frequency (RF) energy harvesting       920
    • 8.9.12 Motion capture for AR/VR      920
  • 8.10     Global market forecasts         922
    • 8.10.1 Volume              922
    • 8.10.2 Revenues          924
  • 8.11     Market challenges      925
  • 8.12     Company profiles       927 (152 company profiles)

 

9             ENERGY STORAGE AND HARVESTING FOR WEARABLE TECHNOLOGY 1030

  • 9.1        Macro-trends 1030
  • 9.2        Market drivers                1031
  • 9.3        SWOT analysis              1031
  • 9.4        Battery Development                1032
    • 9.4.1    Enhanced Energy Density and Performance             1034
    • 9.4.2    Stretchable Batteries                1034
    • 9.4.3    Textile-Based Batteries            1035
    • 9.4.4    Printable Batteries      1035
    • 9.4.5    Sustainable and Biodegradable Batteries   1036
    • 9.4.6    Self-Healing Batteries              1036
    • 9.4.7    Solid-State Flexible Batteries              1037
    • 9.4.8    Integration with Energy Harvesting  1037
    • 9.4.9    Nanostructured Materials     1037
    • 9.4.10 Thin-Film Battery Technologies          1038
  • 9.5        Applications of printed and flexible electronics      1039
  • 9.6        Flexible and stretchable batteries for electronics  1039
  • 9.7        Approaches to flexibility         1041
  • 9.8        Flexible Battery Technologies              1045
    • 9.8.1    Thin-film Lithium-ion Batteries           1045
      • 9.8.1.1 Types of Flexible/stretchable LIBs    1048
        • 9.8.1.1.1           Flexible planar LiBs   1048
        • 9.8.1.1.2           Flexible Fiber LiBs       1049
        • 9.8.1.1.3           Flexible micro-LiBs    1049
        • 9.8.1.1.4           Stretchable lithium-ion batteries      1051
        • 9.8.1.1.5           Origami and kirigami lithium-ion batteries  1052
      • 9.8.1.2 Flexible Li/S batteries                1053
      • 9.8.1.3 Flexible lithium-manganese dioxide (Li–MnO2) batteries 1054
    • 9.8.2    Printed Batteries          1055
      • 9.8.2.1 Technical specifications         1055
      • 9.8.2.2 Components  1056
      • 9.8.2.3 Design 1057
      • 9.8.2.4 Key features    1058
        • 9.8.2.4.1           Printable current collectors  1059
        • 9.8.2.4.2           Printable electrodes  1059
        • 9.8.2.4.3           Materials           1060
        • 9.8.2.4.4           Applications   1061
        • 9.8.2.4.5           Printing techniques    1062
        • 9.8.2.4.6           Lithium-ion (LIB) printed batteries    1064
        • 9.8.2.4.7           Zinc-based printed batteries                1066
        • 9.8.2.4.8           3D Printed batteries   1069
      • 9.8.2.5 3D Printing techniques for battery manufacturing 1071
        • 9.8.2.5.1.1      Materials for 3D printed batteries     1072
    • 9.8.3    Thin-Film Solid-state Batteries           1073
      • 9.8.3.1 Solid-state electrolytes            1074
      • 9.8.3.2 Features and advantages      1076
      • 9.8.3.3 Technical specifications         1077
      • 9.8.3.4 Microbatteries               1081
        • 9.8.3.4.1           Introduction    1081
        • 9.8.3.4.2           3D designs      1082
    • 9.8.4    Stretchable Batteries                1083
    • 9.8.5    Other Emerging Technologies             1083
      • 9.8.5.1 Metal-sulfur batteries               1083
      • 9.8.5.2 Flexible zinc-based batteries               1085
      • 9.8.5.3 Flexible silver–zinc (Ag–Zn) batteries              1085
      • 9.8.5.4 Flexible Zn–Air batteries          1086
      • 9.8.5.5 Flexible zinc-vanadium batteries      1087
      • 9.8.5.6 Fiber-shaped batteries             1087
        • 9.8.5.6.1           Carbon nanotubes     1087
        • 9.8.5.6.2           Applications   1089
        • 9.8.5.6.3           Challenges      1090
      • 9.8.5.7 Transparent batteries                1090
        • 9.8.5.7.1           Components  1091
      • 9.8.5.8 Degradable batteries                1092
        • 9.8.5.8.1           Components  1092
      • 9.8.5.9 Fiber-shaped batteries             1093
        • 9.8.5.9.1           Carbon nanotubes     1094
        • 9.8.5.9.2           Types   1094
        • 9.8.5.9.3           Applications   1095
        • 9.8.5.9.4           Challenges      1096
  • 9.9        Key Components of Flexible Batteries           1096
    • 9.9.1    Electrodes        1096
      • 9.9.1.1 Cable-type batteries 1098
      • 9.9.1.2 Batteries-on-wire        1098
    • 9.9.2    Electrolytes     1099
    • 9.9.3    Separators       1105
    • 9.9.4    Current Collectors      1105
      • 9.9.4.1 Carbon Materials for Current Collectors in Flexible Batteries        1106
    • 9.9.5    Packaging        1107
      • 9.9.5.1 Lithium-Polymer Pouch Cells              1108
      • 9.9.5.2 Flexible Pouch Cells  1109
      • 9.9.5.3 Encapsulation Materials         1111
    • 9.9.6    Other Manufacturing Techniques     1111
  • 9.10     Performance Metrics and Characteristics  1112
    • 9.10.1 Energy Density              1112
    • 9.10.2 Power Density               1113
    • 9.10.3 Cycle Life          1113
    • 9.10.4 Flexibility and Bendability     1114
  • 9.11     Printed supercapacitors         1114
    • 9.11.1 Electrode materials   1116
    • 9.11.2 Electrolytes     1117
  • 9.12     Photovoltaics 1120
    • 9.12.1 Conductive pastes     1120
    • 9.12.2 Organic photovoltaics (OPV)               1121
    • 9.12.3 Perovskite PV 1121
    • 9.12.4 Flexible and stretchable photovoltaics        1122
      • 9.12.4.1            Companies     1122
    • 9.12.5 Photovoltaic solar textiles     1123
    • 9.12.6 Solar tape         1124
    • 9.12.7 Origami-like solar cells            1124
    • 9.12.8 Spray-on and stick-on perovskite photovoltaics    1125
    • 9.12.9 Photovoltaic solar textiles     1125
  • 9.13     Transparent and flexible heaters       1127
    • 9.13.1 Technology overview 1127
    • 9.13.2 Applications   1127
      • 9.13.2.1            Automotive Industry  1127
        • 9.13.2.1.1        Defrosting and Defogging Systems  1128
        • 9.13.2.1.2        Heated Windshields and Mirrors      1129
        • 9.13.2.1.3        Touch Panels and Displays   1130
      • 9.13.2.2            Aerospace and Aviation          1131
        • 9.13.2.2.1        Aircraft Windows and Canopies        1131
        • 9.13.2.2.2        Sensor and Camera Housings            1131
      • 9.13.2.3            Consumer Electronics             1131
        • 9.13.2.3.1        Smartphones and Tablets      1131
        • 9.13.2.3.2        Wearable Devices       1131
        • 9.13.2.3.3        Smart Home Appliances        1131
      • 9.13.2.4            Building and Architecture      1132
        • 9.13.2.4.1        Smart Windows            1132
        • 9.13.2.4.2        Heated Glass Facades            1133
        • 9.13.2.4.3        Greenhouse and Skylight Applications         1133
      • 9.13.2.5            Medical and Healthcare         1134
        • 9.13.2.5.1        Incubators and Warming Beds           1134
        • 9.13.2.5.2        Surgical Microscopes and Endoscopes       1135
        • 9.13.2.5.3        Medical Imaging Equipment 1135
      • 9.13.2.6            Display Technologies                1136
        • 9.13.2.6.1        LCD Displays 1136
        • 9.13.2.6.2        OLED Displays              1136
        • 9.13.2.6.3        Flexible and Transparent Displays   1137
      • 9.13.2.7            Energy Systems            1138
        • 9.13.2.7.1        Solar Panels (De-icing and Efficiency Enhancement)         1138
        • 9.13.2.7.2        Fuel Cells         1138
        • 9.13.2.7.3        Battery Systems           1139
  • 9.14     Thermoelectric energy harvesting   1140
  • 9.15     Market challenges      1141
  • 9.16     Global market forecasts         1141
    • 9.16.1 Volume              1141
    • 9.16.2 Revenues          1143
  • 9.17     Companies     1145 (45 company profiles)

