The Global Industrial Decarbonization Market 2026-2036

0

cover

cover

  • Published: October 2025
  • Pages: 2,232
  • Tables: 684
  • Figures: 298

 

The industrial sector accounts for approximately 30% of global greenhouse gas emissions, making industrial decarbonization one of the most critical challenges in achieving net-zero targets. This comprehensive 2,200+ page market intelligence report provides an exhaustive analysis of technologies, markets, and strategic opportunities driving the transformation of heavy industry toward carbon neutrality. The Global Industrial Decarbonization Market 2026-2036 examines eight interconnected pillars of industrial decarbonization, delivering actionable insights across green steel production, hydrogen economy infrastructure, carbon capture and storage systems, industrial heat electrification, process electrification technologies, circular economy solutions, environmental remediation technologies, and green building materials. Each sector analysis includes detailed technology assessments, market forecasts through 2036, competitive landscape mapping, and profiles of 1,300+ leading companies pioneering low-carbon industrial solutions.

Green steel manufacturing represents a pivotal transformation, with this report analyzing hydrogen-based direct reduction, electrolysis-based production, carbon capture integration, and renewable energy-powered processes. Detailed cost analyses, production capacity forecasts, and end-use market assessments across automotive, construction, and manufacturing sectors provide investors and industry stakeholders with critical decision-making intelligence.

The hydrogen economy section delivers comprehensive coverage of production technologies including alkaline, PEM, solid oxide, and anion exchange membrane electrolyzers, with granular cost projections and efficiency comparisons. Market forecasts extend across ammonia production, steel manufacturing, sustainable aviation fuels, maritime applications, and power generation, supported by analysis of 145 hydrogen technology companies and over 50 major production projects globally.

Carbon capture, utilization, and storage (CCUS) receives exhaustive treatment with 500+ pages analyzing point-source capture, direct air capture, and carbon dioxide removal technologies. The report examines 250+ operational and planned CCUS facilities, evaluating capture technologies from chemical absorption and membrane separation to emerging solutions like metal-organic frameworks and electrochemical systems. Detailed cost projections through 2046 and carbon credit market analysis provide essential context for CCUS investment decisions.

Industrial heat decarbonization technologies are analyzed across electric heating systems (resistance, induction, microwave, and plasma), high-temperature heat pumps, biomass solutions, and emerging technologies including concentrated solar thermal and geothermal systems. Temperature-based market segmentation and application-specific analyses across chemical, metal processing, and materials manufacturing sectors enable targeted technology deployment strategies.

The circular economy section provides comprehensive coverage of advanced recycling technologies including pyrolysis, gasification, dissolution, and depolymerization, alongside critical materials recovery from electronic waste, batteries, and industrial byproducts. Market forecasts for 18 critical materials through 2040, combined with extraction and recovery technology assessments, address supply chain resilience for the energy transition.

Environmental technologies covering water treatment, air quality management, and soil remediation are analyzed alongside digital environmental solutions leveraging IoT, AI, and machine learning for optimization and monitoring. Green building technologies complete the analysis with detailed market forecasts for sustainable construction materials, advanced insulation systems, smart windows, modular construction, and 3D printing applications.

Each technology chapter includes SWOT analyses, technology readiness level assessments, competitive landscape mapping, and detailed company profiles with technology descriptions, production capacities, and strategic partnerships. Market forecasts are segmented by technology type, application sector, and geographic region, with particular attention to policy drivers, carbon pricing mechanisms, and regulatory frameworks shaping market development.

This report serves as an essential resource for industrial corporations developing decarbonization roadmaps, technology developers seeking market opportunities, investors evaluating clean technology portfolios, policymakers designing industrial transition strategies, and financial institutions assessing climate risk and opportunity in industrial sectors. The comprehensive analysis of technology costs, performance metrics, and deployment timelines enables evidence-based strategic planning for the industrial transformation required to meet global climate commitments.

Report Contents include: 

  • Green Steel Production Technologies
    • Current steelmaking processes and decarbonization pathways
    • Hydrogen-based direct reduced iron (H-DRI) production systems
    • Electrolysis and molten oxide technologies
    • Carbon capture integration for blast furnace-basic oxygen furnace routes
    • Renewable energy integration and grid requirements
    • Biochar, hydrogen blast furnaces, and flash ironmaking
    • Advanced materials including composite electrodes and hydrogen storage metals
    • Production capacity forecasts 2020-2036 by technology and region
    • End-use market analysis: automotive, construction, machinery, rail, packaging, electronics
    • Competitive landscape with 46 company profiles
    • Cost analysis and economic competitiveness projections
  • Green Hydrogen Production and Utilization
    • Hydrogen classification systems and color coding
    • Electrolyzer technologies: alkaline, PEM, solid oxide, anion exchange membrane
    • Cost structures and levelized cost of hydrogen (LCOH) analysis
    • Balance of plant requirements and system integration
    • Production volume and market revenue projections 2024-2036
    • Hydrogen storage and transportation infrastructure
    • Application markets: fuel cells, sustainable aviation fuel, ammonia, methanol, steel, power generation, maritime
    • eFuels and power-to-X technologies
    • Green ammonia and methanol production pathways
    • 145 company profiles across production, storage, and utilization
    • Regional market analysis and policy frameworks
  • Carbon Capture, Utilization, and Storage
    • Point-source capture from power, cement, steel, and chemical industries
    • Post-combustion, pre-combustion, and oxy-fuel combustion technologies
    • Solvent-based systems: amines, physical solvents, and emerging alternatives
    • Solid sorbent technologies including MOFs and zeolites
    • Membrane separation systems
    • Direct air capture: solid and liquid sorbent technologies
    • CO₂ utilization in fuels, chemicals, construction materials, and enhanced oil recovery
    • Carbon dioxide removal: BECCS, mineralization, enhanced weathering, biochar
    • Ocean-based CDR methods
    • Carbon credit markets and pricing mechanisms
    • Capture capacity forecasts to 2046 by technology, source, and region
    • 370+ company profiles
    • Cost projections and economic analysis
  • Industrial Heat Decarbonization
    • Electric heating: resistance, induction, microwave, and plasma systems
    • High-temperature industrial heat pumps
    • Biomass combustion and gasification technologies
    • Solar thermal and geothermal solutions
    • Thermal energy storage systems
    • Application analysis: chemical, food processing, paper, glass, ceramics, metals, cement
    • Temperature-based market segmentation
    • Cost competitiveness and carbon abatement analysis
    • Grid integration requirements
    • 39 company profiles
    • Market forecasts and technology deployment roadmaps
  • Electrification of Industrial Processes
    • Grid integration and smart grid technologies
    • Energy storage: battery, thermal, and hybrid systems
    • Renewable energy integration strategies
    • Electric process heating technologies
    • Electrochemical processes and advanced electrolysis
    • Electric motors and variable frequency drives
    • Digital twin and AI/ML optimization
    • Applications across chemical, metal, food, and mining sectors
    • 126 company profiles
    • Technology maturity and market readiness assessment
  • Circular Economy and Advanced Recycling
    • AI-powered sorting and detection technologies
    • Advanced recycling: pyrolysis, gasification, dissolution, depolymerization
    • Chemical recycling of plastics and thermosets
    • Carbon fiber recycling technologies
    • Critical materials recovery from batteries, electronics, and industrial waste
    • Extraction technologies: hydrometallurgical, pyrometallurgical, biometallurgy
    • Recovery methods: solvent extraction, ion exchange, electrowinning
    • Market forecasts 2025-2040 by material type and recovery source
    • 18 critical materials analysis: lithium, cobalt, nickel, rare earths, copper, graphite
    • 277 company profiles
    • Regional market breakdown and supply chain analysis
  • Environmental Technologies
    • Advanced membrane systems for water treatment
    • Advanced oxidation processes
    • Biological treatment and bioremediation
    • Air quality management and emission control
    • Soil and groundwater remediation
    • Environmental IoT and sensor networks
    • AI-driven monitoring and optimization
    • Novel materials: nanomaterials, bio-based solutions, smart materials
    • 93 company profiles
    • Market forecasts 2026-2036 by technology segment
  • Green Building Technologies
    • Sustainable construction materials: low-carbon concrete, bio-based materials, recycled content
    • Advanced insulation: aerogels, vacuum insulation, bio-based systemsSmart windows and electrochromic glazing
    • Modular construction and prefabrication
    • 3D printing and additive manufacturing
    • Building energy systems and heat pumps
    • CCUS integration in cement production
    • Alternative fuels for cement kilns
    • Kiln electrification technologies
    • Market forecasts 2020-2036 by material type, technology, and region
    • 172 company profiles
    • Residential, commercial, and infrastructure market analysis

 

The report features comprehensive profiles of 150 leading companies driving industrial decarbonization across all technology sectors, including: 1414 Degrees, 374Water, 8 Rivers, ABB, ABIS Aerogel Co., AccuRec Recycling GmbH, ACE Green Recycling, Aclarity, Active Aerogels, Adaptavate, Adani Green Energy, Advanced Ionics, Aduro Clean Technologies, Aemetis, Aerogel Technologies LLC, AeroShield Materials Inc., Agilyx, Air Company, Air Liquide S.A., Air Products, Aker Horizons ASA, Alchemr, Algoma Steel, Allonnia, Alterra Energy, Altilium, Ambercycle, American Battery Technology Company (ABTC), Andritz, Anellotech, Antora Energy, Aperam BioEnergia, APK AG, Applied Carbon, Aquacycl, Aquafil S.p.A., Aquatech International, AquaBattery, Arborea, ArcelorMittal SA, Arkema, Armacell International S.A., Arvia Technology, Asahi Kasei, Ascend Elements, Aspen Aerogels, AspiraDAC Pty Ltd., Atmonia, Avantium, Axens SA, Baker Hughes, BASF, Battolyser Systems, Betolar, BHP, Biomason, Blastr Green Steel, Bloom Energy, Blue Planet Systems Corporation, Boomitra, Borealis AG, Boston Metal, Botree Cycling, Braven Environmental, Brenmiller Energy, Brightmark, Brimstone, C-Capture, Cambridge Carbon Capture Ltd., Cambridge Electric Cement, Caplyzer, Captura Corporation, CarbiCrete, Carbios, Carboliq GmbH, Carbon8 Systems, CarbonBuilt, CarbonCure Technologies Inc., Carbon Engineering Ltd., Carbon Recycling International, Carbon Upcycling Technologies, Carbyon BV, Cassandra Oil AB, CATL, Ceibo, Ceres Power Holdings plc, CGDG, Charm Industrial, Chart Industries, Cheetah Resources, Chevron Corporation, Chevron Phillips Chemical, China Baowu Steel Group, Chiyoda Corporation, Cipher Neutron, CIRC, Cirba Solutions, Circunomics, Clariter, Clean Planet Energy, Climeworks, CMBlu Energy, C-Motive Technologies, Cognite, Coolbrook, Coval Energy B.V., Covestro AG, CreaCycle GmbH, Cummins, CuRe Technology BV, Cyclic Materials, Cylib, C-Zero, Daikin, Dalian Rongke Power, Danfoss, Deep Branch Biotechnology, DeepTech Recycling, DePoly SA, Dimensional Energy, Dioxide Materials, Dioxycle, Domsjö Fabriker AB, Dow Chemicals, Dowa Eco-System Co., Drax, DuPont, Dynelectro ApS, Eastman Chemical Company, Ebb Carbon, Econic Technologies Ltd, Ecopek S.A., EcoPro, Eion Carbon, Elcogen AS, Electra, Electra Battery Materials Corporation, Electric Hydrogen, Electrified Thermal Solutions, Electron Energy Corporation, Elogen H2, Emirates Steel Arken, Enapter and many more......

