
cover
- Published: October 2025
- Pages: 2,232
- Tables: 684
- Figures: 298
The industrial sector accounts for approximately 30% of global greenhouse gas emissions, making industrial decarbonization one of the most critical challenges in achieving net-zero targets. This comprehensive 2,200+ page market intelligence report provides an exhaustive analysis of technologies, markets, and strategic opportunities driving the transformation of heavy industry toward carbon neutrality. The Global Industrial Decarbonization Market 2026-2036 examines eight interconnected pillars of industrial decarbonization, delivering actionable insights across green steel production, hydrogen economy infrastructure, carbon capture and storage systems, industrial heat electrification, process electrification technologies, circular economy solutions, environmental remediation technologies, and green building materials. Each sector analysis includes detailed technology assessments, market forecasts through 2036, competitive landscape mapping, and profiles of 1,300+ leading companies pioneering low-carbon industrial solutions.
Green steel manufacturing represents a pivotal transformation, with this report analyzing hydrogen-based direct reduction, electrolysis-based production, carbon capture integration, and renewable energy-powered processes. Detailed cost analyses, production capacity forecasts, and end-use market assessments across automotive, construction, and manufacturing sectors provide investors and industry stakeholders with critical decision-making intelligence.
The hydrogen economy section delivers comprehensive coverage of production technologies including alkaline, PEM, solid oxide, and anion exchange membrane electrolyzers, with granular cost projections and efficiency comparisons. Market forecasts extend across ammonia production, steel manufacturing, sustainable aviation fuels, maritime applications, and power generation, supported by analysis of 145 hydrogen technology companies and over 50 major production projects globally.
Carbon capture, utilization, and storage (CCUS) receives exhaustive treatment with 500+ pages analyzing point-source capture, direct air capture, and carbon dioxide removal technologies. The report examines 250+ operational and planned CCUS facilities, evaluating capture technologies from chemical absorption and membrane separation to emerging solutions like metal-organic frameworks and electrochemical systems. Detailed cost projections through 2046 and carbon credit market analysis provide essential context for CCUS investment decisions.
Industrial heat decarbonization technologies are analyzed across electric heating systems (resistance, induction, microwave, and plasma), high-temperature heat pumps, biomass solutions, and emerging technologies including concentrated solar thermal and geothermal systems. Temperature-based market segmentation and application-specific analyses across chemical, metal processing, and materials manufacturing sectors enable targeted technology deployment strategies.
The circular economy section provides comprehensive coverage of advanced recycling technologies including pyrolysis, gasification, dissolution, and depolymerization, alongside critical materials recovery from electronic waste, batteries, and industrial byproducts. Market forecasts for 18 critical materials through 2040, combined with extraction and recovery technology assessments, address supply chain resilience for the energy transition.
Environmental technologies covering water treatment, air quality management, and soil remediation are analyzed alongside digital environmental solutions leveraging IoT, AI, and machine learning for optimization and monitoring. Green building technologies complete the analysis with detailed market forecasts for sustainable construction materials, advanced insulation systems, smart windows, modular construction, and 3D printing applications.
Each technology chapter includes SWOT analyses, technology readiness level assessments, competitive landscape mapping, and detailed company profiles with technology descriptions, production capacities, and strategic partnerships. Market forecasts are segmented by technology type, application sector, and geographic region, with particular attention to policy drivers, carbon pricing mechanisms, and regulatory frameworks shaping market development.
This report serves as an essential resource for industrial corporations developing decarbonization roadmaps, technology developers seeking market opportunities, investors evaluating clean technology portfolios, policymakers designing industrial transition strategies, and financial institutions assessing climate risk and opportunity in industrial sectors. The comprehensive analysis of technology costs, performance metrics, and deployment timelines enables evidence-based strategic planning for the industrial transformation required to meet global climate commitments.
Report Contents include:
- Green Steel Production Technologies
- Current steelmaking processes and decarbonization pathways
- Hydrogen-based direct reduced iron (H-DRI) production systems
- Electrolysis and molten oxide technologies
- Carbon capture integration for blast furnace-basic oxygen furnace routes
- Renewable energy integration and grid requirements
- Biochar, hydrogen blast furnaces, and flash ironmaking
- Advanced materials including composite electrodes and hydrogen storage metals
- Production capacity forecasts 2020-2036 by technology and region
- End-use market analysis: automotive, construction, machinery, rail, packaging, electronics
- Competitive landscape with 46 company profiles
- Cost analysis and economic competitiveness projections
- Green Hydrogen Production and Utilization
- Hydrogen classification systems and color coding
- Electrolyzer technologies: alkaline, PEM, solid oxide, anion exchange membrane
- Cost structures and levelized cost of hydrogen (LCOH) analysis
- Balance of plant requirements and system integration
- Production volume and market revenue projections 2024-2036
- Hydrogen storage and transportation infrastructure
- Application markets: fuel cells, sustainable aviation fuel, ammonia, methanol, steel, power generation, maritime
- eFuels and power-to-X technologies
- Green ammonia and methanol production pathways
- 145 company profiles across production, storage, and utilization
- Regional market analysis and policy frameworks
- Carbon Capture, Utilization, and Storage
- Point-source capture from power, cement, steel, and chemical industries
- Post-combustion, pre-combustion, and oxy-fuel combustion technologies
- Solvent-based systems: amines, physical solvents, and emerging alternatives
- Solid sorbent technologies including MOFs and zeolites
- Membrane separation systems
- Direct air capture: solid and liquid sorbent technologies
- CO₂ utilization in fuels, chemicals, construction materials, and enhanced oil recovery
- Carbon dioxide removal: BECCS, mineralization, enhanced weathering, biochar
- Ocean-based CDR methods
- Carbon credit markets and pricing mechanisms
- Capture capacity forecasts to 2046 by technology, source, and region
- 370+ company profiles
- Cost projections and economic analysis
- Industrial Heat Decarbonization
- Electric heating: resistance, induction, microwave, and plasma systems
- High-temperature industrial heat pumps
- Biomass combustion and gasification technologies
- Solar thermal and geothermal solutions
- Thermal energy storage systems
- Application analysis: chemical, food processing, paper, glass, ceramics, metals, cement
- Temperature-based market segmentation
- Cost competitiveness and carbon abatement analysis
- Grid integration requirements
- 39 company profiles
- Market forecasts and technology deployment roadmaps
- Electrification of Industrial Processes
- Grid integration and smart grid technologies
- Energy storage: battery, thermal, and hybrid systems
- Renewable energy integration strategies
- Electric process heating technologies
- Electrochemical processes and advanced electrolysis
- Electric motors and variable frequency drives
- Digital twin and AI/ML optimization
- Applications across chemical, metal, food, and mining sectors
- 126 company profiles
- Technology maturity and market readiness assessment
- Circular Economy and Advanced Recycling
- AI-powered sorting and detection technologies
- Advanced recycling: pyrolysis, gasification, dissolution, depolymerization
- Chemical recycling of plastics and thermosets
- Carbon fiber recycling technologies
- Critical materials recovery from batteries, electronics, and industrial waste
- Extraction technologies: hydrometallurgical, pyrometallurgical, biometallurgy
- Recovery methods: solvent extraction, ion exchange, electrowinning
- Market forecasts 2025-2040 by material type and recovery source
- 18 critical materials analysis: lithium, cobalt, nickel, rare earths, copper, graphite
- 277 company profiles
- Regional market breakdown and supply chain analysis
- Environmental Technologies
- Advanced membrane systems for water treatment
- Advanced oxidation processes
- Biological treatment and bioremediation
- Air quality management and emission control
- Soil and groundwater remediation
- Environmental IoT and sensor networks
- AI-driven monitoring and optimization
- Novel materials: nanomaterials, bio-based solutions, smart materials
- 93 company profiles
- Market forecasts 2026-2036 by technology segment
- Green Building Technologies
- Sustainable construction materials: low-carbon concrete, bio-based materials, recycled content
- Advanced insulation: aerogels, vacuum insulation, bio-based systemsSmart windows and electrochromic glazing
- Modular construction and prefabrication
- 3D printing and additive manufacturing
- Building energy systems and heat pumps
- CCUS integration in cement production
- Alternative fuels for cement kilns
- Kiln electrification technologies
- Market forecasts 2020-2036 by material type, technology, and region
- 172 company profiles
- Residential, commercial, and infrastructure market analysis
The report features comprehensive profiles of 150 leading companies driving industrial decarbonization across all technology sectors, including: 1414 Degrees, 374Water, 8 Rivers, ABB, ABIS Aerogel Co., AccuRec Recycling GmbH, ACE Green Recycling, Aclarity, Active Aerogels, Adaptavate, Adani Green Energy, Advanced Ionics, Aduro Clean Technologies, Aemetis, Aerogel Technologies LLC, AeroShield Materials Inc., Agilyx, Air Company, Air Liquide S.A., Air Products, Aker Horizons ASA, Alchemr, Algoma Steel, Allonnia, Alterra Energy, Altilium, Ambercycle, American Battery Technology Company (ABTC), Andritz, Anellotech, Antora Energy, Aperam BioEnergia, APK AG, Applied Carbon, Aquacycl, Aquafil S.p.A., Aquatech International, AquaBattery, Arborea, ArcelorMittal SA, Arkema, Armacell International S.A., Arvia Technology, Asahi Kasei, Ascend Elements, Aspen Aerogels, AspiraDAC Pty Ltd., Atmonia, Avantium, Axens SA, Baker Hughes, BASF, Battolyser Systems, Betolar, BHP, Biomason, Blastr Green Steel, Bloom Energy, Blue Planet Systems Corporation, Boomitra, Borealis AG, Boston Metal, Botree Cycling, Braven Environmental, Brenmiller Energy, Brightmark, Brimstone, C-Capture, Cambridge Carbon Capture Ltd., Cambridge Electric Cement, Caplyzer, Captura Corporation, CarbiCrete, Carbios, Carboliq GmbH, Carbon8 Systems, CarbonBuilt, CarbonCure Technologies Inc., Carbon Engineering Ltd., Carbon Recycling International, Carbon Upcycling Technologies, Carbyon BV, Cassandra Oil AB, CATL, Ceibo, Ceres Power Holdings plc, CGDG, Charm Industrial, Chart Industries, Cheetah Resources, Chevron Corporation, Chevron Phillips Chemical, China Baowu Steel Group, Chiyoda Corporation, Cipher Neutron, CIRC, Cirba Solutions, Circunomics, Clariter, Clean Planet Energy, Climeworks, CMBlu Energy, C-Motive Technologies, Cognite, Coolbrook, Coval Energy B.V., Covestro AG, CreaCycle GmbH, Cummins, CuRe Technology BV, Cyclic Materials, Cylib, C-Zero, Daikin, Dalian Rongke Power, Danfoss, Deep Branch Biotechnology, DeepTech Recycling, DePoly SA, Dimensional Energy, Dioxide Materials, Dioxycle, Domsjö Fabriker AB, Dow Chemicals, Dowa Eco-System Co., Drax, DuPont, Dynelectro ApS, Eastman Chemical Company, Ebb Carbon, Econic Technologies Ltd, Ecopek S.A., EcoPro, Eion Carbon, Elcogen AS, Electra, Electra Battery Materials Corporation, Electric Hydrogen, Electrified Thermal Solutions, Electron Energy Corporation, Elogen H2, Emirates Steel Arken, Enapter and many more......
1 EXECUTIVE SUMMARY 118
- 1.1 Market Overview and Scope 118
- 1.2 Green Steel 118
- 1.3 Green Hydrogen 119
- 1.4 Carbon Capture, Utilization, and Storage 120
- 1.5 Industrial Heat Decarbonization 121
- 1.6 Electrification of Industrial Processes 122
- 1.7 Circular Economy Solutions: Closing Material Loops Through Advanced Recycling 122
- 1.8 Environmental Technologies: Enabling Clean Industrial Operations 123
- 1.9 Green Building Technologies: Decarbonizing Construction Materials and Processes 123
- 1.10 Market Drivers and Future Outlook 124
2 GREEN STEEL 126
- 2.1 Current Steelmaking processes 126
- 2.2 "Double carbon" (carbon peak and carbon neutrality) goals and ultra-low emissions requirements 127
- 2.3 What is green steel? 129
- 2.3.1 Properties 131
- 2.3.2 Advances in clean production technologies 132
- 2.4 Decarbonization of steel 132
- 2.4.1 CO₂ Reduction Technologies 133
- 2.4.2 Decarbonization target and policies 137
- 2.4.2.1 EU Carbon Border Adjustment Mechanism (CBAM) 139
- 2.5 Production technologies 140
- 2.5.1 The role of hydrogen 140
- 2.5.2 Comparative analysis 141
- 2.5.3 Hydrogen Direct Reduced Iron (DRI) 142
- 2.5.4 Electrolysis 143
- 2.5.5 Carbon Capture, Utilization and Storage (CCUS) 145
- 2.5.5.1 Overview 145
- 2.5.5.2 BF-BOF (Blast Furnace-Basic Oxygen Furnace) 146
- 2.5.5.3 Selection of carbon capture technology 148
- 2.5.5.4 Pre-Combustion Carbon Capture for Ironmaking 149
- 2.5.5.5 Gas Recycling and Oxyfuel Combustion 150
- 2.5.5.6 Sorption Enhanced Water Gas Shift (SEWGS) 150
- 2.5.5.7 Amine-Based Post-Combustion CO₂ Absorption 150
- 2.5.5.8 Carbon Capture for Natural Gas-Based DRI 151
- 2.5.5.9 CO₂ Storage 152
- 2.5.5.10 CO₂ Transportation 153
- 2.5.5.11 CO₂ Utilization for Steel 154
- 2.5.5.12 Carbon Capture Costs 154
- 2.5.5.13 Carbon Credit and Carbon Offsetting 155
- 2.5.6 Biochar replacing coke 157
- 2.5.7 Hydrogen Blast Furnace 157
- 2.5.8 Renewable energy powered processes 158
- 2.5.9 Flash ironmaking 159
- 2.5.10 Hydrogen Plasma Iron Ore Reduction 160
- 2.5.11 Ferrous Bioprocessing 161
- 2.5.12 Microwave Processing 162
- 2.5.13 Additive Manufacturing 162
- 2.5.14 Technology readiness level (TRL) 163
- 2.6 Advanced materials in green steel 163
- 2.6.1 Composite electrodes 164
- 2.6.2 Solid oxide materials 164
- 2.6.3 Hydrogen storage metals 164
- 2.6.4 Carbon composite steels 165
- 2.6.5 Coatings and membranes 165
- 2.6.6 Sustainable binders 166
- 2.6.7 Iron ore catalysts 166
- 2.6.8 Carbon capture materials 167
- 2.6.9 Waste gas utilization 167
- 2.7 Advantages and disadvantages of green steel 168
- 2.8 Markets and applications 168
- 2.9 Energy Savings and Cost Reduction in Steel Production 169
- 2.10 Digitalization 169
- 2.11 Biomass Steel Production and Sustainable Green Steel Production Chain 170
- 2.12 The Global Market for Green Steel 171
- 2.12.1 Global steel production 171
- 2.12.1.1 Steel prices 171
- 2.12.1.2 Green steel prices 172
- 2.12.2 Green steel plants and production, current and planned 174
- 2.12.3 Market map 176
- 2.12.4 SWOT analysis 177
- 2.12.5 Market trends and opportunities 178
- 2.12.6 Market growth drivers 179
- 2.12.7 Market challenges 180
- 2.12.8 End-use industries 181
- 2.12.8.1 Automotive 181
- 2.12.8.1.1 Market overview 181
- 2.12.8.1.2 Applications 183
- 2.12.8.2 Construction 185
- 2.12.8.2.1 Market overview 185
- 2.12.8.2.2 Applications 185
- 2.12.8.3 Consumer appliances 186
- 2.12.8.3.1 Market overview 186
- 2.12.8.3.2 Applications 186
- 2.12.8.4 Machinery 187
- 2.12.8.4.1 Market overview 187
- 2.12.8.4.2 Applications 187
- 2.12.8.5 Rail 188