 

10          RESEARCH METHODOLOGY              1190

 

11          REFERENCES 1191

 

List of Tables

  • Table 1. Types of wearable devices and applications.        80
  • Table 2. Types of wearable devices and the data collected.            82
  • Table 3. Main Wearable Device Companies by Shipment Volume, Market Share, and Year-Over-Year Growth, (million units).           83
  • Table 4. New wearable tech products 2022-2025. 83
  • Table 5. Wearable technology market leaders by market segment.           84
  • Table 6. Applications in wearable technology, by advanced materials type and benefits thereof.         92
  • Table 7. Advanced materials for wearable technology-Advantages and disadvantages.            97
  • Table 8. Sheet resistance (RS) and transparency (T) values for transparent conductive oxides and alternative materials for transparent conductive electrodes (TCE).          98
  • Table 9. Wearable electronics at CES 2021-2025. 102
  • Table 10. Wearable technology Investment funding and buy-outs 2019-2025. 107
  • Table 11. Comparative analysis of conventional and flexible hybrid electronics.             113
  • Table 12. Materials, components, and manufacturing methods for FHE                114
  • Table 13. Research and commercial activity in FHE.           115
  • Table 14. Value proposition of wearable sensors versus non wearable alternatives.      119
  • Table 15. Overview of Wearable Sensor Types.        120
  • Table 16. Market Drivers in the Wearable Sensor Market. 121
  • Table 17. Markets for Wearable Sensors.    121
  • Table 18. Wearable Electronic Form Factors.           123
  • Table 19. Trends in Wearable Sensor Innovations by Form-Factor:            124
  • Table 20. Applications and Opportunities for TMRs in Wearables.             134
  • Table 21. Wearable Motion Sensors Applications. 134
  • Table 22. Applications of Photoplethysmography (PPG).  136
  • Table 23. Wearable Brands in Cardiovascular Clinical Research.               141
  • Table 24. Technologies for Cuff-less Blood Pressure.          143
  • Table 25. Market outlook for Wearable Blood Pressure Devices. 143
  • Table 26. Non-invasive glucose monitoring.             145
  • Table 27. fNIRS Companies. 145
  • Table 28. Comparing fNIRS to Other Non-invasive Brain Imaging Methods.        146
  • Table 29. Thin Film Pressure Sensor Architectures.              148
  • Table 30. Applications of Printed Force Sensors.   148
  • Table 31. Companies in Printed Strain Sensors.     151
  • Table 32. Types of Temperature Sensor.       152
  • Table 33. Technology Readiness Level for strain sensors. 153
  • Table 34. Commercial CGM Devices.            157
  • Table 35. Applications of Wearable Chemical Sensors.    159
  • Table 36. Market Outlook of Wearable Sensors for Novel Biometrics.     162
  • Table 37. Applications of Wearable OPMs – MEG. 163
  • Table 38. Applications and Market Opportunities for TMRs.           164
  • Table 39. Wearable Electrode Types.              167
  • Table 40. Applications of wearable electrodes.       167
  • Table 41. Printed Electrodes for Skin Patches and E-textiles.         168
  • Table 42. Companies in Wearable Electrodes.        169
  • Table 43. Materials and Manufacturing Approaches for Electronic Skins.             171
  • Table 44. Wearable electrodes Applications.           172
  • Table 45. Manufacturing Methods for Wearable Electronics.         177
  • Table 46. Manufacturing methods for wearable technology.          178
  • Table 47.  Common printing methods used in printed electronics manufacturing in terms of resolution vs throughput.               178
  • Table 48. Manufacturing methods for 3D electronics.        180
  • Table 49.  Readiness level of various additive manufacturing technologies for electronics applications.                181
  • Table 50. Fully 3D printed electronics process steps          182
  • Table 51. Manufacturing methods for Analogue manufacturing. 183
  • Table 52. Technological and commercial readiness level of analogue printing methods.           185
  • Table 53. Manufacturing methods for Digital printing         186
  • Table 54. Innovations in high resolution printing.   187
  • Table 55. Key manufacturing methods for creating smart surfaces with integrated electronics.            190
  • Table 56. IME manufacturing techniques.  191
  • Table 57. Applications of R2R electronics manufacturing.              193
  • Table 58. Technology readiness level for R2R manufacturing.      194
  • Table 59. Materials for wearable technology.            196
  • Table 60. Comparison of component attachment materials.        197
  • Table 61. Comparison between sustainable and conventional component attachment materials for printed circuit boards              198
  • Table 62. Comparison between the SMAs and SMPs.         200
  • Table 63. Comparison of conductive biopolymers versus conventional materials for printed circuit board fabrication.       202
  • Table 64. Low temperature solder alloys.    203
  • Table 65. Thermally sensitive substrate materials.               204
  • Table 66. Typical conductive ink formulation.          209
  • Table 67. Comparative properties of conductive inks.       211
  • Table 68. Comparison of the electrical conductivities of liquid metal with typical conductive inks.   216
  • Table 69. Conductive ink producers.              216
  • Table 70. Technology readiness level of printed semiconductors.              221
  • Table 71. Organic semiconductors: Advantages and disadvantages.      221
  • Table 72. Market Drivers for printed/flexible sensors.         223
  • Table 73. Overview of specific printed/flexible sensor types.         223
  • Table 74. Properties of typical flexible substrates. 226
  • Table 75. Comparison of stretchable substrates.  227
  • Table 76.  Main types of materials used as flexible plastic substrates in flexible electronics.  229
  • Table 77. Applications of flexible (bio) polyimide PCBs.    230
  • Table 78. Paper substrates: Advantages and disadvantages.        231
  • Table 79. Comparison of flexible integrated circuit technologies.              234
  • Table 80. PCB manufacturing process.        237
  • Table 81. Challenges in PCB manufacturing.           237
  • Table 82. 3D PCB manufacturing.    240
  • Table 83. Market drivers and trends in wearable electronics.         246
  • Table 84. Types of wearable sensors.            249
  • Table 85. Opportunities and challenges for the wearable technology industry. 251
  • Table 86. Drivers for Wearable Adoption and Innovation. 252
  • Table 87. Future Trends in Wearable Technology.   255
  • Table 88. Applications of Neuromuscular Electrical Stimulation (NMES) and Electrical Muscle Stimulation (EMS).     260
  • Table 89. Wearable batteries, displays and communication systems.    261
  • Table 90. Different sensing modalities that can be incorporated into wrist-worn wearable device.      277