 

 

 

1             EXECUTIVE SUMMARY            118

  • 1.1        Market Overview and Scope 118
  • 1.2        Green Steel      118
  • 1.3        Green Hydrogen           119
  • 1.4        Carbon Capture, Utilization, and Storage   120
  • 1.5        Industrial Heat Decarbonization       121
  • 1.6        Electrification of Industrial Processes           122
  • 1.7        Circular Economy Solutions: Closing Material Loops Through Advanced Recycling      122
  • 1.8        Environmental Technologies: Enabling Clean Industrial Operations         123
  • 1.9        Green Building Technologies: Decarbonizing Construction Materials and Processes   123
  • 1.10     Market Drivers and Future Outlook 124

 

2             GREEN STEEL 126

  • 2.1        Current Steelmaking processes        126
  • 2.2        "Double carbon" (carbon peak and carbon neutrality) goals and ultra-low emissions requirements 127
  • 2.3        What is green steel?  129
    • 2.3.1    Properties         131
    • 2.3.2    Advances in clean production technologies             132
  • 2.4        Decarbonization of steel        132
    • 2.4.1    CO₂ Reduction Technologies               133
    • 2.4.2    Decarbonization target and policies               137
      • 2.4.2.1 EU Carbon Border Adjustment Mechanism (CBAM)            139
  • 2.5        Production technologies        140
    • 2.5.1    The role of hydrogen  140
    • 2.5.2    Comparative analysis              141
    • 2.5.3    Hydrogen Direct Reduced Iron (DRI)              142
    • 2.5.4    Electrolysis      143
    • 2.5.5    Carbon Capture, Utilization and Storage (CCUS)  145
      • 2.5.5.1 Overview           145
      • 2.5.5.2 BF-BOF (Blast Furnace-Basic Oxygen Furnace)      146
      • 2.5.5.3 Selection of carbon capture technology      148
      • 2.5.5.4 Pre-Combustion Carbon Capture for Ironmaking 149
      • 2.5.5.5 Gas Recycling and Oxyfuel Combustion     150
      • 2.5.5.6 Sorption Enhanced Water Gas Shift (SEWGS)          150
      • 2.5.5.7 Amine-Based Post-Combustion CO₂ Absorption   150
      • 2.5.5.8 Carbon Capture for Natural Gas-Based DRI              151
      • 2.5.5.9 CO₂ Storage    152
      • 2.5.5.10            CO₂ Transportation    153
      • 2.5.5.11            CO₂ Utilization for Steel           154
      • 2.5.5.12            Carbon Capture Costs            154
      • 2.5.5.13            Carbon Credit and Carbon Offsetting           155
    • 2.5.6    Biochar replacing coke            157
    • 2.5.7    Hydrogen Blast Furnace         157
    • 2.5.8    Renewable energy powered processes        158
    • 2.5.9    Flash ironmaking        159
    • 2.5.10 Hydrogen Plasma Iron Ore Reduction           160
    • 2.5.11 Ferrous Bioprocessing            161
    • 2.5.12 Microwave Processing             162
    • 2.5.13 Additive Manufacturing          162
    • 2.5.14 Technology readiness level (TRL)      163
  • 2.6        Advanced materials in green steel   163
    • 2.6.1    Composite electrodes             164
    • 2.6.2    Solid oxide materials 164
    • 2.6.3    Hydrogen storage metals       164
    • 2.6.4    Carbon composite steels      165
    • 2.6.5    Coatings and membranes     165
    • 2.6.6    Sustainable binders  166
    • 2.6.7    Iron ore catalysts         166
    • 2.6.8    Carbon capture materials     167
    • 2.6.9    Waste gas utilization 167
  • 2.7        Advantages and disadvantages of green steel         168
  • 2.8        Markets and applications      168
  • 2.9        Energy Savings and Cost Reduction in Steel Production   169
  • 2.10     Digitalization  169
  • 2.11     Biomass Steel Production and Sustainable Green Steel Production Chain         170
  • 2.12     The Global Market for Green Steel    171
    • 2.12.1 Global steel production          171
      • 2.12.1.1            Steel prices     171
      • 2.12.1.2            Green steel prices       172
    • 2.12.2 Green steel plants and production, current and planned 174
    • 2.12.3 Market map    176
    • 2.12.4 SWOT analysis              177
    • 2.12.5 Market trends and opportunities      178
    • 2.12.6 Market growth drivers               179
    • 2.12.7 Market challenges      180
    • 2.12.8 End-use industries     181
      • 2.12.8.1            Automotive      181
        • 2.12.8.1.1        Market overview           181
        • 2.12.8.1.2        Applications   183
      • 2.12.8.2            Construction  185
        • 2.12.8.2.1        Market overview           185
        • 2.12.8.2.2        Applications   185
      • 2.12.8.3            Consumer appliances             186
        • 2.12.8.3.1        Market overview           186
        • 2.12.8.3.2        Applications   186
      • 2.12.8.4            Machinery        187
        • 2.12.8.4.1        Market overview           187
        • 2.12.8.4.2        Applications   187
      • 2.12.8.5            Rail       188
        • 2.12.8.5.1        Market overview           188
        • 2.12.8.5.2        Applications   188
      • 2.12.8.6            Packaging        189
        • 2.12.8.6.1        Market overview           189
        • 2.12.8.6.2        Applications   190
      • 2.12.8.7            Electronics      190
        • 2.12.8.7.1        Market overview           190
        • 2.12.8.7.2        Applications   191
  • 2.13     Global Production and Demand       192
    • 2.13.1 Production Capacity 2020-2035      192
    • 2.13.2 Production vs. Demand 2020-2036 194
    • 2.13.3 Revenues 2020-2036               195
      • 2.13.3.1            By end-use industry  196
      • 2.13.3.2            By region           197
        • 2.13.3.2.1        North America              198
        • 2.13.3.2.2        Europe                198
        • 2.13.3.2.3        China  199
        • 2.13.3.2.4        Asia-Pacific (excl. China)       200
        • 2.13.3.2.5        Middle East & Africa  201
        • 2.13.3.2.6        South America              202
    • 2.13.4 Competitive landscape          203
    • 2.13.5 Future market outlook             206
      • 2.13.5.1            Technology Evolution               206
      • 2.13.5.2            Economic Competitiveness 206
      • 2.13.5.3            Market Structure          206
      • 2.13.5.4            Supply Chain Transformation             207
      • 2.13.5.5            Policy and Regulation               207
      • 2.13.5.6            Investment Requirements and Returns        207
      • 2.13.5.7            Customer Adoption   207
      • 2.13.5.8            Risks and Uncertainties          208
      • 2.13.5.9            Social and Environmental Implications        208
  • 2.14     Company profiles       209 (46 company profiles)

 