- 2.12.8.5.1 Market overview 188
- 2.12.8.5.2 Applications 188
- 2.12.8.6 Packaging 189
- 2.12.8.6.1 Market overview 189
- 2.12.8.6.2 Applications 190
- 2.12.8.7 Electronics 190
- 2.12.8.7.1 Market overview 190
- 2.12.8.7.2 Applications 191
- 2.12.8.1 Automotive 181
- 2.12.1 Global steel production 171
- 2.13 Global Production and Demand 192
- 2.13.1 Production Capacity 2020-2035 192
- 2.13.2 Production vs. Demand 2020-2036 194
- 2.13.3 Revenues 2020-2036 195
- 2.13.3.1 By end-use industry 196
- 2.13.3.2 By region 197
- 2.13.3.2.1 North America 198
- 2.13.3.2.2 Europe 198
- 2.13.3.2.3 China 199
- 2.13.3.2.4 Asia-Pacific (excl. China) 200
- 2.13.3.2.5 Middle East & Africa 201
- 2.13.3.2.6 South America 202
- 2.13.4 Competitive landscape 203
- 2.13.5 Future market outlook 206
- 2.13.5.1 Technology Evolution 206
- 2.13.5.2 Economic Competitiveness 206
- 2.13.5.3 Market Structure 206
- 2.13.5.4 Supply Chain Transformation 207
- 2.13.5.5 Policy and Regulation 207
- 2.13.5.6 Investment Requirements and Returns 207
- 2.13.5.7 Customer Adoption 207
- 2.13.5.8 Risks and Uncertainties 208
- 2.13.5.9 Social and Environmental Implications 208
- 2.14 Company profiles 209 (46 company profiles)
3 GREEN HYDROGEN 248
- 3.1 Hydrogen classification 248
- 3.1.1 Hydrogen colour shades 249
- 3.2 Global energy demand and consumption 249
- 3.3 The hydrogen economy and production 249
- 3.4 Removing CO₂ emissions from hydrogen production 251
- 3.5 The Economics of Green Hydrogen 252
- 3.5.1 Cost Gaps and Market Imperatives 252
- 3.5.2 Hard-to-Abate Sectors 253
- 3.5.3 Steel Production 253
- 3.5.4 Ammonia Production 253
- 3.5.5 Chemical Industry and Refining 254
- 3.5.6 Current Electrolyzer Technologies 254
- 3.5.6.1 Alkaline Water Electrolyzers: Mature but Constrained 254
- 3.5.6.2 Proton Exchange Membrane Electrolyzers: Higher Performance, Higher Cost 255
- 3.5.6.3 Solid Oxide Electrolyzers: High Efficiency, High Risk 256
- 3.5.6.4 Next-Generation Technologies 256
- 3.5.6.4.1 Anion Exchange Membrane Electrolyzers: Bridging the Gap 256
- 3.5.6.4.2 Novel Approaches: Beyond Conventional Electrolysis 257
- 3.5.7 The Path Forward: Economics and Implementation 257
- 3.6 Hydrogen value chain 258
- 3.6.1 Production 259
- 3.6.2 Transport and storage 259
- 3.6.3 Utilization 259
- 3.7 National hydrogen initiatives, policy and regulation 261
- 3.8 Hydrogen certification 262
- 3.9 Carbon pricing 263
- 3.10 Market challenges 263
- 3.11 Market map 264
- 3.12 Global hydrogen production 266
- 3.12.1 Industrial applications 267
- 3.12.2 Hydrogen energy 268
- 3.12.2.1 Stationary use 268
- 3.12.2.2 Hydrogen for mobility 268
- 3.12.3 Current Annual H2 Production 269
- 3.12.4 Hydrogen production processes 270
- 3.12.4.1 Hydrogen as by-product 271
- 3.12.4.2 Reforming 271
- 3.12.4.2.1 SMR wet method 271
- 3.12.4.2.2 Oxidation of petroleum fractions 271
- 3.12.4.2.3 Coal gasification 272
- 3.12.4.3 Reforming or coal gasification with CO2 capture and storage 272
- 3.12.4.4 Steam reforming of biomethane 272
- 3.12.4.5 Water electrolysis 273
- 3.12.4.6 The "Power-to-Gas" concept 274
- 3.12.4.7 Fuel cell stack 276
- 3.12.4.8 Electrolysers 277
- 3.12.4.9 Other 278
- 3.12.4.9.1 Plasma technologies 278
- 3.12.4.9.2 Photosynthesis 279
- 3.12.4.9.3 Bacterial or biological processes 280
- 3.12.4.9.4 Oxidation (biomimicry) 280
- 3.12.5 Production costs 281
- 3.13 Global hydrogen demand forecasts 282
- 3.13.1 Market Revenue Projections (2024-2036) 282
- 3.13.2 Production Volume Forecast (2024-2036) 283
- 3.13.3 Demand by Sector (2024, 2030, 2036). 284
- 3.13.4 Regional Market Breakdown 285
- 3.13.5 Electrolyzer Market 287
- 3.14 Green Hydorgen Production 289
- 3.14.1 Overview 289
- 3.14.2 Green hydrogen projects 290
- 3.14.3 Motivation for use 292
- 3.14.4 Decarbonization 293
- 3.14.5 Comparative analysis 294
- 3.14.6 Role in energy transition 294
- 3.14.7 Renewable energy sources 295
- 3.14.7.1 Wind power 295
- 3.14.7.2 Solar Power 296
- 3.14.7.3 Nuclear 296
- 3.14.7.4 Capacities 296
- 3.14.7.5 Costs 296
- 3.14.8 SWOT analysis 297
- 3.15 Electrolyzer Technologies 298
- 3.15.1 Introduction 298
- 3.15.2 Main types 299
- 3.15.3 Balance of Plant 300
- 3.15.4 Characteristics 302
- 3.15.5 Advantages and disadvantages 304
- 3.15.6 Electrolyzer market 304
- 3.15.6.1 Market trends 304
- 3.15.6.2 Market landscape 305
- 3.15.6.3 Innovations 307
- 3.15.6.4 Cost challenges 307
- 3.15.6.5 Scale-up 308
- 3.15.6.6 Manufacturing challenges 308
- 3.15.6.7 Market opportunity and outlook 309
- 3.15.7 Alkaline water electrolyzers (AWE) 310
- 3.15.7.1 Technology description 310
- 3.15.7.2 AWE plant 312
- 3.15.7.3 Components and materials 313
- 3.15.7.4 Costs 314
- 3.15.7.4.1 Current Cost Structure (2024-2025) 314
- 3.15.7.4.2 Levelized Cost of Hydrogen (LCOH) from AWE 315
- 3.15.7.5 Companies 316
- 3.15.8 Anion exchange membrane electrolyzers (AEMEL) 317
- 3.15.8.1 Technology description 317
- 3.15.8.2 AEMEL plant 318
- 3.15.8.3 Components and materials 319
- 3.15.8.3.1 Catalysts 320
- 3.15.8.3.2 Anion exchange membranes (AEMs) 321
- 3.15.8.3.3 Materials 321
- 3.15.8.4 Costs 323
- 3.15.8.4.1 Current Cost Structure (2024-2025) 323
- 3.15.8.4.2 Performance and Cost Positioning 324
- 3.15.8.4.3 Levelized Cost of Hydrogen (LCOH) from AMEL 324
- 3.15.8.4.4 Cost Reduction Pathways 324
- 3.15.8.5 Companies 325
- 3.15.9 Proton exchange membrane electrolyzers (PEMEL) 326
- 3.15.9.1 Technology description 326
- 3.15.9.2 PEMEL plant 328
- 3.15.9.3 Components and materials 329
- 3.15.9.3.1 Membranes 330
- 3.15.9.3.2 Advanced PEMEL stack designs 330
- 3.15.9.3.3 Plug-and-Play & Customizable PEMEL Systems 331
- 3.15.9.3.4 PEMELs and proton exchange membrane fuel cells (PEMFCs) 332
- 3.15.9.4 Costs 333
- 3.15.9.4.1 Current Cost Structure (2024-2025) 333
- 3.15.9.4.2 Cost Reduction Pathways (2024-2050) 334
- 3.15.9.5 Companies 336
- 3.15.10 Solid oxide water electrolyzers (SOEC) 338
- 3.15.10.1 Technology description 338
- 3.15.10.2 SOEC plant 340
- 3.15.10.3 Components and materials 340
- 3.15.10.3.1 External process heat 341
- 3.15.10.3.2 Clean Syngas Production 341
- 3.15.10.3.3 Nuclear power 342
- 3.15.10.3.4 SOEC and SOFC cells 342
- 3.15.10.3.4.1 Tubular cells 343
- 3.15.10.3.4.2 Planar cells 343
- 3.15.10.3.5 SOEC Electrolyte 343
- 3.15.10.4 Costs 344
- 3.15.10.4.1 Current Cost Structure (2024-2025) 344
- 3.15.10.4.2 Levelized Cost of Hydrogen (LCOH) from SOEC 345
- 3.15.10.5 Companies 346
- 3.15.11 Other types 347
- 3.15.11.1 Overview 347
- 3.15.11.2 CO₂ electrolysis 348
- 3.15.11.2.1 Electrochemical CO₂ Reduction 349
- 3.15.11.2.2 Electrochemical CO₂ Reduction Catalysts 350
- 3.15.11.2.3 Electrochemical CO₂ Reduction Technologies 351
- 3.15.11.2.4 Low-Temperature Electrochemical CO₂ Reduction 352
- 3.15.11.2.5 High-Temperature Solid Oxide Electrolyzers 352
- 3.15.11.2.6 Cost 353
- 3.15.11.2.7 Challenges 354
- 3.15.11.2.8 Coupling H₂ and Electrochemical CO₂ 354
- 3.15.11.2.9 Products 355
- 3.15.11.3 Seawater electrolysis 356
- 3.15.11.3.1 Direct Seawater vs Brine (Chlor-Alkali) Electrolysis 356
- 3.15.11.3.2 Key Challenges & Limitations 356
- 3.15.11.4 Protonic Ceramic Electrolyzers (PCE) 358
- 3.15.11.5 Microbial Electrolysis Cells (MEC) 359
- 3.15.11.6 Photoelectrochemical Cells (PEC) 360
- 3.15.11.7 Companies 360
- 3.15.12 Costs 361
- 3.15.13 Water and land use for green hydrogen production 364
- 3.16 Hydrogen Storage and Transportation 365
- 3.16.1 Market overview 366
- 3.16.2 Hydrogen transport methods 367
- 3.16.2.1 Pipeline transportation 367
- 3.16.2.2 Road or rail transport 367
- 3.16.2.3 Maritime transportation 367
- 3.16.2.4 On-board-vehicle transport 368
- 3.16.3 Hydrogen compression, liquefaction, storage 368
- 3.16.3.1 Solid storage 368
- 3.16.3.2 Liquid storage on support 369
- 3.16.3.3 Underground storage 369
- 3.16.3.4 Subsea Hydrogen Storage 369
- 3.16.4 Market players 370
- 3.17 Hydrogen Utilization 371
- 3.17.1 Hydrogen Fuel Cells 371
- 3.17.1.1 PEM fuel cells (PEMFCs) 372
- 3.17.1.2 Solid oxide fuel cells (SOFCs) 372
- 3.17.1.3 Alternative fuel cells 372
- 3.17.2 Alternative fuel production 373
- 3.17.2.1 Solid Biofuels 373
- 3.17.2.2 Liquid Biofuels 374
- 3.17.2.3 Gaseous Biofuels 374
- 3.17.2.4 Conventional Biofuels 375
- 3.17.2.5 Advanced Biofuels 375
- 3.17.2.6 Feedstocks 376
- 3.17.2.7 Production of biodiesel and other biofuels 377
- 3.17.2.8 Renewable diesel 378
- 3.17.2.9 Biojet and sustainable aviation fuel (SAF) 379
- 3.17.2.10 Electrofuels (E-fuels, power-to-gas/liquids/fuels) 382
- 3.17.2.10.1 Hydrogen electrolysis 385
- 3.17.2.10.2 eFuel production facilities, current and planned 387
- 3.17.3 Hydrogen Vehicles 391
- 3.17.3.1 Market overview 391
- 3.17.4 Aviation 393
- 3.17.4.1 Market overview 393
- 3.17.5 Ammonia production 393
- 3.17.5.1 Market overview 393
- 3.17.5.2 Decarbonisation of ammonia production 395
- 3.17.5.3 Green ammonia synthesis methods 397
- 3.17.5.3.1 Haber-Bosch process 397
- 3.17.5.3.2 Biological nitrogen fixation 398
- 3.17.5.3.3 Electrochemical production 398
- 3.17.5.3.4 Chemical looping processes 398
- 3.17.5.4 Green Ammonia Production Costs 398
- 3.17.5.5 Blue ammonia 399
- 3.17.5.5.1 Blue ammonia projects 399
- 3.17.5.6 Chemical energy storage 400
- 3.17.5.6.1 Ammonia fuel cells 400
- 3.17.5.6.2 Marine fuel 401
- 3.17.6 Methanol production 404
- 3.17.6.1 Market overview 404
- 3.17.6.2 Methanol-to gasoline technology 404
- 3.17.6.2.1 Production processes 405
- 3.17.6.2.1.1 Anaerobic digestion 406
- 3.17.6.2.1.2 Biomass gasification 406
- 3.17.6.2.1.3 Power to Methane 407
- 3.17.6.2.1 Production processes 405
- 3.17.7 Steelmaking 408
- 3.17.7.1 Market overview 408
- 3.17.7.2 Comparative analysis 411
- 3.17.7.3 Hydrogen Direct Reduced Iron (DRI) 412
- 3.17.8 Power & heat generation 413
- 3.17.8.1 Market overview 413
- 3.17.8.1.1 Power generation 413
- 3.17.8.1.2 Heat Generation 413
- 3.17.8.1 Market overview 413
- 3.17.9 Maritime 414
- 3.17.9.1 Market overview 414
- 3.17.10 Fuel cell trains 415
- 3.17.10.1 Market overview 415
- 3.17.1 Hydrogen Fuel Cells 371
- 3.18 Company Profiles 416 (145 company profiles)
4 CARBON CAPTURE AND STORAGE 524
- 4.1 Main sources of carbon dioxide emissions 524
- 4.2 CO2 as a commodity 525
- 4.3 Meeting climate targets 528
- 4.4 Market drivers and trends 529
- 4.5 The current market and future outlook 529
- 4.6 CCUS investments 530
- 4.6.1 Venture Capital Funding 530
- 4.6.1.1 2010-2024 531
- 4.6.1.2 CCUS VC deals 2022-2025 532
- 4.6.1 Venture Capital Funding 530
- 4.7 Government CCUS initiatives and policy environment 535
- 4.7.1 North America 536
- 4.7.2 Europe 537
- 4.7.3 Asia 538
- 4.7.3.1 Japan 538
- 4.7.3.2 Singapore 538
- 4.7.3.3 China 538
- 4.8 Market map 540
- 4.9 Commercial CCUS facilities and projects 543
- 4.9.1 Facilities 543
- 4.9.1.1 Operational 543
- 4.9.1.2 Under development/construction 546
- 4.9.1 Facilities 543
- 4.10 Economics of CCUS projects 552
- 4.10.1 CAPEX Reduction Strategies 552
- 4.10.2 OPEX Reduction Approaches 552
- 4.10.3 Emerging Technology Solutions 552
- 4.11 CCUS Value Chain 553
- 4.12 Key market barriers for CCUS 555
- 4.13 CCUS and the energy trilemma 555
- 4.14 Growth markets for CUS 556
- 4.15 Carbon pricing 557
- 4.15.1 Compliance Carbon Pricing Mechanisms 558
- 4.15.2 Alternative to Carbon Pricing: 45Q Tax Credits 559
- 4.15.3 Business models 561
- 4.15.3.1 Full chain 562
- 4.15.3.2 Networks and hub model 562
- 4.15.3.3 Partial-chain 563
- 4.15.3.4 Carbon dioxide utilization business model 563
- 4.15.4 The European Union Emission Trading Scheme (EU ETS) 564
- 4.15.5 Carbon Pricing in the US 565
- 4.15.6 Carbon Pricing in China 565
- 4.15.7 Voluntary Carbon Markets 566
- 4.15.8 Challenges with Carbon Pricing 567
- 4.16 Global market forecasts 568
- 4.16.1 CCUS capture capacity forecast by end point 568
- 4.16.2 Capture capacity by region to 2046, Mtpa 569
- 4.16.3 Revenues 570
- 4.16.4 CCUS capacity forecast by capture type 570
- 4.16.5 Cost projections 2025-2046 571
- 4.16.6 Carbon Capture 575
- 4.16.6.1 Source Characterization 576
- 4.16.6.2 Purification 576
- 4.16.6.3 CO2 capture technologies 577
- 4.16.7 Carbon Utilization 580
- 4.16.7.1 CO2 utilization pathways 581
- 4.16.8 Carbon storage 582
- 4.16.8.1 Passive storage 582
- 4.16.8.2 Enhanced oil recovery 583
- 4.17 Transporting CO2 583
- 4.17.1 Methods of CO2 transport 583
- 4.17.1.1 Pipeline 585
- 4.17.1.2 Ship 585
- 4.17.1.3 Road 585
- 4.17.1.4 Rail 586
- 4.17.2 Safety 586
- 4.17.1 Methods of CO2 transport 583
- 4.18 Costs 587
- 4.18.1 Cost of CO2 transport 588
- 4.19 Carbon credits 590
- 4.20 Life Cycle Assessment (LCA) of CCUS Technologies 592
- 4.21 Environmental Impact Assessment 593
- 4.22 Social acceptance and public perception 594
- 4.23 Fate of CO2 595
- 4.24 Carbon Dioxide Capture 595
- 4.24.1 Historical CO2 capture 595
- 4.24.2 CO₂ capture technologies 596
- 4.24.3 Maturity of technologies 599
- 4.24.4 Technology selection 600
- 4.24.5 Capture Percentages 603
- 4.24.5.1 >90% capture rate 603
- 4.24.5.2 99% capture rate 605
- 4.24.6 CO2 capture agent performance 607
- 4.24.7 Energy Consumption 608
- 4.24.8 TRL 610
- 4.24.9 Global Pipeline of Carbon Capture Facilities-Current and PLanned 611
- 4.24.10 CO2 capture from point sources 612
- 4.24.10.1 Energy Availability and Costs 615
- 4.24.10.2 Power plants with CCUS 615
- 4.24.10.3 Transportation 616
- 4.24.10.4 Global point source CO2 capture capacities 616
- 4.24.10.5 By source 617
- 4.24.10.6 Blue hydrogen 618
- 4.24.10.6.1 Steam-methane reforming (SMR) 619
- 4.24.10.6.2 Autothermal reforming (ATR) 619
- 4.24.10.6.3 Partial oxidation (POX) 620
- 4.24.10.6.4 Sorption Enhanced Steam Methane Reforming (SE-SMR) 621
- 4.24.10.6.5 Pre-Combustion vs. Post-Combustion carbon capture 622
- 4.24.10.6.6 Blue hydrogen projects 623
- 4.24.10.6.7 Costs 623
- 4.24.10.6.8 Market players 624
- 4.24.10.7 Carbon capture in cement 625
- 4.24.10.7.1 CCUS Projects 626
- 4.24.10.7.2 Carbon capture technologies 627
- 4.24.10.7.3 Costs 628
- 4.24.10.7.4 Challenges 629
- 4.24.10.8 Maritime carbon capture 629
- 4.24.11 Main carbon capture processes 630
- 4.24.11.1 Materials 630
- 4.24.11.2 Natural Gas Sweetening 631
- 4.24.11.3 Post-combustion 632
- 4.24.11.3.1 Chemicals/Solvents 633
- 4.24.11.3.2 Amine-based post-combustion CO₂ absorption 636
- 4.24.11.3.3 Physical absorption solvents 638
- 4.24.11.3.4 Emerging Solvents for Carbon Capture 640
- 4.24.11.3.5 Chilled Ammonia Process (CAP) 641
- 4.24.11.3.6 Molten Borates 642
- 4.24.11.3.7 Costs 642
- 4.24.11.3.8 Alternatives to Solvent-Based Carbon Capture 643
- 4.24.11.4 Oxy-fuel combustion 644
- 4.24.11.4.1 Oxyfuel CCUS cement projects 645
- 4.24.11.4.2 Chemical Looping-Based Capture 646
- 4.24.11.5 Liquid or supercritical CO2: Allam-Fetvedt Cycle 647
- 4.24.11.6 Pre-combustion 648
- 4.24.12 Carbon separation technologies 649
- 4.24.12.1 Absorption capture 650
- 4.24.12.2 Adsorption capture 654
- 4.24.12.2.1 Solid sorbent-based CO₂ separation 655
- 4.24.12.2.2 Metal organic framework (MOF) adsorbents 657
- 4.24.12.2.3 Zeolite-based adsorbents 657
- 4.24.12.2.4 Solid amine-based adsorbents 657
- 4.24.12.2.5 Carbon-based adsorbents 658
- 4.24.12.2.6 Polymer-based adsorbents 659
- 4.24.12.2.7 Solid sorbents in pre-combustion 659
- 4.24.12.2.8 Sorption Enhanced Water Gas Shift (SEWGS) 660
- 4.24.12.2.9 Solid sorbents in post-combustion 661
- 4.24.12.3 Membranes 663
- 4.24.12.3.1 Membrane-based CO₂ separation 664
- 4.24.12.3.2 Gas Separation Membranes 667
- 4.24.12.3.3 Post-combustion CO₂ capture 668
- 4.24.12.3.4 Facilitated transport membranes 668
- 4.24.12.3.5 Pre-combustion capture 669
- 4.24.12.3.6 Advanced membrane materials 670
- 4.24.12.3.6.1 Graphene-based membranes 671
- 4.24.12.3.6.2 Metal-organic framework (MOF) membranes 671
- 4.24.12.3.7 Membranes for Direct Air Capture 672
- 4.24.12.4 Liquid or supercritical CO2 (Cryogenic) capture 673
- 4.24.12.5 Calcium Looping 676
- 4.24.12.5.1 Calix Advanced Calciner 676
- 4.24.12.6 Other technologies 677
- 4.24.12.6.1 LEILAC process 677
- 4.24.12.6.2 CO₂ capture with Solid Oxide Fuel Cells (SOFCs) 678
- 4.24.12.6.3 CO₂ capture with Molten Carbonate Fuel Cells (MCFCs) 679
- 4.24.12.6.4 Microalgae Carbon Capture 679
- 4.24.12.7 Comparison of key separation technologies 681
