The Global Critical Materials Recovery Market 2026-2046

0

cover

cover

  • Published: September 2025
  • Pages: 360
  • Tables: 118
  • Figures: 55

 

The critical materials recovery market represents a rapidly expanding sector focused on extracting valuable metals and minerals from secondary sources such as electronic waste, spent batteries, industrial by-products, and end-of-life products. This market has emerged as a strategic response to growing supply chain vulnerabilities, geopolitical tensions surrounding mineral resources, and the urgent need for sustainable material flows in an increasingly electrified global economy.

The market is primarily driven by the accelerating demand for critical materials in clean energy technologies, electric vehicles, and advanced electronics. Lithium, cobalt, nickel, rare earth elements, platinum group metals, and semiconductor materials like gallium and indium have become essential for wind turbines, solar panels, EV batteries, and electronic devices. Traditional mining faces mounting challenges including resource depletion, environmental concerns, and concentrated supply chains often controlled by single countries, making secondary recovery increasingly attractive.

Current market forecasts suggest the global critical materials recovery sector will experience substantial growth through 2046, with lithium-ion battery recycling expected to dominate by volume and value. The market encompasses multiple material streams, with battery recycling representing the largest segment, followed by rare earth magnet recovery, semiconductor material extraction from e-waste, and platinum group metal recovery from automotive catalysts.

The recovery process typically involves two main stages: extraction and recovery. Extraction technologies include hydrometallurgy, pyrometallurgy, biometallurgy, and emerging approaches like ionic liquids and supercritical fluid extraction. Recovery technologies encompass solvent extraction, ion exchange, electrowinning, precipitation, and direct recycling methods. Each approach presents distinct advantages and challenges regarding efficiency, environmental impact, and economic viability.

Hydrometallurgical processes currently dominate commercial operations due to their versatility and lower energy requirements compared to pyrometallurgical methods. However, direct recycling technologies are gaining attention for their potential to preserve material structure and reduce processing steps, particularly for battery cathode materials and rare earth magnets.

The market can be segmented by material type, source, and recovery method. Battery recycling focuses primarily on lithium, cobalt, nickel, and manganese recovery from spent EV and consumer electronics batteries. Rare earth recovery targets neodymium, dysprosium, and terbium from permanent magnets in wind turbines and electric motors. Semiconductor recovery addresses gallium, indium, germanium, and tellurium from electronic waste and photovoltaic panels. Platinum group metal recovery concentrates on automotive catalysts and emerging hydrogen fuel cell applications.

Economic viability varies significantly across material types and regions. High-value materials like platinum group metals and rare earths generally offer better recovery economics, while lower-value materials like lithium require scale and efficiency improvements. Regulatory frameworks increasingly mandate recycling targets and extended producer responsibility, particularly in Europe, China, and parts of North America.

Government policies supporting circular economy principles and supply chain resilience are accelerating market development. The EU's Critical Raw Materials Act, US critical minerals initiatives, and China's recycling policies create regulatory momentum supporting secondary material recovery.

Key challenges include collection infrastructure development, technology scaling, economic competitiveness with primary production, and handling complex waste streams. Many critical materials exist in low concentrations within mixed waste, requiring sophisticated separation technologies and often making recovery economically marginal. The market trajectory toward 2046 suggests continued expansion driven by increasing waste availability, technological improvements, and policy support. Battery recycling is expected to scale dramatically as first-generation EV batteries reach end-of-life around 2030-2035. Rare earth recovery will likely benefit from growing magnet waste streams and supply security concerns. Success in this market requires balancing technological innovation with economic realities, while building robust collection and processing infrastructure to capture the full potential of secondary critical material resources.

The Global Critical Materials Recovery Market 2026-2046 provides comprehensive analysis of the rapidly expanding critical raw materials recycling industry, driven by supply chain vulnerabilities, electrification trends, and circular economy imperatives. This authoritative report examines recovery technologies, market forecasts, regulatory landscapes, and competitive dynamics across lithium-ion battery recycling, rare earth element recovery, semiconductor material extraction, and platinum group metal reclamation.

Report contents include:

  • Definition and strategic importance of critical raw materials in global supply chains
  • Electronic waste as emerging source of valuable materials with recovery rate analysis
  • Electrification and renewable energy technology material requirements
  • Comprehensive regulatory landscape mapping across 11 major countries and global initiatives
  • Market drivers, restraints, and growth opportunities through 2046
  • Technology readiness evaluation and performance metrics for extraction methods
  • Critical materials value chain analysis from collection to refined product delivery
  • Economic case studies and price trend analysis for key recovered materials (2020-2024)
  • 20-year global market forecasts by material type, recovery source, and region (2026-2046)
  • Technology Analysis & Innovation
    • Comprehensive coverage of 17 critical materials including demand trends and applications
    • Primary versus secondary production comparison with environmental impact assessment
    • Advanced extraction technologies: hydrometallurgy, pyrometallurgy, biometallurgy analysis
    • Emerging technologies: ionic liquids, electroleaching, supercritical fluid extraction
    • Recovery methods: solvent extraction, ion exchange, electrowinning, precipitation, biosorption
    • Direct recycling approaches for batteries and rare earth magnets
    • SWOT analysis for each technology category with commercialization readiness assessment
  • Market Segments & Applications
    • Semiconductor materials recovery from e-waste and photovoltaic systems
    • Collection infrastructure, pre-processing technologies, and metal recovery processes
    • Lithium-ion battery recycling value chain with cathode chemistry analysis
    • Mechanical, thermal, and chemical pre-treatment methods
    • Hydrometallurgical, pyrometallurgical, and direct recycling process comparison
    • Beyond lithium-ion battery technologies including solid-state and lithium-sulfur systems
    • Rare earth element recovery from permanent magnets and electronic components
    • Long-loop versus short-loop recycling methods with hydrogen decrepitation analysis
    • Platinum group metal recovery from automotive catalysts and fuel cell systems
    • Regional market forecasts with capacity analysis and competitive landscape mapping
  • Company Profiles: The report features comprehensive profiles of 167 industry leaders including Accurec Recycling GmbH, ACE Green Recycling, Altilium, American Battery Technology Company (ABTC), Anhua Taisen, Aqua Metals Inc., Ascend Elements, Attero, Australian Strategic Materials Ltd (ASM), BacTech Environmental Corporation, Ballard Power Systems, BANIQL, BASF, Battery Pollution Technologies, Batx Energies Private Limited, Berkeley Energia, BHP, BMW, Botree Cycling, Brazilian Nickel PLC, Carester, Ceibo, Cheetah Resources, CATL, Cirba Solutions, Circunomics, Circu Li-ion, Circular Industries, Cyclic Materials, Cylib, Dowa Eco-System Co., Dow Chemicals, Dundee Sustainable Technologies, DuPont, EcoBat, eCobalt Solutions, EcoGraf, Econili Battery, EcoPro, Ecoprogetti, Electra Battery Materials Corporation (Electra), Electramet, Elmery, Element Zero, Emulsion Flow Technologies, Enim, EnviroMetal Technologies, Eramet, Exigo Recycling, Exitcom Recycling, ExPost Technology, Farasis Energy, First Solar, Fortum Battery Recycling, 4R Energy Corporation, Freeport McMoRan, Fluor, FLSmidth, Ganfeng Lithium, Ganzhou Cyclewell Technology Co. Ltd, Garner Products, GEM Co. Ltd., GLC Recycle Pte. Ltd., Glencore, Gotion, GREEN14, Green Graphite Technologies, Green Li-ion, Green Mineral, GS Group, Guangdong Guanghua Sci-Tech, Huayou Cobalt, Henkel, Heraeus, Huayou Recycling, HydroVolt, HyProMag Ltd, InoBat, Inmetco, Ionic Technologies, Jiecheng New Energy, JL Mag, JPM Silicon GmbH, JX Nippon Metal Mining, Keyking Recycling, Korea Zinc, Kyoei Seiko, Igneo, IXOM, Jervois Global, Jetti Resources, Kemira Oyj, Librec AG, Lithium Australia, LG Chem Ltd., Li-Cycle, Li Industries, Lithion Technologies, Lithium Australia, Lohum, MagREEsource, Mecaware, Metastable Materials, Metso Corporation, Minerva Lithium, Mining Innovation Rehabilitation and Applied Research (MIRARCO), Mitsubishi Materials, Neometals and more......

 

The report includes these components:

  • PDF report download/by email. Print edition also available. 
  • Comprehensive Excel spreadsheet of all data.
  • Mid-year Update

 

The Global Critical Materials Recovery Market 2026-2046
The Global Critical Materials Recovery Market 2026-2046
Instant PDF download (via file transfer service).

The Global Critical Materials Recovery Market 2026-2046
The Global Critical Materials Recovery Market 2026-2046
Instant PDF download and Print Edition (including tracked delivery).

Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer. To order by Bank Transfer (Invoice) select this option from the payment methods menu after adding to cart, or contact info@futuremarketsinc.com

 