3             GREEN HYDROGEN  248

  • 3.1        Hydrogen classification          248
    • 3.1.1    Hydrogen colour shades        249
  • 3.2        Global energy demand and consumption  249
  • 3.3        The hydrogen economy and production       249
  • 3.4        Removing CO₂ emissions from hydrogen production          251
  • 3.5        The Economics of Green Hydrogen 252
    • 3.5.1    Cost Gaps and Market Imperatives 252
    • 3.5.2    Hard-to-Abate Sectors             253
    • 3.5.3    Steel Production          253
    • 3.5.4    Ammonia Production               253
    • 3.5.5    Chemical Industry and Refining        254
    • 3.5.6    Current Electrolyzer Technologies   254
      • 3.5.6.1 Alkaline Water Electrolyzers: Mature but Constrained       254
      • 3.5.6.2 Proton Exchange Membrane Electrolyzers: Higher Performance, Higher Cost   255
      • 3.5.6.3 Solid Oxide Electrolyzers: High Efficiency, High Risk           256
      • 3.5.6.4 Next-Generation Technologies           256
        • 3.5.6.4.1           Anion Exchange Membrane Electrolyzers: Bridging the Gap           256
        • 3.5.6.4.2           Novel Approaches: Beyond Conventional Electrolysis       257
    • 3.5.7    The Path Forward: Economics and Implementation            257
  • 3.6        Hydrogen value chain              258
    • 3.6.1    Production       259
    • 3.6.2    Transport and storage              259
    • 3.6.3    Utilization         259
  • 3.7        National hydrogen initiatives, policy and regulation             261
  • 3.8        Hydrogen certification              262
  • 3.9        Carbon pricing              263
  • 3.10     Market challenges      263
  • 3.11     Market map    264
  • 3.12     Global hydrogen production 266
    • 3.12.1 Industrial applications            267
    • 3.12.2 Hydrogen energy          268
      • 3.12.2.1            Stationary use               268
      • 3.12.2.2            Hydrogen for mobility               268
    • 3.12.3 Current Annual H2 Production           269
    • 3.12.4 Hydrogen production processes       270
      • 3.12.4.1            Hydrogen as by-product         271
      • 3.12.4.2            Reforming        271
        • 3.12.4.2.1        SMR wet method         271
        • 3.12.4.2.2        Oxidation of petroleum fractions     271
        • 3.12.4.2.3        Coal gasification         272
      • 3.12.4.3            Reforming or coal gasification with CO2 capture and storage      272
      • 3.12.4.4            Steam reforming of biomethane       272
      • 3.12.4.5            Water electrolysis       273
      • 3.12.4.6            The "Power-to-Gas" concept                274
      • 3.12.4.7            Fuel cell stack               276
      • 3.12.4.8            Electrolysers   277
      • 3.12.4.9            Other   278
        • 3.12.4.9.1        Plasma technologies 278
        • 3.12.4.9.2        Photosynthesis            279
        • 3.12.4.9.3        Bacterial or biological processes     280
        • 3.12.4.9.4        Oxidation (biomimicry)           280
    • 3.12.5 Production costs         281
  • 3.13     Global hydrogen demand forecasts               282
    • 3.13.1 Market Revenue Projections (2024-2036)  282
    • 3.13.2 Production Volume Forecast (2024-2036) 283
    • 3.13.3 Demand by Sector (2024, 2030, 2036).       284
    • 3.13.4 Regional Market Breakdown 285
    • 3.13.5 Electrolyzer Market    287
  • 3.14     Green Hydorgen Production 289
    • 3.14.1 Overview           289
    • 3.14.2 Green hydrogen projects        290
    • 3.14.3 Motivation for use       292
    • 3.14.4 Decarbonization          293
    • 3.14.5 Comparative analysis              294
    • 3.14.6 Role in energy transition         294
    • 3.14.7 Renewable energy sources   295
      • 3.14.7.1            Wind power     295
      • 3.14.7.2            Solar Power     296
      • 3.14.7.3            Nuclear              296
      • 3.14.7.4            Capacities       296
      • 3.14.7.5            Costs  296
    • 3.14.8 SWOT analysis              297
  • 3.15     Electrolyzer Technologies      298
    • 3.15.1 Introduction    298
    • 3.15.2 Main types       299
    • 3.15.3 Balance of Plant          300
    • 3.15.4 Characteristics             302
    • 3.15.5 Advantages and disadvantages        304
    • 3.15.6 Electrolyzer market    304
      • 3.15.6.1            Market trends 304
      • 3.15.6.2            Market landscape       305
      • 3.15.6.3            Innovations     307
      • 3.15.6.4            Cost challenges           307
      • 3.15.6.5            Scale-up            308
      • 3.15.6.6            Manufacturing challenges    308
      • 3.15.6.7            Market opportunity and outlook        309
    • 3.15.7 Alkaline water electrolyzers (AWE)  310
      • 3.15.7.1            Technology description           310
      • 3.15.7.2            AWE plant        312
      • 3.15.7.3            Components and materials 313
      • 3.15.7.4            Costs  314
        • 3.15.7.4.1        Current Cost Structure (2024-2025)              314
        • 3.15.7.4.2        Levelized Cost of Hydrogen (LCOH) from AWE        315
      • 3.15.7.5            Companies     316
    • 3.15.8 Anion exchange membrane electrolyzers (AEMEL)               317
      • 3.15.8.1            Technology description           317
      • 3.15.8.2            AEMEL plant   318
      • 3.15.8.3            Components and materials 319
        • 3.15.8.3.1        Catalysts          320
        • 3.15.8.3.2        Anion exchange membranes (AEMs)              321
        • 3.15.8.3.3        Materials           321
      • 3.15.8.4            Costs  323
        • 3.15.8.4.1        Current Cost Structure (2024-2025)              323
        • 3.15.8.4.2        Performance and Cost Positioning 324
        • 3.15.8.4.3        Levelized Cost of Hydrogen (LCOH) from AMEL      324
        • 3.15.8.4.4        Cost Reduction Pathways      324
      • 3.15.8.5            Companies     325
    • 3.15.9 Proton exchange membrane electrolyzers (PEMEL)             326
      • 3.15.9.1            Technology description           326
      • 3.15.9.2            PEMEL plant   328
      • 3.15.9.3            Components and materials 329
        • 3.15.9.3.1        Membranes    330
        • 3.15.9.3.2        Advanced PEMEL stack designs       330
        • 3.15.9.3.3        Plug-and-Play & Customizable PEMEL Systems     331
        • 3.15.9.3.4        PEMELs and proton exchange membrane fuel cells (PEMFCs)     332
      • 3.15.9.4            Costs  333
        • 3.15.9.4.1        Current Cost Structure (2024-2025)              333
        • 3.15.9.4.2        Cost Reduction Pathways (2024-2050)        334
      • 3.15.9.5            Companies     336
    • 3.15.10              Solid oxide water electrolyzers (SOEC)         338
      • 3.15.10.1         Technology description           338
      • 3.15.10.2         SOEC plant     340
      • 3.15.10.3         Components and materials 340
        • 3.15.10.3.1     External process heat               341
        • 3.15.10.3.2     Clean Syngas Production      341
        • 3.15.10.3.3     Nuclear power               342
        • 3.15.10.3.4     SOEC and SOFC cells              342
          • 3.15.10.3.4.1 Tubular cells   343
          • 3.15.10.3.4.2 Planar cells      343
        • 3.15.10.3.5     SOEC Electrolyte         343
      • 3.15.10.4         Costs  344
        • 3.15.10.4.1     Current Cost Structure (2024-2025)              344
        • 3.15.10.4.2     Levelized Cost of Hydrogen (LCOH) from SOEC     345
      • 3.15.10.5         Companies     346
    • 3.15.11              Other types     347
      • 3.15.11.1         Overview           347
      • 3.15.11.2         CO₂ electrolysis            348
        • 3.15.11.2.1     Electrochemical CO₂ Reduction       349
        • 3.15.11.2.2     Electrochemical CO₂ Reduction Catalysts 350
        • 3.15.11.2.3     Electrochemical CO₂ Reduction Technologies        351
        • 3.15.11.2.4     Low-Temperature Electrochemical CO₂ Reduction              352
        • 3.15.11.2.5     High-Temperature Solid Oxide Electrolyzers              352
        • 3.15.11.2.6     Cost     353
        • 3.15.11.2.7     Challenges      354
        • 3.15.11.2.8     Coupling H₂ and Electrochemical CO₂          354
        • 3.15.11.2.9     Products           355
      • 3.15.11.3         Seawater electrolysis               356
        • 3.15.11.3.1     Direct Seawater vs Brine (Chlor-Alkali) Electrolysis              356
        • 3.15.11.3.2     Key Challenges & Limitations             356
      • 3.15.11.4         Protonic Ceramic Electrolyzers (PCE)           358
      • 3.15.11.5         Microbial Electrolysis Cells (MEC)   359
      • 3.15.11.6         Photoelectrochemical Cells (PEC)  360
      • 3.15.11.7         Companies     360
    • 3.15.12              Costs  361
    • 3.15.13              Water and land use for green hydrogen production              364
  • 3.16     Hydrogen Storage and Transportation           365
    • 3.16.1 Market overview           366
    • 3.16.2 Hydrogen transport methods              367
      • 3.16.2.1            Pipeline transportation           367
      • 3.16.2.2            Road or rail transport                367
      • 3.16.2.3            Maritime transportation         367
      • 3.16.2.4            On-board-vehicle transport 368
    • 3.16.3 Hydrogen compression, liquefaction, storage         368
      • 3.16.3.1            Solid storage  368
      • 3.16.3.2            Liquid storage on support      369
      • 3.16.3.3            Underground storage               369
      • 3.16.3.4            Subsea Hydrogen Storage     369
    • 3.16.4 Market players               370
  • 3.17     Hydrogen Utilization  371
    • 3.17.1 Hydrogen Fuel Cells  371
      • 3.17.1.1            PEM fuel cells (PEMFCs)        372
      • 3.17.1.2            Solid oxide fuel cells (SOFCs)             372
      • 3.17.1.3            Alternative fuel cells  372
    • 3.17.2 Alternative fuel production   373
      • 3.17.2.1            Solid Biofuels 373
      • 3.17.2.2            Liquid Biofuels              374
      • 3.17.2.3            Gaseous Biofuels       374
      • 3.17.2.4            Conventional Biofuels             375
      • 3.17.2.5            Advanced Biofuels     375
      • 3.17.2.6            Feedstocks      376
      • 3.17.2.7            Production of biodiesel and other biofuels 377
      • 3.17.2.8            Renewable diesel        378
      • 3.17.2.9            Biojet and sustainable aviation fuel (SAF)   379
      • 3.17.2.10         Electrofuels (E-fuels, power-to-gas/liquids/fuels) 382
        • 3.17.2.10.1     Hydrogen electrolysis               385
        • 3.17.2.10.2     eFuel production facilities, current and planned   387
    • 3.17.3 Hydrogen Vehicles      391
      • 3.17.3.1            Market overview           391
    • 3.17.4 Aviation              393
      • 3.17.4.1            Market overview           393
    • 3.17.5 Ammonia production               393
      • 3.17.5.1            Market overview           393
      • 3.17.5.2            Decarbonisation of ammonia production  395
      • 3.17.5.3            Green ammonia synthesis methods              397
        • 3.17.5.3.1        Haber-Bosch process              397
        • 3.17.5.3.2        Biological nitrogen fixation   398
        • 3.17.5.3.3        Electrochemical production                398
        • 3.17.5.3.4        Chemical looping processes               398
      • 3.17.5.4            Green Ammonia Production Costs 398
      • 3.17.5.5            Blue ammonia              399
        • 3.17.5.5.1        Blue ammonia projects           399
      • 3.17.5.6            Chemical energy storage       400
        • 3.17.5.6.1        Ammonia fuel cells    400
        • 3.17.5.6.2        Marine fuel      401
    • 3.17.6 Methanol production                404
      • 3.17.6.1            Market overview           404
      • 3.17.6.2            Methanol-to gasoline technology     404
        • 3.17.6.2.1        Production processes              405
          • 3.17.6.2.1.1   Anaerobic digestion  406
          • 3.17.6.2.1.2   Biomass gasification 406
          • 3.17.6.2.1.3   Power to Methane       407
    • 3.17.7 Steelmaking   408
      • 3.17.7.1            Market overview           408
      • 3.17.7.2            Comparative analysis              411
      • 3.17.7.3            Hydrogen Direct Reduced Iron (DRI)              412
    • 3.17.8 Power & heat generation         413
      • 3.17.8.1            Market overview           413
        • 3.17.8.1.1        Power generation        413
        • 3.17.8.1.2        Heat Generation          413
    • 3.17.9 Maritime           414
      • 3.17.9.1            Market overview           414
    • 3.17.10              Fuel cell trains              415
      • 3.17.10.1         Market overview           415
  • 3.18     Company Profiles       416 (145 company profiles)

 