- 4.24.12.8 Technology readiness level (TRL) of gas separation technologies 682
- 4.24.13 Opportunities and barriers 682
- 4.24.14 Costs of CO2 capture 684
- 4.24.15 CO2 capture capacity 685
- 4.24.16 Direct air capture (DAC) 687
- 4.24.16.1 Technology description 687
- 4.24.16.1.1 Sorbent-based CO2 Capture 687
- 4.24.16.1.2 Solvent-based CO2 Capture 687
- 4.24.16.1.3 DAC Solid Sorbent Swing Adsorption Processes 688
- 4.24.16.1.4 Electro-Swing Adsorption (ESA) of CO2 for DAC 688
- 4.24.16.1.5 Solid and liquid DAC 689
- 4.24.16.2 Advantages of DAC 691
- 4.24.16.3 Deployment 691
- 4.24.16.4 Point source carbon capture versus Direct Air Capture 692
- 4.24.16.5 Technologies 693
- 4.24.16.5.1 Solid sorbents 695
- 4.24.16.5.2 Liquid sorbents 697
- 4.24.16.5.3 Liquid solvents 698
- 4.24.16.5.4 Airflow equipment integration 698
- 4.24.16.5.5 Passive Direct Air Capture (PDAC) 698
- 4.24.16.5.6 Direct conversion 699
- 4.24.16.5.7 Co-product generation 699
- 4.24.16.5.8 Low Temperature DAC 699
- 4.24.16.5.9 Regeneration methods 699
- 4.24.16.6 Electricity and Heat Sources 700
- 4.24.16.7 Commercialization and plants 700
- 4.24.16.8 Metal-organic frameworks (MOFs) in DAC 701
- 4.24.16.9 DAC plants and projects-current and planned 702
- 4.24.16.10 Capacity forecasts 704
- 4.24.16.11 Costs 705
- 4.24.16.12 Market challenges for DAC 712
- 4.24.16.13 Market prospects for direct air capture 713
- 4.24.16.14 Players and production 715
- 4.24.16.15 Co2 utilization pathways 716
- 4.24.16.16 Markets for Direct Air Capture and Storage (DACCS) 718
- 4.24.16.16.1 Fuels 719
- 4.24.16.16.1.1 Overview 719
- 4.24.16.16.1.2 Production routes 721
- 4.24.16.16.1.3 Methanol 721
- 4.24.16.16.1.4 Algae based biofuels 723
- 4.24.16.16.1.5 CO₂-fuels from solar 724
- 4.24.16.16.1.6 Companies 726
- 4.24.16.16.1.7 Challenges 728
- 4.24.16.16.2 Chemicals, plastics and polymers 728
- 4.24.16.16.2.1 Overview 728
- 4.24.16.16.2.2 Scalability 729
- 4.24.16.16.2.3 Plastics and polymers 730
- 4.24.16.16.2.3.1 CO2 utilization products 731
- 4.24.16.16.2.4 Urea production 732
- 4.24.16.16.2.5 Inert gas in semiconductor manufacturing 732
- 4.24.16.16.2.6 Carbon nanotubes 732
- 4.24.16.16.2.7 Companies 732
- 4.24.16.16.3 Construction materials 734
- 4.24.16.16.3.1 Overview 734
- 4.24.16.16.3.2 CCUS technologies 736
- 4.24.16.16.3.3 Carbonated aggregates 738
- 4.24.16.16.3.4 Additives during mixing 739
- 4.24.16.16.3.5 Concrete curing 739
- 4.24.16.16.3.6 Costs 740
- 4.24.16.16.3.7 Companies 740
- 4.24.16.16.3.8 Challenges 742
- 4.24.16.16.4 CO2 Utilization in Biological Yield-Boosting 742
- 4.24.16.16.4.1 Overview 742
- 4.24.16.16.4.2 Applications 742
- 4.24.16.16.4.2.1 Greenhouses 742
- 4.24.16.16.4.2.2 Algae cultivation 742
- 4.24.16.16.4.2.3 Microbial conversion 743
- 4.24.16.16.4.3 Companies 745
- 4.24.16.16.5 Food and feed production 745
- 4.24.16.16.6 CO₂ Utilization in Enhanced Oil Recovery 746
- 4.24.16.16.6.1 Overview 746
- 4.24.16.16.6.1.1 Process 747
- 4.24.16.16.6.1.2 CO₂ sources 747
- 4.24.16.16.6.2 CO₂-EOR facilities and projects 747
- 4.24.16.16.6.1 Overview 746
- 4.24.16.16.1 Fuels 719
- 4.24.16.1 Technology description 687
- 4.24.17 Hybrid Capture Systems 750
- 4.24.18 Artificial Intelligence in Carbon Capture 750
- 4.24.19 Integration with Renewable Energy Systems 751
- 4.24.20 Mobile Carbon Capture Solutions 752
- 4.24.21 Carbon Capture Retrofitting 753
- 4.24.22 Carbon Capture in Industry 754
- 4.24.22.1 Cement 754
- 4.24.22.2 Iron and Steel 756
- 4.24.22.2.1 Post-combustion capture for BF-BOF processes 757
- 4.24.22.2.2 Pre-Combustion Carbon Capture for Ironmaking 758
- 4.24.22.2.3 Gas Recycling and Oxyfuel Combustion for Ironmaking 759
- 4.24.22.2.4 Direct reduced iron (DRI) production 760
- 4.24.22.3 Power Generation 762
- 4.24.22.3.1 Power plants with carbon capture systems 763
- 4.24.22.3.2 Coal Power Generation 763
- 4.24.22.3.3 Gas Power Generation 763
- 4.24.22.3.3.1 Gas Power CCS for Data Centers 765
- 4.24.22.3.4 Power sector CCUS cost 765
- 4.25 Carbon Dioxide Removal 766
- 4.25.1 Conventional CDR on land 768
- 4.25.1.1 Wetland and peatland restoration 768
- 4.25.1.2 Cropland, grassland, and agroforestry 768
- 4.25.2 Technological CDR Solutions 769
- 4.25.3 Main CDR methods 770
- 4.25.4 Novel CDR methods 771
- 4.25.5 Value chain 773
- 4.25.6 Deployment of carbon dioxide removal technologies 775
- 4.25.7 Technology Readiness Level (TRL): Carbon Dioxide Removal Methods 776
- 4.25.8 Carbon Credits 777
- 4.25.8.1 Description 777
- 4.25.8.2 Carbon pricing 777
- 4.25.8.3 Carbon Removal vs Carbon Avoidance Offsetting 779
- 4.25.8.4 Carbon credit certification 779
- 4.25.8.5 Carbon registries 780
- 4.25.8.6 Carbon credit quality 781
- 4.25.8.7 Voluntary Carbon Credits 781
- 4.25.8.7.1 Definition 781
- 4.25.8.7.2 Purchasing 783
- 4.25.8.7.3 Key Market Players and Projects 785
- 4.25.8.7.4 Pricing 787
- 4.25.8.8 Compliance Carbon Credits 789
- 4.25.8.8.1 Definition 789
- 4.25.8.8.2 Market players 789
- 4.25.8.8.3 Pricing 789
- 4.25.8.9 Durable carbon dioxide removal (CDR) credits 790
- 4.25.8.10 Corporate commitments 792
- 4.25.8.11 Increasing government support and regulations 792
- 4.25.8.12 Advancements in carbon offset project verification and monitoring 793
- 4.25.8.13 Potential for blockchain technology in carbon credit trading 793
- 4.25.8.14 Buying and Selling Carbon Credits 794
- 4.25.8.14.1 Carbon credit exchanges and trading platforms 794
- 4.25.8.14.2 Over-the-counter (OTC) transactions 795
- 4.25.8.14.3 Pricing mechanisms and factors affecting carbon credit prices 796
- 4.25.8.15 Certification 796
- 4.25.8.16 Challenges and risks 797
- 4.25.9 Monitoring, reporting, and verification 798
- 4.25.10 Government policies 799
- 4.25.11 Bioenergy with Carbon Removal and Storage (BiCRS) 800
- 4.25.11.1 Feedstocks 801
- 4.25.11.2 BiCRS Conversion Pathways 801
- 4.25.12 BECCS 804
- 4.25.12.1 Technology overview 804
- 4.25.12.1.1 Point Source Capture Technologies for BECCS 806
- 4.25.12.1.2 Energy efficiency 806
- 4.25.12.1.3 Heat generation 806
- 4.25.12.1.4 Waste-to-Energy 807
- 4.25.12.1.5 Blue Hydrogen Production 807
- 4.25.12.2 Biomass conversion 808
- 4.25.12.3 CO₂ capture technologies 808
- 4.25.12.4 BECCS facilities 810
- 4.25.12.5 Cost analysis 811
- 4.25.12.6 BECCS carbon credits 812
- 4.25.12.7 Sustainability 812
- 4.25.12.8 Challenges 812
- 4.25.12.1 Technology overview 804
- 4.25.13 Mineralization-based CDR 814
- 4.25.13.1 Overview 814
- 4.25.13.2 Storage in CO₂-Derived Concrete 816
- 4.25.13.3 Oxide Looping 817
- 4.25.13.4 Enhanced Weathering 818
- 4.25.13.4.1 Overview 818
- 4.25.13.4.2 Benefits 818
- 4.25.13.4.3 Monitoring, Reporting, and Verification (MRV) 819
- 4.25.13.4.4 Applications 819
- 4.25.13.4.5 Commercial activity and companies 820
- 4.25.13.4.6 Challenges and Risks 822
- 4.25.13.5 Cost analysis 823
- 4.25.13.6 SWOT analysis 823
- 4.25.14 Afforestation/Reforestation 824
- 4.25.14.1 Overview 824
- 4.25.14.2 Carbon dioxide removal methods 825
- 4.25.14.2.1 Nature-based CDR 825
- 4.25.14.2.2 Land-based CDR 826
- 4.25.14.3 Technologies 827
- 4.25.14.3.1 Remote Sensing 827
- 4.25.14.3.2 Drone technology and robotics 827
- 4.25.14.3.3 Automated forest fire detection systems 828
- 4.25.14.3.4 AI/ML 828
- 4.25.14.3.5 Genetics 829
- 4.25.14.4 Trends and Opportunities 829
- 4.25.14.5 Challenges and Risks 830
- 4.25.14.5.1 SWOT analysis 830
- 4.25.14.5.2 Soil carbon sequestration (SCS) 831
- 4.25.14.5.2.1 Overview 831
- 4.25.14.5.2.2 Practices 832
- 4.25.14.5.2.3 Measuring and Verifying 833
- 4.25.14.5.2.4 Trends and Opportunities 835
- 4.25.14.5.2.5 Carbon credits 835
- 4.25.14.5.2.6 Challenges and Risks 836
- 4.25.14.5.2.7 SWOT analysis 837
- 4.25.14.5.3 Biochar 838
- 4.25.14.5.3.1 What is biochar? 838
- 4.25.14.5.3.2 Carbon sequestration 840
- 4.25.14.5.3.3 Properties of biochar 840
- 4.25.14.5.3.4 Feedstocks 843
- 4.25.14.5.3.5 Production processes 843
- 4.25.14.5.3.5.1 Sustainable production 844
- 4.25.14.5.3.5.2 Pyrolysis 845
- 4.25.14.5.3.5.3 Gasification 847
- 4.25.14.5.3.5.4 Hydrothermal carbonization (HTC) 847
- 4.25.14.5.3.5.5 Torrefaction 847
- 4.25.14.5.3.5.6 Equipment manufacturers 848
- 4.25.14.5.3.6 Biochar pricing 849
- 4.25.14.5.3.7 Biochar carbon credits 850
- 4.25.14.5.3.7.1 Overview 850
- 4.25.14.5.3.7.2 Removal and reduction credits 850
- 4.25.14.5.3.7.3 The advantage of biochar 850
- 4.25.14.5.3.7.4 Prices 850
- 4.25.14.5.3.7.5 Buyers of biochar credits 851
- 4.25.14.5.3.7.6 Competitive materials and technologies 851
- 4.25.14.5.3.8 Bio-oil based CDR 852
- 4.25.14.5.3.9 Biomass burial for CO₂ removal 853
- 4.25.14.5.3.10 Bio-based construction materials for CDR 854
- 4.25.14.5.3.11 SWOT analysis 855
- 4.25.15 Ocean-based CDR 856
- 4.25.15.1 Overview 856
- 4.25.15.2 CO₂ capture from seawater 857
- 4.25.15.3 Ocean fertilisation 858
- 4.25.15.3.1 Biotic Methods 858
- 4.25.15.3.2 Coastal blue carbon ecosystems 859
- 4.25.15.3.3 Algal Cultivation 859
- 4.25.15.3.4 Artificial Upwelling 859
- 4.25.15.4 Ocean alkalinisation 860
- 4.25.15.4.1 Electrochemical ocean alkalinity enhancement 860
- 4.25.15.4.2 Direct Ocean Capture 861
- 4.25.15.4.3 Artificial Downwelling 861
- 4.25.15.5 Monitoring, Reporting, and Verification (MRV) 862
- 4.25.15.6 Ocean-based CDR Carbon Credits 862
- 4.25.15.7 Trends and Opportunities 862
- 4.25.15.8 Ocean-based carbon credits 862
- 4.25.15.9 Cost analysis 863
- 4.25.15.10 Challenges and Risks 863
- 4.25.15.11 SWOT analysis 863
- 4.25.15.12 Companies 864
- 4.25.1 Conventional CDR on land 768
- 4.26 Company Profiles 865 (374 company profiles)
5 INDUSTRIAL HEAT DECARBONIZATION 1112
- 5.1 Market overview 1112
- 5.1.1 Industrial Heat: Current State and Decarbonization Imperative 1112
- 5.1.2 Industrial Decarbonization Incentives 1115
- 5.1.3 Technology Maturity Overview 1115
- 5.2 The Four Pillars of Industrial Heat Decarbonization Economics 1118
- 5.2.1 Electricity Cost Dynamics and Competitive Position 1118
- 5.2.2 Carbon Pricing: The Economic Game-Changer 1119
- 5.2.3 Business Model Gap: Why Industrial Heat Differs from Power Generation 1120
- 5.2.4 Temperature-Based Market Segmentation: A Strategic Framework 1121
- 5.3 Cost Competitiveness Analysis 1123
- 5.3.1 Carbon Abatement Potential 1124
- 5.4 Technologies 1125
- 5.4.1 Electric Heating 1125
- 5.4.1.1 Resistance Heating 1125
- 5.4.1.1.1 Direct Resistance 1125
- 5.4.1.1.2 Indirect Resistance 1126
- 5.4.1.1.3 Infrared Heating 1126
- 5.4.1.2 Induction Heating 1126
- 5.4.1.2.1 High-Frequency Systems 1127
- 5.4.1.2.2 Medium-Frequency Systems 1127
- 5.4.1.2.3 Low-Frequency Systems 1128
- 5.4.1.3 Microwave Heating 1128
- 5.4.1.3.1 Single-Mode Systems 1128
- 5.4.1.3.2 Multi-Mode Systems 1129
- 5.4.1.3.3 Advanced Control Systems 1129
- 5.4.1.4 Plasma Heating 1129
- 5.4.1.4.1 Thermal Plasma 1130
- 5.4.1.4.2 Non-Thermal Plasma 1131
- 5.4.1.4.3 Hybrid Plasma Systems 1131
- 5.4.1.1 Resistance Heating 1125
- 5.4.2 Heat Pumps 1132
- 5.4.2.1 High-Temperature Systems 1132
- 5.4.2.1.1 Vapor Compression 1132
- 5.4.2.1.2 Absorption Systems 1133
- 5.4.2.1.3 Hybrid Configurations 1133
- 5.4.2.2 Integration Strategies 1134
- 5.4.2.2.1 Process Integration 1134
- 5.4.2.2.2 Cascade Systems 1135
- 5.4.2.2.3 Multi-Source Integration 1135
- 5.4.2.3 Emerging Technologies 1136
- 5.4.2.3.1 Chemical Heat Pumps 1136
- 5.4.2.3.2 Magnetocaloric Systems 1136
- 5.4.2.3.3 Thermoacoustic Heat Pumps 1137
- 5.4.2.1 High-Temperature Systems 1132
- 5.4.3 Biomass Solutions 1137
- 5.4.3.1 Advanced Feedstock Processing 1138
- 5.4.3.1.1 Torrefaction 1138
- 5.4.3.1.2 Pelletization 1139
- 5.4.3.1.3 Gasification 1139
- 5.4.3.2 Combustion Technologies 1140
- 5.4.3.2.1 Fluidized Bed Systems 1140
- 5.4.3.2.2 Grate Firing Systems 1141
- 5.4.3.2.3 Pulverized Biomass 1142
- 5.4.3.3 Emerging Biomass Technologies 1143
- 5.4.3.3.1 Supercritical Water Gasification 1143
- 5.4.3.3.2 Plasma-Assisted Combustion 1144
- 5.4.3.3.3 Chemical Looping 1145
- 5.4.3.1 Advanced Feedstock Processing 1138
- 5.4.4 Advanced and Emerging Technologies 1145
- 5.4.4.1 Solar Thermal 1146
- 5.4.4.1.1 Concentrated Solar Power 1146
- 5.4.4.1.2 Solar-Hydrogen Hybrid Systems 1147
- 5.4.4.2 Geothermal 1148
- 5.4.4.2.1 Deep Geothermal 1149
- 5.4.4.2.2 Enhanced Geothermal Systems 1149
- 5.4.4.3 Novel Heat Storage 1150
- 5.4.4.3.1 Thermochemical Storage 1150
- 5.4.4.3.2 Phase Change Materials 1151
- 5.4.4.3.3 Molten Salt Systems 1151
- 5.4.4.4 Artificial Intelligence and Digital Technologies 1151
- 5.4.4.4.1 Predictive Maintenance 1152
- 5.4.4.4.2 Process Optimization 1152
- 5.4.4.4.3 Digital Twins 1153
- 5.4.4.1 Solar Thermal 1146
- 5.4.1 Electric Heating 1125
- 5.5 Markets and Applications 1153
- 5.5.1 Process Industries 1153
- 5.5.1.1 Chemical Industry 1153
- 5.5.1.2 Food Processing 1154
- 5.5.1.3 Paper and Pulp 1155
- 5.5.1.4 Glass and Ceramics 1156
- 5.5.2 Metal Processing 1157
- 5.5.2.1 Steel Industry 1157
- 5.5.2.2 Aluminium Production 1158
- 5.5.2.3 Other Metals 1158
- 5.5.3 Building Materials 1159
- 5.5.3.1 Cement Production 1159
- 5.5.3.2 Brick Manufacturing 1160
- 5.5.3.3 Other Materials 1160
- 5.5.1 Process Industries 1153
- 5.6 System Integration 1160
- 5.6.1 Heat Recovery Systems 1160
- 5.6.1.1 Technology Options 1161
- 5.6.1.2 Efficiency Analysis 1161
- 5.6.1.3 Implementation Strategies 1161
- 5.6.2 Process Optimization 1162
- 5.6.2.1 Energy Management 1162
- 5.6.2.2 Control Systems 1162
- 5.6.2.3 Performance Monitoring 1162
- 5.6.1 Heat Recovery Systems 1160
- 5.7 Market Analysis 1162
- 5.7.1 Cost Analysis 1162
- 5.7.2 Future Outlook 1163
- 5.8 Company profiles 1164 (39 company profiles)
6 ELECTRIFICATION OF INDUSTRIAL PROCESSES 1203
- 6.1 Grid Integration and Power Systems 1203
- 6.1.1 Grid Requirements 1203
- 6.1.1.1 Power Quality 1204
- 6.1.1.2 Capacity Planning 1206
- 6.1.1.3 Smart Grid Integration 1208
- 6.1.2 Energy Storage Systems 1209
- 6.1.2.1 Battery Storage 1209
- 6.1.2.2 Thermal Storage 1212
- 6.1.2.3 Hybrid Systems 1213
- 6.1.3 Renewable Energy Integration 1214
- 6.1.3.1 Solar PV Integration 1215
- 6.1.3.2 Wind Power Integration 1215
- 6.1.3.3 Hybrid Power Systems 1217
- 6.1.1 Grid Requirements 1203
- 6.2 Electric Process Heating 1219
- 6.2.1 Resistance Heating Systems 1220
- 6.2.1.1 Direct Resistance Heating 1220
- 6.2.1.2 Indirect Resistance Heating 1221
- 6.2.1.3 Immersion Heating 1223
- 6.2.1.4 Advanced Control Systems 1224
- 6.2.2 Induction Technology 1225
- 6.2.2.1 High-Frequency Systems 1225
- 6.2.2.2 Medium-Frequency Systems 1226
- 6.2.2.3 Low-Frequency Systems 1228
- 6.2.2.4 Advanced Power Supply 1229
- 6.2.3 Infrared Heating 1230
- 6.2.3.1 Short-wave Systems 1231
- 6.2.3.2 Medium-wave Systems 1232
- 6.2.3.3 Long-wave Systems 1233
- 6.2.3.4 Hybrid Solutions 1234
- 6.2.4 Dielectric Heating 1235
- 6.2.4.1 Microwave Systems 1235
- 6.2.4.2 Radio Frequency Systems 1236
- 6.2.4.3 Advanced Control 1237
- 6.2.5 Plasma Systems 1239
- 6.2.5.1 Thermal Plasma 1240
- 6.2.5.2 Non-Thermal Plasma 1241
- 6.2.5.3 Hybrid Plasma Systems 1242
- 6.2.1 Resistance Heating Systems 1220
- 6.3 Electrochemical Processes 1243
- 6.3.1 Advanced Electrolysis Systems 1243
- 6.3.1.1 Alkaline Electrolysis 1244
- 6.3.1.2 PEM Electrolysis 1245
- 6.3.1.3 Solid Oxide Electrolysis 1246
- 6.3.2 Electrochemical Reactors 1247
- 6.3.2.1 Flow Reactors 1248
- 6.3.2.2 Batch Reactors 1249
- 6.3.2.3 Novel Designs 1250
- 6.3.3 Membrane Technologies 1252
- 6.3.3.1 Ion Exchange Membranes 1253
- 6.3.3.2 Ceramic Membranes 1254
- 6.3.3.3 Composite Membranes 1255
- 6.3.1 Advanced Electrolysis Systems 1243
- 6.4 Electric Motors and Drives 1257
- 6.4.1 Advanced Motor Technologies 1257
- 6.4.1.1 Permanent Magnet Motors 1258
- 6.4.1.2 Synchronous Reluctance Motors 1259
- 6.4.1.3 High-Speed Motors 1259
- 6.4.1 Advanced Motor Technologies 1257
- 6.5 Emerging Technologies 1260
- 6.5.1 Digital Twin Technologies 1260
- 6.5.1.1 Process Modeling 1261
- 6.5.1.2 Real-time Optimization 1262
- 6.5.2 AI and Machine Learning 1262
- 6.5.2.1 Predictive Maintenance 1263
- 6.5.2.2 Process Optimization 1264
- 6.5.2.3 Energy Management 1264
- 6.5.3 Novel Heating Technologies 1265
- 6.5.3.1 Ultrasonic Heating 1266
- 6.5.3.2 Electron Beam Processing 1267
- 6.5.3.3 Laser Processing 1268