1             EXECUTIVE SUMMARY            19

  • 1.1        Definition and Importance of Critical Raw Materials           19
  • 1.2        E-Waste as a Source of Critical Raw Materials        21
  • 1.3        Electrification, Renewable and Clean Technologies            22
  • 1.4        Regulatory Landscape             24
    • 1.4.1    European Union           24
    • 1.4.2    United States 24
    • 1.4.3    China  24
    • 1.4.4    Japan  24
    • 1.4.5    Australia           24
    • 1.4.6    Canada             25
    • 1.4.7    India    25
    • 1.4.8    South Korea    25
    • 1.4.9    Brazil   25
    • 1.4.10 Russia 25
    • 1.4.11 Global Initiatives          25
  • 1.5        Key Market Drivers and Restraints   27
  • 1.6        The Global Critical Raw Materials Market in 2024 28
  • 1.7        Critical Material Extraction Technology        30
    • 1.7.1    TRL of critical material extraction technologies      31
    • 1.7.2    Recovery of critical materials from secondary sources (e.g., end-of-life products, industrial waste) 33
    • 1.7.3    Critical rare-earth element recovery from secondary sources      34
    • 1.7.4    Li-ion battery technology metal recovery    35
    • 1.7.5    Critical semiconductor materials recovery                36
    • 1.7.6    Critical semiconductor materials recovery                37
    • 1.7.7    Critical platinum group metal recovery        38
    • 1.7.8    Critical platinum Group metal recovery       39
  • 1.8        Critical Raw Materials Value Chain 40
  • 1.9        The Economic Case for Critical Raw Materials Recovery  41
  • 1.10     Price Trends for Key Recovered Materials (2020-2024)      41
  • 1.11     Global market forecasts         42
    • 1.11.1 By Material Type (2025-2046)             42
    • 1.11.2 By Recovery Source (2025-2046)     44
    • 1.11.3 By Region (2025-2046)            46

 

2             INTRODUCTION          48

  • 2.1        Critical Raw Materials              48
  • 2.2        Global situation in supply and trade               49
  • 2.3        Circular economy       49
    • 2.3.1    Circular use of critical raw materials             51
  • 2.4        Critical and strategic raw materials used in the energy transition              53
    • 2.4.1    Greening critical metals         55
  • 2.5        Established and emerging secondary sources for critical material recovery       56
  • 2.6        Business models for critical material recovery from secondary sources               57
  • 2.7        Metals and minerals processed and extracted        58
    • 2.7.1    Copper               58
      • 2.7.1.1 Global copper demand and trends 58
      • 2.7.1.2 Markets and applications      59
      • 2.7.1.3 Copper extraction and recovery        60
    • 2.7.2    Nickel  61
      • 2.7.2.1 Global nickel demand and trends    61
      • 2.7.2.2 Markets and applications      62
      • 2.7.2.3 Nickel extraction and recovery           63
    • 2.7.3    Cobalt 64
      • 2.7.3.1 Global cobalt demand and trends   64
      • 2.7.3.2 Markets and applications      65
      • 2.7.3.3 Cobalt extraction and recovery          66
    • 2.7.4    Rare Earth Elements (REE)   66
      • 2.7.4.1 Global Rare Earth Elements demand and trends   66
      • 2.7.4.2 Markets and applications      67
      • 2.7.4.3 Rare Earth Elements extraction and recovery           68
      • 2.7.4.4 Recovery of REEs from secondary resources            68
    • 2.7.5    Lithium              69
      • 2.7.5.1 Global lithium demand and trends  69
      • 2.7.5.2 Markets and applications      70
      • 2.7.5.3 Lithium extraction and recovery        70
    • 2.7.6    Gold     71
      • 2.7.6.1 Global gold demand and trends        71
      • 2.7.6.2 Markets and applications      71
      • 2.7.6.3 Gold extraction and recovery               72
    • 2.7.7    Uranium            73
      • 2.7.7.1 Global uranium demand and trends               73
      • 2.7.7.2 Markets and applications      73
      • 2.7.7.3 Uranium extraction and recovery      74
    • 2.7.8    Zinc      74
      • 2.7.8.1 Global Zinc demand and trends        74
      • 2.7.8.2 Markets and applications      75
      • 2.7.8.3 Zinc extraction and recovery                76
    • 2.7.9    Manganese     76
      • 2.7.9.1 Global manganese demand and trends       76
      • 2.7.9.2 Markets and applications      77
      • 2.7.9.3 Manganese extraction and recovery               77
    • 2.7.10 Tantalum          78
      • 2.7.10.1            Global tantalum demand and trends             78
      • 2.7.10.2            Markets and applications      79
      • 2.7.10.3            Tantalum extraction and recovery    80
    • 2.7.11 Niobium            80
      • 2.7.11.1            Global niobium demand and trends               80
      • 2.7.11.2            Markets and applications      81
      • 2.7.11.3            Niobium extraction and recovery      81
    • 2.7.12 Indium                82
      • 2.7.12.1            Global indium demand and trends  82
      • 2.7.12.2            Markets and applications      82
      • 2.7.12.3            Indium extraction and recovery          83
    • 2.7.13 Gallium              84
      • 2.7.13.1            Global gallium demand and trends 84
      • 2.7.13.2            Markets and applications      84
      • 2.7.13.3            Gallium extraction and recovery        84
    • 2.7.14 Germanium    85
      • 2.7.14.1            Global germanium demand and trends        85
      • 2.7.14.2            Markets and applications      85
      • 2.7.14.3            Germanium extraction and recovery              86
    • 2.7.15 Antimony          87
      • 2.7.15.1            Global antimony demand and trends            87
      • 2.7.15.2            Markets and applications      87
      • 2.7.15.3            Antimony extraction and recovery    88
    • 2.7.16 Scandium        88
      • 2.7.16.1            Global scandium demand and trends           88
      • 2.7.16.2            Markets and applications      88
      • 2.7.16.3            Scandium extraction and recovery  89
    • 2.7.17 Graphite            90
      • 2.7.17.1            Global graphite demand and trends               90
      • 2.7.17.2            Markets and applications      91
      • 2.7.17.3            Graphite extraction and recovery      91
  • 2.8        Recovery sources       92
    • 2.8.1    Primary sources           94
    • 2.8.2    Secondary sources    95
      • 2.8.2.1 Extraction         97
        • 2.8.2.1.1           Hydrometallurgical extraction            99
          • 2.8.2.1.1.1      Overview           99
          • 2.8.2.1.1.2      Lixiviants          100
          • 2.8.2.1.1.3      SWOT analysis              100
        • 2.8.2.1.2           Pyrometallurgical extraction                102
          • 2.8.2.1.2.1      Overview           102
          • 2.8.2.1.2.2      SWOT analysis              102
        • 2.8.2.1.3           Biometallurgy 103
          • 2.8.2.1.3.1      Overview           103
          • 2.8.2.1.3.2      SWOT analysis              105
        • 2.8.2.1.4           Ionic liquids and deep eutectic solvents     106
          • 2.8.2.1.4.1      Overview           106
          • 2.8.2.1.4.2      SWOT analysis              108
        • 2.8.2.1.5           Electroleaching extraction    109
          • 2.8.2.1.5.1      Overview           109
          • 2.8.2.1.5.2      SWOT analysis              110
        • 2.8.2.1.6           Supercritical fluid extraction               111
          • 2.8.2.1.6.1      Overview           111
          • 2.8.2.1.6.2      SWOT analysis              112
      • 2.8.2.2 Recovery           113
        • 2.8.2.2.1           Solvent extraction       113
          • 2.8.2.2.1.1      Overview           113
          • 2.8.2.2.1.2      Rare-Earth Element Recovery             114
          • 2.8.2.2.1.3      WOT analysis 115
        • 2.8.2.2.2           Ion exchange recovery             116
          • 2.8.2.2.2.1      Overview           116
          • 2.8.2.2.2.2      SWOT analysis              117
        • 2.8.2.2.3           Ionic liquid (IL) and deep eutectic solvent (DES) recovery                119
          • 2.8.2.2.3.1      Overview           119
          • 2.8.2.2.3.2      SWOT analysis              121
        • 2.8.2.2.4           Precipitation   122
          • 2.8.2.2.4.1      Overview           122
          • 2.8.2.2.4.2      Coagulation and flocculation              123
          • 2.8.2.2.4.3      SWOT analysis              124
        • 2.8.2.2.5           Biosorption     126
          • 2.8.2.2.5.1      Overview           126
          • 2.8.2.2.5.2      SWOT analysis              127
        • 2.8.2.2.6           Electrowinning              128
          • 2.8.2.2.6.1      Overview           128
          • 2.8.2.2.6.2      SWOT analysis              130
        • 2.8.2.2.7           Direct materials recovery       131
          • 2.8.2.2.7.1      Overview           131
          • 2.8.2.2.7.2      Rare-earth Oxide (REO) Processing Using Molten Salt Electrolysis            131
          • 2.8.2.2.7.3      Rare-earth Magnet Recycling by Hydrogen Decrepitation                132
          • 2.8.2.2.7.4      Direct Recycling of Li-ion Battery Cathodes by Sintering  132
          • 2.8.2.2.7.5      SWOT analysis              133