4             CARBON CAPTURE AND STORAGE 524

  • 4.1        Main sources of carbon dioxide emissions 524
  • 4.2        CO2 as a commodity                525
  • 4.3        Meeting climate targets          528
  • 4.4        Market drivers and trends      529
  • 4.5        The current market and future outlook         529
  • 4.6        CCUS investments     530
    • 4.6.1    Venture Capital Funding         530
      • 4.6.1.1 2010-2024      531
      • 4.6.1.2 CCUS VC deals 2022-2025  532
  • 4.7        Government CCUS initiatives and policy environment       535
    • 4.7.1    North America              536
    • 4.7.2    Europe                537
    • 4.7.3    Asia      538
      • 4.7.3.1 Japan  538
      • 4.7.3.2 Singapore         538
      • 4.7.3.3 China  538
  • 4.8        Market map    540
  • 4.9        Commercial CCUS facilities and projects  543
    • 4.9.1    Facilities           543
      • 4.9.1.1 Operational     543
      • 4.9.1.2 Under development/construction    546
  • 4.10     Economics of CCUS projects              552
    • 4.10.1 CAPEX Reduction Strategies                552
    • 4.10.2 OPEX Reduction Approaches             552
    • 4.10.3 Emerging Technology Solutions         552
  • 4.11     CCUS Value Chain     553
  • 4.12     Key market barriers for CCUS             555
  • 4.13     CCUS and the energy trilemma         555
  • 4.14     Growth markets for CUS        556
  • 4.15     Carbon pricing              557
    • 4.15.1 Compliance Carbon Pricing Mechanisms  558
    • 4.15.2 Alternative to Carbon Pricing: 45Q Tax Credits        559
    • 4.15.3 Business models         561
      • 4.15.3.1            Full chain         562
      • 4.15.3.2            Networks and hub model      562
      • 4.15.3.3            Partial-chain  563
      • 4.15.3.4            Carbon dioxide utilization business model 563
    • 4.15.4 The European Union Emission Trading Scheme (EU ETS)  564
    • 4.15.5 Carbon Pricing in the US        565
    • 4.15.6 Carbon Pricing in China          565
    • 4.15.7 Voluntary Carbon Markets    566
    • 4.15.8 Challenges with Carbon Pricing        567
  • 4.16     Global market forecasts         568
    • 4.16.1 CCUS capture capacity forecast by end point         568
    • 4.16.2 Capture capacity by region to 2046, Mtpa  569
    • 4.16.3 Revenues          570
    • 4.16.4 CCUS capacity forecast by capture type     570
    • 4.16.5 Cost projections 2025-2046 571
    • 4.16.6 Carbon Capture           575
      • 4.16.6.1            Source Characterization        576
      • 4.16.6.2            Purification      576
      • 4.16.6.3            CO2 capture technologies    577
    • 4.16.7 Carbon Utilization      580
      • 4.16.7.1            CO2 utilization pathways       581
    • 4.16.8 Carbon storage            582
      • 4.16.8.1            Passive storage            582
      • 4.16.8.2            Enhanced oil recovery              583
  • 4.17     Transporting CO2        583
    • 4.17.1 Methods of CO2 transport    583
      • 4.17.1.1            Pipeline              585
      • 4.17.1.2            Ship      585
      • 4.17.1.3            Road    585
      • 4.17.1.4            Rail       586
    • 4.17.2 Safety  586
  • 4.18     Costs  587
    • 4.18.1 Cost of CO2 transport              588
  • 4.19     Carbon credits              590
  • 4.20     Life Cycle Assessment (LCA) of CCUS Technologies           592
  • 4.21     Environmental Impact Assessment                593
  • 4.22     Social acceptance and public perception  594
  • 4.23     Fate of CO2     595
  • 4.24     Carbon Dioxide Capture         595
    • 4.24.1 Historical CO2 capture           595
    • 4.24.2 CO₂ capture technologies     596
    • 4.24.3 Maturity of technologies         599
    • 4.24.4 Technology selection                600
    • 4.24.5 Capture Percentages                603
      • 4.24.5.1            >90% capture rate      603
      • 4.24.5.2            99% capture rate         605
    • 4.24.6 CO2 capture agent performance      607
    • 4.24.7 Energy Consumption               608
    • 4.24.8 TRL       610
    • 4.24.9 Global Pipeline of Carbon Capture Facilities-Current and PLanned         611
    • 4.24.10              CO2 capture from point sources      612
      • 4.24.10.1         Energy Availability and Costs              615
      • 4.24.10.2         Power plants with CCUS        615
      • 4.24.10.3         Transportation              616
      • 4.24.10.4         Global point source CO2 capture capacities           616
      • 4.24.10.5         By source          617
      • 4.24.10.6         Blue hydrogen               618
        • 4.24.10.6.1     Steam-methane reforming (SMR)    619
        • 4.24.10.6.2     Autothermal reforming (ATR)               619
        • 4.24.10.6.3     Partial oxidation (POX)             620
        • 4.24.10.6.4     Sorption Enhanced Steam Methane Reforming (SE-SMR)               621
        • 4.24.10.6.5     Pre-Combustion vs. Post-Combustion carbon capture     622
        • 4.24.10.6.6     Blue hydrogen projects            623
        • 4.24.10.6.7     Costs  623
        • 4.24.10.6.8     Market players               624
      • 4.24.10.7         Carbon capture in cement    625
        • 4.24.10.7.1     CCUS Projects              626
        • 4.24.10.7.2     Carbon capture technologies             627
        • 4.24.10.7.3     Costs  628
        • 4.24.10.7.4     Challenges      629
      • 4.24.10.8         Maritime carbon capture       629
    • 4.24.11              Main carbon capture processes        630
      • 4.24.11.1         Materials           630
      • 4.24.11.2         Natural Gas Sweetening         631
      • 4.24.11.3         Post-combustion        632
        • 4.24.11.3.1     Chemicals/Solvents  633
        • 4.24.11.3.2     Amine-based post-combustion CO₂ absorption    636
        • 4.24.11.3.3     Physical absorption solvents              638
        • 4.24.11.3.4     Emerging Solvents for Carbon Capture        640
        • 4.24.11.3.5     Chilled Ammonia Process (CAP)       641
        • 4.24.11.3.6     Molten Borates             642
        • 4.24.11.3.7     Costs  642
        • 4.24.11.3.8     Alternatives to Solvent-Based Carbon Capture       643
      • 4.24.11.4         Oxy-fuel combustion                644
        • 4.24.11.4.1     Oxyfuel CCUS cement projects         645
        • 4.24.11.4.2     Chemical Looping-Based Capture  646
      • 4.24.11.5         Liquid or supercritical CO2: Allam-Fetvedt Cycle  647
      • 4.24.11.6         Pre-combustion           648
    • 4.24.12              Carbon separation technologies       649
      • 4.24.12.1         Absorption capture    650
      • 4.24.12.2         Adsorption capture    654
        • 4.24.12.2.1     Solid sorbent-based CO₂ separation             655
        • 4.24.12.2.2     Metal organic framework (MOF) adsorbents             657
        • 4.24.12.2.3     Zeolite-based adsorbents     657
        • 4.24.12.2.4     Solid amine-based adsorbents         657
        • 4.24.12.2.5     Carbon-based adsorbents   658
        • 4.24.12.2.6     Polymer-based adsorbents  659
        • 4.24.12.2.7     Solid sorbents in pre-combustion   659
        • 4.24.12.2.8     Sorption Enhanced Water Gas Shift (SEWGS)          660
        • 4.24.12.2.9     Solid sorbents in post-combustion 661
      • 4.24.12.3         Membranes    663
        • 4.24.12.3.1     Membrane-based CO₂ separation   664
        • 4.24.12.3.2     Gas Separation Membranes 667
        • 4.24.12.3.3     Post-combustion CO₂ capture           668
        • 4.24.12.3.4     Facilitated transport membranes    668
        • 4.24.12.3.5     Pre-combustion capture        669
        • 4.24.12.3.6     Advanced membrane materials        670
          • 4.24.12.3.6.1 Graphene-based membranes            671
          • 4.24.12.3.6.2 Metal-organic framework (MOF) membranes          671
        • 4.24.12.3.7     Membranes for Direct Air Capture   672
      • 4.24.12.4         Liquid or supercritical CO2 (Cryogenic) capture    673
      • 4.24.12.5         Calcium Looping         676
        • 4.24.12.5.1     Calix Advanced Calciner        676
      • 4.24.12.6         Other technologies    677
        • 4.24.12.6.1     LEILAC process            677
        • 4.24.12.6.2     CO₂ capture with Solid Oxide Fuel Cells (SOFCs) 678
        • 4.24.12.6.3     CO₂ capture with Molten Carbonate Fuel Cells (MCFCs) 679
        • 4.24.12.6.4     Microalgae Carbon Capture 679
      • 4.24.12.7         Comparison of key separation technologies             681
      • 4.24.12.8         Technology readiness level (TRL) of gas separation technologies               682
    • 4.24.13              Opportunities and barriers   682
    • 4.24.14              Costs of CO2 capture               684
    • 4.24.15              CO2 capture capacity              685
    • 4.24.16              Direct air capture (DAC)         687
      • 4.24.16.1         Technology description           687
        • 4.24.16.1.1     Sorbent-based CO2 Capture               687
        • 4.24.16.1.2     Solvent-based CO2 Capture                687
        • 4.24.16.1.3     DAC Solid Sorbent Swing Adsorption Processes    688
        • 4.24.16.1.4     Electro-Swing Adsorption (ESA) of CO2 for DAC     688
        • 4.24.16.1.5     Solid and liquid DAC 689
      • 4.24.16.2         Advantages of DAC    691
      • 4.24.16.3         Deployment    691
      • 4.24.16.4         Point source carbon capture versus Direct Air Capture     692
      • 4.24.16.5         Technologies  693
        • 4.24.16.5.1     Solid sorbents               695
        • 4.24.16.5.2     Liquid sorbents            697
        • 4.24.16.5.3     Liquid solvents             698
        • 4.24.16.5.4     Airflow equipment integration            698
        • 4.24.16.5.5     Passive Direct Air Capture (PDAC)   698
        • 4.24.16.5.6     Direct conversion        699
        • 4.24.16.5.7     Co-product generation            699
        • 4.24.16.5.8     Low Temperature DAC             699
        • 4.24.16.5.9     Regeneration methods            699
      • 4.24.16.6         Electricity and Heat Sources               700
      • 4.24.16.7         Commercialization and plants           700
      • 4.24.16.8         Metal-organic frameworks (MOFs) in DAC  701
      • 4.24.16.9         DAC plants and projects-current and planned        702
      • 4.24.16.10      Capacity forecasts     704
      • 4.24.16.11      Costs  705
      • 4.24.16.12      Market challenges for DAC   712
      • 4.24.16.13      Market prospects for direct air capture        713
      • 4.24.16.14      Players and production           715
      • 4.24.16.15      Co2 utilization pathways        716
      • 4.24.16.16      Markets for Direct Air Capture and Storage (DACCS)          718
        • 4.24.16.16.1  Fuels    719
          • 4.24.16.16.1.1              Overview           719
          • 4.24.16.16.1.2              Production routes       721
          • 4.24.16.16.1.3              Methanol          721
          • 4.24.16.16.1.4              Algae based biofuels 723
          • 4.24.16.16.1.5              CO₂-fuels from solar 724
          • 4.24.16.16.1.6              Companies     726
          • 4.24.16.16.1.7              Challenges      728
        • 4.24.16.16.2  Chemicals, plastics and polymers  728
          • 4.24.16.16.2.1              Overview           728
          • 4.24.16.16.2.2              Scalability        729
          • 4.24.16.16.2.3              Plastics and polymers              730
            • 4.24.16.16.2.3.1         CO2 utilization products        731
          • 4.24.16.16.2.4              Urea production           732
          • 4.24.16.16.2.5              Inert gas in semiconductor manufacturing 732
          • 4.24.16.16.2.6              Carbon nanotubes     732
          • 4.24.16.16.2.7              Companies     732
        • 4.24.16.16.3  Construction materials           734
          • 4.24.16.16.3.1              Overview           734
          • 4.24.16.16.3.2              CCUS technologies   736
          • 4.24.16.16.3.3              Carbonated aggregates          738
          • 4.24.16.16.3.4              Additives during mixing           739
          • 4.24.16.16.3.5              Concrete curing           739
          • 4.24.16.16.3.6              Costs  740
          • 4.24.16.16.3.7              Companies     740
          • 4.24.16.16.3.8              Challenges      742
        • 4.24.16.16.4  CO2 Utilization in Biological Yield-Boosting              742
          • 4.24.16.16.4.1              Overview           742
          • 4.24.16.16.4.2              Applications   742
            • 4.24.16.16.4.2.1         Greenhouses 742
            • 4.24.16.16.4.2.2         Algae cultivation          742
            • 4.24.16.16.4.2.3         Microbial conversion 743
          • 4.24.16.16.4.3              Companies     745
        • 4.24.16.16.5  Food and feed production     745
        • 4.24.16.16.6  CO₂ Utilization in Enhanced Oil Recovery   746
          • 4.24.16.16.6.1              Overview           746
            • 4.24.16.16.6.1.1         Process              747
            • 4.24.16.16.6.1.2         CO₂ sources   747
          • 4.24.16.16.6.2              CO₂-EOR facilities and projects         747
    • 4.24.17              Hybrid Capture Systems        750
    • 4.24.18              Artificial Intelligence in Carbon Capture      750
    • 4.24.19              Integration with Renewable Energy Systems             751
    • 4.24.20              Mobile Carbon Capture Solutions   752
    • 4.24.21              Carbon Capture Retrofitting 753
    • 4.24.22              Carbon Capture in Industry  754
      • 4.24.22.1         Cement              754
      • 4.24.22.2         Iron and Steel 756
        • 4.24.22.2.1     Post-combustion capture for BF-BOF processes   757
        • 4.24.22.2.2     Pre-Combustion Carbon Capture for Ironmaking 758
        • 4.24.22.2.3     Gas Recycling and Oxyfuel Combustion for Ironmaking   759
        • 4.24.22.2.4     Direct reduced iron (DRI) production             760
      • 4.24.22.3         Power Generation       762
        • 4.24.22.3.1     Power plants with carbon capture systems               763
        • 4.24.22.3.2     Coal Power Generation            763
        • 4.24.22.3.3     Gas Power Generation             763
          • 4.24.22.3.3.1 Gas Power CCS for Data Centers      765
      • 4.24.22.3.4     Power sector CCUS cost        765
  • 4.25     Carbon Dioxide Removal       766
    • 4.25.1 Conventional CDR on land   768
      • 4.25.1.1            Wetland and peatland restoration   768
      • 4.25.1.2            Cropland, grassland, and agroforestry         768
    • 4.25.2 Technological CDR Solutions              769
    • 4.25.3 Main CDR methods   770
    • 4.25.4 Novel CDR methods 771
    • 4.25.5 Value chain     773
    • 4.25.6 Deployment of carbon dioxide removal technologies         775
    • 4.25.7 Technology Readiness Level (TRL): Carbon Dioxide Removal Methods   776
    • 4.25.8 Carbon Credits             777
      • 4.25.8.1            Description     777
      • 4.25.8.2            Carbon pricing              777
      • 4.25.8.3            Carbon Removal vs Carbon Avoidance Offsetting 779
      • 4.25.8.4            Carbon credit certification    779
      • 4.25.8.5            Carbon registries         780
      • 4.25.8.6            Carbon credit quality                781
      • 4.25.8.7            Voluntary Carbon Credits      781
        • 4.25.8.7.1        Definition         781
        • 4.25.8.7.2        Purchasing      783
        • 4.25.8.7.3        Key Market Players and Projects        785
        • 4.25.8.7.4        Pricing 787
      • 4.25.8.8            Compliance Carbon Credits                789
        • 4.25.8.8.1        Definition         789
        • 4.25.8.8.2        Market players               789
        • 4.25.8.8.3        Pricing 789
      • 4.25.8.9            Durable carbon dioxide removal (CDR) credits        790
      • 4.25.8.10         Corporate commitments       792
      • 4.25.8.11         Increasing government support and regulations    792
      • 4.25.8.12         Advancements in carbon offset project verification and monitoring        793
      • 4.25.8.13         Potential for blockchain technology in carbon credit trading         793
      • 4.25.8.14         Buying and Selling Carbon Credits  794
        • 4.25.8.14.1     Carbon credit exchanges and trading platforms     794
        • 4.25.8.14.2     Over-the-counter (OTC) transactions            795
        • 4.25.8.14.3     Pricing mechanisms and factors affecting carbon credit prices  796
      • 4.25.8.15         Certification    796
      • 4.25.8.16         Challenges and risks 797
    • 4.25.9 Monitoring, reporting, and verification          798
    • 4.25.10              Government policies 799
    • 4.25.11              Bioenergy with Carbon Removal and Storage (BiCRS)       800
      • 4.25.11.1         Feedstocks      801
      • 4.25.11.2         BiCRS Conversion Pathways                801
    • 4.25.12              BECCS               804
      • 4.25.12.1         Technology overview 804
        • 4.25.12.1.1     Point Source Capture Technologies for BECCS       806
        • 4.25.12.1.2     Energy efficiency         806
        • 4.25.12.1.3     Heat generation           806
        • 4.25.12.1.4     Waste-to-Energy          807
        • 4.25.12.1.5     Blue Hydrogen Production    807
      • 4.25.12.2         Biomass conversion 808
      • 4.25.12.3         CO₂ capture technologies     808
      • 4.25.12.4         BECCS facilities           810
      • 4.25.12.5         Cost analysis 811
      • 4.25.12.6         BECCS carbon credits             812
      • 4.25.12.7         Sustainability 812
      • 4.25.12.8         Challenges      812
    • 4.25.13              Mineralization-based CDR    814
      • 4.25.13.1         Overview           814
      • 4.25.13.2         Storage in CO₂-Derived Concrete     816
      • 4.25.13.3         Oxide Looping               817
      • 4.25.13.4         Enhanced Weathering              818
        • 4.25.13.4.1     Overview           818
        • 4.25.13.4.2     Benefits             818
        • 4.25.13.4.3     Monitoring, Reporting, and Verification (MRV)         819
        • 4.25.13.4.4     Applications   819
        • 4.25.13.4.5     Commercial activity and companies             820
        • 4.25.13.4.6     Challenges and Risks               822
      • 4.25.13.5         Cost analysis 823
      • 4.25.13.6         SWOT analysis              823
    • 4.25.14              Afforestation/Reforestation  824
      • 4.25.14.1         Overview           824
      • 4.25.14.2         Carbon dioxide removal methods    825
        • 4.25.14.2.1     Nature-based CDR     825
        • 4.25.14.2.2     Land-based CDR         826
      • 4.25.14.3         Technologies  827
        • 4.25.14.3.1     Remote Sensing           827
        • 4.25.14.3.2     Drone technology and robotics         827
        • 4.25.14.3.3     Automated forest fire detection systems    828
        • 4.25.14.3.4     AI/ML   828
        • 4.25.14.3.5     Genetics            829
      • 4.25.14.4         Trends and Opportunities      829
      • 4.25.14.5         Challenges and Risks               830
        • 4.25.14.5.1     SWOT analysis              830
        • 4.25.14.5.2     Soil carbon sequestration (SCS)       831
          • 4.25.14.5.2.1 Overview           831
          • 4.25.14.5.2.2 Practices           832
          • 4.25.14.5.2.3 Measuring and Verifying         833
          • 4.25.14.5.2.4 Trends and Opportunities      835
          • 4.25.14.5.2.5 Carbon credits              835
          • 4.25.14.5.2.6 Challenges and Risks               836
          • 4.25.14.5.2.7 SWOT analysis              837
        • 4.25.14.5.3     Biochar              838
          • 4.25.14.5.3.1 What is biochar?         838
          • 4.25.14.5.3.2 Carbon sequestration              840
          • 4.25.14.5.3.3 Properties of biochar 840
          • 4.25.14.5.3.4 Feedstocks      843
          • 4.25.14.5.3.5 Production processes              843
            • 4.25.14.5.3.5.1            Sustainable production          844
            • 4.25.14.5.3.5.2            Pyrolysis            845
            • 4.25.14.5.3.5.3            Gasification    847
            • 4.25.14.5.3.5.4            Hydrothermal carbonization (HTC)  847
            • 4.25.14.5.3.5.5            Torrefaction     847
            • 4.25.14.5.3.5.6            Equipment manufacturers   848
          • 4.25.14.5.3.6 Biochar pricing             849
          • 4.25.14.5.3.7 Biochar carbon credits            850
            • 4.25.14.5.3.7.1            Overview           850
            • 4.25.14.5.3.7.2            Removal and reduction credits          850
            • 4.25.14.5.3.7.3            The advantage of biochar      850
            • 4.25.14.5.3.7.4            Prices  850
            • 4.25.14.5.3.7.5            Buyers of biochar credits       851
            • 4.25.14.5.3.7.6            Competitive materials and technologies    851
          • 4.25.14.5.3.8 Bio-oil based CDR      852
          • 4.25.14.5.3.9 Biomass burial for CO₂ removal        853
          • 4.25.14.5.3.10              Bio-based construction materials for CDR 854
          • 4.25.14.5.3.11              SWOT analysis              855
    • 4.25.15              Ocean-based CDR     856
      • 4.25.15.1         Overview           856
      • 4.25.15.2         CO₂ capture from seawater  857
      • 4.25.15.3         Ocean fertilisation      858
        • 4.25.15.3.1     Biotic Methods             858
        • 4.25.15.3.2     Coastal blue carbon ecosystems     859
        • 4.25.15.3.3     Algal Cultivation           859
        • 4.25.15.3.4     Artificial Upwelling     859
      • 4.25.15.4         Ocean alkalinisation 860
        • 4.25.15.4.1     Electrochemical ocean alkalinity enhancement    860
        • 4.25.15.4.2     Direct Ocean Capture              861
        • 4.25.15.4.3     Artificial Downwelling              861
      • 4.25.15.5         Monitoring, Reporting, and Verification (MRV)         862
      • 4.25.15.6         Ocean-based CDR Carbon Credits 862
      • 4.25.15.7         Trends and Opportunities      862
      • 4.25.15.8         Ocean-based carbon credits               862
      • 4.25.15.9         Cost analysis 863
      • 4.25.15.10      Challenges and Risks               863
      • 4.25.15.11      SWOT analysis              863
      • 4.25.15.12      Companies     864
  • 4.26     Company Profiles       865 (374 company profiles)

