The Global Carbon Nanotubes Market 2026-2036

0

cover

cover

  • Published: June 2025
  • Pages: 444
  • Tables: 192
  • Figures: 82

 

The global carbon nanotubes (CNTs) market represents one of the most dynamic and rapidly expanding segments of the advanced materials industry, with market valuations projected to grow from >$5 billion to more than $25 billion by 2036. This exceptional growth trajectory reflects the transformative potential of these cylindrical carbon structures, which possess extraordinary mechanical, electrical, and thermal properties that are revolutionizing multiple industries across the next decade.

The CNT market is primarily divided into two main categories: multi-walled carbon nanotubes (MWCNTs) and single-walled carbon nanotubes (SWCNTs). By 2036, MWCNTs are projected to maintain their dominance, driven by their superior mechanical strength, electrical conductivity, and cost-effectiveness in large-scale applications. SWCNTs, while commanding premium pricing for specialized applications, are expected to reach $2.0 billion by 2036, finding critical roles in next-generation electronics, quantum computing, and advanced biomedical applications where their unique single-layer structure provides unmatched performance characteristics.

Energy storage emerges as the fastest-growing sector, driven by the global transition to electric vehicles and renewable energy infrastructure. CNTs serve as superior conductive additives in lithium-ion batteries, creating more effective electrical percolation networks at lower weight loadings than conventional carbons, while enabling faster charge transfer and higher battery capacity through their exceptional electrical conductivity and lightweight nature. The automotive industry's accelerating shift toward electrification, coupled with grid-scale energy storage demands, positions CNTs as essential materials for next-generation battery technologies.

CNT-reinforced materials are revolutionizing aerospace and automotive applications through lightweight structural components that maintain superior strength, enabling aircraft manufacturers to achieve significant weight reductions while enhancing fuel efficiency and safety. In the construction industry, CNT-enhanced concrete and coatings provide unprecedented durability and functionality. Electronics applications showcase CNTs' potential in flexible displays, transparent conductive films, sensors, and emerging quantum computing technologies. Their unique one-dimensional structure and tunable electronic properties make them invaluable for next-generation transistors, memory devices, and wearable electronics.

The production landscape is undergoing fundamental transformation, with chemical vapor deposition (CVD) technology maintaining its dominance due to scalability and cost-effectiveness. By 2036, advanced manufacturing techniques including floating catalyst CVD, plasma-enhanced processes, and emerging green synthesis methods using captured CO₂ and waste feedstocks are expected to revolutionize production economics and environmental sustainability. Major capacity expansions by industry leaders like LG Chem and OCSiAl are scaling production to meet demand growth across battery, electronics, and composite applications. The integration of artificial intelligence and machine learning in CNT synthesis is enabling unprecedented control over nanotube chirality, diameter, and properties, opening pathways to application-specific CNT variants that were previously impossible to produce at scale.

The CNT market's future trajectory through 2036 is intrinsically linked to mega-trends including the global energy transition, space exploration initiatives, quantum computing development, and advanced manufacturing technologies. As production scales increase exponentially and costs decrease through technological breakthroughs, carbon nanotubes are positioned to become fundamental building blocks for next-generation technologies, bridging the gap between laboratory innovation and commercial reality across aerospace, automotive, energy, electronics, and emerging biotechnology sectors. The convergence of CNTs with artificial intelligence, robotics, and sustainable manufacturing represents a paradigm shift toward intelligent materials that will define the technological landscape of the next decade. Report contents include:

  • Market Size & Forecasts:
    • Global carbon nanotubes market projections from 2026-2035 with detailed volume (metric tons) and revenue analysis
    • Comprehensive segmentation by product type (MWCNTs, SWCNTs, DWCNTs, VACNTs, FWCNTs)
    • Regional market analysis covering Asia Pacific, North America, Europe, and emerging markets
    • Application-specific demand forecasts across 22 major end-use sectors
  • Technology & Production Analysis:
    • Detailed evaluation of synthesis methods including CVD, arc discharge, laser ablation, and emerging green production technologies
    • Production capacity analysis of  manufacturers with current and planned expansionsBreakthrough technologies in controlled growth, hybrid CNTs, and carbon capture-derived production
    • Comparative assessment of manufacturing costs, scalability, and quality control
  • Applications & Market Opportunities:
    • Energy storage systems: Li-ion batteries, supercapacitors, and next-generation energy technologies
    • Electronics: transistors, memory devices, flexible displays, and quantum computing applications
    • Composites & materials: aerospace, automotive, construction, and high-performance polymers
    • Emerging markets: thermal interface materials, sensors, filtration, and biomedical applications
  • Competitive Intelligence:
    • Comprehensive profiles of 180+ companies across the value chain
    • Strategic partnerships, licensing agreements, and commercial collaborations
    • Patent landscape analysis and intellectual property trends
    • Technology readiness levels and commercialization timelines
  • Regulatory & Safety Framework:
    • Global regulations governing nanomaterials production and applications
    • Safety protocols, exposure monitoring, and environmental impact assessments
    • Compliance requirements across major markets and industry standards
  • Pricing & Market Dynamics:
  • Detailed pricing analysis for MWCNTs, SWCNTs, and specialty variants
  • Cost structure evolution and price forecasting through 2035
  • Supply chain analysis and raw material availability
  • Market challenges and growth drivers identification

 

The report features over 180 company profiles including 3D Strong, Birla Carbon, BNNano, BNNT, BNNT Technology Limited, Brewer Science, Büfa, C12, Cabot Corporation, Canatu, Carbice Corporation, Carbon Corp, Carbon Fly, Carbonova, CENS Materials, CHASM Advanced Materials, DexMat, Huntsman (Miralon), JEIO, LG Energy Solution, Mechnano, Meijo Nano Carbon, Molecular Rebar Design LLC, Nano-C, Nanocyl, Nanoramic Laboratories, NanoRial, NAWA Technologies, Nemo Nanomaterials, NEO Battery Materials, NoPo Nanotechnologies, NTherma, OCSiAl, PARC (Sensors), Raymor Industries, Samsung SDI (Battery), Shinko Carbon Nanotube Thermal Interface Materials, SmartNanotubes Technologies, Sumitomo Electric (Carbon Nanotube), TrimTabs, UP Catalyst, Wootz, Zeon, and Zeta Energy.