 

3             CRITICAL RAW MATERIALS RECOVERY IN SEMICONDUCTORS  137

  • 3.1        Critical semiconductor materials    137
  • 3.2        Electronic waste (e-waste)   141
    • 3.2.1    Types of Critical Raw Materials found in E-Waste  141
  • 3.3        Photovoltaic and solar technologies              144
    • 3.3.1    Common types of PV panels and their critical semiconductor components      144
    • 3.3.2    Silicon Recovery Technology for Crystalline-Si PVs              145
    • 3.3.3    Tellurium Recovery from CdTe Thin-Film Photovoltaics     145
    • 3.3.4    Solar Panel Manufacturers and Recovery Rates     145
  • 3.4        Concentration and value of Critical Raw Materials in E-Waste     146
  • 3.5        Applications and Importance of Key Critical Raw Materials           147
  • 3.6        Waste Recycling and Recovery Processes  148
  • 3.7        Collection and Sorting Infrastructure             148
  • 3.8        Pre-Processing Technologies              149
  • 3.9        Metal Recovery Technologies              150
    • 3.9.1    Pyrometallurgy              150
    • 3.9.2    Hydrometallurgy          151
    • 3.9.3    Biometallurgy 151
    • 3.9.4    Supercritical Fluid Extraction              151
    • 3.9.5    Electrokinetic Separation      152
    • 3.9.6    Mechanochemical Processing           153
  • 3.10     Global market 2025-2046     154
    • 3.10.1 Ktonnes             157
    • 3.10.2 Revenues          157
    • 3.10.3 Regional            158

 