 

 

5             INDUSTRIAL HEAT DECARBONIZATION       1112

  • 5.1        Market overview           1112
    • 5.1.1    Industrial Heat: Current State and Decarbonization Imperative   1112
    • 5.1.2    Industrial Decarbonization Incentives           1115
    • 5.1.3    Technology Maturity Overview            1115
  • 5.2        The Four Pillars of Industrial Heat Decarbonization Economics  1118
    • 5.2.1    Electricity Cost Dynamics and Competitive Position          1118
    • 5.2.2    Carbon Pricing: The Economic Game-Changer      1119
    • 5.2.3    Business Model Gap: Why Industrial Heat Differs from Power Generation           1120
    • 5.2.4    Temperature-Based Market Segmentation: A Strategic Framework           1121
  • 5.3        Cost Competitiveness Analysis        1123
    • 5.3.1    Carbon Abatement Potential               1124
  • 5.4        Technologies  1125
    • 5.4.1    Electric Heating            1125
      • 5.4.1.1 Resistance Heating    1125
        • 5.4.1.1.1           Direct Resistance       1125
        • 5.4.1.1.2           Indirect Resistance    1126
        • 5.4.1.1.3           Infrared Heating           1126
      • 5.4.1.2 Induction Heating       1126
        • 5.4.1.2.1           High-Frequency Systems       1127
        • 5.4.1.2.2           Medium-Frequency Systems              1127
        • 5.4.1.2.3           Low-Frequency Systems        1128
      • 5.4.1.3 Microwave Heating     1128
        • 5.4.1.3.1           Single-Mode Systems              1128
        • 5.4.1.3.2           Multi-Mode Systems 1129
        • 5.4.1.3.3           Advanced Control Systems  1129
      • 5.4.1.4 Plasma Heating            1129
        • 5.4.1.4.1           Thermal Plasma          1130
        • 5.4.1.4.2           Non-Thermal Plasma               1131
        • 5.4.1.4.3           Hybrid Plasma Systems          1131
    • 5.4.2    Heat Pumps   1132
      • 5.4.2.1 High-Temperature Systems  1132
        • 5.4.2.1.1           Vapor Compression  1132
        • 5.4.2.1.2           Absorption Systems  1133
        • 5.4.2.1.3           Hybrid Configurations             1133
      • 5.4.2.2 Integration Strategies                1134
        • 5.4.2.2.1           Process Integration    1134
        • 5.4.2.2.2           Cascade Systems       1135
        • 5.4.2.2.3           Multi-Source Integration         1135
      • 5.4.2.3 Emerging Technologies            1136
        • 5.4.2.3.1           Chemical Heat Pumps            1136
        • 5.4.2.3.2           Magnetocaloric Systems       1136
        • 5.4.2.3.3           Thermoacoustic Heat Pumps             1137
    • 5.4.3    Biomass Solutions     1137
      • 5.4.3.1 Advanced Feedstock Processing      1138
        • 5.4.3.1.1           Torrefaction     1138
        • 5.4.3.1.2           Pelletization    1139
        • 5.4.3.1.3           Gasification    1139
      • 5.4.3.2 Combustion Technologies    1140
        • 5.4.3.2.1           Fluidized Bed Systems            1140
        • 5.4.3.2.2           Grate Firing Systems 1141
        • 5.4.3.2.3           Pulverized Biomass   1142
      • 5.4.3.3 Emerging Biomass Technologies      1143
        • 5.4.3.3.1           Supercritical Water Gasification       1143
        • 5.4.3.3.2           Plasma-Assisted Combustion           1144
        • 5.4.3.3.3           Chemical Looping      1145
    • 5.4.4    Advanced and Emerging Technologies          1145
      • 5.4.4.1 Solar Thermal 1146
        • 5.4.4.1.1           Concentrated Solar Power    1146
        • 5.4.4.1.2           Solar-Hydrogen Hybrid Systems       1147
      • 5.4.4.2 Geothermal     1148
        • 5.4.4.2.1           Deep Geothermal       1149
        • 5.4.4.2.2           Enhanced Geothermal Systems       1149
      • 5.4.4.3 Novel Heat Storage    1150
        • 5.4.4.3.1           Thermochemical Storage      1150
        • 5.4.4.3.2           Phase Change Materials         1151
        • 5.4.4.3.3           Molten Salt Systems 1151
      • 5.4.4.4 Artificial Intelligence and Digital Technologies        1151
        • 5.4.4.4.1           Predictive Maintenance          1152
        • 5.4.4.4.2           Process Optimization               1152
        • 5.4.4.4.3           Digital Twins   1153
  • 5.5        Markets and Applications      1153
    • 5.5.1    Process Industries      1153
      • 5.5.1.1 Chemical Industry      1153
      • 5.5.1.2 Food Processing          1154
      • 5.5.1.3 Paper and Pulp             1155
      • 5.5.1.4 Glass and Ceramics  1156
    • 5.5.2    Metal Processing         1157
      • 5.5.2.1 Steel Industry 1157
      • 5.5.2.2 Aluminium Production             1158
      • 5.5.2.3 Other Metals  1158
    • 5.5.3    Building Materials       1159
      • 5.5.3.1 Cement Production   1159
      • 5.5.3.2 Brick Manufacturing 1160
      • 5.5.3.3 Other Materials            1160
  • 5.6        System Integration     1160
    • 5.6.1    Heat Recovery Systems          1160
      • 5.6.1.1 Technology Options  1161
      • 5.6.1.2 Efficiency Analysis     1161
      • 5.6.1.3 Implementation Strategies   1161
    • 5.6.2    Process Optimization               1162
      • 5.6.2.1 Energy Management 1162
      • 5.6.2.2 Control Systems          1162
      • 5.6.2.3 Performance Monitoring        1162
  • 5.7        Market Analysis           1162
    • 5.7.1    Cost Analysis 1162
    • 5.7.2    Future Outlook             1163
  • 5.8        Company profiles       1164 (39 company profiles)