- 6.5.1 Digital Twin Technologies 1260
- 6.6 Applications 1269
- 6.6.1 Chemical Industry 1269
- 6.6.1.1 Process Electrification 1269
- 6.6.1.2 Energy Integration 1270
- 6.6.2 Metal Processing 1270
- 6.6.2.1 Melting and Casting 1271
- 6.6.2.2 Heat Treatment 1272
- 6.6.2.3 Surface Processing 1272
- 6.6.3 Food and Beverage 1273
- 6.6.3.1 Heating Processes 1273
- 6.6.3.2 Cooling Systems 1274
- 6.6.3.3 Process Integration 1275
- 6.6.4 Mining and Minerals 1276
- 6.6.4.1 Equipment Electrification 1277
- 6.6.4.2 Process Conversion 1278
- 6.6.1 Chemical Industry 1269
- 6.7 Company profiles 1280 (126 company profiles)
7 CIRCULAR ECONOMY SOLUTIONS 1409
- 7.1 Advanced Sorting and Detection Technologies 1409
- 7.1.1 Artificial Intelligence and Machine Learning 1409
- 7.1.2 Computer Vision Systems 1409
- 7.1.3 Deep Learning Algorithms 1410
- 7.1.4 Real-time Sorting 1411
- 7.2 Spectroscopic Technologies 1411
- 7.2.1 NIR Spectroscopy 1411
- 7.2.2 Raman Spectroscopy 1412
- 7.2.3 X-ray Technologies 1413
- 7.2.4 Robotic Sorting Systems 1413
- 7.2.5 Automated Processing Lines 1414
- 7.2.6 Quality Control Systems 1415
- 7.3 Recycling Technologies 1416
- 7.3.1 Pyrolysis 1416
- 7.3.1.1 Non-catalytic 1417
- 7.3.1.2 Catalytic 1418
- 7.3.1.2.1 Polystyrene pyrolysis 1419
- 7.3.1.2.2 Pyrolysis for production of bio fuel 1420
- 7.3.1.2.3 Used tires pyrolysis 1424
- 7.3.1.2.3.1 Conversion to biofuel 1425
- 7.3.1.2.4 Co-pyrolysis of biomass and plastic wastes 1426
- 7.3.1.3 Companies and capacities 1426
- 7.3.2 Gasification 1427
- 7.3.2.1 Technology overview 1427
- 7.3.2.1.1 Syngas conversion to methanol 1428
- 7.3.2.1.2 Biomass gasification and syngas fermentation 1431
- 7.3.2.1.3 Biomass gasification and syngas thermochemical conversion 1431
- 7.3.2.2 Companies and capacities (current and planned) 1432
- 7.3.2.1 Technology overview 1427
- 7.3.3 Dissolution 1433
- 7.3.3.1 Technology overview 1433
- 7.3.3.2 Companies and capacities (current and planned) 1434
- 7.3.4 Depolymerisation 1435
- 7.3.4.1 Hydrolysis 1436
- 7.3.4.1.1 Technology overview 1436
- 7.3.4.1.2 SWOT analysis 1438
- 7.3.4.2 Enzymolysis 1438
- 7.3.4.2.1 Technology overview 1438
- 7.3.4.2.2 SWOT analysis 1439
- 7.3.4.3 Methanolysis 1440
- 7.3.4.3.1 Technology overview 1440
- 7.3.4.3.2 SWOT analysis 1440
- 7.3.4.4 Glycolysis 1441
- 7.3.4.4.1 Technology overview 1441
- 7.3.4.4.2 SWOT analysis 1443
- 7.3.4.5 Aminolysis 1444
- 7.3.4.5.1 Technology overview 1444
- 7.3.4.5.2 SWOT analysis 1444
- 7.3.4.6 Companies and capacities (current and planned) 1444
- 7.3.4.1 Hydrolysis 1436
- 7.3.5 Other advanced chemical recycling technologies 1446
- 7.3.5.1 Hydrothermal cracking 1446
- 7.3.5.2 Pyrolysis with in-line reforming 1446
- 7.3.5.3 Microwave-assisted pyrolysis 1447
- 7.3.5.4 Plasma pyrolysis 1448
- 7.3.5.5 Plasma gasification 1448
- 7.3.5.6 Supercritical fluids 1449
- 7.3.5.7 Carbon fiber recycling 1449
- 7.3.5.7.1 Processes 1450
- 7.3.5.7.2 Companies 1452
- 7.3.6 Advanced recycling of thermoset materials 1453
- 7.3.6.1 Thermal recycling 1454
- 7.3.6.1.1 Energy Recovery Combustion 1454
- 7.3.6.1.2 Anaerobic Digestion 1454
- 7.3.6.1.3 Pyrolysis Processing 1455
- 7.3.6.1.4 Microwave Pyrolysis 1455
- 7.3.6.2 Solvolysis 1456
- 7.3.6.3 Catalyzed Glycolysis 1457
- 7.3.6.4 Alcoholysis and Hydrolysis 1458
- 7.3.6.5 Ionic liquids 1459
- 7.3.6.6 Supercritical fluids 1460
- 7.3.6.7 Plasma 1460
- 7.3.6.8 Companies 1461
- 7.3.6.1 Thermal recycling 1454
- 7.3.1 Pyrolysis 1416
- 7.4 Materials Recovery 1462
- 7.4.1 Critical Raw Materials 1464
- 7.4.2 Metals and minerals processed and extracted 1464
- 7.4.2.1 Copper 1464
- 7.4.2.1.1 Global copper demand and trends 1464
- 7.4.2.1.2 Markets and applications 1465
- 7.4.2.1.3 Copper extraction and recovery 1466
- 7.4.2.2 Nickel 1467
- 7.4.2.2.1 Global nickel demand and trends 1467
- 7.4.2.2.2 Markets and applications 1468
- 7.4.2.2.3 Nickel extraction and recovery 1469
- 7.4.2.3 Cobalt 1469
- 7.4.2.3.1 Global cobalt demand and trends 1470
- 7.4.2.3.2 Markets and applications 1470
- 7.4.2.3.3 Cobalt extraction and recovery 1471
- 7.4.2.4 Rare Earth Elements (REE) 1472
- 7.4.2.4.1 Global Rare Earth Elements demand and trends 1472
- 7.4.2.4.2 Markets and applications 1472
- 7.4.2.4.3 Rare Earth Elements extraction and recovery 1473
- 7.4.2.4.4 Recovery of REEs from secondary resources 1474
- 7.4.2.5 Lithium 1474
- 7.4.2.5.1 Global lithium demand and trends 1474
- 7.4.2.5.2 Markets and applications 1475
- 7.4.2.5.3 Lithium extraction and recovery 1476
- 7.4.2.6 Gold 1477
- 7.4.2.6.1 Global gold demand and trends 1477
- 7.4.2.6.2 Markets and applications 1477
- 7.4.2.6.3 Gold extraction and recovery 1478
- 7.4.2.7 Uranium 1478
- 7.4.2.7.1 Global uranium demand and trends 1478
- 7.4.2.7.2 Markets and applications 1479
- 7.4.2.7.3 Uranium extraction and recovery 1479
- 7.4.2.8 Zinc 1480
- 7.4.2.8.1 Global Zinc demand and trends 1480
- 7.4.2.8.2 Markets and applications 1480
- 7.4.2.8.3 Zinc extraction and recovery 1481
- 7.4.2.9 Manganese 1482
- 7.4.2.9.1 Global manganese demand and trends 1482
- 7.4.2.9.2 Markets and applications 1482
- 7.4.2.9.3 Manganese extraction and recovery 1483
- 7.4.2.10 Tantalum 1484
- 7.4.2.10.1 Global tantalum demand and trends 1484
- 7.4.2.10.2 Markets and applications 1484
- 7.4.2.10.3 Tantalum extraction and recovery 1485
- 7.4.2.11 Niobium 1486
- 7.4.2.11.1 Global niobium demand and trends 1486
- 7.4.2.11.2 Markets and applications 1486
- 7.4.2.11.3 Niobium extraction and recovery 1487
- 7.4.2.12 Indium 1488
- 7.4.2.12.1 Global indium demand and trends 1488
- 7.4.2.12.2 Markets and applications 1488
- 7.4.2.12.3 Indium extraction and recovery 1489
- 7.4.2.13 Gallium 1489
- 7.4.2.13.1 Global gallium demand and trends 1489
- 7.4.2.13.2 Markets and applications 1489
- 7.4.2.13.3 Gallium extraction and recovery 1490
- 7.4.2.14 Germanium 1491
- 7.4.2.14.1 Global germanium demand and trends 1491
- 7.4.2.14.2 Markets and applications 1491
- 7.4.2.14.3 Germanium extraction and recovery 1491
- 7.4.2.15 Antimony 1492
- 7.4.2.15.1 Global antimony demand and trends 1492
- 7.4.2.15.2 Markets and applications 1492
- 7.4.2.15.3 Antimony extraction and recovery 1493
- 7.4.2.16 Scandium 1494
- 7.4.2.16.1 Global scandium demand and trends 1494
- 7.4.2.16.2 Markets and applications 1494
- 7.4.2.16.3 Scandium extraction and recovery 1494
- 7.4.2.17 Graphite 1495
- 7.4.2.17.1 Global graphite demand and trends 1495
- 7.4.2.17.2 Markets and applications 1496
- 7.4.2.17.3 Graphite extraction and recovery 1497
- 7.4.2.1 Copper 1464
- 7.4.3 Recovery sources 1498
- 7.4.3.1 Primary sources 1499
- 7.4.3.2 Secondary sources 1500
- 7.4.3.2.1 Extraction 1503
- 7.4.3.2.1.1 Hydrometallurgical extraction 1505
- 7.4.3.2.1.1.1 Overview 1505
- 7.4.3.2.1.1.2 Lixiviants 1505
- 7.4.3.2.1.1.3 SWOT analysis 1506
- 7.4.3.2.1.2 Pyrometallurgical extraction 1507
- 7.4.3.2.1.2.1 Overview 1507
- 7.4.3.2.1.2.2 SWOT analysis 1507
- 7.4.3.2.1.3 Biometallurgy 1509
- 7.4.3.2.1.3.1 Overview 1509
- 7.4.3.2.1.3.2 SWOT analysis 1510
- 7.4.3.2.1.4 Ionic liquids and deep eutectic solvents 1511
- 7.4.3.2.1.4.1 Overview 1511
- 7.4.3.2.1.4.2 SWOT analysis 1513
- 7.4.3.2.1.5 Electroleaching extraction 1514
- 7.4.3.2.1.5.1 Overview 1514
- 7.4.3.2.1.5.2 SWOT analysis 1515
- 7.4.3.2.1.6 Supercritical fluid extraction 1516
- 7.4.3.2.1.6.1 Overview 1516
- 7.4.3.2.1.6.2 SWOT analysis 1516
- 7.4.3.2.1.1 Hydrometallurgical extraction 1505
- 7.4.3.2.2 Recovery 1518
- 7.4.3.2.2.1 Solvent extraction 1518
- 7.4.3.2.2.1.1 Overview 1518
- 7.4.3.2.2.1.2 Rare-Earth Element Recovery 1518
- 7.4.3.2.2.1.3 SWOT analysis 1520
- 7.4.3.2.2.2 Ion exchange recovery 1521
- 7.4.3.2.2.2.1 Overview 1521
- 7.4.3.2.2.2.2 SWOT analysis 1522
- 7.4.3.2.2.3 Ionic liquid (IL) and deep eutectic solvent (DES) recovery 1524
- 7.4.3.2.2.3.1 Overview 1524
- 7.4.3.2.2.3.2 SWOT analysis 1526
- 7.4.3.2.2.4 Precipitation 1527
- 7.4.3.2.2.4.1 Overview 1527
- 7.4.3.2.2.4.2 Coagulation and flocculation 1528
- 7.4.3.2.2.4.3 SWOT analysis 1529
- 7.4.3.2.2.5 Biosorption 1530
- 7.4.3.2.2.5.1 Overview 1530
- 7.4.3.2.2.5.2 SWOT analysis 1532
- 7.4.3.2.2.6 Electrowinning 1533
- 7.4.3.2.2.6.1 Overview 1533
- 7.4.3.2.2.6.2 SWOT analysis 1534
- 7.4.3.2.2.7 Direct materials recovery 1536
- 7.4.3.2.2.7.1 Overview 1536
- 7.4.3.2.2.7.2 Rare-earth Oxide (REO) Processing Using Molten Salt Electrolysis 1536
- 7.4.3.2.2.7.3 Rare-earth Magnet Recycling by Hydrogen Decrepitation 1537
- 7.4.3.2.2.7.4 Direct Recycling of Li-ion Battery Cathodes by Sintering 1537
- 7.4.3.2.2.7.5 SWOT analysis 1538
- 7.4.3.2.1 Extraction 1503
- 7.4.4 Metal Recovery Technologies 1541
- 7.4.4.1 Pyrometallurgy 1541
- 7.4.4.2 Hydrometallurgy 1542
- 7.4.4.3 Biometallurgy 1542
- 7.4.4.4 Supercritical Fluid Extraction 1543
- 7.4.4.5 Electrokinetic Separation 1543
- 7.4.4.6 Mechanochemical Processing 1544
- 7.4.5 Global market 2025-2040 1545
- 7.4.5.1 By Material Type (2025-2040) 1545
- 7.4.5.2 By Recovery Source (2025-2040) 1547
- 7.4.5.3 By Region (2025-2040) 1549
- 7.5 Company profiles 1552 (328 company profiles)
8 ENVIRONMENTAL TECHNOLOGIES 1785
- 8.1 Market Overview 1785
- 8.2 Water Treatment Technologies 1785
- 8.2.1 Advanced Membrane Systems 1785
- 8.2.1.1 Next-Generation Membranes 1786
- 8.2.1.2 Membrane Processes 1786
- 8.2.1.3 Anti-Fouling Technologies 1787
- 8.2.2 Advanced Oxidation Processes (AOP) 1788
- 8.2.2.1 Photocatalytic Systems 1788
- 8.2.2.2 Electrochemical AOPs 1789
- 8.2.3 Biological Treatment Systems 1790
- 8.2.3.1 Advanced Bioreactors 1790
- 8.2.3.2 Microbial Solutions 1791
- 8.2.3.3 Bioaugmentation 1792
- 8.2.1 Advanced Membrane Systems 1785
- 8.3 Air Quality Management 1792
- 8.3.1 Advanced Emission Control 1793
- 8.3.1.1 Particulate Matter Control 1793
- 8.3.1.2 Gas Treatment Systems 1794
- 8.3.1.3 Smart Monitoring Systems 1795
- 8.3.1 Advanced Emission Control 1793
- 8.4 Soil and Groundwater Remediation 1797
- 8.4.1 In-Situ Technologies 1797
- 8.4.1.1 Chemical Treatment 1797
- 8.4.1.2 Biological Remediation 1799
- 8.4.1 In-Situ Technologies 1797
- 8.5 Digital Environmental Technologies 1800
- 8.5.1 Environmental IoT 1801
- 8.5.1.1 Sensor Networks 1801
- 8.5.1.2 Data Integration 1802
- 8.5.1.3 Analytics Platforms 1802
- 8.5.2 AI and Machine Learning 1803
- 8.5.2.1 Predictive Monitoring 1804
- 8.5.2.2 Process Optimization 1804
- 8.5.2.3 Risk Assessment 1805
- 8.5.1 Environmental IoT 1801
- 8.6 Emerging Technologies 1806
- 8.6.1 Novel Materials 1806
- 8.6.1.1 Nanomaterials 1807
- 8.6.1.2 Bio-based Materials 1808
- 8.6.1.3 Smart Materials 1809
- 8.6.1.4 Plasma Systems 1810
- 8.6.1.5 Supercritical Fluids 1811
- 8.6.1.6 Electrochemical Processes 1811
- 8.6.1 Novel Materials 1806
- 8.7 Marketr outlook 1813
- 8.8 Company profiles 1815 (93 company profiles)
9 GREEN BUILDING TECHNOLOGIES 1873
- 9.1 Market Overview 1873
- 9.1.1 Benefits of Green Buildings 1873
- 9.1.2 Global Trends and Drivers 1873
- 9.2 Global Revenues 1875
- 9.2.1 Sustainable Materials, by type 1875
- 9.2.2 Sustainable Materials, by market 1878
- 9.2.3 Building Energy Systems 1880
- 9.2.4 Smart Building Technologies 1882
- 9.2.5 Advanced Construction Methods 1883
- 9.2.6 Regional Green Building Technology Markets 1885
- 9.3 Sustainable Construction Materials 1887
- 9.3.1 Low-carbon Concrete 1887
- 9.3.2 Sustainable Wood Products 1887
- 9.3.3 Recycled Materials 1889
- 9.3.4 Bio-based materials 1892
- 9.4 Insulation Technologies 1896
- 9.4.1 Advanced Materials 1896
- 9.4.2 Installation Methods 1897
- 9.4.3 Performance Metrics 1899
- 9.5 Smart Windows 1902
- 9.5.1 Electrochromic Glass 1902
- 9.5.2 Thermochromic Systems 1903
- 9.5.3 Integration Technologies 1903
- 9.6 Construction Methods 1906
- 9.6.1 Modular Construction 1906
- 9.6.1.1 Manufacturing Processes 1906
- 9.6.1.2 Assembly Systems 1908
- 9.6.1.3 Quality Control 1910
- 9.6.2 3D Printing 1910
- 9.6.2.1 Material Development 1910
- 9.6.2.2 Printing System 1911
- 9.6.2.3 Applications 1912
- 9.6.3 Passive Design 1913
- 9.6.3.1 Solar Optimization 1913
- 9.6.3.2 Natural Ventilation 1914
- 9.6.3.3 Thermal Mass 1914
- 9.6.1 Modular Construction 1906
- 9.7 Energy Systems 1916
- 9.7.1 Renewable Integration 1916
- 9.7.1.1 Solar PV Systems 1917
- 9.7.1.2 Heat Pumps 1918
- 9.7.1.3 Energy Storage 1918
- 9.7.2 Building Management 1919
- 9.7.2.1 Smart Controls 1920
- 9.7.2.2 Energy Monitoring 1920
- 9.7.2.3 Optimization Systems 1921
- 9.7.1 Renewable Integration 1916
- 9.8 Water Management 1923
- 9.8.1 Water Efficiency 1923
- 9.8.1.1 Low-flow Systems 1923
- 9.8.1.2 Rainwater Harvesting 1923
- 9.8.1.3 Greywater Systems 1924
- 9.8.2 Treatment Systems 1925
- 9.8.2.1 On-site Treatment 1925
- 9.8.2.2 Recycling Systems 1925
- 9.8.2.3 Monitoring Technologies 1926
- 9.8.1 Water Efficiency 1923
- 9.9 Indoor Environmental Quality 1927
- 9.9.1 Air Quality 1927
- 9.9.1.1 Ventilation Systems 1927
- 9.9.1.2 Filtration Technology 1928
- 9.9.1.3 Monitoring Systems 1929
- 9.9.2 Acoustic Management 1930
- 9.9.2.1 Sound Insulation 1930
- 9.9.2.2 Noise Control 1931
- 9.9.2.3 Design Integration 1931
- 9.9.1 Air Quality 1927
- 9.10 Materials 1933
- 9.10.1 Hemp-based Materials 1933
- 9.10.1.1 Hemp Concrete (Hempcrete) 1933
- 9.10.1.2 Hemp Fiberboard 1933
- 9.10.1.3 Hemp Insulation 1933
- 9.10.2 Mycelium-based Materials 1934
- 9.10.2.1 Insulation 1935
- 9.10.2.2 Structural Elements 1935
- 9.10.2.3 Acoustic Panels 1935
- 9.10.2.4 Decorative Elements 1936
- 9.10.3 Sustainable Concrete and Cement Alternatives 1936
- 9.10.3.1 Geopolymer Concrete 1936
- 9.10.3.2 Recycled Aggregate Concrete 1936
- 9.10.3.3 Lime-Based Materials 1937
- 9.10.3.4 Self-healing concrete 1938
- 9.10.3.4.1 Bioconcrete 1939
- 9.10.3.4.2 Fiber concrete 1940
- 9.10.3.5 Microalgae biocement 1941
- 9.10.3.6 Carbon-negative concrete 1942
- 9.10.3.7 Biomineral binders 1942
- 9.10.3.8 Clinker substitutes 1943
- 9.10.4 Natural Fiber Composites 1944
- 9.10.4.1 Types of Natural Fibers 1944
- 9.10.4.2 Properties 1944
- 9.10.4.3 Applications in Construction 1944
- 9.10.5 Cellulose nanofibers 1945
- 9.10.5.1 Sandwich composites 1945
- 9.10.5.2 Cement additives 1946
- 9.10.5.3 Pump primers 1946
- 9.10.5.4 Insulation materials 1946
- 9.10.5.5 Coatings and paints 1947
- 9.10.5.6 3D printing materials 1947
- 9.10.6 Sustainable Insulation Materials 1948
- 9.10.6.1 Types of sustainable insulation materials 1948
- 9.10.6.2 Aerogel Insulation 1949
- 9.10.6.2.1 Silica aerogels 1951
- 9.10.6.2.1.1 Properties 1951
- 9.10.6.2.1.2 Thermal conductivity 1952
- 9.10.6.2.1.3 Mechanical 1952
- 9.10.6.2.1.4 Silica aerogel precursors 1952
- 9.10.6.2.1.5 Products 1953
- 9.10.6.2.1.5.1 Monoliths 1953
- 9.10.6.2.1.5.2 Powder 1954
- 9.10.6.2.1.5.3 Granules 1954
- 9.10.6.2.1.5.4 Blankets 1955
- 9.10.6.2.1.5.5 Aerogel boards 1956
- 9.10.6.2.1.5.6 Aerogel renders 1957
- 9.10.6.2.1.6 3D printing of aerogels 1957
- 9.10.6.2.1.7 Silica aerogel from sustainable feedstocks 1958
- 9.10.6.2.1.8 Silica composite aerogels 1958
- 9.10.6.2.1.8.1 Organic crosslinkers 1959
- 9.10.6.2.1.9 Cost of silica aerogels 1959
- 9.10.6.2.2 Aerogel-like foam materials 1959
- 9.10.6.2.2.1 Properties 1960
- 9.10.6.2.2.2 Applications 1960
- 9.10.6.2.3 Metal oxide aerogels 1960
- 9.10.6.2.4 Organic aerogels 1961
- 9.10.6.2.4.1 Polymer aerogels 1961
- 9.10.6.2.5 Biobased and sustainable aerogels (bio-aerogels) 1963
- 9.10.6.2.5.1 Cellulose aerogels 1964
- 9.10.6.2.5.1.1 Cellulose nanofiber (CNF) aerogels 1965
- 9.10.6.2.5.1.2 Cellulose nanocrystal aerogels 1966
- 9.10.6.2.5.1.3 Bacterial nanocellulose aerogels 1966
- 9.10.6.2.5.2 Lignin aerogels 1966
- 9.10.6.2.5.3 Alginate aerogels 1967
- 9.10.6.2.5.4 Starch aerogels 1967
- 9.10.6.2.5.5 Chitosan aerogels 1968
- 9.10.6.2.5.1 Cellulose aerogels 1964
- 9.10.6.2.6 Carbon aerogels 1969
- 9.10.6.2.6.1 Carbon nanotube aerogels 1970
- 9.10.6.2.6.2 Graphene and graphite aerogels 1971
- 9.10.6.2.7 Additive manufacturing (3D printing) 1972
- 9.10.6.2.7.1 Carbon nitride 1973
- 9.10.6.2.7.2 Gold 1973
- 9.10.6.2.7.3 Cellulose 1973
- 9.10.6.2.7.4 Graphene oxide 1974
- 9.10.6.2.8 Hybrid aerogels 1974
- 9.10.6.2.1 Silica aerogels 1951
- 9.10.1 Hemp-based Materials 1933
- 9.11 CCUS technologies in the cement industry 1975
- 9.11.1 Products 1977
- 9.11.1.1 Carbonated aggregates 1977
- 9.11.1.2 Additives during mixing 1978