4             CRITICAL RAW MATERIALS RECOVERY IN LI-ION BATTERIES        160

  • 4.1        Critical Li-ion Battery Metals               160
  • 4.2        Critical Li-ion Battery Technology Metal Recovery 161
  • 4.3        Lithium-Ion Battery recycling value chain   163
  • 4.4        Black mass powder   165
  • 4.5        Recycling different cathode chemistries     166
  • 4.6        Preparation     166
  • 4.7        Pre-Treatment                167
    • 4.7.1    Discharging    167
    • 4.7.2    Mechanical Pre-Treatment    167
    • 4.7.3    Thermal Pre-Treatment            170
  • 4.8        Comparison of recycling techniques              170
  • 4.9        Hydrometallurgy          172
    • 4.9.1    Method overview         172
      • 4.9.1.1 Solvent extraction       173
    • 4.9.2    SWOT analysis              174
  • 4.10     Pyrometallurgy              175
    • 4.10.1 Method overview         175
    • 4.10.2 SWOT analysis              175
  • 4.11     Direct recycling             176
    • 4.11.1 Method overview         176
      • 4.11.1.1            Electrolyte separation              177
      • 4.11.1.2            Separating cathode and anode materials   178
      • 4.11.1.3            Binder removal             178
      • 4.11.1.4            Relithiation      178
      • 4.11.1.5            Cathode recovery and rejuvenation                179
      • 4.11.1.6            Hydrometallurgical-direct hybrid recycling                179
    • 4.11.2 SWOT analysis              180
  • 4.12     Other methods             181
    • 4.12.1 Mechanochemical Pretreatment      181
    • 4.12.2 Electrochemical Method        181
    • 4.12.3 Ionic Liquids   182
  • 4.13     Recycling of Specific Components 182
    • 4.13.1 Anode (Graphite)         182
    • 4.13.2 Cathode            182
    • 4.13.3 Electrolyte        183
  • 4.14     Recycling of Beyond Li-ion Batteries               183
    • 4.14.1 Conventional vs Emerging Processes            183
    • 4.14.2 Li-Metal batteries        184
    • 4.14.3 Lithium sulfur batteries (Li–S)             185
    • 4.14.4 All-solid-state batteries (ASSBs)       186
  • 4.15     Economic case for Li-ion battery recycling 187
    • 4.15.1 Metal prices    189
    • 4.15.2 Second-life energy storage   189
    • 4.15.3 LFP batteries  190
    • 4.15.4 Other components and materials    190
    • 4.15.5 Reducing costs             191
  • 4.16     Competitive landscape          192
  • 4.17     Global capacities, current and planned       192
  • 4.18     Future outlook              193
  • 4.19     Global market 2025-2046     194
    • 4.19.1 Chemistry        195
    • 4.19.2 Ktonnes             198
    • 4.19.3 Revenues          200
    • 4.19.4 Regional            201

 

5             CRITICAL RARE-EARTH ELEMENT RECOVERY         205

  • 5.1        Introduction    205
  • 5.2        Permanent magnet applications      206
  • 5.3        Recovery technologies            207
    • 5.3.1    Long-loop and short-loop recovery methods           208
    • 5.3.2    Hydrogen decrepitation           210
    • 5.3.3    Powder metallurgy (PM)          210
    • 5.3.4    Long-loop magnet recycling 211
    • 5.3.5    Solvent Extraction      212
    • 5.3.6    Ion Exchange Resin Chromatography            212
    • 5.3.7    Electrolysis and Metallothermic Reduction               213
  • 5.4        Technologies for recycling rare earth magnets from waste              216
  • 5.5        Markets              217
    • 5.5.1    Rare-earth magnet market    217
    • 5.5.2    Rare-earth magnet recovery technology      218
  • 5.6        Global market 2025-2046     221
    • 5.6.1    Ktonnes             221
    • 5.6.2    Revenues          222

 

6             CRITICAL PLATINUM GROUP METAL RECOVERY   223

  • 6.1        Introduction    223
  • 6.2        Supply chain  224
  • 6.3        Prices  225
  • 6.4        PGM Recovery               226
  • 6.5        PGM recovery from spent automotive catalysts     228
  • 6.6        PGM recovery from hydrogen electrolyzers and fuel cells 231
    • 6.6.1    Green hydrogen market           231
    • 6.6.2    PGM recovery from hydrogen-related technologies             232
    • 6.6.3    Catalyst Coated Membranes (CCMs)            233
    • 6.6.4    Fuel cell catalysts       234
    • 6.6.5    Emerging technologies            235
      • 6.6.5.1 Microwave-assisted Leaching            235
      • 6.6.5.2 Supercritical Fluid Extraction              236
      • 6.6.5.3 Bioleaching     237
      • 6.6.5.4 Electrochemical Recovery    237
      • 6.6.5.5 Membrane Separation             237
      • 6.6.5.6 Ionic Liquids   238
      • 6.6.5.7 Photocatalytic Recovery         238
    • 6.6.6    Sustainability of the hydrogen economy      239
  • 6.7        Markets              239
  • 6.8        Global market 2025-2046     242
    • 6.8.1    Ktonnes             242
    • 6.8.2    Revenues          244