 

 

6             ELECTRIFICATION OF INDUSTRIAL PROCESSES   1203

  • 6.1        Grid Integration and Power Systems               1203
    • 6.1.1    Grid Requirements     1203
      • 6.1.1.1 Power Quality 1204
      • 6.1.1.2 Capacity Planning      1206
      • 6.1.1.3 Smart Grid Integration             1208
    • 6.1.2    Energy Storage Systems         1209
      • 6.1.2.1 Battery Storage             1209
      • 6.1.2.2 Thermal Storage          1212
      • 6.1.2.3 Hybrid Systems            1213
    • 6.1.3    Renewable Energy Integration            1214
      • 6.1.3.1 Solar PV Integration   1215
      • 6.1.3.2 Wind Power Integration           1215
      • 6.1.3.3 Hybrid Power Systems             1217
  • 6.2        Electric Process Heating        1219
    • 6.2.1    Resistance Heating Systems               1220
      • 6.2.1.1 Direct Resistance Heating     1220
      • 6.2.1.2 Indirect Resistance Heating 1221
      • 6.2.1.3 Immersion Heating    1223
      • 6.2.1.4 Advanced Control Systems  1224
    • 6.2.2    Induction Technology               1225
      • 6.2.2.1 High-Frequency Systems       1225
      • 6.2.2.2 Medium-Frequency Systems              1226
      • 6.2.2.3 Low-Frequency Systems        1228
      • 6.2.2.4 Advanced Power Supply         1229
    • 6.2.3    Infrared Heating           1230
      • 6.2.3.1 Short-wave Systems 1231
      • 6.2.3.2 Medium-wave Systems           1232
      • 6.2.3.3 Long-wave Systems   1233
      • 6.2.3.4 Hybrid Solutions          1234
    • 6.2.4    Dielectric Heating       1235
      • 6.2.4.1 Microwave Systems   1235
      • 6.2.4.2 Radio Frequency Systems     1236
      • 6.2.4.3 Advanced Control       1237
    • 6.2.5    Plasma Systems          1239
      • 6.2.5.1 Thermal Plasma          1240
      • 6.2.5.2 Non-Thermal Plasma               1241
      • 6.2.5.3 Hybrid Plasma Systems          1242
  • 6.3        Electrochemical Processes  1243
    • 6.3.1    Advanced Electrolysis Systems         1243
      • 6.3.1.1 Alkaline Electrolysis  1244
      • 6.3.1.2 PEM Electrolysis          1245
      • 6.3.1.3 Solid Oxide Electrolysis           1246
    • 6.3.2    Electrochemical Reactors     1247
      • 6.3.2.1 Flow Reactors               1248
      • 6.3.2.2 Batch Reactors             1249
      • 6.3.2.3 Novel Designs               1250
    • 6.3.3    Membrane Technologies        1252
      • 6.3.3.1 Ion Exchange Membranes     1253
      • 6.3.3.2 Ceramic Membranes                1254
      • 6.3.3.3 Composite Membranes          1255
  • 6.4        Electric Motors and Drives    1257
    • 6.4.1    Advanced Motor Technologies           1257
      • 6.4.1.1 Permanent Magnet Motors   1258
      • 6.4.1.2 Synchronous Reluctance Motors     1259
      • 6.4.1.3 High-Speed Motors    1259
  • 6.5        Emerging Technologies            1260
    • 6.5.1    Digital Twin Technologies       1260
      • 6.5.1.1 Process Modeling       1261
      • 6.5.1.2 Real-time Optimization           1262
    • 6.5.2    AI and Machine Learning        1262
      • 6.5.2.1 Predictive Maintenance          1263
      • 6.5.2.2 Process Optimization               1264
      • 6.5.2.3 Energy Management 1264
    • 6.5.3    Novel Heating Technologies 1265
      • 6.5.3.1 Ultrasonic Heating      1266
      • 6.5.3.2 Electron Beam Processing    1267
      • 6.5.3.3 Laser Processing         1268
  • 6.6        Applications   1269
    • 6.6.1    Chemical Industry      1269
      • 6.6.1.1 Process Electrification             1269
      • 6.6.1.2 Energy Integration       1270
    • 6.6.2    Metal Processing         1270
      • 6.6.2.1 Melting and Casting  1271
      • 6.6.2.2 Heat Treatment             1272
      • 6.6.2.3 Surface Processing    1272
    • 6.6.3    Food and Beverage    1273
      • 6.6.3.1 Heating Processes     1273
      • 6.6.3.2 Cooling Systems          1274
      • 6.6.3.3 Process Integration    1275
    • 6.6.4    Mining and Minerals  1276
      • 6.6.4.1 Equipment Electrification      1277
      • 6.6.4.2 Process Conversion  1278
  • 6.7        Company profiles       1280 (126 company profiles)

 

7             CIRCULAR ECONOMY SOLUTIONS 1409

  • 7.1        Advanced Sorting and Detection Technologies       1409
    • 7.1.1    Artificial Intelligence and Machine Learning             1409
    • 7.1.2    Computer Vision Systems     1409
    • 7.1.3    Deep Learning Algorithms     1410
    • 7.1.4    Real-time Sorting        1411
  • 7.2        Spectroscopic Technologies                1411
    • 7.2.1    NIR Spectroscopy       1411
    • 7.2.2    Raman Spectroscopy               1412
    • 7.2.3    X-ray Technologies     1413
    • 7.2.4    Robotic Sorting Systems        1413
    • 7.2.5    Automated Processing Lines               1414
    • 7.2.6    Quality Control Systems        1415
  • 7.3        Recycling Technologies           1416
    • 7.3.1    Pyrolysis            1416
      • 7.3.1.1 Non-catalytic 1417
      • 7.3.1.2 Catalytic            1418
        • 7.3.1.2.1           Polystyrene pyrolysis 1419
        • 7.3.1.2.2           Pyrolysis for production of bio fuel  1420
        • 7.3.1.2.3           Used tires pyrolysis   1424
          • 7.3.1.2.3.1      Conversion to biofuel               1425
          • 7.3.1.2.4           Co-pyrolysis of biomass and plastic wastes             1426
      • 7.3.1.3 Companies and capacities  1426
    • 7.3.2    Gasification    1427
      • 7.3.2.1 Technology overview 1427
        • 7.3.2.1.1           Syngas conversion to methanol        1428
        • 7.3.2.1.2           Biomass gasification and syngas fermentation       1431
        • 7.3.2.1.3           Biomass gasification and syngas thermochemical conversion    1431
      • 7.3.2.2 Companies and capacities (current and planned)                1432
    • 7.3.3    Dissolution     1433
      • 7.3.3.1 Technology overview 1433
      • 7.3.3.2 Companies and capacities (current and planned)                1434
    • 7.3.4    Depolymerisation       1435
      • 7.3.4.1 Hydrolysis        1436
        • 7.3.4.1.1           Technology overview 1436
        • 7.3.4.1.2           SWOT analysis              1438
      • 7.3.4.2 Enzymolysis   1438
        • 7.3.4.2.1           Technology overview 1438
        • 7.3.4.2.2           SWOT analysis              1439
      • 7.3.4.3 Methanolysis 1440
        • 7.3.4.3.1           Technology overview 1440
        • 7.3.4.3.2           SWOT analysis              1440
      • 7.3.4.4 Glycolysis         1441
        • 7.3.4.4.1           Technology overview 1441
        • 7.3.4.4.2           SWOT analysis              1443
      • 7.3.4.5 Aminolysis      1444
        • 7.3.4.5.1           Technology overview 1444
        • 7.3.4.5.2           SWOT analysis              1444
      • 7.3.4.6 Companies and capacities (current and planned)                1444
    • 7.3.5    Other advanced chemical recycling technologies 1446
      • 7.3.5.1 Hydrothermal cracking           1446
      • 7.3.5.2 Pyrolysis with in-line reforming          1446
      • 7.3.5.3 Microwave-assisted pyrolysis             1447
      • 7.3.5.4 Plasma pyrolysis         1448
      • 7.3.5.5 Plasma gasification   1448
      • 7.3.5.6 Supercritical fluids     1449
      • 7.3.5.7 Carbon fiber recycling              1449
        • 7.3.5.7.1           Processes        1450
        • 7.3.5.7.2           Companies     1452
    • 7.3.6    Advanced recycling of thermoset materials              1453
      • 7.3.6.1 Thermal recycling        1454
        • 7.3.6.1.1           Energy Recovery Combustion            1454
        • 7.3.6.1.2           Anaerobic Digestion 1454
        • 7.3.6.1.3           Pyrolysis Processing 1455
        • 7.3.6.1.4           Microwave Pyrolysis  1455
      • 7.3.6.2 Solvolysis         1456
      • 7.3.6.3 Catalyzed Glycolysis 1457
      • 7.3.6.4 Alcoholysis and Hydrolysis   1458
      • 7.3.6.5 Ionic liquids    1459
      • 7.3.6.6 Supercritical fluids     1460
      • 7.3.6.7 Plasma              1460
      • 7.3.6.8 Companies     1461
  • 7.4        Materials Recovery     1462
    • 7.4.1    Critical Raw Materials              1464
    • 7.4.2    Metals and minerals processed and extracted        1464
      • 7.4.2.1 Copper               1464
        • 7.4.2.1.1           Global copper demand and trends 1464
        • 7.4.2.1.2           Markets and applications      1465
        • 7.4.2.1.3           Copper extraction and recovery        1466
      • 7.4.2.2 Nickel  1467
        • 7.4.2.2.1           Global nickel demand and trends    1467
        • 7.4.2.2.2           Markets and applications      1468
        • 7.4.2.2.3           Nickel extraction and recovery           1469
      • 7.4.2.3 Cobalt 1469
        • 7.4.2.3.1           Global cobalt demand and trends   1470
        • 7.4.2.3.2           Markets and applications      1470
        • 7.4.2.3.3           Cobalt extraction and recovery          1471
      • 7.4.2.4 Rare Earth Elements (REE)   1472
        • 7.4.2.4.1           Global Rare Earth Elements demand and trends   1472
        • 7.4.2.4.2           Markets and applications      1472
        • 7.4.2.4.3           Rare Earth Elements extraction and recovery           1473
        • 7.4.2.4.4           Recovery of REEs from secondary resources            1474
      • 7.4.2.5 Lithium              1474
        • 7.4.2.5.1           Global lithium demand and trends  1474
        • 7.4.2.5.2           Markets and applications      1475
        • 7.4.2.5.3           Lithium extraction and recovery        1476
      • 7.4.2.6 Gold     1477
        • 7.4.2.6.1           Global gold demand and trends        1477
        • 7.4.2.6.2           Markets and applications      1477
        • 7.4.2.6.3           Gold extraction and recovery               1478
      • 7.4.2.7 Uranium            1478
        • 7.4.2.7.1           Global uranium demand and trends               1478
        • 7.4.2.7.2           Markets and applications      1479
        • 7.4.2.7.3           Uranium extraction and recovery      1479
      • 7.4.2.8 Zinc      1480
        • 7.4.2.8.1           Global Zinc demand and trends        1480
        • 7.4.2.8.2           Markets and applications      1480
        • 7.4.2.8.3           Zinc extraction and recovery                1481
      • 7.4.2.9 Manganese     1482
        • 7.4.2.9.1           Global manganese demand and trends       1482
        • 7.4.2.9.2           Markets and applications      1482
        • 7.4.2.9.3           Manganese extraction and recovery               1483
      • 7.4.2.10            Tantalum          1484
        • 7.4.2.10.1        Global tantalum demand and trends             1484
        • 7.4.2.10.2        Markets and applications      1484
        • 7.4.2.10.3        Tantalum extraction and recovery    1485
      • 7.4.2.11            Niobium            1486
        • 7.4.2.11.1        Global niobium demand and trends               1486
        • 7.4.2.11.2        Markets and applications      1486
        • 7.4.2.11.3        Niobium extraction and recovery      1487
      • 7.4.2.12            Indium                1488
        • 7.4.2.12.1        Global indium demand and trends  1488
        • 7.4.2.12.2        Markets and applications      1488
        • 7.4.2.12.3        Indium extraction and recovery          1489
      • 7.4.2.13            Gallium              1489
        • 7.4.2.13.1        Global gallium demand and trends 1489
        • 7.4.2.13.2        Markets and applications      1489
        • 7.4.2.13.3        Gallium extraction and recovery        1490
      • 7.4.2.14            Germanium    1491
        • 7.4.2.14.1        Global germanium demand and trends        1491
        • 7.4.2.14.2        Markets and applications      1491
        • 7.4.2.14.3        Germanium extraction and recovery              1491
      • 7.4.2.15            Antimony          1492
        • 7.4.2.15.1        Global antimony demand and trends            1492
        • 7.4.2.15.2        Markets and applications      1492
        • 7.4.2.15.3        Antimony extraction and recovery    1493
      • 7.4.2.16            Scandium        1494
        • 7.4.2.16.1        Global scandium demand and trends           1494
        • 7.4.2.16.2        Markets and applications      1494
        • 7.4.2.16.3        Scandium extraction and recovery  1494
      • 7.4.2.17            Graphite            1495
        • 7.4.2.17.1        Global graphite demand and trends               1495
        • 7.4.2.17.2        Markets and applications      1496
        • 7.4.2.17.3        Graphite extraction and recovery      1497
    • 7.4.3    Recovery sources       1498
      • 7.4.3.1 Primary sources           1499
      • 7.4.3.2 Secondary sources    1500
        • 7.4.3.2.1           Extraction         1503
          • 7.4.3.2.1.1      Hydrometallurgical extraction            1505
            • 7.4.3.2.1.1.1  Overview           1505
            • 7.4.3.2.1.1.2  Lixiviants          1505
            • 7.4.3.2.1.1.3  SWOT analysis              1506
          • 7.4.3.2.1.2      Pyrometallurgical extraction                1507
            • 7.4.3.2.1.2.1  Overview           1507
            • 7.4.3.2.1.2.2  SWOT analysis              1507
          • 7.4.3.2.1.3      Biometallurgy 1509
            • 7.4.3.2.1.3.1  Overview           1509
            • 7.4.3.2.1.3.2  SWOT analysis              1510
          • 7.4.3.2.1.4      Ionic liquids and deep eutectic solvents     1511
            • 7.4.3.2.1.4.1  Overview           1511
            • 7.4.3.2.1.4.2  SWOT analysis              1513
          • 7.4.3.2.1.5      Electroleaching extraction    1514
            • 7.4.3.2.1.5.1  Overview           1514
            • 7.4.3.2.1.5.2  SWOT analysis              1515
          • 7.4.3.2.1.6      Supercritical fluid extraction               1516
            • 7.4.3.2.1.6.1  Overview           1516
            • 7.4.3.2.1.6.2  SWOT analysis              1516
        • 7.4.3.2.2           Recovery           1518
        • 7.4.3.2.2.1      Solvent extraction       1518
          • 7.4.3.2.2.1.1  Overview           1518
          • 7.4.3.2.2.1.2  Rare-Earth Element Recovery             1518
          • 7.4.3.2.2.1.3  SWOT analysis              1520
        • 7.4.3.2.2.2      Ion exchange recovery             1521
          • 7.4.3.2.2.2.1  Overview           1521
          • 7.4.3.2.2.2.2  SWOT analysis              1522
        • 7.4.3.2.2.3      Ionic liquid (IL) and deep eutectic solvent (DES) recovery                1524
          • 7.4.3.2.2.3.1  Overview           1524
          • 7.4.3.2.2.3.2  SWOT analysis              1526
        • 7.4.3.2.2.4      Precipitation   1527
          • 7.4.3.2.2.4.1  Overview           1527
          • 7.4.3.2.2.4.2  Coagulation and flocculation              1528
          • 7.4.3.2.2.4.3  SWOT analysis              1529
        • 7.4.3.2.2.5      Biosorption     1530
          • 7.4.3.2.2.5.1  Overview           1530
          • 7.4.3.2.2.5.2  SWOT analysis              1532
        • 7.4.3.2.2.6      Electrowinning              1533
          • 7.4.3.2.2.6.1  Overview           1533
          • 7.4.3.2.2.6.2  SWOT analysis              1534
        • 7.4.3.2.2.7      Direct materials recovery       1536
          • 7.4.3.2.2.7.1  Overview           1536
          • 7.4.3.2.2.7.2  Rare-earth Oxide (REO) Processing Using Molten Salt Electrolysis            1536
          • 7.4.3.2.2.7.3  Rare-earth Magnet Recycling by Hydrogen Decrepitation                1537
          • 7.4.3.2.2.7.4  Direct Recycling of Li-ion Battery Cathodes by Sintering  1537
          • 7.4.3.2.2.7.5  SWOT analysis              1538
    • 7.4.4    Metal Recovery Technologies              1541
      • 7.4.4.1 Pyrometallurgy              1541
      • 7.4.4.2 Hydrometallurgy          1542
      • 7.4.4.3 Biometallurgy 1542
      • 7.4.4.4 Supercritical Fluid Extraction              1543
      • 7.4.4.5 Electrokinetic Separation      1543
      • 7.4.4.6 Mechanochemical Processing           1544
    • 7.4.5    Global market 2025-2040     1545
      • 7.4.5.1 By Material Type (2025-2040)             1545
      • 7.4.5.2 By Recovery Source (2025-2040)     1547
      • 7.4.5.3 By Region (2025-2040)            1549
  • 7.5        Company profiles       1552 (328 company profiles)