  • Table 91. Overview of actuating at the wrist              278
  • Table 92. Key players in Wrist-Worn Technology.    280
  • Table 93. Wearable health monitors.             283
  • Table 94. Sports-watches, smart-watches and fitness trackers producers and products.         285
  • Table 95. Wearable sensors for sports performance.          288
  • Table 96. Wearable sensor products for monitoring sport performance.               288
  • Table 97.  Product types in the hearing assistance technology market.  290
  • Table 98. Audio and Hearing Assistance for Hearables.    293
  • Table 99. Hearing Assistance Technologies.             293
  • Table 100. Hearing Assistance Technology Products.         295
  • Table 101. Sensing options in the ear.           298
  • Table 102. Sensing Options in the Ear.          301
  • Table 103. Advantages and Limitations for Blood Pressure Hearables.   304
  • Table 104. Companies and products in hearables.              307
  • Table 105. Example wearable sleep tracker products and prices.              309
  • Table 106. Smart ring products.         311
  • Table 107. Sleep headband products.           311
  • Table 108. Sleep Headband Wearables.      313
  • Table 109. Wearable electronics sleep monitoring products.        315
  • Table 110. Pet and animal wearable electronics & sensors companies and products. 317
  • Table 111. Wearable electronics applications in the military.       320
  • Table 112.  Industrial Wearable Electronics Product Table              321
  • Table 113. Global market for wearable consumer electronics 2020-2036 by type (Millions Units).      324
  • Table 114. Global market revenues for wearable consumer electronics, 2020-2036, (millions USD). 326
  • Table 115. Market challenges in consumer wearable electronics.              328
  • Table 116. Market drivers for printed, flexible and stretchable medical and healthcare sensors and wearables.       412
  • Table 117. Examples of wearable medical device products.          415
  • Table 118. Medical wearable companies applying products to COVID-19 monitoring and analysis.  418
  • Table 119. Applications in flexible and stretchable health monitors, by advanced materials type and benefits thereof.           428
  • Table 120. Medical wearable companies applying products to temperate and respiratory monitoring and analysis.           431
  • Table 121. Technologies for minimally-invasive and non-invasive glucose detection-advantages and disadvantages.            433
  • Table 122. Commercial devices for non-invasive glucose monitoring not released or withdrawn from market.              435
  • Table 123. Minimally-invasive and non-invasive glucose monitoring products. 437
  • Table 124. ECG Patch Monitor and Clothing Products.      442
  • Table 125. PPG Wearable Electronics Companies and Products.               443
  • Table 126. Pregnancy and Newborn Monitoring Wearables.          445
  • Table 127. Companies developing wearable swear sensors.         450
  • Table 128. Wearable electronics drug delivery companies and products.            452
  • Table 129. Companies and products, cosmetics and drug delivery patches.     455
  • Table 130. Femtech Wearable Electronics.                456
  • Table 131. Companies developing femtech wearable technology.             458
  • Table 132. Companies and products in smart foowtear and insolves.    461
  • Table 133. Companies and products in smart contact lenses.     462
  • Table 134. Companies and products in smart wound care.            464
  • Table 135. Companies developing smart diaper products.             466
  • Table 136. Companies developing wearable robotics.       467
  • Table 137. Global Market for Wearable Medical & Healthcare Electronics 2020-2036 (Million Units).                485
  • Table 138. Global market for Wearable medical & healthcare electronics, 2020-2036, millions of US dollars.              487
  • Table 139. Market challenges in medical and healthcare sensors and wearables.          489
  • Table 140. VR and AR Headset Classification.         715
  • Table 141. Applications of VR and AR Technology. 716
  • Table 142. XR Headset OEM Comparison. 718
  • Table 143. Timeline of Modern VR.   721
  • Table 144. VR Headset Types.             721
  • Table 145. AR Outlook by Device Type           724
  • Table 146. AR Outlook by Computing Type.               725
  • Table 147. Augmented reality (AR) smart glass products. 725
  • Table 148. Mixed Reality (MR) smart glass products.           732
  • Table 149. Comparison between miniLED displays and other display types.      733
  • Table 150. Comparison of AR Display Light Engines.          737
  • Table 151. Comparison to conventional LEDs.        738
  • Table 152. Types of microLED.            738
  • Table 153. Summary of monolithic integration, monolithic hybrid integration (flip-chip/wafer bonding), and mass transfer technologies.      739
  • Table 154. Summary of different mass transfer technologies.      741
  • Table 155. Comparison to LCD and OLED. 743
  • Table 156. Schematic comparison to LCD and OLED.        744
  • Table 157. Commercially available microLED products and specifications.       744
  • Table 158. microLED-based display advantages and disadvantages.     745
  • Table 159. MicroLED based smart glass products.               748
  • Table 160. VR and AR MicroLED products. 748
  • Table 161. Global Market for VR/AR/MR Gaming and Entertainment Wearable Technology, 2018-2036 (Million Units).              749
  • Table 162. Global Market for VR/AR/MR Gaming and Entertainment Wearable Technology, 2018-2036 (Millions USD)               751
  • Table 163. Macro-trends for electronic textiles.      819
  • Table 164. Market drivers for printed, flexible, stretchable and organic electronic textiles.       820
  • Table 165. Examples of smart textile products.      822
  • Table 166. Performance requirements for E-textiles.           823
  • Table 167. Commercially available smart clothing products.        829
  • Table 168. Types of smart textiles.   832
  • Table 169. Comparison of E-textile fabrication methods. 833
  • Table 170. Types of fabrics for the application of electronic textiles.        834
  • Table 171. Methods for integrating conductive compounds.         834
  • Table 172. Methods for integrating conductive yarn and conductive filament fiber.       836
  • Table 173. 1D electronic fibers including the conductive materials, fabrication strategies, electrical conductivity, stretchability, and applications.         839
  • Table 174. Conductive materials used in smart textiles, their electrical conductivity and percolation threshold.        843
  • Table 175. Metal coated fibers and their mechanisms.     844
  • Table 176. Applications of carbon nanomaterials and other nanomaterials in e-textiles.           845
  • Table 177. Applications and benefits of graphene in textiles and apparel.            846