 

7             COMPANY PROFILES                244 (167 company profiles)

 

8             APPENDICES  352

  • 8.1        Research Methodology           352
  • 8.2        Glossary of Terms       353
  • 8.3        List of Abbreviations  354

 

9             REFERENCES 355

 

List of Tables

  • Table 1. List of Key Critical Raw Materials and Their Primary Applications.          20
  • Table 2. Regulatory Landscape for Critical Raw Materials by Country/Region.  26
  • Table 3. Key Market Drivers and Restraints in Critical Raw Materials Recovery. 28
  • Table 4. Global Production of Critical Materials by Country (Top 10 Countries).               30
  • Table 5. Projected Demand for Critical Materials in Clean Energy Technologies (2024-2046). 30
  • Table 6. Value Proposition for Critical Material Extraction Technologies.               32
  • Table 7. Critical Material Extraction Methods Evaluated by Key Performance Metrics. 33
  • Table 8. Critical Rare-Earth Element Recovery Technologies from Secondary Sources.              35
  • Table 9. Li-ion Battery Technology Metal Recovery Methods-Metal, Recovery Method, Recovery Efficiency, Challenges, Environmental Impact, Economic Viability.          36
  • Table 10. Critical Semiconductor Materials Recovery-Material, Primary Source, Recovery Method, Recovery Efficiency, Challenges, Potential Applications. 37
  • Table 11. Critical Semiconductor Material Recovery from Secondary Sources.                38
  • Table 12. Critical Platinum Group Metal Recovery.               39
  • Table 13. Price Trends for Key Recovered Materials (2020-2024).               42
  • Table 14. Global critical raw materials recovery market by material types (2025-2046), by ktonnes. 43
  • Table 15. Global critical raw materials recovery market by material types (2025-2046), by value (Billions USD).  44
  • Table 16. Global critical raw materials recovery market by recovery source (2025-2046), in ktonnes.                45
  • Table 17. Global critical raw materials recovery market by recovery source (2025-2046), by value (Billions USD).               46
  • Table 18. Global critical raw materials recovery market by region (2025-2046), by ktonnes.    47
  • Table 19. Global critical raw materials recovery market by region (2025-2046), by value (Billions USD).                48
  • Table 20. Primary global suppliers of critical raw materials.           49
  • Table 21. Current contribution of recycling to meet global demand of CRMs.    52
  • Table 22. Applications and Importance of Key Critical Raw Materials.    54
  • Table 23. Comparison of Recovery Rates for Different Critical Materials.             56
  • Table 24. Established and emerging secondary sources for critical material recovery. 57
  • Table 25. Business models for critical material recovery from secondary sources.        58
  • Table 26. Markets and applications: copper.             61
  • Table 27. Technologies and Techniques for Copper Extraction and Recovery.    61
  • Table 28. Markets and applications: nickel.               63
  • Table 29. Technologies and Techniques for Nickel Extraction and Recovery.       65
  • Table 30. Markets and applications: cobalt.              66
  • Table 31. Technologies and Techniques for Cobalt Extraction and Recovery.      67
  • Table 32. Markets and applications: rare earth elements.                68
  • Table 33. Technologies and Techniques for Rare Earth Elements Extraction and Recovery.      69
  • Table 34. Markets and applications: lithium.            71
  • Table 35. Technologies and Techniques for Lithium Extraction and Recovery.    72
  • Table 36. Markets and applications: gold.  73
  • Table 37. Technologies and Techniques for Gold Extraction and Recovery.          73
  • Table 38. Markets and applications: uranium.         74
  • Table 39. Technologies and Techniques for Uranium Extraction and Recovery. 75
  • Table 40. Markets and applications: zinc.   76
  • Table 41. Zinc Extraction and Recovery Technologies.        77
  • Table 42. Markets and applications: manganese. 78
  • Table 43. Manganese Extraction and Recovery Technologies.       79
  • Table 44. Markets and applications: tantalum.       80
  • Table 45. Tantalum Extraction and Recovery Technologies.            81
  • Table 46. Markets and applications: niobium.         82
  • Table 47. Niobium Extraction and Recovery Technologies.              83
  • Table 48. Markets and applications: indium.            84
  • Table 49. Indium Extraction and Recovery Technologies. 84
  • Table 50. Markets and applications: gallium.           85
  • Table 51. Gallium Extraction and Recovery Technologies.               86
  • Table 52. Markets and applications: germanium.  87
  • Table 53. Germanium Extraction and Recovery Technologies.      87
  • Table 54. Markets and applications: antimony.       88
  • Table 55. Antimony Extraction and Recovery Technologies.           89
  • Table 56. Markets and applications: scandium.     90
  • Table 57. Scandium Extraction and Recovery Technologies.          90