 

8             ENVIRONMENTAL TECHNOLOGIES               1785

  • 8.1        Market Overview          1785
  • 8.2        Water Treatment Technologies           1785
    • 8.2.1    Advanced Membrane Systems          1785
      • 8.2.1.1 Next-Generation Membranes             1786
      • 8.2.1.2 Membrane Processes              1786
      • 8.2.1.3 Anti-Fouling Technologies     1787
    • 8.2.2    Advanced Oxidation Processes (AOP)           1788
      • 8.2.2.1 Photocatalytic Systems          1788
      • 8.2.2.2 Electrochemical AOPs             1789
    • 8.2.3    Biological Treatment Systems            1790
      • 8.2.3.1 Advanced Bioreactors             1790
      • 8.2.3.2 Microbial Solutions    1791
      • 8.2.3.3 Bioaugmentation        1792
  • 8.3        Air Quality Management        1792
    • 8.3.1    Advanced Emission Control 1793
      • 8.3.1.1 Particulate Matter Control     1793
      • 8.3.1.2 Gas Treatment Systems          1794
      • 8.3.1.3 Smart Monitoring Systems    1795
  • 8.4        Soil and Groundwater Remediation                1797
    • 8.4.1    In-Situ Technologies  1797
      • 8.4.1.1 Chemical Treatment  1797
      • 8.4.1.2 Biological Remediation           1799
  • 8.5        Digital Environmental Technologies                1800
    • 8.5.1    Environmental IoT       1801
      • 8.5.1.1 Sensor Networks         1801
      • 8.5.1.2 Data Integration           1802
      • 8.5.1.3 Analytics Platforms   1802
    • 8.5.2    AI and Machine Learning        1803
      • 8.5.2.1 Predictive Monitoring               1804
      • 8.5.2.2 Process Optimization               1804
      • 8.5.2.3 Risk Assessment         1805
  • 8.6        Emerging Technologies            1806
    • 8.6.1    Novel Materials            1806
      • 8.6.1.1 Nanomaterials              1807
      • 8.6.1.2 Bio-based Materials  1808
      • 8.6.1.3 Smart Materials            1809
      • 8.6.1.4 Plasma Systems          1810
      • 8.6.1.5 Supercritical Fluids    1811
      • 8.6.1.6 Electrochemical Processes  1811
  • 8.7        Marketr outlook            1813
  • 8.8        Company profiles       1815 (93 company profiles)

 