Strategic Insights Include:

  • Market entry strategies for new participants and expansion opportunities for existing players
  • Investment analysis and ROI projections across application segments
  • Technology roadmaps and innovation pathways
  • Risk assessment and mitigation strategies
  • Future market scenarios and disruptive technology impacts
 

 

1             EXECUTIVE SUMMARY            24

  • 1.1        The global market for carbon nanotubes    24
    • 1.1.1    Multi-walled carbon nanotubes (MWCNTs)               26
      • 1.1.1.1 Applications   26
      • 1.1.1.2 Main market players  30
      • 1.1.1.3 MWCNT production capacities, current and planned         30
      • 1.1.1.4 Target market for producers 31
      • 1.1.1.5 Market demand for carbon nanotubes by market  32
    • 1.1.2    Single-walled carbon nanotubes (SWCNTs)             34
      • 1.1.2.1 Applications   34
      • 1.1.2.2 Production capacities current and planned              36
      • 1.1.2.3 Global SWCNT market consumption             36
    • 1.1.3    Double, Few and Thin-Walled CNTs                38
  • 1.2        Market Outlook 2025 and beyond    38
  • 1.3        Commercial CNT-based products   39
  • 1.4        Market Challenges     42
  • 1.5        CNTs Market Analysis              44
    • 1.5.1    Manufacturing Landscape: From Laboratory to Industrial Scale 44
    • 1.5.2    Market Dynamics: Supply, Demand, and Competitive Forces      44
    • 1.5.3    Energy Storage: The Catalyst for Market Transformation  45
    • 1.5.4    Polymer Enhancement: Multifunctional Material Solutions           46
    • 1.5.5    Emerging Applications             47
    • 1.5.6    Competitive Dynamics           48
    • 1.5.7    Technology Roadmap and Future Developments  48
    • 1.5.8    Challenges and Limitations: Addressing Market Barriers 49
    • 1.5.9    Market Evolution and Growth Projections   49
    • 1.5.10 Leading Industry Players         50
      • 1.5.10.1            LG Chem (South Korea)          50
      • 1.5.10.2            Jiangsu Cnano Technology (China) 50
      • 1.5.10.3            OCSiAl Group (Luxembourg/Russia)             50
      • 1.5.10.4            Cabot Corporation (United States)  51
      • 1.5.10.5            JEIO Co., Ltd. (South Korea) 51
      • 1.5.10.6            CHASM Advanced Materials (United States)             51
  • 1.6        CNT Pricing     52

 

2             OVERVIEW OF CARBON NANOTUBES          55

  • 2.1        Properties         55
  • 2.2        Comparative properties of CNTs       56
  • 2.3        Carbon nanotube materials 57
    • 2.3.1    Variations within CNTs             57
    • 2.3.2    High Aspect Ratio CNTs          58
    • 2.3.3    Dispersion technology             58
    • 2.3.4    Multi-walled nanotubes (MWCNT)  59
      • 2.3.4.1 Properties         60
      • 2.3.4.2 Applications   60
    • 2.3.5    Single-wall carbon nanotubes (SWCNT)      60
      • 2.3.5.1 Properties         60
      • 2.3.5.2 Applications   61
      • 2.3.5.3 Comparison between MWCNTs and SWCNTs         63
    • 2.3.6    Double-walled carbon nanotubes (DWNTs)              63
      • 2.3.6.1 Properties         63
      • 2.3.6.2 Applications   63
    • 2.3.7    Vertically aligned CNTs (VACNTs)     64
      • 2.3.7.1 Properties         64
      • 2.3.7.2 Synthesis of VACNTs 65
      • 2.3.7.3 Applications   66
      • 2.3.7.4 VA-CNT Companies  68
    • 2.3.8    Few-walled carbon nanotubes (FWNTs)      69
      • 2.3.8.1 Properties         69
      • 2.3.8.2 Applications   69
    • 2.3.9    Carbon Nanohorns (CNHs)  70
      • 2.3.9.1 Properties         70
      • 2.3.9.2 Applications   70
    • 2.3.10 Carbon Onions             71
      • 2.3.10.1            Properties         71
      • 2.3.10.2            Applications   72
    • 2.3.11 Boron Nitride nanotubes (BNNTs)    72
      • 2.3.11.1            Properties         72
      • 2.3.11.2            Manufacturing              73
      • 2.3.11.3            Pricing 75
      • 2.3.11.4            Applications   76
      • 2.3.11.5            Companies     78
  • 2.4        Intermediate products             78
    • 2.4.1    Definitions       78
    • 2.4.2    CNT Sheets     79
      • 2.4.2.1 Overview           79
      • 2.4.2.2 Applications   79
      • 2.4.2.3 Market players               80
    • 2.4.3    CNT Yarns        81
      • 2.4.3.1 Overview           81
      • 2.4.3.2 Properties         82
      • 2.4.3.3 Applications   84
      • 2.4.3.4 Manufacturing Methods         85
      • 2.4.3.5 Market players               86
    • 2.4.4    CNT Films        86
    • 2.4.5    CNT Paper/Mats           87
    • 2.4.6    CNT Coatings/Inks     87
    • 2.4.7    CNT Array Strips           87

 