  • Table 178. Properties of CNTs and comparable materials.              847
  • Table 179. Properties of hexagonal boron nitride (h-BN).  853
  • Table 180. Types of flexible conductive polymers, properties and applications.               854
  • Table 181. Typical conductive ink formulation.       858
  • Table 182. Comparative properties of conductive inks.     858
  • Table 183.  Comparison of pros and cons of various types of conductive ink compositions.   861
  • Table 184: Properties of CNTs and comparable materials.              870
  • Table 185. Properties of graphene.  873
  • Table 186. Electrical conductivity of different types of graphene.               875
  • Table 187. Comparison of the electrical conductivities of liquid metal with typical conductive inks. 876
  • Table 188. Nanocoatings applied in the smart textiles industry-type of coating, nanomaterials utilized, benefits and applications.    881
  • Table 189. 3D printed shoes.               884
  • Table 190. Sensors used in electronic textiles.        885
  • Table 191. Features of flexible strain sensors with different structures. 889
  • Table 192. Features of resistive and capacitive strain sensors.    890
  • Table 193. Typical applications and markets for e-textiles.             891
  • Table 194. Commercially available E-textiles and smart clothing products.        892
  • Table 195. Example heated jacket products.            894
  • Table 196. Heated Gloves Products 895
  • Table 197. Heated Insoles Products               896
  • Table 198. Heated jacket and clothing products.   897
  • Table 199. Examples of materials used in flexible heaters and applications.      898
  • Table 200. Wearable Electronic Therapeutics Products.   900
  • Table 201.  Smart Textiles/E-Textiles for Healthcare and Fitness. 902
  • Table 202. Example wearable sensor products for monitoring sport performance.        904
  • Table 203.Companies and products in smart footwear.    906
  • Table 204. Commercial Applications of Wearable Displays            907
  • Table 205. Applications of Wearable Displays.        908
  • Table 206. Wearable Electronics Applications in Military. 910
  • Table 207. Smart Gloves Companies and Products.            911
  • Table 208. Types of Power Supplies for Electronic Textiles.             912
  • Table 209. Advantages and disadvantages of batteries for E-textiles.      913
  • Table 210. Comparison of prototype batteries (flexible, textile, and other) in terms of area-specific performance. 915
  • Table 211. Advantages and disadvantages of photovoltaic, piezoelectric, triboelectric, and thermoelectric energy harvesting in of e-textiles.  916
  • Table 212. Teslasuit. 922
  • Table 213. Global Market for E-Textiles and Smart Apparel Electronics, 2018-2036 (Million Units).    922
  • Table 214. Global Market for E-Textiles and Smart Apparel Electronics, 2018-2036 (Millions USD).    924
  • Table 215. Market and technical challenges for E-textiles and smart clothing.  926
  • Table 216. Macro-trends in energy vstorage and harvesting for wearables.          1030
  • Table 217. Market drivers for Printed and flexible electronic energy storage, generation and harvesting.                1031
  • Table 218. Energy applications for printed/flexible electronics.   1039
  • Table 219. Comparison of Flexible and Traditional Lithium-Ion Batteries               1042
  • Table 220. Material Choices for Flexible Battery Components.    1042
  • Table 221. Flexible Li-ion battery products 1046
  • Table 222. Thin film vs bulk solid-state batteries.   1047
  • Table 223. Summary of fiber-shaped lithium-ion batteries.            1050
  • Table 224. Main components and properties of different printed battery types.               1057
  • Table 225, Types of printable current collectors and the materials commonly used.    1059
  • Table 226. Applications of printed batteries and their physical and electrochemical requirements.  1061
  • Table 227. 2D and 3D printing techniques. 1062
  • Table 228. Printing techniques applied to printed batteries.           1064
  • Table 229. Main components and corresponding electrochemical values of lithium-ion printed batteries.          1064
  • Table 230. Printing technique, main components and corresponding electrochemical values of printed batteries based on Zn–MnO2 and other battery types.       1066
  • Table 231. Main 3D Printing techniques for battery manufacturing.         1071
  • Table 232. Electrode Materials for 3D Printed Batteries.   1072
  • Table 233. Main Fabrication Techniques for Thin-Film Batteries. 1073
  • Table 234. Types of solid-state electrolytes.              1074
  • Table 235. Market segmentation and status for solid-state batteries.      1075
  • Table 236.  Typical process chains for manufacturing key components and assembly of solid-state batteries.          1076
  • Table 237. Comparison between liquid and solid-state batteries.              1081
  • Table 238. Types of fiber-shaped batteries.                1088
  • Table 239. Components of transparent batteries. 1091
  • Table 240. Components of degradable batteries.  1093
  • Table 241. Types of fiber-shaped batteries.                1094
  • Table 242. Organic vs. Inorganic Solid-State Electrolytes.                1100
  • Table 243. Electrode designs in flexible lithium-ion batteries.       1101
  • Table 244. Packaging Procedures for Pouch Cells.                1108
  • Table 245. Performance Metrics and Characteristics for Printed and Flexible Batteries.             1112
  • Table 246. Methods for printing supercapacitors. 1115
  • Table 247. Electrode Materials for printed supercapacitors.          1116
  • Table 248. Electrolytes for printed supercapacitors.           1117
  • Table 249. Main properties and components of printed supercapacitors.            1117
  • Table 250. Conductive pastes for photovoltaics.   1120
  • Table 251. Companies commercializing thin film flexible photovoltaics.              1122
  • Table 252. Examples of materials used in flexible heaters and applications.      1127
  • Table 253. Transparent heaters for exterior lighting / sensors / windows.              1127
  • Table 254. Types of transparent heaters for automotive exterior applications.  1128
  • Table 255. Smart Window Applications of Transparent Heaters. 1132
  • Table 256. Applications of Printed and Flexible Fuel Cells.             1139
  • Table 257. Market challenges in printed and flexible electronics for energy.        1141
  • Table 258. Global market for printed and flexible energy storage, generation and harvesting electronics, 2020-2036 by type (Volume).              1141
  • Table 259. Global market for printed and flexible energy storage, generation and harvesting electronics, 2020-2036, millions of US dollars.  1143
  • Table 260. 3DOM separator. 1146
  • Table 261. Battery performance test specifications of J. Flex batteries.  1169