  • Table 58. Graphite Markets and Applications.         92
  • Table 59. Graphite Extraction and Recovery Techniques and Technologies.        92
  • Table 60. Comparison of Primary vs Secondary Production for Key Materials.   94
  • Table 61. Environmental Impact Comparison: Primary vs Secondary Production.          95
  • Table 62. Technologies for critical material recovery from secondary sources. 96
  • Table 63. Technologies for critical raw material recovery from secondary sources.        97
  • Table 64. Critical raw material extraction technologies.    99
  • Table 65. Pyrometallurgical extraction methods.   103
  • Table 66. Bioleaching processes and their applicability to critical materials.     105
  • Table 67. Comparative analysis of metal recovery technologies. 135
  • Table 68. Technology readiness of critical material recovery technologies by secondary material sources.            137
  • Table 69. Technology readiness of critical semiconductor recovery technologies.         139
  • Table 70. Critical Semiconductors Applications and Recycling Rates.    141
  • Table 71. Types of critical raw Materials found in E-Waste.             142
  • Table 72. E-waste Generation and Recycling Rates.            144
  • Table 73. Critical Semiconductor Recovery from Photovoltaics. 145
  • Table 74. Solar Panel Manufacturers and Their Recycling Capabilities. 147
  • Table 75. Concentration and Value of Critical Raw Materials in E-waste.              147
  • Table 76. Critical Semiconductor Materials and Their Applications.         148
  • Table 77. Critical Materials Waste Recycling and Recovery Processes.  149
  • Table 78. Collection and Sorting Infrastructure for Critical Materials Recycling.              150
  • Table 79. Pre-Processing Technologies for Critical Materials Recycling. 150
  • Table 80. Global recovered critical raw electronics material, 2025-2046 (ktonnes).      158
  • Table 81. Global recovered critical raw electronics material market, 2025-2046 (billions USD).           159
  • Table 82. Recovered critical raw electronics material market, by region, 2025-2046 (ktonnes).            160
  • Table 83. Drivers for Recycling Li-ion Batteries.       162
  • Table 84. Li-ion Battery Metal Recovery Technologies.       163
  • Table 85. Li-ion battery recycling value chain.         164
  • Table 86. Typical lithium-ion battery recycling process flow.         166
  • Table 87. Main feedstock streams that can be recycled for lithium-ion batteries.            166
  • Table 88. Comparison of LIB recycling methods.   171
  • Table 89. Comparison of conventional and emerging processes for recycling beyond lithium-ion batteries.          185
  • Table 90. Economic assessment of battery recycling options.     189
  • Table 91. Retired lithium-batteries. 192
  • Table 92. Global capacities, current and planned (tonnes/year).                193
  • Table 93. Global lithium-ion battery recycling market in tonnes segmented by cathode chemistry, 2025-2046.  196
  • Table 94. Global Li-ion battery recycling market, 2025-2046 (ktonnes)  199
  • Table 95. Global Li-ion battery recycling market, 2025-2046 (billions USD).       201
  • Table 96. Li-ion battery recycling market, by region, 2025-2046 (ktonnes).          203
  • Table 97. Critical rare-earth elements markets and applications.              206
  • Table 98. Primary and Secondary Material Streams for Rare-Earth Element Recovery. 207
  • Table 99. Critical rare-earth element recovery technologies.        208
  • Table 100. Rare Earth Element Content in Secondary Material Sources.               209
  • Table 101. Comparison of Short-loop and Long-loop Rare Earth Recovery Methods.   210
  • Table 102. Long-loop Rare-Earth Magnet Recycling Technologies.            212
  • Table 103. Rare Earth Element Demand by Application.   218
  • Table 104. Global rare-earth magnet key players in a table             219
  • Table 105. Rare Earth Magnet Recycling Value Chain.        219
  • Table 106.Technology readiness of REE recovery technologies in a table              221
  • Table 107. Global recovered critical rare-earth element market, 2025-2046 (ktonnes) 222
  • Table 108. Global recovered critical rare-earth element market, 2025-2046 (billions USD).    223
  • Table 109. Global PGM Demand Segmented by Application.        225
  • Table 110. Critical Platinum Group Metals: Applications and Recycling Rates. 227
  • Table 111. Technology Readiness of Critical PGM Recovery from Secondary Sources.                229
  • Table 112. Automotive Catalyst Recycling Players.               232
  • Table 113. Challenges in transitioning to new PEMEL catalysts and the role of PGM recycling in a table.                233
  • Table 114. Key Suppliers of Catalysts for Fuel Cells.           236
  • Table 115. Global recovered critical platinum group metal market, 2025-2046 (ktonnes).       243
  • Table 116. Global recovered critical platinum group metal market, 2025-2046 (billions USD).              245
  • Table 117. Glossary of terms.              354
  • Table 118. List of Abbreviations.        355

 