- 9.11.1.3 Carbonates from natural minerals 1979
- 9.11.1.4 Carbonates from waste 1979
- 9.11.2 Concrete curing 1980
- 9.11.3 Costs 1981
- 9.11.4 Challenges 1981
- 9.11.1 Products 1977
- 9.12 Alternative Fuels for Cement Production 1983
- 9.12.1 Overview 1983
- 9.12.2 Fossil Fuels Alternatives 1984
- 9.12.3 Companies 1985
- 9.12.4 Cement Kilns 1985
- 9.12.4.1 Fuel Switching 1985
- 9.12.4.1.1 Projects 1986
- 9.12.4.1.2 Burner Design Considerations 1987
- 9.12.4.2 Alternative Fuels for Cement Kilns 1987
- 9.12.4.2.1 Waste 1988
- 9.12.4.2.2 Biomass 1988
- 9.12.4.1 Fuel Switching 1985
- 9.12.5 Net-zero in the Cement Sector 1989
- 9.12.6 Modern cement plants 1990
- 9.12.7 Hydrogen in Cement Production 1991
- 9.12.7.1 Low-carbon hydrogen deployment in cement production 1991
- 9.12.8 Kiln electrification 1993
- 9.12.8.1 Overview 1993
- 9.12.8.2 Rotodynamic Heating Technology 1994
- 9.12.8.3 Electric Arc Plasma Technologies 1995
- 9.12.8.4 Resistive Heating 1996
- 9.12.8.5 Microwave and Induction Heating 1996
- 9.12.8.6 Carbon capture economics for cement production 1997
- 9.12.8.7 Electrifying cement plant calciners 1998
- 9.12.9 Electrochemical Cement Processing 1999
- 9.12.10 Solar power for cement production 1999
- 9.12.10.1 Concentrated Solar Power (CSP) 2000
- 9.12.10.2 CSP in Cement Production Technology 2000
- 9.13 Markets 2002
- 9.13.1 Overview 2002
- 9.13.2 Residential Buildings 2003
- 9.13.3 Commercial and Office Buildings 2004
- 9.13.4 Infrastructure 2006
- 9.14 Company Profiles 2008 (172 company profiles)
10 REFERENCES 2202
List of Tables
- Table 1. Main Routes to Green Steel. 130
- Table 2. Properties of Green steels. 131
- Table 3. CO₂ emissions from the conventional BF-BOF process. 132
- Table 4. CO₂ Reduction Technologies. 133
- Table 5. Decarbonization Technologies. 134
- Table 6. Market Drivers & Barriers Table. 136
- Table 7. Global Decarbonization Targets and Policies related to Green Steel. 137
- Table 8. Estimated cost for iron and steel industry under the Carbon Border Adjustment Mechanism (CBAM). 139
- Table 9. Hydrogen-based steelmaking technologies. 140
- Table 10. Comparison of green steel production technologies. 141
- Table 11. Advantages and disadvantages of each potential hydrogen carrier. 143
- Table 12. The CCUS Value Chain. 145
- Table 13. CCUS Project Pipeline for the Steel Sector. 146
- Table 14. Post Combustion Capture Technologies for BF-BOF Process. 147
- Table 15. Blast Furnace Gas CO₂ Capture Technologies Comparison. 148
- Table 16. Carbon Capture Technologies for Natural Gas DRI. 151
- Table 17. CCUS Business Model. 152
- Table 18. Storage Technology and Operators. 153
- Table 19. Carbon Capture Cost Comparison by Sector. 154
- Table 20. Steel Industry Carbon Credit Purchasing Trends. 156
- Table 21. CCUS Steel Sector Challenges and Opportunities. 156
- Table 22. Biochar in steel and metal. 157
- Table 23. Hydrogen blast furnace schematic. 158
- Table 24. Applications of microwave processing in green steelmaking. 162
- Table 25. Applications of additive manufacturing (AM) in steelmaking. 162
- Table 26. Technology readiness level (TRL) for key green steel production technologies. 163
- Table 27. Coatings and membranes in green steel production. 165
- Table 28. Advantages and disadvantages of green steel. 168
- Table 29. Markets and applications: green steel. 168
- Table 30. Green Steel Plants - Current and Planned Production 174
- Table 31. Summary of market growth drivers for Green steel. 179
- Table 32. Market challenges in Green steel. 180
- Table 33. Supply agreements between green steel producers and automakers. 182
- Table 34. Applications of green steel in the automotive industry. 183
- Table 35. Applications of green steel in the construction industry. 185
- Table 36. Applications of green steel in the consumer appliances industry. 187
- Table 37. Applications of green steel in machinery. 187
- Table 38. Applications of green steel in the rail industry. 189
- Table 39. Applications of green steel in the packaging industry. 190
- Table 40. Applications of green steel in the electronics industry. 191
- Table 41. Low-Emissions Steel Production Capacity 2020-2035 (Million Metric Tons). 192
- Table 42. Low-Emissions Steel Production vs. Demand 2020-2036 (Million Metric Tons) 195
- Table 43. Low-Emissions Steel Market Revenues 2020-2036. 196
- Table 44. Demand for Low-Emissions Steel by End-Use Industry 2020-2036 (Million Metric Tons). 197
- Table 45. Regional Demand for Low-Emissions Steel 2020-2036 (Million Metric Tons). 197
- Table 46. Regional Demand for Low-Emissions Steel 2020-2036, NORTH AMERICA (Million Metric Tons) 198
- Table 47. Regional Demand for Low-Emissions Steel 2020-2036, EUROPE (Million Metric Tons). 199
- Table 48. Regional Demand for Low-Emissions Steel 2020-2036, CHINA (Million Metric Tons). 200
- Table 49. Regional Demand for Low-Emissions Steel 2020-2036, ASIA-PACIFIC (excluding China) (Million Metric Tons). 201
- Table 50. Regional Demand for Low-Emissions Steel 2020-2036, MIDDLE EAST & AFRICA (Million Metric Tons). 202
- Table 51. Regional Demand for Low-Emissions Steel 2020-2036, SOUTH AMERICA (Million Metric Tons). 202
- Table 52. Key players in Green steel, location and production methods. 203
- Table 53. Hydrogen colour shades, Technology, cost, and CO2 emissions. 249
- Table 54. Main applications of hydrogen. 250
- Table 55. Overview of hydrogen production methods. 251
- Table 56. National hydrogen initiatives. 261
- Table 57. Market challenges in the hydrogen economy and production technologies. 263
- Table 58. Market map for hydrogen technology and production. 264
- Table 59. Industrial applications of hydrogen. 267
- Table 60. Hydrogen energy markets and applications. 268
- Table 61. Hydrogen production processes and stage of development. 270
- Table 62. Estimated costs of clean hydrogen production. 281
- Table 63. Global Green Hydrogen Market Revenue Projections (2024-2036) 282
- Table 64. Global Green Hydrogen Production Volume Forecast (2024-2036). 283
- Table 65. Green Hydrogen Demand by Sector (2024, 2030, 2036). 284
- Table 66. 2030 Demand (Mt H₂) - Mid-Range Scenario 284
- Table 67. 2036 Demand (Mt H₂) - Mid-Range Scenario 285
- Table 68. Regional Market Breakdown - Revenue & Volume (2030). 285
- Table 69. Regional Market Breakdown - Revenue & Volume (2036). 286
- Table 70. Electrolyzer Market Economics (2024-2036). 287
- Table 71. Green Hydrogen Price Evolution by Application (2024-2036, $/kg H₂). 288
- Table 72. Green hydrogen application markets. 289
- Table 73. Green hydrogen projects. 290
- Table 74. Traditional Hydrogen Production. 292
- Table 75. Hydrogen Production Processes. 293
- Table 76. Comparison of hydrogen types. 294
- Table 77. Characteristics of typical water electrolysis technologies 303
- Table 78. Advantages and disadvantages of water electrolysis technologies. 304
- Table 79. Classifications of Alkaline Electrolyzers. 310
- Table 80. Advantages & limitations of AWE. 310
- Table 81. Key performance characteristics of AWE. 311
- Table 82. Projected Cost Reductions for AWE. 315
- Table 83. Companies in the AWE market. 316
- Table 84. Comparison of Commercial AEM Materials. 322
- Table 85. Companies in the AMEL market. 325
- Table 86. Levelized Cost of Hydrogen (LCOH) from PEMEL, Current LCOH Range (2024-2025). 334
- Table 87. Companies in the PEMEL market. 336
- Table 88. Future Cost Projections for SOEC. 346
- Table 89. Companies in the SOEC market. 346
- Table 90. Other types of electrolyzer technologies 347
- Table 91. Electrochemical CO₂ Reduction Technologies/ 351
- Table 92. Cost Comparison of CO₂ Electrochemical Technologies. 353
- Table 93. Companies developing other electrolyzer technologies. 360
- Table 96. Market overview-hydrogen storage and transport. 366
- Table 97. Summary of different methods of hydrogen transport. 367
- Table 98. Market players in hydrogen storage and transport. 370
- Table 99. Market overview hydrogen fuel cells-applications, market players and market challenges. 371
- Table 100. Categories and examples of solid biofuel. 373
- Table 101. Comparison of biofuels and e-fuels to fossil and electricity. 375
- Table 102. Classification of biomass feedstock. 376
- Table 103. Biorefinery feedstocks. 376
- Table 104. Feedstock conversion pathways. 377
- Table 105. Biodiesel production techniques. 378
- Table 106. Advantages and disadvantages of biojet fuel 379
- Table 107. Production pathways for bio-jet fuel. 380
- Table 108. Applications of e-fuels, by type. 383
- Table 109. Overview of e-fuels. 384
- Table 110. Benefits of e-fuels. 384
- Table 111. eFuel production facilities, current and planned. 387
- Table 112. Market overview for hydrogen vehicles-applications, market players and market challenges. 392
- Table 113. Cost Components for Green ammonia, 398
- Table 114. Blue ammonia projects. 399
- Table 115. Ammonia fuel cell technologies. 400
- Table 116. Market overview of green ammonia in marine fuel. 401
- Table 117. Summary of marine alternative fuels. 402
- Table 118. Estimated costs for different types of ammonia. 403
- Table 119. Comparison of biogas, biomethane and natural gas. 406
- Table 120. Hydrogen-based steelmaking technologies. 410
- Table 121. Comparison of green steel production technologies. 411
- Table 122. Advantages and disadvantages of each potential hydrogen carrier. 413
- Table 123. Carbon Capture, Utilisation and Storage (CCUS) market drivers and trends. 529
- Table 124. Global Investment in Carbon Capture Technologies (2010-2024) 531
- Table 125. CCUS VC deals 2022-2025. 532
- Table 126. CCUS government funding and investment-10 year outlook. 535
- Table 127. Demonstration and commercial CCUS facilities in China. 538
- Table 128. Global commercial CCUS facilities-in operation. 543
- Table 129. Global commercial CCUS facilities-under development/construction. 546
- Table 130. Cost Reduction Using Proven and Emerging Technologies. 553
- Table 131. Key market barriers for CCUS. 555
- Table 132. Key compliance carbon pricing initiatives around the world. 558
- Table 133. CCUS business models: full chain, part chain, and hubs and clusters. 561
- Table 134. CCUS capture capacity forecast by CO₂ endpoint, Mtpa of CO₂, to 2046. 569
- Table 135. Capture capacity by region to 2046, Mtpa. 569
- Table 136. CCUS revenue potential for captured CO₂ offtaker, billion US $ to 2046. 570
- Table 137. CCUS capacity forecast by capture type, Mtpa of CO₂, to 2046. 570
- Table 138. Point-source CCUS capture capacity forecast by CO₂ source sector, Mtpa of CO₂, to 2046. 570
- Table 139. CCUS Cost Projections 2025-2046. 571
- Table 140. CO2 utilization and removal pathways 572
- Table 141. Approaches for capturing carbon dioxide (CO2) from point sources. 576
- Table 142. CO2 capture technologies. 577
- Table 143. Advantages and challenges of carbon capture technologies. 578
- Table 144. Overview of commercial materials and processes utilized in carbon capture. 578
- Table 145. Methods of CO2 transport. 584
- Table 146. Comparison of CO2 Transportation Methods. 586
- Table 147. Estimated capital costs for commercial-scale carbon capture. 587
- Table 148. Key Milestones in Carbon Market Development 590
- Table 149.Carbon Credit Prices by Market. 591
- Table 150. Carbon Credit Project Types. 592
- Table 151. Life Cycle Assessment of CCUS Technologies 593
- Table 152. Environmental Impact Assessment for CCUS Technologies. 593
- Table 153. Comparison of CO₂ capture technologies. 596
- Table 154. Typical conditions and performance for different capture technologies. 599
- Table 155. Conditions and Performance for Capture Technologies 600
- Table 156. Carbon Capture Technology Providers for Existing Large-Scale Projects. 602
- Table 157.Capture Percentages by technology. 604
- Table 158. Metrics for CO2 Capture Agents. 608
- Table 159. Energy consumption by technology. 609
- Table 160. Technology Readiness of Carbon capture Technologies. 610
- Table 161. Global CCUS Facilities Pipeline 611
- Table 162. PSCC technologies. 612
- Table 163. Point source examples. 613
- Table 164. Comparison of point-source CO₂ capture systems 613
- Table 165. Blue hydrogen projects. 623
- Table 166. Commercial CO₂ capture systems for blue H2. 624
- Table 167. Market players in blue hydrogen. 625
- Table 168. CCUS Projects in the Cement Sector. 626
- Table 169. Carbon capture technologies in the cement sector. 627
- Table 170. Cost and technological status of carbon capture in the cement sector. 628
- Table 171. Assessment of carbon capture materials 630
- Table 172. Chemical solvents used in post-combustion. 633
- Table 173. Comparison of key chemical solvent-based systems. 634
- Table 174. Chemical absorption solvents used in current operational CCUS point-source projects. 636
- Table 175.Amine Solvent Carbon Capture Technology Providers for Post-Combustion Capture 637
- Table 176.Comparison of key physical absorption solvents. 638
- Table 177.Physical solvents used in current operational CCUS point-source projects. 638
- Table 178. Emerging solvents for carbon capture 640
- Table 179. Emerging Solvents for Carbon Capture. 641
- Table 180. Oxygen separation technologies for oxy-fuel combustion. 644
- Table 181. Large-scale oxyfuel CCUS cement projects. 645
- Table 182. Commercially available physical solvents for pre-combustion carbon capture. 649
- Table 183. Main capture processes and their separation technologies. 649
- Table 184. Absorption methods for CO2 capture overview. 650
- Table 185. Commercially available physical solvents used in CO2 absorption. 652
- Table 186. Adsorption methods for CO2 capture overview. 654
- Table 187. Solid sorbents explored for carbon capture. 656
- Table 188. Carbon-based adsorbents for CO₂ capture. 658
- Table 189. Polymer-based adsorbents. 659
- Table 190. Solid sorbents for post-combustion CO₂ capture. 661
- Table 191. Emerging Solid Sorbent Systems. 662
- Table 192. Membrane-based methods for CO2 capture overview. 663
- Table 193. Comparison of membrane materials for CCUS 665
- Table 194. Commercial status of membranes in carbon capture 666
- Table 195. Membranes for pre-combustion capture. 670
- Table 196. Status of cryogenic CO₂ capture technologies. 674
- Table 197. Cryogenic Direct Air Capture Companies 675
- Table 198. Benefits and drawbacks of microalgae carbon capture. 680
- Table 199. Comparison of main separation technologies. 681
- Table 200. Technology readiness level (TRL) of gas separation technologies 682
- Table 201. Opportunities and Barriers by sector. 682
- Table 202. DAC technologies. 687
- Table 203. Advantages and disadvantages of DAC. 690
- Table 204. Advantages of DAC as a CO2 removal strategy. 691
- Table 205. Potential for DAC removal versus other carbon removal methods. 692
- Table 206. Companies developing airflow equipment integration with DAC. 698
- Table 207. Companies developing Passive Direct Air Capture (PDAC) technologies. 698
- Table 208. Companies developing regeneration methods for DAC technologies. 699
- Table 209. DAC companies and technologies. 701
- Table 210. Global capacity of direct air capture facilities. 702
- Table 211. DAC technology developers and production. 702
- Table 212. DAC projects in development. 704
- Table 213. DACCS carbon removal capacity forecast (million metric tons of CO₂ per year), 2024-2046, base case. 704
- Table 214. DACCS carbon removal capacity forecast (million metric tons of CO₂ per year), 2030-2046, optimistic case. 705
- Table 215. Costs summary for DAC. 706
- Table 216. Typical cost contributions of the main components of a DACCS system. 707
- Table 217. Cost estimates of DAC. 711
- Table 218. Challenges for DAC technology. 712
- Table 219. DAC companies and technologies. 715
- Table 220. Example CO2 utilization pathways. 716
- Table 221. Markets for Direct Air Capture and Storage (DACCS). 718
- Table 222. Market overview for CO2 derived fuels. 719
- Table 223. Compnaies in Methanol Production from CO2. 722
- Table 224. Microalgae products and prices. 724
- Table 225. Main Solar-Driven CO2 Conversion Approaches. 725