 

List of Figures

  • Figure 1. Examples of flexible electronics devices.               76
  • Figure 2. Evolution of electronics.    77
  • Figure 3. Wearable technology inventions. 79
  • Figure 4. Market map for wearable technology.       89
  • Figure 5. Wove Band. 90
  • Figure 6. Wearable graphene medical sensor.         91
  • Figure 7. Stretchable transistor.        92
  • Figure 8. Artificial skin prototype for gesture recognition. 94
  • Figure 9. Applications of wearable flexible sensors worn on various body parts.             95
  • Figure 10. Systemization of wearable electronic systems.              96
  • Figure 11. Baby Monitor.         101
  • Figure 12. Wearable health monitor incorporating graphene photodetectors.   101
  • Figure 13. LG 77” transparent 4K OLED TV. 103
  • Figure 14. 137-inch N1 foldable TV. 103
  • Figure 15. Flex Note Extendable™.    104
  • Figure 16. Flex In & Out Flip. 104
  • Figure 17. Garmin Instinct 3.               105
  • Figure 18. Amazfit Active 2.  105
  • Figure 19. Circular Ring 2.     106
  • Figure 20. Frenz Brainband. 106
  • Figure 21. Lingo wellness CGM.         106
  • Figure 22.  Bebird EarSight Flow.       107
  • Figure 23. Traxcon printed lighting circuitry.              114
  • Figure 24. Global Sensor Market Roadmap.              122
  • Figure 25. Market Roadmap for Wrist-worn Wearables.    125
  • Figure 26. Market Roadmap for Smart Bands.         126
  • Figure 27. Market Roadmap for Smart Glasses.     126
  • Figure 28. Market Roadmap for Smart Clothing and Accessories.              127
  • Figure 29. Market Roadmap of Market Trends for Skin-Patches.  128
  • Figure 30. Market Roadmap for Smart Rings.           129
  • Figure 31.Market Roadmap for Hearables. 129
  • Figure 32. Market Roadmap for Head Mounted Wearables.           131
  • Figure 33. Roadmap for Wearable Optical Heart-rate Sensors.    140
  • Figure 34. SWOT analysis for printed electronics.  180
  • Figure 35. SWOT analysis for 3D electronics.            183
  • Figure 36. SWOT analysis for analogue printing.    186
  • Figure 37. SWOT analysis for digital printing.            188
  • Figure 38. In-mold electronics prototype devices and products. 189
  • Figure 39. SWOT analysis for In-Mold Electronics. 192
  • Figure 40. SWOT analysis for R2R manufacturing. 195
  • Figure 41. The molecular mechanism of the shape memory effect under different stimuli.     201
  • Figure 42. Supercooled Soldering™ Technology.     205
  • Figure 43. Reflow soldering schematic.        206
  • Figure 44. Schematic diagram of induction heating reflow.             207
  • Figure 45. Types of conductive inks and applications.       209
  • Figure 46. Copper based inks on flexible substrate.             214
  • Figure 47. SWOT analysis for Printable semiconductors. 223
  • Figure 48.  SWOT analysis for Printable sensor materials.               226
  • Figure 49. RFID Tag with Nano Copper Antenna on Paper.               228
  • Figure 50. SWOT analysis for flexible integrated circuits.  235
  • Figure 51. Fully-printed organic thin-film transistors and circuitry on one-micron-thick polymer films.                236
  • Figure 52. Flexible PCB.          239
  • Figure 53. SWOT analysis for Flexible batteries.      242
  • Figure 54.  SWOT analysis for Flexible PV for energy harvesting. 245
  • Figure 55. Roadmap of wearable sensor technology segmented by key biometrics.      250
  • Figure 56. Wearable Technology Roadmap, by function.  257
  • Figure 57. Actuator types.      258
  • Figure 58. EmeTerm nausea relief wearable.             279
  • Figure 59. Embr Wave for cooling and warming.     279
  • Figure 60. dpl Wrist Wrap Light THerapy pain relief.              280
  • Figure 61. Roadmap for Wrist-Worn Wearables.    282
  • Figure 62. SWOT analysis for Wrist-worn wearables.          283
  • Figure 63. FitBit Sense Watch.            283
  • Figure 64. Wearable bio-fluid monitoring system for monitoring of hydration.   287
  • Figure 65. Evolution of Ear-Worn Wearables.            291
  • Figure 66. Nuheara IQbuds² Max.     292
  • Figure 67. HP Hearing PRO OTC Hearing Aid.           297
  • Figure 68. SWOT analysis for Ear worn wearables (hearables).    300
  • Figure 69. Commercialization Timeline for Hearable Sensing Technologies.       303
  • Figure 70. Roadmap of Market Trends for Hearables.         307
  • Figure 71. Beddr SleepTuner.               313
  • Figure 72. Global market for wearable consumer electronics 2020-2036 by type (Volume).    325
  • Figure 73. Global market revenues for wearable consumer electronics, 2018-2036, (millions USD). 327
  • Figure 74. The Apollo wearable device.         332
  • Figure 75. Cyclops HMD.        335
  • Figure 76. C2Sense sensors.               341
  • Figure 77. Coachwhisperer device. 343
  • Figure 78. Cogwear headgear.            344
  • Figure 79. CardioWatch 287.               345
  • Figure 80. FRENZ™ Brainband.           349
  • Figure 81. NightOwl Home Sleep Apnea Test Device.          350
  • Figure 82. GX Sweat Patch.   352
  • Figure 83. eQ02+LIfeMontor.               353
  • Figure 84. Cove wearable device.     356
  • Figure 85. German bionic exoskeleton.        358
  • Figure 86. UnlimitedHand.    359
  • Figure 87. Apex Exosuit.          360
  • Figure 88. Humanox Shin Guard.      364
  • Figure 89. Airvida E1. 365
  • Figure 90. Footrax.      366
  • Figure 91. eMacula®. 367
  • Figure 92. G2 Pro.        368
  • Figure 93. REFLEX.     369
  • Figure 94. Ring ZERO.               372
  • Figure 95. Mawi Heart Patch.               374
  • Figure 96. Ayo wearable light therapy.           381
  • Figure 97. Nowatch.   382
  • Figure 98. ORII smart ring.     384
  • Figure 99. Proxxi Voltage.       388
  • Figure 100. RealWear HMT-1.              390
  • Figure 101. Moonwalkers from Shift Robotics Inc. 393
  • Figure 102. SnowCookie device.       394
  • Figure 103. Soter device.        395
  • Figure 104. Feelzing Energy Patch.   400
  • Figure 105. Wiliot tags.            407
  • Figure 106. Connected human body and product examples.        415
  • Figure 107. Companies and products in wearable health monitoring and rehabilitation devices and products.          419
  • Figure 108. Smart e-skin system comprising health-monitoring sensors, displays, and ultra flexible PLEDs.               424
  • Figure 109. Graphene medical patch.            427
  • Figure 110. Graphene-based E-skin patch.                427
  • Figure 111. Enfucell wearable temperature tag.     430
  • Figure 112. TempTraQ wearable wireless thermometer.    431
  • Figure 113. Technologies for minimally-invasive and non-invasive glucose detection. 432
  • Figure 114. Schematic of non-invasive CGM sensor.          436
  • Figure 115. Adhesive wearable CGM sensor.            436
  • Figure 116. VitalPatch.             440
  • Figure 117. Wearable ECG-textile.   440
  • Figure 118. Wearable ECG recorder.               441
  • Figure 119. Nexkin™.  442
  • Figure 120. Bloomlife.              445
  • Figure 121. Nanowire skin hydration patch.               446