3             CARBON NANOTUBE SYNTHESIS AND PRODUCTION      88

  • 3.1        Arc discharge synthesis          90
  • 3.2        Chemical Vapor Deposition (CVD)  91
    • 3.2.1    Thermal CVD  91
    • 3.2.2    Plasma enhanced chemical vapor deposition (PECVD)    91
    • 3.2.3    Emerging processes  92
  • 3.3        High-pressure carbon monoxide synthesis               93
    • 3.3.1    High Pressure CO (HiPco)      93
    • 3.3.2    CoMoCAT         93
  • 3.4        Combustion synthesis            94
  • 3.5        Controlled growth of SWCNTs            94
  • 3.6        Hybrid CNTs   95
  • 3.7        Flame synthesis           95
  • 3.8        Laser ablation synthesis        96
  • 3.9        Vertically aligned nanotubes production     96
  • 3.10     Silane solution method           97
  • 3.11     By-products from carbon capture    97
    • 3.11.1 CO2 derived products via electrochemical conversion     97
    • 3.11.2 CNTs from green or waste feedstock              100
    • 3.11.3 Advanced carbons from green or waste feedstocks            100
    • 3.11.4 Captured CO₂as a CNT feedstock    101
    • 3.11.5 Electrolysis in molten salts  102
    • 3.11.6 Methane pyrolysis      102
    • 3.11.7 Carbon separation technologies       103
      • 3.11.7.1            Absorption capture    104
      • 3.11.7.2            Adsorption capture    107
      • 3.11.7.3            Membranes    109
    • 3.11.8 Producers         111
  • 3.12     Advantages and disadvantages of CNT synthesis methods            111

 

4             REGULATIONS              113

  • 4.1        Regulation and safety of CNTs            113
  • 4.2        Global regulations      113
  • 4.3        Global Regulatory Bodies for Nanomaterials           114
  • 4.4        Harmonized Classification of MWCNTs       115
  • 4.5        Gaps in the Current Regulations       115
  • 4.6        CNT Safety and Exposure      116

 

5             CARBON NANOTUBES PATENTS       119

 

6             CARBON NANOTUBES PRICING       122

  • 6.1        MWCNTs           122
  • 6.2        SWCNTs and FWCNTs             122

 