- Table 226. Companies in CO2-derived fuel products. 726
- Table 227. Commodity chemicals and fuels manufactured from CO2. 729
- Table 228. CO2 utilization products developed by chemical and plastic producers. 731
- Table 229. Companies in CO2-derived chemicals products. 732
- Table 230. Carbon capture technologies and projects in the cement sector 736
- Table 231. Companies in CO2 derived building materials. 740
- Table 232. Market challenges for CO2 utilization in construction materials. 742
- Table 233. Companies in CO2 Utilization in Biological Yield-Boosting. 745
- Table 234. CO2 sequestering technologies and their use in food. 746
- Table 235. Applications of CCS in oil and gas production. 746
- Table 236. AI Applications in Carbon Capture. 751
- Table 237. Renewable Energy Integration in Carbon Capture. 752
- Table 238. Mobile Carbon Capture Applications. 752
- Table 239. Carbon Capture Retrofitting. 753
- Table 240. CCUS Projects in the Cement Sector 754
- Table 241. Benchmarking Carbon Capture Technologies in the Cement Sector. 756
- Table 242. Post-combustion capture for BF-BOF processes 758
- Table 243. CCUS Project Pipeline for the Steel Sector. 760
- Table 244.Market Drivers for Carbon Dioxide Removal (CDR). 766
- Table 245. CDR versus CCUS 767
- Table 246. Status and Potential of CDR Technologies. 769
- Table 247. Main CDR methods. 770
- Table 248. Novel CDR Methods 771
- Table 249.Carbon Dioxide Removal Technology Benchmarking 772
- Table 250. CDR Value Chain. 773
- Table 251. Engineered Carbon Dioxide Removal Value Chain 774
- Table 252. Carbon pricing and carbon markets 778
- Table 253. Carbon Removal vs Emission Reduction Offsets. 779
- Table 254. Carbon Crediting Programs. 780
- Table 255. Channels for Purchasing Voluntary Carbon Credits 783
- Table 256. Voluntary Carbon Credits Trading Platforms and Exchanges. 784
- Table 257. Voluntary Carbon Credits Key Market Players and Projects. 785
- Table 258. Nature-Based Solutions Market Dynamics. 786
- Table 259. Voluntary Carbon Credits Pricing by Category and Project Type. 787
- Table 260. Price Range Analysis by Project Quality and Type: 788
- Table 261. Compliance Carbon Credits Key Market Players and Projects. 789
- Table 262. Comparison of Voluntary and Compliance Carbon Credits. 790
- Table 263. Durable Carbon Removal Buyers. 791
- Table 264. Prices of CDR Credits. 791
- Table 265. Major Corporate Carbon Credit Commitments. 792
- Table 266. Key Carbon Market Regulations and Support Mechanisms. 793
- Table 267. Carbon credit prices by company and technology. 794
- Table 268. Carbon Credit Exchanges and Trading Platforms. 795
- Table 269. OTC Carbon Market Characteristics. 795
- Table 270. Challenges and Risks. 798
- Table 271. TRL of Biomass Conversion Processes and Products by Feedstock. 800
- Table 272. BiCRS feedstocks. 801
- Table 273. BiCRS conversion pathways. 802
- Table 274. BiCRS Technological Challenges. 803
- Table 275. CO₂ capture technologies for BECCS. 808
- Table 276. Existing and planned capacity for sequestration of biogenic carbon. 810
- Table 277. Existing facilities with capture and/or geologic sequestration of biogenic CO2. 810
- Table 278. Challenges of BECCS 813
- Table 279. Ex Situ Mineralization CDR Methods. 814
- Table 280. Source Materials for Ex Situ Mineralization. 815
- Table 281. Companies in CO₂-derived Concrete. 817
- Table 282. Enhanced Weathering Applications. 819
- Table 283. Enhanced Weathering Materials and Processes. 820
- Table 284. Enhanced Weathering Companies 821
- Table 285. Trends and Opportunities in Enhanced Weathering. 822
- Table 286. Challenges and Risks in Enhanced Weathering. 822
- Table 287. Cost analysis of enhanced weathering. 823
- Table 288. Nature-based CDR approaches. 825
- Table 289. Comparison of A/R and BECCS. 826
- Table 290. Forest Carbon Removal Projects. 827
- Table 291. Companies in Robotics in A/R. 828
- Table 292. Trends and Opportunities in Afforestation/Reforestation. 829
- Table 293.Challenges and Risks in Afforestation/Reforestation. 830
- Table 294. Soil carbon sequestration practices. 832
- Table 295. Soil sampling and analysis methods. 834
- Table 296. Remote sensing and modeling techniques. 834
- Table 297. Carbon credit protocols and standards. 834
- Table 298. Trends and opportunities in soil carbon sequestration (SCS). 835
- Table 299. Key aspects of soil carbon credits. 836
- Table 300. Challenges and Risks in SCS. 836
- Table 301. Summary of key properties of biochar. 841
- Table 302. Biochar physicochemical and morphological properties 841
- Table 303. Biochar feedstocks-source, carbon content, and characteristics. 843
- Table 304. Biochar production technologies, description, advantages and disadvantages. 844
- Table 305. Comparison of slow and fast pyrolysis for biomass. 846
- Table 306. Comparison of thermochemical processes for biochar production. 848
- Table 307. Biochar production equipment manufacturers. 848
- Table 308. Competitive materials and technologies that can also earn carbon credits. 851
- Table 309. Bio-oil-based CDR pros and cons. 853
- Table 310. Ocean-based CDR methods. 856
- Table 311. Technology Readiness Level (TRL) Chart for Ocean-based CDR. 857
- Table 312. Benchmarking of Ocean-based CDR Methods. 857
- Table 313. Ocean-based CDR: Biotic Methods. 859
- Table 314. Market Players in Ocean-based CDR. 864
- Table 315. Carbon Pricing Evolution. 1114
- Table 316. Electric Heating Technology Maturity. 1116
- Table 317. Industrial Heat Pump Technology Readiness. 1117
- Table 318. COP Performance by Temperature. 1117
- Table 319. Microwave Industrial Heating Maturity. 1117
- Table 320. Plasma Technology Readiness. 1117
- Table 321. Biomass Technology Maturity Matrix. 1118
- Table 322. Hydrogen Combustion Technology Status. 1118
- Table 323. Levelized Cost of Heat by Technology (2026). 1123
- Table 324. LCOH Projections 2036. 1123
- Table 325. Abatement Cost Analysis. 1124
- Table 326. Cumulative Abatement Potential 2026-2036. 1124
- Table 327. Electric Heating Market Overview. 1125
- Table 328. Resistance Heating Applications by Temperature Range. 1125
- Table 329. Direct Resistance Technology Specifications: 1125
- Table 330. Indirect Resistance Equipment Types: 1126
- Table 331. Infrared Heating Technology Matrix. 1126
- Table 332. Induction Heating Efficiency by Frequency. 1126
- Table 333. High-Frequency Induction Specifications. 1127
- Table 334. Medium-Frequency System Performance. 1127
- Table 335. Low-Frequency Applications. 1128
- Table 336. Microwave Heating Applications in Industry 1128
- Table 337. Single-Mode System Characteristics. 1128
- Table 338. Multi-Mode System Specifications. 1129
- Table 339. Control Technology Features. 1129
- Table 340. Plasma Technology Applications. 1129
- Table 341. Plasma Technology Applications 1130
- Table 342. Cascade System Performance. 1135
- Table 343. Biomass Heat Market Projections. 1137
- Table 344. Biomass Feedstock Characteristics. 1140
- Table 345. Biomass Combustion Technologies Comparison. 1141
- Table 346. Emerging Biomass Technology Assessment. 1143
- Table 347. Solar Thermal Industrial Applications 1146
- Table 348. Geothermal Technology Applications 1148
- Table 349. EGS Technology Characteristics. 1149
- Table 350. Heat Storage Technology Comparison. 1150
- Table 351. Digital Technology Implementation Cases. 1152
- Table 352. Chemical Industry Decarbonization Trajectory. 1154
- Table 353. Food Processing Decarbonization Economics (2026). 1155
- Table 354. Paper and Pulp Decarbonization Pathway. 1155
- Table 355. Glass Industry Decarbonization Technologies. 1156
- Table 356. Steel Industry Decarbonization Market Projections. 1158
- Table 357. Cement Industry Decarbonization Pathways. 1159
- Table 358. Waste Heat Temperature Distribution. 1161
- Table 359. Global Grid Upgrade Investment (2026-2036). 1203
- Table 360. Power Quality Requirements by Industrial Process. 1204
- Table 361. Market for Power Quality Solutions (2026-2036). 1205
- Table 362. Regional Power Quality Standards Compliance. 1205
- Table 363. Industrial Load Growth Projections by Sector (2026-2036). 1206
- Table 364. Transmission and Distribution Upgrade Requirements. 1207
- Table 365. Capacity Planning Tools Market. 1207
- Table 366. Smart Grid Technology Deployment by Function. 1208
- Table 367. Communication Infrastructure Requirements. 1209
- Table 368. Battery Storage Market by Technology (2026-2036) 1210
- Table 369. Industrial Battery Storage Applications and Requirements. 1210
- Table 370. Regional Battery Storage Deployment (2026-2036). 1210
- Table 371. Battery Energy Management Systems Market. 1211
- Table 372. Thermal Storage Technology Comparison 1212
- Table 373. Industrial Thermal Storage Applications by Sector. 1212
- Table 374. Thermal Storage Market Forecast (2026-2036) 1213
- Table 375. Hybrid Storage System Configurations. 1213
- Table 376. Hybrid System Performance Metrics. 1214
- Table 377. Industrial Wind Power Deployment (2026-2036). 1215
- Table 378. Wind Turbine Technology Evolution. 1215
- Table 379. Wind Integration Requirements by Scale. 1216
- Table 380. Regional Wind Resource and Industrial Adoption. 1216
- Table 381. Hybrid System Configurations and Performance. 1217
- Table 382. Hybrid System Market Growth (2026-2036). 1218
- Table 383. Hybrid System Control and Optimization 1218
- Table 384. Economic Analysis of Hybrid Systems 1218
- Table 385. Electric Heating Technology Market Overview (2026-2036). 1219
- Table 386. Resistance Heating Market Segmentation. 1220
- Table 387. Direct Resistance Heating Applications. 1220
- Table 388. Direct Resistance Heating Equipment Market. 1221
- Table 389. Indirect Resistance Heating Technologies. 1221
- Table 390. Indirect Resistance Heating Furnace Market 1222
- Table 391. Immersion Heater Configurations. 1223
- Table 392. Immersion Heating Market by Industry. 1223
- Table 393. Control System Technologies and Capabilities. 1224
- Table 394. Control System Market Evolution 1224
- Table 395. Induction Heating Frequency Ranges and Applications. 1225
- Table 396. High-Frequency Induction Applications and Performance. 1226
- Table 397. High-Frequency System Market Analysis. 1226
- Table 398. Medium-Frequency Applications Matrix. 1227
- Table 399. Medium-Frequency Equipment Market. 1227
- Table 400. Low-Frequency System Applications and Specifications. 1228
- Table 401. Low-Frequency Market by End-Use Industry. 1228
- Table 402. Induction Power Supply Technology Comparison 1229
- Table 403. Power Supply Features and Capabilities. 1229
- Table 404. Power Supply Market Forecast 1230
- Table 405. Infrared Technology Overview and Wavelength Characteristics. 1230
- Table 406. Infrared Heating Market Segmentation (2026-2036) 1231
- Table 407. Short-Wave System Performance Characteristics 1231
- Table 408. Short-Wave Applications and Market Size 1232
- Table 409. Medium-Wave Industrial Applications 1232
- Table 410. Long-Wave System Characteristics and Performance. 1233
- Table 411. Long-Wave Market by Application. 1233
- Table 412. Hybrid System Configurations 1234
- Table 413. Hybrid System Market Analysis 1234
- Table 414. Dielectric Heating Technology Comparison 1235
- Table 415. Microwave System Specifications and Performance 1235
- Table 416. Microwave Heating Industrial Applications 1236
- Table 417. RF System Design and Capabilities 1236
- Table 418. RF Heating Market Segmentation. 1237
- Table 419. Dielectric Heating Control Technologies 1237
- Table 420. Control System Market and Adoption. 1238
- Table 421. Advanced Control Performance Improvements 1238
- Table 422. Plasma Technology Classification 1239
- Table 423. Plasma Heating Market Overview (2026-2036) 1239
- Table 424. Thermal Plasma System Types 1240
- Table 425. Thermal Plasma Industrial Applications 1240
- Table 426. Non-Thermal Plasma Technologies 1241
- Table 427. Non-Thermal Plasma Application Markets. 1241
- Table 428. Hybrid Plasma Configurations and Capabilities 1242
- Table 429. Hybrid Plasma Market Development 1242
- Table 430. Electrochemical Process Market Overview. 1243
- Table 431. Electrolysis Technology Comparison Matrix. 1244
- Table 432. Alkaline Electrolyzer Performance and Economics. 1244
- Table 433. Alkaline Electrolysis Market by Application 1244
- Table 434. PEM Electrolyzer Technology Specifications. 1245
- Table 435. PEM Electrolysis Market Development 1246
- Table 436. SOEC Technology Characteristics and Development. 1246
- Table 437. SOEC Application Opportunities and Market Potential. 1247
- Table 438. Electrochemical Reactor Market Overview. 1247
- Table 439. Flow Reactor Design Configurations. 1248
- Table 440. Flow Reactor Industrial Applications 1248
- Table 441. Flow Reactor Performance Metrics 1249
- Table 442. Batch Reactor Design Parameters. 1249
- Table 443. Batch Reactor Market Segmentation. 1250
- Table 444. Emerging Reactor Technologies 1250
- Table 445. Novel Reactor Market Development 1251
- Table 446. Novel Reactor Performance Comparison. 1252
- Table 447. Membrane Technology Market Landscape 1252
- Table 448. Ion Exchange Membrane Types and Properties. 1253
- Table 449. Ion Exchange Membrane Market by Application. 1253
- Table 450. Ceramic Membrane Material Systems. 1254
- Table 451. Ceramic Membrane Application Markets. 1254
- Table 452. Composite Membrane Architectures. 1255
- Table 453. Composite Membrane Market Development. 1256
- Table 454. Composite Membrane Performance Benchmarks. 1256
- Table 455. Industrial Motor Market Overview (2026-2036). 1257
- Table 456. Motor Technology Performance Comparison. 1257
- Table 457. Permanent Magnet Motor Market Segmentation 1258
- Table 458. Synchronous Reluctance Motor Characteristics 1259
- Table 459. High-Speed Motor Application Markets 1259
- Table 460. Emerging Technology Market Overview 1260
- Table 461. Digital Twin Implementation Levels 1261
- Table 462. Process Modeling Approaches and Capabilities 1261
- Table 463. Real-Time Optimization System Capabilities 1262
- Table 464. AI/ML Technology Application Matrix 1262
- Table 465. Predictive Maintenance Implementation Tiers 1263
- Table 466. AI-Based Process Optimization Performance 1264
- Table 467. AI Energy Management System Capabilities 1264
- Table 468. Energy Management AI Market by Industry 1265
- Table 469. Novel Heating Technology Landscape 1265
- Table 470. Ultrasonic Heating System Specifications. 1266
- Table 471. Ultrasonic Heating Application Markets. 1267
- Table 472. Electron Beam System Characteristics 1267
- Table 473. Laser Processing Technology Matrix. 1268
- Table 474. Laser Processing Industrial Market. 1268
- Table 475. Chemical Industry Electrification Overview. 1269
- Table 476. Chemical Process Heating Electrification Status 1269
- Table 477. Chemical Plant Energy Integration Opportunities. 1270
- Table 478. Metal Processing Electrification Landscape. 1271
- Table 479. Metal Melting Technology Adoption. 1271
- Table 480. Heat Treatment Electrification Market 1272
- Table 481. Surface Processing Electrification Technologies. 1272
- Table 482. Food & Beverage Electrification Overview 1273
- Table 483. Food Heating Technology Comparison. 1274
- Table 484. Industrial Food Cooling Technology Evolution. 1274
- Table 485. Cooling Application Market by Segment. 1275
- Table 486. Food Process Integration Opportunities 1275
- Table 487. Process Integration Market Analysis 1276
- Table 488. Mining & Minerals Electrification Landscape 1276
- Table 489. Mining Equipment Electrification Status 1277
- Table 490. Mining Equipment Market by Type 1278
- Table 491. Mineral Processing Electrification Opportunities 1278
- Table 492. Mineral Processing Technology Market 1279
- Table 493. Mineral Processing by Commodity 1279
- Table 494. AI/ML System Performance Metrics 1409
- Table 495. Computer Vision System Specifications 1410
- Table 496. Deep Learning Model Performance. 1411
- Table 497. NIR Spectroscopy System Specifications. 1412
- Table 498. Robotic Sorting System Performance. 1414
- Table 499. Summary of non-catalytic pyrolysis technologies. 1417
- Table 500. Summary of catalytic pyrolysis technologies. 1418