  • Figure 122. NIX sensors.         447
  • Figure 123. Wearable sweat sensor.               448
  • Figure 124. Wearable  graphene sweat sensor.       449
  • Figure 125. Gatorade's GX Sweat Patch.      449
  • Figure 126. Sweat sensor incorporated into face mask.    450
  • Figure 127. D-mine Pump.     452
  • Figure 128. Lab-on-Skin™.     452
  • Figure 129. My UV Patch.       454
  • Figure 130. Overview layers of L'Oreal skin patch. 455
  • Figure 131. Brilliantly Warm.               458
  • Figure 132. Ava Fertility tracker.         459
  • Figure 133. S9 Pro breast pump.       459
  • Figure 134. Tempdrop.             459
  • Figure 135. Digitsole Smartshoe.     460
  • Figure 136. Schematic of smart wound dressing.  463
  • Figure 137. REPAIR electronic patch concept. Image courtesy of the University of Pittsburgh School of Medicine.         464
  • Figure 138. ABENA Nova smart diaper.         466
  • Figure 139. Honda Walking Assist.  467
  • Figure 140. ABLE Exoskeleton.           467
  • Figure 141. ANGEL-LEGS-M10.          468
  • Figure 142. AGADEXO Shoulder.       468
  • Figure 143. Enyware. 468
  • Figure 144. AWN-12 occupational powered hip exoskeleton.        468
  • Figure 145. CarrySuit passive upper-body exoskeleton.    469
  • Figure 146. Axosuit lower body medical exoskeleton.         469
  • Figure 147. FreeGait. 469
  • Figure 148. InMotion Arm.     469
  • Figure 149. Biomotum SPARK.            470
  • Figure 150. PowerWalk energy.           470
  • Figure 151. Keeogo™. 470
  • Figure 152. MATE-XT. 471
  • Figure 153. CDYS passive shoulder support exoskeleton.                471
  • Figure 154. ALDAK.     471
  • Figure 155. HAL® Lower Limb.             471
  • Figure 156. DARWING PA.     472
  • Figure 157. Dephy ExoBoot. 472
  • Figure 158. EksoNR.  472
  • Figure 159. Emovo Assist.     472
  • Figure 160. HAPO.       473
  • Figure 161. Atlas passive modular exoskeleton.     473
  • Figure 162. ExoAtlet II.             473
  • Figure 163. ExoHeaver.            474
  • Figure 164. Exy ONE. 474
  • Figure 165. ExoArm.  474
  • Figure 166. ExoMotus.             474
  • Figure 167. Gloreha Sinfonia.             475
  • Figure 168. BELK Knee Exoskeleton.               475
  • Figure 169. Apex exosuit.       475
  • Figure 170. Honda Walking Assist.  476
  • Figure 171. BionicBack.          476
  • Figure 172. Muscle Suit.         476
  • Figure 173.Japet.W powered exoskeleton. 477
  • Figure 174.Ski~Mojo. 477
  • Figure 175. AIRFRAME passive shoulder.    477
  • Figure 176.FORTIS passive tool holding exoskeleton.         478
  • Figure 177. Integrated Soldier Exoskeleton (UPRISE®).       478
  • Figure 178.UNILEXA passive exoskeleton.  478
  • Figure 179.HandTutor.             479
  • Figure 180.MyoPro®. 479
  • Figure 181.Myosuit.  479
  • Figure 182. archelis wearable chair.               479
  • Figure 183.Chairless Chair.  480
  • Figure 184.Indego.     480
  • Figure 185. Polyspine.              480
  • Figure 186. Hercule powered lower body exoskeleton.      481
  • Figure 187. ReStore Soft Exo-Suit.   481
  • Figure 188. Hand of Hope.    481
  • Figure 189. REX powered exoskeleton.         481
  • Figure 190. Elevate Ski Exoskeleton.              482
  • Figure 191. UGO210 exoskeleton.    482
  • Figure 192. EsoGLOVE Pro.   482
  • Figure 193. Roki.          482
  • Figure 194. Powered Clothing.           483
  • Figure 195. Againer shock absorbing exoskeleton.               483
  • Figure 196. EasyWalk Assistive Soft Exoskeleton Walker. 483
  • Figure 197. Skel-Ex.    483
  • Figure 198. EXO-H3 lower limbs robotic exoskeleton.        484
  • Figure 199. Ikan Tilta Max Armor-Man 2        484
  • Figure 200. AMADEO hand and finger robotic rehabilitation device.          484
  • Figure 201.Atalante autonomous lower-body exoskeleton.            485
  • Figure 202. Global Market for Wearable Medical & Healthcare Electronics 2020-2036 (Million Units).                486
  • Figure 203. Global market for Wearable medical & healthcare electronics, 2020-2036, millions of US dollars.              488
  • Figure 204. Libre 3.     491
  • Figure 205. Libre Sense Glucose Sport Biowearable.          491
  • Figure 206. AcuPebble SA100.           492
  • Figure 207. Vitalgram®.            495
  • Figure 208. Alertgy NICGM wristband.          498
  • Figure 209. ALLEVX.   499
  • Figure 210. Gastric Alimetry.                500
  • Figure 211. Alva Health stroke monitor.       501
  • Figure 212. amofit S. 502
  • Figure 213. MIT and Amorepacific's chip-free skin sensor.              503
  • Figure 214. Sigi™ Insulin Management System.       505
  • Figure 215. The Apollo wearable device.      507
  • Figure 216. Apos3.     508
  • Figure 217. Artemis is  smart clothing system.        510
  • Figure 218. KneeStim.              511
  • Figure 219. PaciBreath.           513
  • Figure 220. Structure of Azalea Vision’s smart contact lens.         515
  • Figure 221. Belun® Ring.         516
  • Figure 222. Neuronaute wearable.   524
  • Figure 223. biped.ai device.  526
  • Figure 224. circul+ smart ring.            529
  • Figure 225. Cala Trio. 533
  • Figure 226. BioSleeve®.            540
  • Figure 227. Cognito's gamma stimulation device. 541
  • Figure 228. Cogwear Headband.      542
  • Figure 229. First Relief.            549
  • Figure 230. Jewel Patch Wearable Cardioverter Defibrillator.         553
  • Figure 231. enFuse.   555
  • Figure 232. EOPatch. 557
  • Figure 233. Epilog.      559
  • Figure 234. FloPatch. 566
  • Figure 2. The Happy Ring.      577
  • Figure 235. Hinge Health wearable therapy devices.           579
  • Figure 236. MYSA - 'Relax Shirt'.         580
  • Figure 237. Atusa system.     589
  • Figure 238. Kenzen ECHO Smart Patch.       593
  • Figure 239. The Kernel Flow headset.            594
  • Figure 240. KnowU™. 596
  • Figure 241. LifeSpan patch.  605
  • Figure 242. Mawi Heart Patch.            609
  • Figure 243. WalkAid. 615
  • Figure 244. Monarch™ Wireless Wearable Biosensor          616
  • Figure 245. Modoo device.    620
  • Figure 246. Munevo Drive.     624
  • Figure 247. Electroskin integration schematic.        627
  • Figure 248. Modius Sleep wearable device.               632
  • Figure 249. Neuphony Headband.   633
  • Figure 250. Nix Biosensors patch.    637
  • Figure 1. Slanj device.               638
  • Figure 251. Otolith wearable device.              642
  • Figure 252. Peerbridge Cor.  646
  • Figure 253. Point Fit Technology skin patch.              651
  • Figure 254. Sylvee 1.0.             658
  • Figure 255. RootiRx.  662
  • Figure 256. Sylvee 1.0.             664
  • Figure 257. Sibel's ADAM™ sensor.   676
  • Figure 258. Silvertree Reach.               677
  • Figure 259. Smardii smart diaper.    681
  • Figure 260. Subcuject.             688
  • Figure 261. Nerivio.    692
  • Figure 262. Feelzing Energy Patch.   693
  • Figure 263. Ultrahuman wearable glucose monitor.            696
  • Figure 264. Vaxxas patch.      698
  • Figure 265. S-Patch Ex.            709