7             MARKETS FOR CARBON NANOTUBES          124

  • 7.1        ENERGY STORAGE: BATTERIES          124
    • 7.1.1    Market overview           124
    • 7.1.2    The global energy storage market     126
    • 7.1.3    Types of lithium battery           127
    • 7.1.4    Li-ion performance and technology timeline            128
    • 7.1.5    Cell energy       128
    • 7.1.6    Applications   129
      • 7.1.6.1 Carbon Nanotubes in Li-ion Batteries           130
      • 7.1.6.2 CNTs in Lithium–sulfur (Li–S) batteries         134
      • 7.1.6.3 CNTs in Nanomaterials in Sodium-ion batteries     135
      • 7.1.6.4 CNTs in Nanomaterials in Lithium-air batteries       136
      • 7.1.6.5 CNTs in Flexible and stretchable batteries 136
    • 7.1.7    Conductive Additive Mechanisms   140
    • 7.1.8    Electron transport enhancement     140
    • 7.1.9    Interface engineering                141
    • 7.1.10 Stability mechanisms              141
    • 7.1.11 Improved performance at higher C-rate       142
    • 7.1.12 Carbon nanotube mechanical properties   142
    • 7.1.13 Dispersion quality      143
    • 7.1.14 Hybrid Conductive Carbon Materials            143
    • 7.1.15 Silicon anode implementation           144
    • 7.1.16 SWCNTs            145
    • 7.1.17 Manufacturing Integration     146
      • 7.1.17.1            Process optimization                146
      • 7.1.17.2            Quality control              147
      • 7.1.17.3            Scale-up challenges 147
    • 7.1.18 Cost-Performance Analysis 148
      • 7.1.18.1            Cost comparison with alternatives  148
      • 7.1.18.2            Value proposition       148
    • 7.1.19 Performance benefits quantification             149
    • 7.1.20 Technology benchmarking    149
    • 7.1.21 Technology pathways               149
    • 7.1.22 Global market, historical and forecast to 2036       150
      • 7.1.22.1            Revenues          150
      • 7.1.22.2            Tons     150
    • 7.1.23 Product developers    151
  • 7.2        ENERGY STORAGE: SUPERCAPACITORS     153
    • 7.2.1    Market overview           153
    • 7.2.2    Supercapacitors overview     154
    • 7.2.3    Supercapacitors vs batteries               155
    • 7.2.4    Supercapacitor technologies              155
    • 7.2.5    Benefits             157
    • 7.2.6    Challenges      157
    • 7.2.7    Applications   158
    • 7.2.7.1 CNTs in Supercapacitor electrodes 158
    • 7.2.7.2 CNTs in Flexible and stretchable supercapacitors                161
    • 7.2.8    Technology pathways               161
    • 7.2.9    Global market in tons, historical and forecast to 2036      162
    • 7.2.10 Product developers    162
  • 7.3        POLYMER ADDITIVES AND ELASTOMERS   163
    • 7.3.1    Market overview           163
    • 7.3.2    Nanocarbons in polymer composites           163
    • 7.3.3    Incorporating CNTs in composites  164
    • 7.3.4    Conductive composites         165
      • 7.3.4.1 MWCNTs           166
      • 7.3.4.2 Applications   167
      • 7.3.4.3 Products           170
      • 7.3.4.4 Properties         171
      • 7.3.4.5 Conductive epoxy       172
    • 7.3.5    Fiber-based polymer composite parts          173
      • 7.3.5.1 Technology pathways               177
      • 7.3.5.2 Applications   177
    • 7.3.6    Metal-matrix composites      178
    • 7.3.6.1 CNT copper composites        179
    • 7.3.7    Elastomers      183
      • 7.3.7.1 Carbon nanotube integration              183
      • 7.3.7.2 Silicone elastomers   183
    • 7.3.8    Global market in tons, historical and forecast to 2036      184
    • 7.3.9    Product developers    184
  • 7.4        3D PRINTING  187
    • 7.4.1    Market overview           187
    • 7.4.2    Applications   187
    • 7.4.3    Global market in tons, historical and forecast to 2036      189
    • 7.4.4    Product developers    189
  • 7.5        ADHESIVES     190
    • 7.5.1    Market overview           190
    • 7.5.2    Applications   190
    • 7.5.3    Technology pathways               191
    • 7.5.4    Global market in tons, historical and forecast to 2036      192
    • 7.5.5    Product developers    193
  • 7.6        AEROSPACE   193
    • 7.6.1    Market overview           193
    • 7.6.2    Applications   194
    • 7.6.3    Technology pathways               195
    • 7.6.4    Global market in tons, historical and forecast to 2036      195
    • 7.6.5    Product developers    196
  • 7.7        ELECTRONICS              198
    • 7.7.1    WEARABLE & FLEXIBLE ELECTRONICS AND DISPLAYS     198
      • 7.7.1.1 Market overview           198
      • 7.7.1.2 Technology pathways               200
      • 7.7.1.3 Applications   201
      • 7.7.1.4 Global market, historical and forecast to 2036       206
      • 7.7.1.5 Product developers    207
    • 7.7.2    TRANSISTORS AND INTEGRATED CIRCUITS              207
      • 7.7.2.1 Market overview           207
      • 7.7.2.2 Applications   209
      • 7.7.2.3 Technology pathways               210
      • 7.7.2.4 Global market, historical and forecast to 2036       211
      • 7.7.2.5 Product developers    211
    • 7.7.3    MEMORY DEVICES     212
      • 7.7.3.1 Market overview           212
      • 7.7.3.2 Technology pathways               214
      • 7.7.3.3 Global market in tons, historical and forecast to 2036      215