List of Figures

  • Figure 1. TRL of critical material extraction technologies. 32
  • Figure 2. Critical Raw Materials Value Chain.           41
  • Figure 3. Global critical raw materials recovery market by material types (2025-2046), by ktonnes.  44
  • Figure 4. Global critical raw materials recovery market by material types (2025-2046), by value (Billions USD).  45
  • Figure 5. Global critical raw materials recovery market by recovery source (2025-2046), by ktonnes.                46
  • Figure 6. Global critical raw materials recovery market by recovery source (2025-2046), by value.     47
  • Figure 7. Global critical raw materials recovery market by region (2025-2046), by ktonnes.     48
  • Figure 8. Global critical raw materials recovery market by region (2025-2046), by value (Billions USD).                49
  • Figure 9. Conceptual diagram illustrating the Circular Economy.               52
  • Figure 10. Circular Economy Model for Critical Materials.               54
  • Figure 11. Copper demand outlook.               60
  • Figure 12. Global nickel demand outlook.  63
  • Figure 13. Global cobalt demand outlook. 66
  • Figure 14. Global lithium demand outlook.               71
  • Figure 15. Global graphite demand outlook.             91
  • Figure 16.  Solvent extraction (SX) in hydrometallurgy.       101
  • Figure 17. SWOT analysis: hydrometallurgical extraction.               103
  • Figure 18. SWOT analysis: pyrometallurgical extraction of critical materials.     104
  • Figure 19. SWOT analysis: biometallurgy for critical material extraction.              107
  • Figure 20. SWOT analysis: ionic liquids and deep eutectic solvents for critical material extraction.   110
  • Figure 21. SWOT analysis: electrochemical leaching for critical material extraction.    112
  • Figure 22. SWOT analysis: supercritical fluid extraction technology.        114
  • Figure 23. SWOT analysis: solvent extraction recovery technology.           117
  • Figure 24. SWOT analysis: ion exchange resin recovery technology.         120
  • Figure 25. SWOT analysis: ionic liquids and deep eutectic solvents for critical material recovery.       123
  • Figure 26. SWOT analysis: precipitation for critical material recovery.     126
  • Figure 27. SWOT analysis: biosorption for critical material recovery.       129
  • Figure 28. SWOT analysis: electrowinning for critical material recovery.                132
  • Figure 29. SWOT analysis: direct critical material recovery technology. 135
  • Figure 30. Global Li-ion battery recycling market, 2025-2046 (chemistry).          157
  • Figure 31. Global  recovered critical raw electronics materials market, 2025-2046 (ktonnes) 158
  • Figure 32. Global  recovered critical raw electronics material market, 2025-2046 (Billion USD).          159
  • Figure 33. Recovered critical raw electronics material market, by region, 2025-2046 (ktonnes).          161
  • Figure 34. Typical direct, pyrometallurgical, and hydrometallurgical recycling methods for recovery of Li-ion battery active materials. 165
  • Figure 35. Mechanical separation flow diagram.   169
  • Figure 36. Recupyl mechanical separation flow diagram. 170
  • Figure 37. Flow chart of recycling processes of lithium-ion batteries (LIBs).       173
  • Figure 38. Hydrometallurgical recycling flow sheet.             174
  • Figure 39. SWOT analysis for Hydrometallurgy Li-ion Battery Recycling.                175
  • Figure 40. Umicore recycling flow diagram.              176
  • Figure 41. SWOT analysis for Pyrometallurgy Li-ion Battery Recycling.   177
  • Figure 42. Schematic of direct recyling process.    178
  • Figure 43. SWOT analysis for Direct Li-ion Battery Recycling.        182
  • Figure 44. Schematic diagram of a Li-metal battery.            186
  • Figure 45. Schematic diagram of Lithium–sulfur battery.  187
  • Figure 46. Schematic illustration of all-solid-state lithium battery.            188
  • Figure 47.  Global scrapped EV (BEV+PHEV) forecast to 2040.     196
  • Figure 48. Global Li-ion battery recycling market, 2025-2046 (chemistry).          198
  • Figure 49. Global Li-ion battery recycling market, 2025-2046 (ktonnes) 200
  • Figure 50. Global Li-ion battery recycling market, 2025-2046 (Billion USD).       202
  • Figure 51. Global Li-ion battery recycling market, by region, 2025-2046 (ktonnes).       205
  • Figure 52. Global recovered critical rare-earth element market, 2025-2046 (ktonnes) 223
  • Figure 53. Global recovered critical rare-earth element market, 2025-2046 (Billion USD).       224
  • Figure 54. Global recovered critical platinum group metal market, 2025-2046 (ktonnes)          244
  • Figure 55. Global recovered critical platinum group metal market, 2025-2046 (Billion USD). 245
  •  

 

 

 

 

The report includes these components:

  • PDF report download/by email. Print edition also available. 
  • Comprehensive Excel spreadsheet of all data.
  • Mid-year Update

 

The Global Critical Materials Recovery Market 2026-2046
The Global Critical Materials Recovery Market 2026-2046
Instant PDF download (via file transfer service).

The Global Critical Materials Recovery Market 2026-2046
The Global Critical Materials Recovery Market 2026-2046
Instant PDF download and Print Edition (including tracked delivery).

Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer. To order by Bank Transfer (Invoice) select this option from the payment methods menu after adding to cart, or contact info@futuremarketsinc.com