  • Figure 266. Zeit Medical Wearable Headband.        712
  • Figure 267. Evolution of Smart Eyewear.      714
  • Figure 268. Engo Eyewear.     725
  • Figure 269. Lenovo ThinkReality A3.               726
  • Figure 270. Magic Leap 1.      726
  • Figure 271. Microsoft HoloLens 2.   727
  • Figure 272. OPPO Air Glass AR.         727
  • Figure 273. Snap Spectacles AR (4th gen). 728
  • Figure 274. Vuzix Blade Upgraded.  728
  • Figure 275. NReal Light MR smart glasses. 732
  • Figure 276. Schematic for configuration of full colour microLED display               734
  • Figure 277. BOE glass-based backplane process. 735
  • Figure 278. MSI curved quantum dot miniLED display.      736
  • Figure 279. Nanolumi Chameleon® G Film in LED/LCD Monitor. 737
  • Figure 280. Vuzix microLED microdisplay Smart Glasses.               738
  • Figure 281. Pixels per inch roadmap of µ-LED displays from 2007 to 2019.         739
  • Figure 282. Mass transfer for µLED chips.  740
  • Figure 283. Schematic diagram of mass transfer technologies.   742
  • Figure 284. Comparison of microLED with other display technologies.  745
  • Figure 285. Lextar 10.6 inch transparent microLED display.           746
  • Figure 286. Transition to borderless design.              746
  • Figure 287. Mojo Vision smart contact lens with an embedded MicroLED display.         748
  • Figure 288. Global Market for VR/AR/MR Gaming and Entertainment Wearable Technology, 2018-2036 (Million Units).              750
  • Figure 289. Global Market for VR/AR/MR Gaming and Entertainment Wearable Technology, 2018-2036 (Millions USD).              752
  • Figure 290. Skinetic vest.       753
  • Figure 291. IntelliPix™ design for 0.26″ 1080p microLED display. 761
  • Figure 292. Dapeng DPVR P1 Pro 4k VR all-in-one VR glasses.     762
  • Figure 293. Vive Focus 3 VR headset Wrist Tracker.              772
  • Figure 294. Huawei smart glasses. 773
  • Figure 295. Jade Bird Display micro displays.           778
  • Figure 296. JBD's 0.13-inch panel.   778
  • Figure 297. 0.22” Monolithic full colour microLED panel and inset shows a conceptual monolithic polychrome projector with a waveguide.     779
  • Figure 298. Kura Technologies' AR Glasses.              782
  • Figure 299. Smart contact lenses schematic.          792
  • Figure 300. OQmented technology for AR smart glasses. 795
  • Figure 301. VISIRIUM® Technology smart glasses prototype.         800
  • Figure 302. SenseGlove Nova.            801
  • Figure 303. MeganeX.               802
  • Figure 304.  A micro-display with a stacked-RGB pixel array, where each pixel is an RGB-emitting stacked microLED device (left). The micro-display showing a video of fireworks at night, demonstrating the full-colour capability (right). N.B. Areas around the display   805
  • Figure 305. JioGlass mixed reality glasses type headset.  806
  • Figure 306. Vuzix uLED display engine.         815
  • Figure 307. Xiaomi Smart Glasses. 816
  • Figure 308. SWOT analysis for printed, flexible and hybrid electronics in E-textiles.      823
  • Figure 309. Timeline of the different generations of electronic textiles.  825
  • Figure 310. Examples of each generation of electronic textiles.   825
  • Figure 311. Conductive yarns.            829
  • Figure 312. Electronics integration in textiles: (a) textile-adapted, (b) textile-integrated (c) textile-basd.                831
  • Figure 313. Stretchable polymer encapsulation microelectronics on textiles.   837
  • Figure 314. Wove Band.          838
  • Figure 315. Wearable graphene medical sensor.   839
  • Figure 316. Conductive yarns.            841
  • Figure 317. Classification of conductive materials and process technology.      842
  • Figure 318. Structure diagram of Ti3C2Tx.  851
  • Figure 319. Structure of hexagonal boron nitride.  852
  • Figure 320. BN nanosheet textiles application.       853
  • Figure 321. SEM image of cotton fibers with PEDOT:PSS coating.              855
  • Figure 322. Schematic of inkjet-printed processes.             860
  • Figure 323: Silver nanocomposite ink after sintering and resin bonding of discrete electronic components. 865
  • Figure 324. Schematic summary of the formulation of silver conductive inks.  866
  • Figure 325. Copper based inks on flexible substrate.          868
  • Figure 326: Schematic of single-walled carbon nanotube.             871
  • Figure 327. Stretchable SWNT memory and logic devices for wearable electronics.     872
  • Figure 328. Graphene layer structure schematic.  874
  • Figure 329. BGT Materials graphene ink product.   875
  • Figure 330. PCM cooling vest.             878
  • Figure 331. SMPU-treated cotton fabrics.   878
  • Figure 332. Schematics of DIAPLEX membrane.    879
  • Figure 333. SMP energy storage textiles.      880
  • Figure 334. Nike x Acronym Blazer Sneakers.           884
  • Figure 335. Adidas 3D Runner Pump.            884
  • Figure 336. Under Armour Archi-TechFuturist.         884
  • Figure 337. Reebok Reebok Liquid Speed.  884
  • Figure 338. Radiate sports vest.        885
  • Figure 339. Adidas smart insole.       888
  • Figure 340. Applications of E-textiles.           892
  • Figure 341. EXO2 Stormwalker 2 Heated Jacket.    894
  • Figure 342. Flexible polymer-based heated glove, sock and slipper.         896
  • Figure 343. ThermaCell Rechargeable Heated Insoles.     897
  • Figure 344. Myant sleeve tracks biochemical indicators in sweat.             899
  • Figure 345. Flexible polymer-based therapeutic products.             900
  • Figure 346. iStimUweaR .       901
  • Figure 347. Digitsole Smartshoe.     906
  • Figure 348. Basketball referee Royole fully flexible display.            909
  • Figure 349. A mechanical glove, Robo-Glove, with pressure sensors and other sensors jointly developed by General Motors and NASA.             911
  • Figure 350. Power supply mechanisms for electronic textiles and wearables.   913
  • Figure 351. Micro-scale energy scavenging techniques.   916
  • Figure 352. Schematic illustration of the fabrication concept for textile-based dye-sensitized solar cells (DSSCs) made by sewing textile electrodes onto cloth or paper. 918
  • Figure 353. 3D printed piezoelectric material.         919
  • Figure 354. Application of electronic textiles in AR/VR.      921
  • Figure 355. Global Market for E-Textiles and Smart Apparel Electronics, 2018-2036 (Million Units).  923
  • Figure 356. Global Market for E-Textiles and Smart Apparel Electronics, 2018-2036 (Millions USD).  925
  • Figure 357. BioMan+.               929
  • Figure 358. EXO Glove.            929
  • Figure 359. LED hooded jacket.         933
  • Figure 360. Heated element module.            934
  • Figure 361. Carhartt X-1 Smart Heated Vest.            942
  • Figure 362. Cionic Neural Sleeve.     944
  • Figure 363. Graphene dress. The dress changes colour in sync with the wearer’s breathing.   947
  • Figure 364. Descante Solar Thermo insulated jacket.         948
  • Figure 365. G+ Graphene Aero Jersey.            949