      • 7.7.3.4 Product developers    215
  • 7.8        QUANTUM COMPUTING        217
    • 7.8.1    CNTs in Quantum computers             217
    • 7.8.2    CNT qubits      217
  • 7.9        RUBBER AND TIRES  218
    • 7.9.1    Market overview           218
    • 7.9.2    Applications   219
      • 7.9.2.1 Rubber additives         220
      • 7.9.2.2 Sensors             221
    • 7.9.3    Technology pathways               221
    • 7.9.4    Global market in tons, historical and forecast to 2036      222
    • 7.9.5    Product developers    223
  • 7.10     AUTOMOTIVE 224
    • 7.10.1 Market overview           224
    • 7.10.2 Applications   226
    • 7.10.3 Technology pathways               226
    • 7.10.4 Global market in tons, historical and forecast to 2036      227
    • 7.10.5 Product developers    228
  • 7.11     CONDUCTIVE INKS    229
    • 7.11.1 Market overview           229
    • 7.11.2 Applications   230
    • 7.11.3 Technology pathways               231
    • 7.11.4 Global market in tons, historical and forecast to 2036      232
    • 7.11.5 Product developers    232
  • 7.12     CONSTRUCTION         234
    • 7.12.1 Market overview           234
    • 7.12.2 Technology pathways               234
    • 7.12.3 Applications   235
      • 7.12.3.1            Cement              235
      • 7.12.3.2            Asphalt bitumen          236
      • 7.12.3.3            Green Construction   237
      • 7.12.3.4            Concrete Strengthening Mechanisms          240
    • 7.12.4 Global market in tons, historical and forecast to 2036      242
    • 7.12.5 Product developers    242
  • 7.13     FILTRATION     243
    • 7.13.1 Market overview           243
    • 7.13.2 Applications   246
    • 7.13.3 Technology pathways               246
    • 7.13.4 Global market in tons, historical and forecast to 2036      246
    • 7.13.5 Product developers    247
  • 7.14     FUEL CELLS    248
    • 7.14.1 Market overview           248
    • 7.14.2 Applications   251
    • 7.14.3 Technology pathways               251
    • 7.14.4 Global market in tons, historical and forecast to 2036      252
    • 7.14.5 Product developers    252
  • 7.15     LIFE SCIENCES AND MEDICINE        253
    • 7.15.1 Market overview           253
    • 7.15.2 Applications   256
    • 7.15.3 Technology pathways               257
      • 7.15.3.1            Drug delivery  257
      • 7.15.3.2            Imaging and diagnostics        258
      • 7.15.3.3            Implants           259
      • 7.15.3.4            Medical biosensors   259
      • 7.15.3.5            Woundcare     260
    • 7.15.4 Global market in tons, historical and forecast to 2036      261
    • 7.15.5 Product developers    261
  • 7.16     LUBRICANTS  263
    • 7.16.1 Market overview           263
    • 7.16.2 Applications   265
    • 7.16.3 Technology pathways               265
    • 7.16.4 Global market in tons, historical and forecast to 2036      266
    • 7.16.5 Product developers    266
  • 7.17     OIL AND GAS  268
    • 7.17.1 Market overview           268
    • 7.17.2 Applications   269
    • 7.17.3 Technology pathways               270
    • 7.17.4 Global market in tons, historical and forecast to 2036      270
    • 7.17.5 Product developers    271
  • 7.18     PAINTS AND COATINGS          272
    • 7.18.1 Market overview           272
    • 7.18.2 Applications   278
      • 7.18.2.1            Anti-corrosion coatings           278
      • 7.18.2.2            Conductive coatings 278
      • 7.18.2.3            EMI Shielding             279
    • 7.18.3 Technology pathways               279
    • 7.18.4 Global market in tons, historical and forecast to 2036      280
    • 7.18.5 Product developers    281
  • 7.19     PHOTOVOLTAICS         282
    • 7.19.1 Technology pathways               283
    • 7.19.2 Global market in tons, historical and forecast to 2036      284
    • 7.19.3 Product developers    285
  • 7.20     SENSORS         286
    • 7.20.1 Market overview           286
    • 7.20.2 Applications   288
      • 7.20.2.1            Gas sensors   288
      • 7.20.2.2            Printed humidity sensors       290
      • 7.20.2.3            LiDAR sensors               290
      • 7.20.2.4            Oxygen sensors            291
    • 7.20.3 Technology pathways               291
    • 7.20.4 Global market in tons, historical and forecast to 2036      292
    • 7.20.5 Product developers    292
  • 7.21     SMART AND ELECTRONIC TEXTILES              293
    • 7.21.1 Market overview           293
    • 7.21.2 Applications   296
    • 7.21.3 Technology pathways               296
    • 7.21.4 Global market in tons, historical and forecast to 2036      297
    • 7.21.5 Product developers    298
  • 7.22     THERMAL INTERFACE MATERIALS   298
    • 7.22.1 Market overview           298
    • 7.22.2 Carbon-based TIMs   301
      • 7.22.2.1            VACNT TIMs    302
      • 7.22.2.2            MWCNTs           303
      • 7.22.2.3            SWCNTS            304
      • 7.22.2.4            Boron Nitride nanotubes (BNNTs)    304
    • 7.22.3 Technology pathways               305
    • 7.22.4 Global market in tons, historical and forecast to 2036      305
  • 7.23     POWER CABLES          306
    • 7.23.1 Market overview           306
    • 7.23.2 Technology pathways               307