- Table 501. Summary of pyrolysis technique under different operating conditions. 1422
- Table 502. Biomass materials and their bio-oil yield. 1423
- Table 503. Biofuel production cost from the biomass pyrolysis process. 1423
- Table 504. Pyrolysis companies and plant capacities, current and planned. 1426
- Table 505. Summary of gasification technologies. 1427
- Table 506. Advanced recycling (Gasification) companies. 1432
- Table 507. Summary of dissolution technologies. 1433
- Table 508. Advanced recycling (Dissolution) companies 1434
- Table 509. Depolymerisation processes for PET, PU, PC and PA, products and yields. 1436
- Table 510. Summary of hydrolysis technologies-feedstocks, process, outputs, commercial maturity and technology developers. 1437
- Table 511. Summary of Enzymolysis technologies-feedstocks, process, outputs, commercial maturity and technology developers. 1438
- Table 512. Summary of methanolysis technologies-feedstocks, process, outputs, commercial maturity and technology developers. 1440
- Table 513. Summary of glycolysis technologies-feedstocks, process, outputs, commercial maturity and technology developers. 1441
- Table 514. Summary of aminolysis technologies. 1444
- Table 515. Advanced recycling (Depolymerisation) companies and capacities (current and planned). 1445
- Table 516. Overview of hydrothermal cracking for advanced chemical recycling. 1446
- Table 517. Overview of Pyrolysis with in-line reforming for advanced chemical recycling. 1446
- Table 518. Overview of microwave-assisted pyrolysis for advanced chemical recycling. 1447
- Table 519. Overview of plasma pyrolysis for advanced chemical recycling. 1448
- Table 520. Overview of plasma gasification for advanced chemical recycling. 1448
- Table 521. Summary of carbon fiber (CF) recycling technologies. Advantages and disadvantages. 1450
- Table 522. Retention rate of tensile properties of recovered carbon fibres by different recycling processes. 1451
- Table 523. Recycled carbon fiber producers, technology and capacity. 1452
- Table 524. Current thermoset recycling routes. 1453
- Table 525. Companies developing advanced thermoset recycing routes. 1461
- Table 526. Global Production of Critical Materials by Country (Top 10 Countries). 1463
- Table 527. Projected Demand for Critical Materials in Clean Energy Technologies (2024-2040). 1463
- Table 528. Primary global suppliers of critical raw materials. 1464
- Table 529. Markets and applications: copper. 1466
- Table 530. Technologies and Techniques for Copper Extraction and Recovery. 1466
- Table 531. Markets and applications: nickel. 1468
- Table 532. Technologies and Techniques for Nickel Extraction and Recovery. 1469
- Table 533. Markets and applications: cobalt. 1470
- Table 534. Technologies and Techniques for Cobalt Extraction and Recovery. 1471
- Table 535. Markets and applications: rare earth elements. 1472
- Table 536. Technologies and Techniques for Rare Earth Elements Extraction and Recovery. 1473
- Table 537. Markets and applications: lithium. 1475
- Table 538. Technologies and Techniques for Lithium Extraction and Recovery. 1476
- Table 539. Markets and applications: gold. 1477
- Table 540. Technologies and Techniques for Gold Extraction and Recovery. 1478
- Table 541. Markets and applications: uranium. 1479
- Table 542. Technologies and Techniques for Uranium Extraction and Recovery. 1479
- Table 543. Markets and applications: zinc. 1480
- Table 544. Zinc Extraction and Recovery Technologies. 1481
- Table 545. Markets and applications: manganese. 1483
- Table 546. Manganese Extraction and Recovery Technologies. 1483
- Table 547. Markets and applications: tantalum. 1484
- Table 548. Tantalum Extraction and Recovery Technologies. 1485
- Table 549. Markets and applications: niobium. 1486
- Table 550. Niobium Extraction and Recovery Technologies. 1487
- Table 551. Markets and applications: indium. 1488
- Table 552. Indium Extraction and Recovery Technologies. 1489
- Table 553. Markets and applications: gallium. 1490
- Table 554. Gallium Extraction and Recovery Technologies. 1490
- Table 555. Markets and applications: germanium. 1491
- Table 556. Germanium Extraction and Recovery Technologies. 1492
- Table 557. Markets and applications: antimony. 1492
- Table 558. Antimony Extraction and Recovery Technologies. 1493
- Table 559. Markets and applications: scandium. 1494
- Table 560. Scandium Extraction and Recovery Technologies. 1494
- Table 561. Graphite Markets and Applications. 1496
- Table 562. Graphite Extraction and Recovery Techniques and Technologies. 1497
- Table 563. Comparison of Primary vs Secondary Production for Key Materials. 1499
- Table 564. Environmental Impact Comparison: Primary vs Secondary Production. 1500
- Table 565. Technologies for critical material recovery from secondary sources. 1500
- Table 566. Technologies for critical raw material recovery from secondary sources. 1502
- Table 567. Critical raw material extraction technologies. 1503
- Table 568. Pyrometallurgical extraction methods. 1507
- Table 569. Bioleaching processes and their applicability to critical materials. 1509
- Table 570. Comparative analysis of metal recovery technologies. 1539
- Table 571. Technology readiness of critical material recovery technologies by secondary material sources. 1541
- Table 572. Global critical raw materials recovery market by material types (2025-2040), by ktonnes. 1545
- Table 573. Global critical raw materials recovery market by material types (2025-2040), by value (Billions USD). 1546
- Table 574. Global critical raw materials recovery market by recovery source (2025-2040), in ktonnes. 1547
- Table 575. Global critical raw materials recovery market by recovery source (2025-2040), by value (Billions USD). 1548
- Table 576. Global critical raw materials recovery market by region (2025-2040), by ktonnes. 1549
- Table 577. Global critical raw materials recovery market by region (2025-2040), by value (Billions USD). 1550
- Table 578. Global Environmental Technologies Market Forecast (2026-2036). 1785
- Table 579. Technology Segment Market Share (2026 vs 2036). 1785
- Table 580. Membrane Technology Market Analysis (2026-2036). 1786
- Table 581. Next-Generation Membrane Performance Characteristics. 1786
- Table 582. Advanced Membrane Process Comparison. 1786
- Table 583. Integrated Membrane Systems Market Forecast. 1787
- Table 584. Anti-Fouling Technology Performance Matrix. 1787
- Table 585. AOP Technology Market Analysis (2026-2036). 1788
- Table 586. Photocatalytic Material Performance Comparison. 1788
- Table 587. Photocatalytic Reactor Configurations. 1789
- Table 588. Electrochemical AOP Electrode Materials. 1789
- Table 589. Electrochemical AOP Process Parameters. 1789
- Table 590. Biological Treatment Technology Market (2026-2036). 1790
- Table 591. Advanced Bioreactor Performance Characteristics. 1790
- Table 592. Nutrient Removal Performance in Advanced Bioreactors. 1790
- Table 593. Biogas Production and Energy Recovery. 1791
- Table 594. Specialized Microbial Consortia Applications. 1791
- Table 595. Microbial Product Market Forecast. 1791
- Table 596. Bioaugmentation Strategy Performance. 1792
- Table 597. Bioaugmentation Success Factors. 1792
- Table 598. Air Quality Management Technology Market (2026-2036). 1792
- Table 599. Emission Control Technology Comparison. 1793
- Table 600. Advanced Particulate Matter Control Technologies. 1793
- Table 601. Particulate Control Performance by Industry. 1794
- Table 602. Particulate Control Technology Investment Forecast. 1794
- Table 603. Gas Treatment Technology Performance Matrix. 1794
- Table 604. NOx Control Technology Comparison. 1795
- Table 605. VOC Abatement Technology Selection Criteria 1795
- Table 606. Air Quality Monitoring Technology Evolution. 1796
- Table 607. Air Quality Monitoring Network Economics. 1796
- Table 608. AI-Enabled Monitoring System Capabilities. 1796
- Table 609. Remediation Technology Market Overview (2026-2036). 1797
- Table 610. In-Situ Remediation Technology Comparison. 1797
- Table 611. In-Situ Chemical Oxidation (ISCO) Reagent Performance. 1798
- Table 612. ISCO Application Methods and Costs. 1798
- Table 613. In-Situ Chemical Reduction (ISCR) Technology. 1798
- Table 614. Chemical Amendment Market Forecast. 1798
- Table 615. Enhanced Bioremediation Technology Performance. 1799
- Table 616. Biostimulation Amendment Selection. 1799
- Table 617. Monitored Natural Attenuation Criteria. 1800
- Table 618. Bioremediation Market Segmentation. 1800
- Table 619. Digital Environmental Technology Market (2026-2036). 1800
- Table 620. IoT Sensor Technology Specifications. 1801
- Table 621. Sensor Network Architecture Comparison. 1801
- Table 622. Sensor Network Deployment Economics. 1802
- Table 623. Environmental Data Integration Platforms. 1802
- Table 624. Data Management and Storage Costs. 1802
- Table 625. Environmental Analytics Platform Capabilities. 1803
- Table 626. Analytics Platform Market Adoption. 1803
- Table 627. AI/ML Applications in Environmental Management 1803
- Table 628. Predictive Monitoring System Performance 1804
- Table 629. AI-Driven Process Optimization Results. 1804
- Table 630. Optimization Algorithm Performance Comparison 1804
- Table 631. Process Optimization Economic Analysis. 1805
- Table 632. AI-Based Environmental Risk Assessment. 1805
- Table 633. Risk Assessment Model Features. 1805
- Table 634. Emerging Environmental Technologies Market (2026-2036) 1806
- Table 635. Novel Material Technology Development Timeline. 1806
- Table 636. Novel Material Performance vs. Conventional. 1807
- Table 637. Nanomaterial Applications in Environmental Technologies. 1807
- Table 638. Technology Maturity and Market Readiness (2026-2036). 1813
- Table 639. Regional Market Distribution (2026 vs 2036). 1813
- Table 640. Technology Adoption Barriers and Solutions. 1813
- Table 641. Future Technology Trends (2030-2036). 1814
- Table 642. Global trends and drivers in sustainable construction materials. 1873
- Table 643. Global revenues in sustainable construction materials, by materials type, 2020-2036 (millions USD). 1875
- Table 644. Global revenues in sustainable construction materials, by market, 2020-2036 (millions USD). 1878
- Table 645. Global revenues in building energy systems for green buildings, by technology type, 2020-2036 (millions USD). 1880
- Table 646. Global revenues in smart building technologies for green buildings, by application, 2020-2036 (millions USD). 1882
- Table 647. Global revenues in advanced construction methods for green buildings, 2020-2036 (millions USD). 1884
- Table 648. Global revenues in green building technologies by major regions, 2020-2036 (millions USD). 1886
- Table 649. Types of Sustainable Wood Products. 1888
- Table 650. Types of Recycled Construction Materials. 1890
- Table 651. Types of Bio-based Construction Materials. 1892
- Table 652. Established bio-based construction materials. 1894
- Table 653. Advanced Insulation Materials Comparison. 1896
- Table 654. Installation Methods for Insulation Systems. 1898
- Table 655. Performance Metrics Table for Insulation Systems. 1900
- Table 656. Integration Technologies for Smart Windows. 1904
- Table 657. Manufacturing Processes for Modular Construction. 1907
- Table 658. Assembly Systems for Modular Construction. 1909
- Table 659. Printing Systems for Construction 3D Printing. 1912
- Table 660. Advanced Ventilation Systems. 1927
- Table 661. Advanced Filtration Technologies. 1929
- Table 662. Air Quality Monitoring Parameters. 1930
- Table 663. Types of self-healing concrete. 1938
- Table 664. General properties and value of aerogels. 1950
- Table 665. Key properties of silica aerogels. 1951
- Table 666. Chemical precursors used to synthesize silica aerogels. 1952
- Table 667. Commercially available aerogel-enhanced blankets. 1956
- Table 668. Typical structural properties of metal oxide aerogels. 1961
- Table 669. Polymer aerogels companies. 1962
- Table 670. Types of biobased aerogels. 1963
- Table 671. Carbon aerogel companies. 1970
- Table 672. Carbon capture technologies and projects in the cement sector 1975
- Table 673. Carbonation of recycled concrete companies. 1980
- Table 674. Current and projected costs for some key CO2 utilization applications in the construction industry. 1981
- Table 675. Market challenges for CO2 utilization in construction materials. 1981
- Table 676. Temperature Ranges Achieved by Different Energy Sources for Cement Kilns. 1983
- Table 677. Benchmarking Cement High Temperature Heat Technologies. 1984
- Table 678. Companies in Renewable Power Sources for Electric Kilns 1985
- Table 679. Fuel Switching and CCS Projects in the Cement Sector. 1986
- Table 680. Benchmarking of Alternative Fuels. 1992
- Table 681. Benchmarking Kiln Electrification Technologies for Cement Production. 1994
- Table 682. Electric Arc Plasma Technologies for Cement Production. 1995
- Table 683. Comparing Conventional Cement Production with CCUS to Electrified Cement Production with CCUS. 1998
- Table 684. Technologies in CSP for Cement Pyroprocesses. 2001
List of Figures
- Figure 1. Share of (a) production, (b) energy consumption and (c) CO2 emissions from different steel making routes. 127
- Figure 2. Transition to hydrogen-based production. 128
- Figure 3. CO2 emissions from steelmaking (tCO2/ton crude steel). 130
- Figure 4. CO2 emissions of different process routes for liquid steel. 139
- Figure 5. Hydrogen Direct Reduced Iron (DRI) process. 142
- Figure 6. Molten oxide electrolysis process. 144
- Figure 7. Flash ironmaking process. 160
- Figure 8. Hydrogen Plasma Iron Ore Reduction process. 161
- Figure 9. Green steel market map. 176
- Figure 10. SWOT analysis: Green steel. 177
- Figure 11. Low-Emissions Steel Production Capacity 2020-2036 (Million Metric Tons). 193
- Figure 12. ArcelorMittal decarbonization strategy. 211
- Figure 13. HYBRIT process schematic. 221
- Figure 14. Schematic of HyREX technology. 233
- Figure 15. EAF Quantum. 234
- Figure 16. Hydrogen value chain. 260
- Figure 17. Current Annual H2 Production. 270
- Figure 18. Principle of a PEM electrolyser. 274
- Figure 19. Power-to-gas concept. 276
- Figure 20. Schematic of a fuel cell stack. 277
- Figure 21. High pressure electrolyser - 1 MW. 278
- Figure 22. SWOT analysis: green hydrogen. 298
- Figure 23. Types of electrolysis technologies. 298
- Figure 24. Typical Balance of Plant including Gas processing. 301
- Figure 25. Schematic of alkaline water electrolysis working principle. 312
- Figure 26. Alkaline water electrolyzer. 313
- Figure 27. Typical system design and balance of plant for an AEM electrolyser. 319
- Figure 28. Schematic of PEM water electrolysis working principle. 327
- Figure 29. Typical system design and balance of plant for a PEM electrolyser. 329
- Figure 30. Schematic of solid oxide water electrolysis working principle. 339
- Figure 31. Typical system design and balance of plant for a solid oxide electrolyser. 340
- Figure 35. Process steps in the production of electrofuels. 382
- Figure 36. Mapping storage technologies according to performance characteristics. 383
- Figure 37. Production process for green hydrogen. 385
- Figure 38. E-liquids production routes. 386
- Figure 39. Fischer-Tropsch liquid e-fuel products. 386
- Figure 40. Resources required for liquid e-fuel production. 387
- Figure 41. Levelized cost and fuel-switching CO2 prices of e-fuels. 389
- Figure 42. Cost breakdown for e-fuels. 391
- Figure 43. Hydrogen fuel cell powered EV. 392
- Figure 44. Green ammonia production and use. 395
- Figure 45. Classification and process technology according to carbon emission in ammonia production. 396
- Figure 46. Schematic of the Haber Bosch ammonia synthesis reaction. 397
- Figure 47. Schematic of hydrogen production via steam methane reformation. 397
- Figure 48. Estimated production cost of green ammonia. 403
- Figure 49. Renewable Methanol Production Processes from Different Feedstocks. 405
- Figure 50. Production of biomethane through anaerobic digestion and upgrading. 406