  • Figure 366. HiFlex strain/pressure sensor.  958
  • Figure 367. KiTT motion tracking knee sleeve.          960
  • Figure 368. Healables app-controlled electrotherapy device.       966
  • Figure 369. LumeoLoop device.         979
  • Figure 370. Electroskin integration schematic.        985
  • Figure 371. Nextiles’ compression garments.          987
  • Figure 372. Nextiles e-fabric.               987
  • Figure 373 .Nuada.    990
  • Figure 374. Palarum PUP smart socks.         995
  • Figure 375. Smardii smart diaper.    1006
  • Figure 376. Softmatter compression garment.        1008
  • Figure 377. Softmatter sports bra with a woven ECG sensor.         1008
  • Figure 378. MoCap Pro Glove.             1010
  • Figure 379. Teslasuit.                1014
  • Figure 380. ZOZOFIT wearable at-home 3D body scanner.              1027
  • Figure 381. YouCare smart shirt.       1028
  • Figure 382. SWOT analysis for printed, flexible and hybrid electronics in energy.             1032
  • Figure 383. Examples of Flexible batteries on the market.               1033
  • Figure 384. Stretchable lithium-ion battery for flexible electronics            1035
  • Figure 385. Loomia E-textile.               1035
  • Figure 386. BrightVolt battery.             1036
  • Figure 387. ProLogium solid-state technology.        1037
  • Figure 388. Amprius Li-ion batteries.              1038
  • Figure 389. MOLEX thin-film battery.              1039
  • Figure 390. Flexible batteries on the market.            1040
  • Figure 391. Various architectures for flexible and stretchable electrochemical energy storage.            1043
  • Figure 392. Types of flexible batteries.           1045
  • Figure 393. Materials and design structures in flexible lithium ion batteries.      1046
  • Figure 394. Flexible/stretchable LIBs with different structures.    1048
  • Figure 395. a–c) Schematic illustration of coaxial (a), twisted (b), and stretchable (c) LIBs.     1051
  • Figure 396. a) Schematic illustration of the fabrication of the superstretchy LIB based on an MWCNT/LMO composite fiber and an MWCNT/LTO composite fiber. b,c) Photograph (b) and the schematic illustration (c) of a stretchable fiber-shaped battery under stretching conditions. d) Schematic illustration of the spring-like stretchable LIB. e) SEM images of a fiberat different strains. f) Evolution of specific capacitance with strain. d–f)                1052
  • Figure 397. Origami disposable battery.       1053
  • Figure 398. Zn–MnO2 batteries produced by Brightvolt.    1055
  • Figure 399. Various applications of printed paper batteries.          1056
  • Figure 400.Schematic representation of the main components of a battery.      1056
  • Figure 401. Schematic of a printed battery in a sandwich cell architecture, where the anode and cathode of the battery are stacked together.            1058
  • Figure 402. Sakuú's Swift Print 3D-printed solid-state battery cells.         1069
  • Figure 403. Manufacturing Processes for Conventional Batteries (I), 3D Microbatteries (II), and 3D-Printed Batteries (III).                1070
  • Figure 404. Examples of applications of thin film batteries.            1077
  • Figure 405. Capacities and voltage windows of various cathode and anode materials.               1078
  • Figure 406. Traditional lithium-ion battery (left), solid state battery (right).          1080
  • Figure 407. Stretchable lithium-air battery for wearable electronics.       1083
  • Figure 408. Ag–Zn batteries produced by Imprint Energy. 1086
  • Figure 409. Transparent batteries.    1090
  • Figure 410. Degradable batteries.    1092
  • Figure 411 . Fraunhofer IFAM printed electrodes.   1097
  • Figure 412. Ragone plots of diverse batteries and the commonly used electronics powered by flexible batteries.          1097
  • Figure 413. Schematic of the structure of stretchable LIBs.           1102
  • Figure 414. Electrochemical performance of materials in flexible LIBs. 1103
  • Figure 415. Main printing methods for supercapacitors.  1115
  • Figure 416. Schematic illustration of the fabrication concept for textile-based dye-sensitized solar cells (DSSCs) made by sewing textile electrodes onto cloth or paper. 1124
  • Figure 417. Origami-like silicon solar cells.                1125
  • Figure 418. Schematic illustration of the fabrication concept for textile-based dye-sensitized solar cells (DSSCs) made by sewing textile electrodes onto cloth or paper. 1126
  • Figure 419. Concept of microwave-transparent heaters for automotive radars.               1129
  • Figure 420. Defrosting and defogging transparent heater applications.  1130
  • Figure 421. Global market for printed and flexible energy storage, generation and harvesting electronics, 2020-2036 by type (Volume).              1142
  • Figure 422. Global market for printed and flexible energy storage, generation and harvesting electronics, 2020-2036, millions of US dollars.  1144
  • Figure 423. 3DOM battery.     1145
  • Figure 424. AC biode prototype.        1147
  • Figure 425. Ampcera’s all-ceramic dense solid-state electrolyte separator sheets (25 um thickness, 50mm x 100mm size, flexible and defect free, room temperature ionic conductivity ~1 mA/cm).         1149
  • Figure 426. Ateios thin-film, printed battery.             1150
  • Figure 427. 3D printed lithium-ion battery. 1153
  • Figure 428. TempTraq wearable patch.          1154
  • Figure 429. SoftBattery®.        1156
  • Figure 430. Roll-to-roll equipment working with ultrathin steel substrate.            1157
  • Figure 431. TAeTTOOz printable battery materials.               1159
  • Figure 432. Exeger Powerfoyle.           1160
  • Figure 433. 2D paper batteries.          1163
  • Figure 434. 3D Custom Format paper batteries.     1164
  • Figure 435. Hitachi Zosen solid-state battery.          1165
  • Figure 436. Ilika solid-state batteries.            1166
  • Figure 437. TAeTTOOz printable battery materials.               1167
  • Figure 438. LiBEST flexible battery.  1170
  • Figure 439. 3D solid-state thin-film battery technology.    1172
  • Figure 440. Schematic illustration of three-chamber system for SWCNH production. 1174
  • Figure 441. TEM images of carbon nanobrush.       1175
  • Figure 442. Printed Energy flexible battery. 1178
  • Figure 443. Printed battery.   1179
  • Figure 444. ProLogium solid-state battery. 1180
  • Figure 445. Sakuú Corporation 3Ah Lithium Metal Solid-state Battery.   1182
  • Figure 446. Samsung SDI's sixth-generation prismatic batteries.                1183
  • Figure 447. Grepow flexible battery.                1186

 

 

 

 

The Global Wearable Technology Market 2026-2036
The Global Wearable Technology Market 2026-2036
PDF download.

The Global Wearable Technology Market 2026-2036
The Global Wearable Technology Market 2026-2036
PDF and Print Edition (including tracked delivery).

Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer. To order by Bank Transfer (Invoice) select this option from the payment methods menu after adding to cart, or contact info@futuremarketsinc.com