 

8             COMPANY PROFILES: MULTI-WALLED CARBON NANOTUBES     309 (141 company profiles)

 

9             COMPANY PROFILES: SINGLE-WALLED CARBON NANOTUBES 405 (16 company profiles)

 

10          COMPANY PROFILES: OTHER TYPES (Boron Nitride nanotubes, double-walled nanotubes etc.)                424 (5 company profiles)

 

11          RESEARCH METHODOLOGY              428

 

12          REFERENCES 429

 

List of Tables

  • Table 1. Applications of MWCNTs.   26
  • Table 2.  Annual Production Capacity of Key MWCNT Producers in 2024/2025 (Metric Tons)   30
  • Table 3. Market demand for carbon nanotubes by market, 2018 -2036 (metric tons).  33
  • Table 4: Markets, benefits and applications of Single-Walled Carbon Nanotubes.         34
  • Table 5. Annual production capacity of SWCNT producers in 2024 (KG).              36
  • Table 6. SWCNT market demand forecast (metric tons), 2018 -2035.     37
  • Table 7. Classification of Commercialized CNTs.  39
  • Table 8. Commercial CNT Products by Application Sector.             40
  • Table 9. Technology Readiness Level (TRL) for carbon nanotubes.            41
  • Table 10. Carbon nanotubes market challenges.  42
  • Table 11.CNT Pricing: SWCNTs, FWCNTs, MWCNTs.          52
  • Table 12. Regional pricing dynamics.            53
  • Table 13. Typical properties of SWCNT and MWCNT.          55
  • Table 14. Properties of carbon nanotubes. 55
  • Table 15. Properties of CNTs and comparable materials. 56
  • Table 16. Markets, benefits and applications of Single-Walled Carbon Nanotubes.      61
  • Table 17. Comparison between single-walled carbon nanotubes and multi-walled carbon nanotubes.                63
  • Table 18. Markets and applications for vertically aligned carbon nanotubes (VA-CNTs).            66
  • Table 19. VA-CNT Companies            68
  • Table 20. Markets and applications for Few-walled carbon nanotubes (FWNTs)              69
  • Table 21. Markets and applications for carbon nanohorns.            70
  • Table 22. Markets and applications for carbon onions.     72
  • Table 23. Comparative properties of BNNTs and CNTs.     73
  • Table 24. Markets and applications for BNNTs.       77
  • Table 25. BNNT companies. 78
  • Table 26. Definition of CNT Intermediate Products.             78
  • Table 27. Applications of CNT Sheets.          80
  • Table 28. CNT sheets market players.            81
  • Table 29. CNT-Yarn Manufacturing Methods.           85
  • Table 30. Comparison of approaches for CNT synthesis. 88
  • Table 31. SWCNT synthesis methods.          90
  • Table 32. CO2 derived products via electrochemical conversion-applications, advantages and disadvantages.            98
  • Table 33. CNTs from green or waste feedstock.      100
  • Table 34. Advanced carbons from green or waste feedstocks.     101
  • Table 35. Main capture processes and their separation technologies.    103
  • Table 36. Absorption methods for CO2 capture overview.               104
  • Table 37. Commercially available physical solvents used in CO2 absorption.  106
  • Table 38. Adsorption methods for CO2 capture overview.               107
  • Table 39. Membrane-based methods for CO2 capture overview.               109
  • Table 40. Companies producing CNTs Made from Green/Waste Feedstock.       111
  • Table 41. Advantages and disadvantages of CNT synthesis methods      111
  • Table 42. Global regulations for nanomaterials.     114
  • Table 43. CNT Safety and Exposure.               118
  • Table 44.MWCNT patents filed 2007-2024.               119
  • Table 45. SWCNT Patents Filed 2007-2024.              120
  • Table 46. Example MWCNTs and BNNTs pricing, by producer.      122
  • Table 47. SWCNTs and FWCNTs pricing.     122
  • Table 48. Market and applications for carbon nanotubes in batteries.     124
  • Table 49. Types of lithium battery.    127
  • Table 50. Battery technology comparison. 128
  • Table 51. Applications of carbon nanotubes in batteries. 129
  • Table 52. Electrochemical performance of nanomaterials in LIBs.            130
  • Table 53. Li-ion cathode benchmark.            131
  • Table 54. Performance comparison by popular cathode materials.          132
  • Table 55. Applications in sodium-ion batteries, by nanomaterials type and benefits thereof.  135
  • Table 56. Cost-performance analysis for CNT battery applications .        148
  • Table 57. Cost comparison between CNT additives and alternative conductive materials .     148
  • Table 58. Performance benefits from CNT integration .      149
  • Table 59. Technology benchmarking.            149
  • Table 60. Global market in tons, historical and forecast to 2036.               150
  • Table 61. Global demand for carbon nanotubes in batteries (tons), 2018 -2036.             150
  • Table 62. Product developers in carbon nanotubes for batteries.               151
  • Table 63. Market and applications for carbon nanotubes in supercapacitors.   153
  • Table 64. Supercapacitors vs batteries.        155
  • Table 65. Supercapacitor technologies.       155
  • Table 66. Performance of CNT supercapacitors.    156
  • Table 67. Benefits of CNTs in supercapacitors        157
  • Table 68. Challenges with the use of CNTs 157
  • Table 69. Applications for carbon nanotubes in supercapacitors.             158
  • Table 70. Technology pathways for carbon nanotubes in supercapacitors.         161
  • Table 71. Demand for carbon nanotubes in supercapacitors (tons), 2018 -2036.           162
  • Table 72. Product developers in carbon nanotubes for supercapacitors.              163
  • Table 73. Routes to incorporating nanocarbon material into composites.            164
  • Table 74. Routes to Electrically Conductive Composites.               165
  • Table 75. Products that use CNTs in conductive plastics.               170
  • Table 76. Companies producing CNT in Conductive Epoxy.            173
  • Table 77. Market and applications for carbon nanotubes in fiber-based composite additives.               173
  • Table 78. Technology pathways for CNTs in fiber-based polymer composite additives.               177
  • Table 79. Market and applications for carbon nanotubes in metal matrix composite additives.            178
  • Table 80. Comparison of Copper Nanocomposites.           180
  • Table 81. Global market for carbon nanotubes in polymer additives and elastomers 2018 -2036, tons.                184
  • Table 82. Product developers in carbon nanotubes in polymer additives and elastomers.       184
  • Table 83. Market and applications for carbon nanotubes in 3D printing.               188
  • Table 84. Demand for carbon nanotubes in 3-D printing (tons), 2018 -2036.      189
  • Table 85. Product developers in carbon nanotubes in 3D printing.            189
  • Table 86. Market and applications for carbon nanotubes in adhesives. 190
  • Table 87. Technology pathways for carbon nanotubes in adhesives.        191
  • Table 88. Demand for carbon nanotubes in adhesives (tons), 2018 -2036.         192
  • Table 89. Product developers in carbon nanotubes for adhesives.            193
  • Table 90. Market and applications for carbon nanotubes in aerospace. 193
  • Table 91. Applications of carbon nanotubes in aerospace.            194
  • Table 92. Technology pathways for carbon nanotubes in aerospace.       195
  • Table 93. Demand for carbon nanotubes in aerospace (tons), 2018 -2036.        196
  • Table 94. Product developers in carbon nanotubes for aerospace.           196
  • Table 95. Market and applications for carbon nanotubes in wearable & flexible electronics and displays.                198
  • Table 96. Technology pathways scorecard for carbon nanotubes in wearable electronics and displays.                201
  • Table 97. Transparent Conductive Films (TCFs) Market Overview.              202
  • Table 98. CNT Transparent Conductive Films by producer.             204
  • Table 99. Comparison of ITO replacements.             206