- Figure 51. Production of biomethane through biomass gasification and methanation. 407
- Figure 52. Production of biomethane through the Power to methane process. 407
- Figure 53. Transition to hydrogen-based production. 409
- Figure 54. CO2 emissions from steelmaking (tCO2/ton crude steel). 410
- Figure 55. Hydrogen Direct Reduced Iron (DRI) process. 412
- Figure 56. Three Gorges Hydrogen Boat No. 1. 414
- Figure 57. PESA hydrogen-powered shunting locomotive. 415
- Figure 58. Symbiotic™ technology process. 417
- Figure 59. Alchemr AEM electrolyzer cell. 420
- Figure 60. Domsjö process. 438
- Figure 61. EL 2.1 AEM Electrolyser. 441
- Figure 62. Enapter – Anion Exchange Membrane (AEM) Water Electrolysis. 442
- Figure 63. Direct MCH® process. 443
- Figure 64. FuelPositive system. 450
- Figure 65. Using electricity from solar power to produce green hydrogen. 453
- Figure 66. Left: a typical single-stage electrolyzer design, with a membrane separating the hydrogen and oxygen gasses. Right: the two-stage E-TAC process. 463
- Figure 67. Hystar PEM electrolyser. 472
- Figure 68. OCOchem’s Carbon Flux Electrolyzer. 487
- Figure 69. CO2 hydrogenation to jet fuel range hydrocarbons process. 491
- Figure 70. The Plagazi ® process. 496
- Figure 71. Sunfire process for Blue Crude production. 509
- Figure 72. O12 Reactor. 519
- Figure 73. Sunglasses with lenses made from CO2-derived materials. 519
- Figure 74. CO2 made car part. 520
- Figure 75. Carbon emissions by sector. 524
- Figure 76. Overview of CCUS market 525
- Figure 77. CCUS business model. 527
- Figure 78. Pathways for CO2 use. 528
- Figure 79. Regional capacity share 2025-2035. 530
- Figure 80. Global investment in carbon capture 2010-2024, millions USD. 532
- Figure 81. Carbon Capture, Utilization, & Storage (CCUS) Market Map. 542
- Figure 82. CCS deployment projects, historical and to 2035. 543
- Figure 83. Existing and planned CCS projects. 552
- Figure 84. CCUS Value Chain. 554
- Figure 85. A pre-combustion capture system. 577
- Figure 86. Carbon dioxide utilization and removal cycle. 581
- Figure 87. Various pathways for CO2 utilization. 582
- Figure 88. Example of underground carbon dioxide storage. 583
- Figure 89. Transport of CCS technologies. 584
- Figure 90. Railroad car for liquid CO₂ transport 586
- Figure 91. Estimated costs of capture of one metric ton of carbon dioxide (Co2) by sector. 588
- Figure 92. Cost of CO2 transported at different flowrates 589
- Figure 93. Cost estimates for long-distance CO2 transport. 590
- Figure 94. CO2 capture and separation technology. 597
- Figure 96. Global carbon capture capacity by CO2 source, 2024. 617
- Figure 97. Global carbon capture capacity by CO2 source, 2046. 618
- Figure 98. SMR process flow diagram of steam methane reforming with carbon capture and storage (SMR-CCS). 619
- Figure 99. Process flow diagram of autothermal reforming with a carbon capture and storage (ATR-CCS) plant. 620
- Figure 100. POX process flow diagram. 621
- Figure 101. Process flow diagram for a typical SE-SMR. 622
- Figure 102. Post-combustion carbon capture process. 632
- Figure 103. Post-combustion CO2 Capture in a Coal-Fired Power Plant. 633
- Figure 104. Oxy-combustion carbon capture process. 645
- Figure 105. Process schematic of chemical looping. 647
- Figure 106. Liquid or supercritical CO2 carbon capture process. 648
- Figure 107. Pre-combustion carbon capture process. 648
- Figure 108. Amine-based absorption technology. 652
- Figure 109. Pressure swing absorption technology. 656
- Figure 110. Membrane separation technology. 664
- Figure 111. Liquid or supercritical CO2 (cryogenic) distillation. 673
- Figure 112. Cryocap™ process. 675
- Figure 113. Calix advanced calcination reactor. 677
- Figure 114. LEILAC process. 678
- Figure 115. Fuel Cell CO2 Capture diagram. 679
- Figure 116. Microalgal carbon capture. 680
- Figure 117. Cost of carbon capture. 684
- Figure 118. CO2 capture capacity to 2030, MtCO2. 685
- Figure 119. Capacity of large-scale CO2 capture projects, current and planned vs. the Net Zero Scenario, 2020-2030. 686
- Figure 120. CO2 captured from air using liquid and solid sorbent DAC plants, storage, and reuse. 689
- Figure 121. Global CO2 capture from biomass and DAC in the Net Zero Scenario. 690
- Figure 122. DAC technologies. 694
- Figure 123. Schematic of Climeworks DAC system. 695
- Figure 124. Climeworks’ first commercial direct air capture (DAC) plant, based in Hinwil, Switzerland. 696
- Figure 125. Flow diagram for solid sorbent DAC. 696
- Figure 126. Direct air capture based on high temperature liquid sorbent by Carbon Engineering. 698
- Figure 127. Schematic of costs of DAC technologies. 709
- Figure 128. DAC cost breakdown and comparison. 710
- Figure 129. Operating costs of generic liquid and solid-based DAC systems. 712
- Figure 130. Co2 utilization pathways and products. 718
- Figure 131. Conversion route for CO2-derived fuels and chemical intermediates. 720
- Figure 132. Conversion pathways for CO2-derived methane, methanol and diesel. 721
- Figure 133. CO2 feedstock for the production of e-methanol. 722
- Figure 134. Schematic illustration of (a) biophotosynthetic, (b) photothermal, (c) microbial-photoelectrochemical, (d) photosynthetic and photocatalytic (PS/PC), (e) photoelectrochemical (PEC), and (f) photovoltaic plus electrochemical (PV+EC) approaches for CO2 c 725
- Figure 135. Audi synthetic fuels. 726
- Figure 136. Conversion of CO2 into chemicals and fuels via different pathways. 729
- Figure 137. Conversion pathways for CO2-derived polymeric materials 730
- Figure 138. Conversion pathway for CO2-derived building materials. 735
- Figure 139. Schematic of CCUS in cement sector. 736
- Figure 140. Carbon8 Systems’ ACT process. 738
- Figure 141. CO2 utilization in the Carbon Cure process. 739
- Figure 142. Algal cultivation in the desert. 743
- Figure 143. Example pathways for products from cyanobacteria. 744
- Figure 144. Typical Flow Diagram for CO2 EOR. 747
- Figure 145. Large CO2-EOR projects in different project stages by industry. 749
- Figure 146. Process Flow of Carbon Trading: Total Carbon Credits (CCs), amounting to CCB (MtCO2e) = (c) – EB, are issued to firm with CHG emissions below the allowance. These credits can be subsequently sold to firm with emissions exceeding the allowance. In the representation, the latter firm must purchase total credits equivalent to CCA (MtCO2e) = EA – (c). 782
- Figure 147. BiCRS Value Chain. 801
- Figure 148. Bioenergy with carbon capture and storage (BECCS) process. 805
- Figure 149. Capture of carbon dioxide from the atmosphere using bricks of calcium hydroxide. 816
- Figure 150. Carbon capture using mineral carbonation. 818
- Figure 151. SWOT analysis: enhanced weathering. 824
- Figure 152. SWOT analysis: afforestation/reforestation. 831
- Figure 153. SWOT analysis: SCS. 837
- Figure 154. Schematic of biochar production. 838
- Figure 155. Biochars from different sources, and by pyrolyzation at different temperatures. 839
- Figure 156. Compressed biochar. 842
- Figure 157. Biochar production diagram. 844
- Figure 158. Pyrolysis process and by-products in agriculture. 846
- Figure 159. SWOT analysis: Biochar for CDR. 856
- Figure 160. SWOT analysis: Ocean-based CDR. 864
- Figure 161. Air Products production process. 872
- Figure 162. ALGIECEL PhotoBioReactor. 877
- Figure 163. Schematic of carbon capture solar project. 883
- Figure 164. Aspiring Materials method. 884
- Figure 165. Aymium’s Biocarbon production. 887
- Figure 166. Capchar prototype pyrolysis kiln. 906
- Figure 167. Carbonminer technology. 913
- Figure 168. Carbon Blade system. 918
- Figure 169. CarbonCure Technology. 925
- Figure 170. Direct Air Capture Process. 927
- Figure 171. CRI process. 930
- Figure 172. PCCSD Project in China. 945
- Figure 173. Orca facility. 947
- Figure 174. Process flow scheme of Compact Carbon Capture Plant. 952
- Figure 175. Colyser process. 954
- Figure 176. ECFORM electrolysis reactor schematic. 963
- Figure 177. Dioxycle modular electrolyzer. 964
- Figure 178. Fuel Cell Carbon Capture. 985
- Figure 179. Topsoe's SynCORTM autothermal reforming technology. 995
- Figure 180. Heirloom DAC facilities. 997
- Figure 181. Carbon Capture balloon. 998
- Figure 182. Holy Grail DAC system. 1000
- Figure 183. INERATEC unit. 1006
- Figure 184. Infinitree swing method. 1007
- Figure 185. Audi/Krajete unit. 1013
- Figure 186. Made of Air's HexChar panels. 1023
- Figure 187. Mosaic Materials MOFs. 1033
- Figure 188. Neustark modular plant. 1038
- Figure 189. OCOchem’s Carbon Flux Electrolyzer. 1046
- Figure 190. ZerCaL™ process. 1049
- Figure 191. CCS project at Arthit offshore gas field. 1060
- Figure 192. RepAir technology. 1066
- Figure 193. Aker (SLB Capturi) carbon capture system. 1080
- Figure 194. Soletair Power unit. 1082
- Figure 195. Sunfire process for Blue Crude production. 1089
- Figure 196. CALF-20 has been integrated into a rotating CO2 capture machine (left), which operates inside a CO2 plant module (right). 1091
- Figure 197. Takavator. 1093
- Figure 198. O12 Reactor. 1098
- Figure 199. Sunglasses with lenses made from CO2-derived materials. 1098
- Figure 200. CO2 made car part. 1099
- Figure 201. Molecular sieving membrane. 1102
- Figure 202. Form Energy's iron-air batteries. 1335
- Figure 203. Highview Power- Liquid Air Energy Storage Technology. 1352
- Figure 204. phelas Liquid Air Energy Storage System AURORA. 1374
- Figure 205. Schematic layout of a pyrolysis plant. 1416
- Figure 206. Waste plastic production pathways to (A) diesel and (B) gasoline 1421
- Figure 207. Schematic for Pyrolysis of Scrap Tires. 1424
- Figure 208. Used tires conversion process. 1425
- Figure 210. Overview of biogas utilization. 1429
- Figure 211. Biogas and biomethane pathways. 1430
- Figure 212. Products obtained through the different solvolysis pathways of PET, PU, and PA. 1435
- Figure 213. SWOT analysis-Hydrolysis for advanced chemical recycling. 1438
- Figure 214. SWOT analysis-Enzymolysis for advanced chemical recycling. 1439
- Figure 215. SWOT analysis-Methanolysis for advanced chemical recycling. 1441
- Figure 216. SWOT analysis-Glycolysis for advanced chemical recycling. 1443
- Figure 217. SWOT analysis-Aminolysis for advanced chemical recycling. 1444
- Figure 218. Copper demand outlook. 1465
- Figure 219. Global nickel demand outlook. 1467
- Figure 220. Global cobalt demand outlook. 1470
- Figure 221. Global lithium demand outlook. 1475
- Figure 222. Global graphite demand outlook. 1496
- Figure 223. Solvent extraction (SX) in hydrometallurgy. 1505
- Figure 224. SWOT analysis: hydrometallurgical extraction. 1507
- Figure 225. SWOT analysis: pyrometallurgical extraction of critical materials. 1508
- Figure 226. SWOT analysis: biometallurgy for critical material extraction. 1511
- Figure 227. SWOT analysis: ionic liquids and deep eutectic solvents for critical material extraction. 1514
- Figure 228. SWOT analysis: electrochemical leaching for critical material extraction. 1516
- Figure 229. SWOT analysis: supercritical fluid extraction technology. 1517
- Figure 230. SWOT analysis: solvent extraction recovery technology. 1521
- Figure 231. SWOT analysis: ion exchange resin recovery technology. 1523
- Figure 232. SWOT analysis: ionic liquids and deep eutectic solvents for critical material recovery. 1527
- Figure 233. SWOT analysis: precipitation for critical material recovery. 1530
- Figure 234. SWOT analysis: biosorption for critical material recovery. 1533
- Figure 235. SWOT analysis: electrowinning for critical material recovery. 1535
- Figure 236. SWOT analysis: direct critical material recovery technology. 1539
- Figure 237. Global critical raw materials recovery market by material types (2025-2040), by ktonnes. 1546
- Figure 238. Global critical raw materials recovery market by material types (2025-2040), by value (Billions USD). 1547
- Figure 239. Global critical raw materials recovery market by recovery source (2025-2040), by ktonnes. 1548
- Figure 240. Global critical raw materials recovery market by recovery source (2025-2040), by value. 1549
- Figure 241. Global critical raw materials recovery market by region (2025-2040), by ktonnes. 1550
- Figure 242. Global critical raw materials recovery market by region (2025-2040), by value (Billions USD). 1551
- Figure 243. NewCycling process. 1563
- Figure 244. ChemCyclingTM prototypes. 1571
- Figure 245. ChemCycling circle by BASF. 1572
- Figure 246. Recycled carbon fibers obtained through the R3FIBER process. 1574
- Figure 247. Cassandra Oil process. 1587
- Figure 248. CuRe Technology process. 1601
- Figure 249. MoReTec. 1680
- Figure 250. Chemical decomposition process of polyurethane foam. 1686
- Figure 251. OMV ReOil process. 1702
- Figure 252. Schematic Process of Plastic Energy’s TAC Chemical Recycling. 1709
- Figure 253. Easy-tear film material from recycled material. 1735
- Figure 254. Polyester fabric made from recycled monomers. 1740
- Figure 255. A sheet of acrylic resin made from conventional, fossil resource-derived MMA monomer (left) and a sheet of acrylic resin made from chemically recycled MMA monomer (right). 1759
- Figure 256. Teijin Frontier Co., Ltd. Depolymerisation process. 1766
- Figure 257. The Velocys process. 1776
- Figure 258. The Proesa® Process. 1778
- Figure 259. Worn Again products. 1781
- Figure 260. Anti-Fouling Material Development Roadmap. 1788
- Figure 261. Gradiant Forever Gone. 1844
- Figure 262. PFAS Annihilator® unit. 1865
- Figure 263. Global revenues in sustainable construction materials, by materials type, 2020-2036 (millions USD). 1877
- Figure 264. Global revenues in sustainable construction materials, by market, 2020-2036 (millions USD). 1879
- Figure 265. Global revenues in building energy systems for green buildings, by technology type, 2020-2036 (millions USD). 1881
- Figure 266. Global revenues in smart building technologies for green buildings, by application, 2020-2036 (millions USD). 1883
- Figure 267. Global revenues in advanced construction methods for green buildings, 2020-2036 (millions USD). 1885
- Figure 268. Global revenues in green building technologies by major regions, 2020-2036 (millions USD). 1886
- Figure 269. Luum Temple, constructed from Bamboo. 1894
- Figure 270. Typical structure of mycelium-based foam. 1934
- Figure 271. Commercial mycelium composite construction materials. 1935
- Figure 272. Self-healing concrete test study with cracked concrete (left) and self-healed concrete after 28 days (right). 1938
- Figure 273. Self-healing bacteria crack filler for concrete. 1939
- Figure 274. Self-healing bio concrete. 1940
- Figure 275. Microalgae based biocement masonry bloc. 1942
- Figure 276. Classification of aerogels. 1949
- Figure 277. Flower resting on a piece of silica aerogel suspended in mid air by the flame of a bunsen burner. 1951
- Figure 278. Monolithic aerogel. 1953
- Figure 279. Aerogel granules. 1955
- Figure 280. Internal aerogel granule applications. 1955
- Figure 281. 3D printed aerogels. 1958
- Figure 282. Lignin-based aerogels. 1967
- Figure 283. Fabrication routes for starch-based aerogels. 1968
- Figure 284. Graphene aerogel. 1972
- Figure 285. Carbon8 Systems’ ACT process. 1977
- Figure 286. CO2 utilization in the Carbon Cure process. 1978
- Figure 287. Aizawa self-healing concrete. 2023
- Figure 288. ArcelorMittal decarbonization strategy. 2028
- Figure 289. Thermal Conductivity Performance of ArmaGel HT. 2031
- Figure 290. SLENTEX® roll (piece). 2036
- Figure 291. Biozeroc Biocement. 2041
- Figure 292. Carbon Re’s DeltaZero dashboard. 2058
- Figure 293. Neustark modular plant. 2137
- Figure 294. HIP AERO paint. 2147
- Figure 295. Schematic of HyREX technology. 2153
- Figure 296. EAF Quantum. 2156
- Figure 297. CNF insulation flat plates. 2164
- Figure 298. Quartzene®. 2182
Purchasers will receive the following:
- PDF report download/by email.
- Comprehensive Excel spreadsheet of all data.
- Mid-year Update
Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer. To order by Bank Transfer (Invoice) select this option from the payment methods menu after adding to cart, or contact info@futuremarketsinc.com