  • Table 100. Demand for carbon nanotubes in wearable electronics and displays, 2018 -2036 (tons). 206
  • Table 101. Product developers in carbon nanotubes for electronics.       207
  • Table 102. Market and applications for carbon nanotubes in transistors and integrated circuits.         208
  • Table 103. Technology pathways for carbon nanotubes in transistors and integrated circuits.               210
  • Table 104. Demand for carbon nanotubes in transistors and integrated circuits, 2018 -2036. 211
  • Table 105. Product developers in carbon nanotubes in transistors and integrated circuits.      211
  • Table 106. Market and applications for carbon nanotubes in memory devices. 212
  • Table 107. Technology pathways scorecard for carbon nanotubes in memory devices.              214
  • Table 108. Demand for carbon nanotubes in memory devices, 2018 -2036.      215
  • Table 109. Product developers in carbon nanotubes for memory devices.           215
  • Table 110. Market and applications for carbon nanotubes in rubber and tires. 218
  • Table 111. Technology pathways scorecard for carbon nanotubes in rubber and tires.                222
  • Table 112. Demand for carbon nanotubes in rubber and tires (tons), 2018 -2036.         222
  • Table 113. Product developers in carbon nanotubes in rubber and tires.              223
  • Table 114. Market and applications for carbon nanotubes in automotive.           224
  • Table 115. Technology pathways for carbon nanotubes in automotive.  226
  • Table 116. Demand for carbon nanotubes in automotive (tons), 2018 -2036     227
  • Table 117. Product developers in carbon nanotubes in the automotive market.               228
  • Table 118. Market and applications for carbon nanotubes in conductive inks. 229
  • Table 119. Comparative properties of conductive inks.     231
  • Table 120. Technology pathways for carbon nanotubes in conductive inks.        231
  • Table 121. Demand for carbon nanotubes in conductive ink (tons), 2018-2036.             232
  • Table 122.  Product developers in carbon nanotubes for conductive inks.           232
  • Table 123. Technology pathways for carbon nanotubes in construction.               234
  • Table 124. Carbon nanotubes for cement. 235
  • Table 125. Carbon nanotubes for asphalt bitumen.             236
  • Table 126. CNT-concrete sustainability metrics.   238
  • Table 127. Environmental Impact Analysis.              239
  • Table 128. Load Distribution Properties .     241
  • Table 129. Demand for carbon nanotubes in construction (tons), 2018 -2036. 242
  • Table 130. Carbon nanotubes product developers in construction.         242
  • Table 131. Market and applications for carbon nanotubes in filtration.  243
  • Table 132. Comparison of CNT membranes with other membrane technologies             245
  • Table 133. Technology pathways for carbon nanotubes in filtration.         246
  • Table 134. Demand for carbon nanotubes in filtration (tons), 2018 -2036.           247
  • Table 135. Carbon nanotubes companies in filtration.      247
  • Table 136. Market and applications for carbon nanotubes in fuel cells. 248
  • Table 137. Electrical conductivity of different catalyst supports compared to carbon nanotubes.      250
  • Table 138. Markets and applications for carbon nanotubes in fuel cells.               251
  • Table 139. Technology pathways for carbon nanotubes in fuel cells.        251
  • Table 140. Demand for carbon nanotubes in fuel cells (tons), 2018 -2036.         252
  • Table 141. Product developers in carbon nanotubes for fuel cells.            252
  • Table 142. Market and applications for carbon nanotubes in life sciences and medicine.         253
  • Table 143. Applications of carbon nanotubes in life sciences and biomedicine.              256
  • Table 144. Technology pathways for carbon nanotubes in drug delivery.               258
  • Table 145. Technology pathways for carbon nanotubes in imaging and diagnostics.    258
  • Table 146. Technology pathways for carbon nanotubes in medical implants.    259
  • Table 147. Technology pathways for carbon nanotubes in medical biosensors.               260
  • Table 148. Technology pathways for carbon nanotubes in woundcare.  260
  • Table 149. Demand for carbon nanotubes in life sciences and medical (tons), 2018 -2036.    261
  • Table 150. Product developers in carbon nanotubes for life sciences and biomedicine.            261
  • Table 151. Market and applications for carbon nanotubes in lubricants.              263
  • Table 152. Nanomaterial lubricant products.           264
  • Table 153. Technology pathways for carbon nanotubes in lubricants.     265
  • Table 154. Demand for carbon nanotubes in lubricants (tons), 2018 -2036.       266
  • Table 155. Product developers in carbon nanotubes for lubricants.         266
  • Table 156. Market and applications for carbon nanotubes in oil and gas.             268
  • Table 157. Technology pathways for carbon nanotubes in oil and gas.   270
  • Table 158. Demand for carbon nanotubes in oil and gas (tons), 2018 -2036.     271
  • Table 159. Product developers in carbon nanotubes for oil and gas.       271
  • Table 160. Market and applications for carbon nanotubes in paints and coatings.         272
  • Table 161. Markets for carbon nanotube coatings.               275
  • Table 162. Scorecard for carbon nanotubes in paints and coatings.         279
  • Table 163. Demand for carbon nanotubes in paints and coatings (tons), 2018 -2036. 280
  • Table 164. Product developers in carbon nanotubes for paints and coatings.    281
  • Table 165. Market and applications for carbon nanotubes in photovoltaics.      282
  • Table 166. Technology pathways for carbon nanotubes in photovoltaics.            284
  • Table 167. Demand for carbon nanotubes in photovoltaics (tons), 2018 -2036.               284
  • Table 168. Product developers in carbon nanotubes for solar.     285
  • Table 169. Market and applications for carbon nanotubes in sensors.   286
  • Table 170. Applications of carbon nanotubes in sensors.                288
  • Table 171. Technology pathways for carbon nanotubes in sensors.          291
  • Table 172. Demand for carbon nanotubes in sensors (tons), 2018 -2036.            292
  • Table 173. Product developers in carbon nanotubes for sensors.              293
  • Table 174. Market and applications for carbon nanotubes in smart and electronic textiles.     293
  • Table 175. Desirable functional properties for the textiles industry afforded by the use of nanomaterials.                295
  • Table 176. Applications of carbon nanotubes in smart and electronic textiles. 296
  • Table 177. Technology pathways for carbon nanotubes in smart textiles and apparel. 297
  • Table 178. Demand for carbon nanotubes in smart and electronic textiles. (tons), 2018 -2036.           297
  • Table 179. Carbon nanotubes product developers in smart and electronic textiles.      298
  • Table 180. Thermal conductivities (κ) of common metallic, carbon, and ceramic fillers employed in TIMs.   300
  • Table 181. Thermal conductivity of CNT-based polymer composites.     300
  • Table 182. Thermal Conductivity By Filler.  301
  • Table 183. Market and applications for carbon nanotubes in thermal interface materials.       304
  • Table 184. Technology pathways for carbon nanotubes in TIMs. 305
  • Table 185. Demand for carbon nanotubes in thermal interface materials (tons), 2018 -2036. 306
  • Table 186. Market and applications for carbon nanotubes in power cables.       306
  • Table 187. Technology Pathways for Carbon Nanotubes in Power Cables to 2036.        307
  • Table 188. Properties of carbon nanotube paper.  393
  • Table 189. Chasm SWCNT products.             405
  • Table 190. Thomas Swan SWCNT production.         420
  • Table 191. Ex-producers of SWCNTs.             422
  • Table 192. SWCNTs distributors.      423

 

List of Figures

  • Figure 1. Market demand for carbon nanotubes by market, 2018 -2036 (metric tons). 34
  • Figure 2. SWCNT market demand forecast (metric tons), 2018 -2036.   38
  • Figure 3. Schematic diagram of a multi-walled carbon nanotube (MWCNT).      59
  • Figure 4. Schematic of single-walled carbon nanotube.   60
  • Figure 5. TIM sheet developed by Zeon Corporation.           61
  • Figure 6. Double-walled carbon nanotube bundle cross-section micrograph and model.         63
  • Figure 7. Vertically Aligned Carbon Nanotubes.     64
  • Figure 8. Schematic of a vertically aligned carbon nanotube (VACNT) membrane used for water treatment.        65
  • Figure 9. TEM image of FWNTs.          69
  • Figure 10. Schematic representation of carbon nanohorns.          70
  • Figure 11. TEM image of carbon onion.         71
  • Figure 12. Schematic of Boron Nitride nanotubes (BNNTs). Alternating B and N atoms are shown in blue and red.             72
  • Figure 13. Process flow chart from CNT thin film formation to device fabrication for solution and dry processes.       86
  • Figure 14. Schematic representation of methods used for carbon nanotube synthesis (a) Arc discharge (b) Chemical vapor deposition (c) Laser ablation (d) hydrocarbon flames.          89
  • Figure 15. Arc discharge process for CNTs.                91
  • Figure 16. Schematic of thermal-CVD method.      91
  • Figure 17. Schematic of plasma-CVD method.       92
  • Figure 18. CoMoCAT® process.          93
  • Figure 19. Schematic for flame synthesis of carbon nanotubes (a) premixed flame (b) counter-flow diffusion flame (c) co-flow diffusion flame (d) inverse diffusion flame.  95
  • Figure 20. Schematic of laser ablation synthesis. 96
  • Figure 21. Electrochemical CO₂ reduction products.          98
  • Figure 22. Methane pyrolysis process flow diagram (PFD).             103
  • Figure 23. Amine-based absorption technology.    106
  • Figure 24. Pressure swing absorption technology. 109
  • Figure 25. Membrane separation technology.           110
  • Figure 26. Li-ion performance and technology timeline.   128
  • Figure 27. Theoretical energy densities of different rechargeable batteries.        136
  • Figure 28. Printed 1.5V battery.          137
  • Figure 29. Materials and design structures in flexible lithium ion batteries.         137
  • Figure 30. LiBEST flexible battery.     138
  • Figure 31. Schematic of the structure of stretchable LIBs.              138
  • Figure 32. Carbon nanotubes incorporated into flexible display. 139
  • Figure 33. Demand for carbon nanotubes in batteries (tons), 2018 -2036.          151
  • Figure 34. (A) Schematic overview of a flexible supercapacitor as compared to conventional supercapacitor.            161
  • Figure 35. Demand for carbon nanotubes in supercapacitors (tons), 2018 -2036.         162
  • Figure 36. Carbon nanotube Composite Overwrap Pressure Vessel (COPV).     169
  • Figure 37. CSCNT Reinforced Prepreg.          185
  • Figure 38. Parts 3D printed from Mechnano’s CNT ESD resin.       187
  • Figure 39. HeatCoat technology schematic.             196
  • Figure 40.  Veelo carbon fiber nanotube sheet.       198
  • Figure 41. Thin film transistor incorporating CNTs.               212
  • Figure 42. Carbon nanotubes NRAM chip.  216
  • Figure 43. Strategic Elements’ transparent glass demonstrator.  216
  • Figure 44. ZEON tires.              221
  • Figure 45. Schematic of CNTs as heat-dissipation sheets.              228
  • Figure 46. Nanotube inks       233
  • Figure 47. Comparison of nanofillers with supplementary cementitious materials and aggregates in concrete.          234
  • Figure 48. CARESTREAM DRX-Revolution Nano Mobile X-ray System.     262
  • Figure 49. CSCNT Reinforced Prepreg.          281
  • Figure 50. Suntech/TCNT nanotube frame module               285
  • Figure 51. AerNos CNT based gas sensor.  289
  • Figure 52. SmartNanotubes CNT based gas sensor.            290
  • Figure 53. (L-R) Surface of a commercial heatsink surface at progressively higher magnifications, showing tool marks that create a rough surface and a need for a thermal interface material. 299
  • Figure 54. Schematic of thermal interface materials used in a flip chip package.           299
  • Figure 55. AWN Nanotech water harvesting prototype.     312
  • Figure 56. Large transparent heater for LiDAR.        323
  • Figure 57. Carbonics, Inc.’s carbon nanotube technology.              326
  • Figure 58. Fuji carbon nanotube products. 337
  • Figure 59. Cup Stacked Type Carbon Nano Tubes schematic.      339
  • Figure 60. CSCNT composite dispersion.   340
  • Figure 61. Flexible CNT CMOS integrated circuits with sub-10 nanoseconds stage delays.      344
  • Figure 62. Koatsu Gas Kogyo Co. Ltd CNT product.              348
  • Figure 63. Li-S Energy 20-layer battery cell utilising semi-solid state lithium sulfur battery technology.                353
  • Figure 64. Test specimens fabricated using MECHnano’s radiation curable resins modified with carbon nanotubes.     356
  • Figure 65. NAWACap.               365
  • Figure 66. Hybrid battery powered electrical motorbike concept.              366
  • Figure 67. NAWAStitch integrated into carbon fiber composite.  367
  • Figure 68. Schematic illustration of three-chamber system for SWCNH production.    368
  • Figure 69. TEM images of carbon nanobrush.          369
  • Figure 70. CNT film.   371
  • Figure 71. Shinko Carbon Nanotube TIM product. 383
  • Figure 72. VB Series of TIMS from Zeon.       401
  • Figure 73. Vertically aligned CNTs on foil, double-sided coating.                403
  • Figure 74. Schematic of a fluidized bed reactor which is able to scale up the generation of SWNTs using the CoMoCAT process.           406
  • Figure 75. Carbon nanotube paint product.               410
  • Figure 76. MEIJO eDIPS product.       411
  • Figure 77. HiPCO® Reactor.  414
  • Figure 78. Smell iX16 multi-channel gas detector chip.     418
  • Figure 79. The Smell Inspector.          418
  • Figure 80. Toray CNF printed RFID.  421
  • Figure 81.  Internal structure of carbon nanotube adhesive sheet.            425
  • Figure 82. Carbon nanotube adhesive sheet.           426

 

 

 

The Global Carbon Nanotubes Market 2026-2036
The Global Carbon Nanotubes Market 2026-2036
PDF download.

The Global Carbon Nanotubes Market 2026-2036
The Global Carbon Nanotubes Market 2026-2036
PDF and Print Edition (including tracked delivery).

Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer. To order by Bank Transfer (Invoice) select this option from the payment methods menu after adding to cart, or contact info@futuremarketsinc.com