9             GREEN BUILDING TECHNOLOGIES               1873

  • 9.1        Market Overview          1873
    • 9.1.1    Benefits of Green Buildings  1873
    • 9.1.2    Global Trends and Drivers     1873
  • 9.2        Global Revenues         1875
    • 9.2.1    Sustainable Materials, by type            1875
    • 9.2.2    Sustainable Materials, by market     1878
    • 9.2.3    Building Energy Systems        1880
    • 9.2.4    Smart Building Technologies               1882
    • 9.2.5    Advanced Construction Methods    1883
    • 9.2.6    Regional Green Building Technology Markets           1885
  • 9.3        Sustainable Construction Materials               1887
    • 9.3.1    Low-carbon Concrete              1887
    • 9.3.2    Sustainable Wood Products 1887
    • 9.3.3    Recycled Materials    1889
    • 9.3.4    Bio-based materials  1892
  • 9.4        Insulation Technologies          1896
    • 9.4.1    Advanced Materials   1896
    • 9.4.2    Installation Methods 1897
    • 9.4.3    Performance Metrics 1899
  • 9.5        Smart Windows            1902
    • 9.5.1    Electrochromic Glass              1902
    • 9.5.2    Thermochromic Systems       1903
    • 9.5.3    Integration Technologies        1903
  • 9.6        Construction Methods            1906
    • 9.6.1    Modular Construction             1906
      • 9.6.1.1 Manufacturing Processes      1906
      • 9.6.1.2 Assembly Systems     1908
      • 9.6.1.3 Quality Control             1910
    • 9.6.2    3D Printing       1910
      • 9.6.2.1 Material Development              1910
      • 9.6.2.2 Printing System            1911
      • 9.6.2.3 Applications   1912
    • 9.6.3    Passive Design              1913
      • 9.6.3.1 Solar Optimization     1913
      • 9.6.3.2 Natural Ventilation     1914
      • 9.6.3.3 Thermal Mass               1914
  • 9.7        Energy Systems            1916
    • 9.7.1    Renewable Integration             1916
      • 9.7.1.1 Solar PV Systems        1917
      • 9.7.1.2 Heat Pumps   1918
      • 9.7.1.3 Energy Storage              1918
    • 9.7.2    Building Management              1919
      • 9.7.2.1 Smart Controls             1920
      • 9.7.2.2 Energy Monitoring      1920
      • 9.7.2.3 Optimization Systems              1921
  • 9.8        Water Management   1923
    • 9.8.1    Water Efficiency           1923
      • 9.8.1.1 Low-flow Systems      1923
      • 9.8.1.2 Rainwater Harvesting               1923
      • 9.8.1.3 Greywater Systems    1924
    • 9.8.2    Treatment Systems    1925
      • 9.8.2.1 On-site Treatment       1925
      • 9.8.2.2 Recycling Systems     1925
      • 9.8.2.3 Monitoring Technologies        1926
  • 9.9        Indoor Environmental Quality             1927
    • 9.9.1    Air Quality        1927
      • 9.9.1.1 Ventilation Systems   1927
      • 9.9.1.2 Filtration Technology 1928
      • 9.9.1.3 Monitoring Systems   1929
    • 9.9.2    Acoustic Management            1930
      • 9.9.2.1 Sound Insulation         1930
      • 9.9.2.2 Noise Control 1931
      • 9.9.2.3 Design Integration      1931
  • 9.10     Materials           1933
    • 9.10.1 Hemp-based Materials           1933
      • 9.10.1.1            Hemp Concrete (Hempcrete)              1933
      • 9.10.1.2            Hemp Fiberboard        1933
      • 9.10.1.3            Hemp Insulation          1933
    • 9.10.2 Mycelium-based Materials   1934
      • 9.10.2.1            Insulation         1935
      • 9.10.2.2            Structural Elements  1935
      • 9.10.2.3            Acoustic Panels           1935
      • 9.10.2.4            Decorative Elements 1936
    • 9.10.3 Sustainable Concrete and Cement Alternatives     1936
      • 9.10.3.1            Geopolymer Concrete              1936
      • 9.10.3.2            Recycled Aggregate Concrete             1936
      • 9.10.3.3            Lime-Based Materials              1937
      • 9.10.3.4            Self-healing concrete                1938
        • 9.10.3.4.1        Bioconcrete    1939
        • 9.10.3.4.2        Fiber concrete               1940
      • 9.10.3.5            Microalgae biocement             1941
      • 9.10.3.6            Carbon-negative concrete     1942
      • 9.10.3.7            Biomineral binders     1942
      • 9.10.3.8            Clinker substitutes     1943
    • 9.10.4 Natural Fiber Composites     1944
      • 9.10.4.1            Types of Natural Fibers            1944
      • 9.10.4.2            Properties         1944
      • 9.10.4.3            Applications in Construction              1944
    • 9.10.5 Cellulose nanofibers 1945
      • 9.10.5.1            Sandwich composites             1945
      • 9.10.5.2            Cement additives       1946
      • 9.10.5.3            Pump primers                1946
      • 9.10.5.4            Insulation materials  1946
      • 9.10.5.5            Coatings and paints  1947
      • 9.10.5.6            3D printing materials 1947
    • 9.10.6 Sustainable Insulation Materials      1948
      • 9.10.6.1            Types of sustainable insulation materials   1948
      • 9.10.6.2            Aerogel Insulation       1949
        • 9.10.6.2.1        Silica aerogels               1951
          • 9.10.6.2.1.1   Properties         1951
          • 9.10.6.2.1.2   Thermal conductivity                1952
          • 9.10.6.2.1.3   Mechanical     1952
          • 9.10.6.2.1.4   Silica aerogel precursors        1952
          • 9.10.6.2.1.5   Products           1953
            • 9.10.6.2.1.5.1 Monoliths         1953
            • 9.10.6.2.1.5.2 Powder               1954
            • 9.10.6.2.1.5.3 Granules           1954
            • 9.10.6.2.1.5.4 Blankets            1955
            • 9.10.6.2.1.5.5 Aerogel boards             1956
            • 9.10.6.2.1.5.6 Aerogel renders            1957
          • 9.10.6.2.1.6   3D printing of aerogels             1957
          • 9.10.6.2.1.7   Silica aerogel from sustainable feedstocks               1958
          • 9.10.6.2.1.8   Silica composite aerogels     1958
            • 9.10.6.2.1.8.1 Organic crosslinkers 1959
          • 9.10.6.2.1.9   Cost of silica aerogels              1959
        • 9.10.6.2.2        Aerogel-like foam materials 1959
          • 9.10.6.2.2.1   Properties         1960
          • 9.10.6.2.2.2   Applications   1960
        • 9.10.6.2.3        Metal oxide aerogels 1960
        • 9.10.6.2.4        Organic aerogels         1961
          • 9.10.6.2.4.1   Polymer aerogels         1961
        • 9.10.6.2.5        Biobased and sustainable aerogels (bio-aerogels)               1963
          • 9.10.6.2.5.1   Cellulose aerogels     1964
            • 9.10.6.2.5.1.1 Cellulose nanofiber (CNF) aerogels                1965
            • 9.10.6.2.5.1.2 Cellulose nanocrystal aerogels         1966
            • 9.10.6.2.5.1.3 Bacterial nanocellulose aerogels     1966
          • 9.10.6.2.5.2   Lignin aerogels              1966
          • 9.10.6.2.5.3   Alginate aerogels         1967
          • 9.10.6.2.5.4   Starch aerogels            1967
          • 9.10.6.2.5.5   Chitosan aerogels      1968
        • 9.10.6.2.6        Carbon aerogels          1969
          • 9.10.6.2.6.1   Carbon nanotube aerogels   1970
          • 9.10.6.2.6.2   Graphene and graphite aerogels       1971
        • 9.10.6.2.7        Additive manufacturing (3D printing)             1972
          • 9.10.6.2.7.1   Carbon nitride               1973
          • 9.10.6.2.7.2   Gold     1973
          • 9.10.6.2.7.3   Cellulose          1973
          • 9.10.6.2.7.4   Graphene oxide            1974
        • 9.10.6.2.8        Hybrid aerogels            1974
  • 9.11     CCUS technologies in the cement industry               1975
    • 9.11.1 Products           1977
      • 9.11.1.1            Carbonated aggregates          1977
      • 9.11.1.2            Additives during mixing           1978
      • 9.11.1.3            Carbonates from natural minerals  1979
      • 9.11.1.4            Carbonates from waste          1979
    • 9.11.2 Concrete curing           1980
    • 9.11.3 Costs  1981
    • 9.11.4 Challenges      1981
  • 9.12     Alternative Fuels for Cement Production    1983
    • 9.12.1 Overview           1983
    • 9.12.2 Fossil Fuels Alternatives         1984
    • 9.12.3 Companies     1985
    • 9.12.4 Cement Kilns 1985
      • 9.12.4.1            Fuel Switching              1985
        • 9.12.4.1.1        Projects             1986
        • 9.12.4.1.2        Burner Design Considerations           1987
      • 9.12.4.2            Alternative Fuels for Cement Kilns  1987
        • 9.12.4.2.1        Waste 1988
        • 9.12.4.2.2        Biomass           1988
    • 9.12.5 Net-zero in the Cement Sector           1989
    • 9.12.6 Modern cement plants            1990
    • 9.12.7 Hydrogen in Cement Production       1991
      • 9.12.7.1            Low-carbon hydrogen deployment in cement production               1991
    • 9.12.8 Kiln electrification       1993
      • 9.12.8.1            Overview           1993
      • 9.12.8.2            Rotodynamic Heating Technology    1994
      • 9.12.8.3            Electric Arc Plasma Technologies    1995
      • 9.12.8.4            Resistive Heating         1996
      • 9.12.8.5            Microwave and Induction Heating    1996
      • 9.12.8.6            Carbon capture economics for cement production             1997
      • 9.12.8.7            Electrifying cement plant calciners 1998
    • 9.12.9 Electrochemical Cement Processing            1999
    • 9.12.10              Solar power for cement production 1999
      • 9.12.10.1         Concentrated Solar Power (CSP)      2000
      • 9.12.10.2         CSP in Cement Production Technology        2000
    • 9.13     Markets              2002
  • 9.13.1 Overview           2002
    • 9.13.2 Residential Buildings                2003
    • 9.13.3 Commercial and Office Buildings    2004
    • 9.13.4 Infrastructure 2006
  • 9.14     Company Profiles       2008 (172 company profiles)

 

10          REFERENCES 2202

 

List of Tables

  • Table 1. Main Routes to Green Steel.              130
  • Table 2. Properties of Green steels. 131
  • Table 3. CO₂ emissions from the conventional BF-BOF process. 132
  • Table 4. CO₂ Reduction Technologies.          133
  • Table 5. Decarbonization Technologies.       134
  • Table 6. Market Drivers & Barriers Table.      136
  • Table 7. Global Decarbonization Targets and Policies related to Green Steel.     137
  • Table 8. Estimated cost for iron and steel industry under the Carbon Border Adjustment Mechanism (CBAM).             139
  • Table 9. Hydrogen-based steelmaking technologies.          140
  • Table 10. Comparison of green steel production technologies.   141
  • Table 11. Advantages and disadvantages of each potential hydrogen carrier.    143
  • Table 12. The CCUS Value Chain.    145
  • Table 13. CCUS Project Pipeline for the Steel Sector.          146
  • Table 14. Post Combustion Capture Technologies for BF-BOF Process. 147
  • Table 15. Blast Furnace Gas CO₂ Capture Technologies Comparison.   148
  • Table 16. Carbon Capture Technologies for Natural Gas DRI.       151
  • Table 17. CCUS Business Model.     152
  • Table 18. Storage Technology and Operators.          153
  • Table 19. Carbon Capture Cost Comparison by Sector.    154
  • Table 20. Steel Industry Carbon Credit Purchasing Trends.            156
  • Table 21. CCUS Steel Sector Challenges and Opportunities.        156
  • Table 22. Biochar in steel and metal.             157
  • Table 23. Hydrogen blast furnace schematic.          158
  • Table 24. Applications of microwave processing in green steelmaking. 162
  • Table 25. Applications of additive manufacturing (AM) in steelmaking.  162
  • Table 26.  Technology readiness level (TRL) for key green steel production technologies.          163
  • Table 27. Coatings and membranes in green steel production.    165
  • Table 28. Advantages and disadvantages of green steel.  168
  • Table 29. Markets and applications: green steel.   168
  • Table 30. Green Steel Plants - Current and Planned Production  174
  • Table 31. Summary of market growth drivers for Green steel.        179
  • Table 32. Market challenges in Green steel.              180
  • Table 33. Supply agreements between green steel producers and automakers.              182
  • Table 34. Applications of green steel in the automotive industry.               183
  • Table 35. Applications of green steel in the construction industry.            185
  • Table 36. Applications of green steel in the consumer appliances industry.        187
  • Table 37. Applications of green steel in machinery.             187
  • Table 38. Applications of green steel in the rail industry.  189
  • Table 39. Applications of green steel in the packaging industry.  190
  • Table 40. Applications of green steel in the electronics industry. 191
  • Table 41. Low-Emissions Steel Production Capacity 2020-2035 (Million Metric Tons). 192
  • Table 42. Low-Emissions Steel Production vs. Demand 2020-2036 (Million Metric Tons)           195
  • Table 43. Low-Emissions Steel Market Revenues 2020-2036.      196
  • Table 44. Demand for Low-Emissions Steel by End-Use Industry 2020-2036 (Million Metric Tons).     197
  • Table 45. Regional Demand for Low-Emissions Steel 2020-2036 (Million Metric Tons).               197
  • Table 46. Regional Demand for Low-Emissions Steel 2020-2036, NORTH AMERICA (Million Metric Tons)                198
  • Table 47. Regional Demand for Low-Emissions Steel 2020-2036, EUROPE (Million Metric Tons).         199
  • Table 48. Regional Demand for Low-Emissions Steel 2020-2036, CHINA (Million Metric Tons).             200
  • Table 49. Regional Demand for Low-Emissions Steel 2020-2036, ASIA-PACIFIC (excluding China) (Million Metric Tons). 201
  • Table 50. Regional Demand for Low-Emissions Steel 2020-2036, MIDDLE EAST & AFRICA (Million Metric Tons).  202
  • Table 51. Regional Demand for Low-Emissions Steel 2020-2036, SOUTH AMERICA (Million Metric Tons).                202
  • Table 52. Key players in Green steel, location and production methods.               203
  • Table 53. Hydrogen colour shades, Technology, cost, and CO2 emissions.        249
  • Table 54. Main applications of hydrogen.    250
  • Table 55. Overview of hydrogen production methods.       251
  • Table 56. National hydrogen initiatives.        261
  • Table 57. Market challenges in the hydrogen economy and production technologies. 263
  • Table 58. Market map for hydrogen technology and production. 264
  • Table 59. Industrial applications of hydrogen.         267
  • Table 60. Hydrogen energy markets and applications.       268
  • Table 61. Hydrogen production processes and stage of development.   270
  • Table 62. Estimated costs of clean hydrogen production.                281
  • Table 63. Global Green Hydrogen Market Revenue Projections (2024-2036)      282
  • Table 64. Global Green Hydrogen Production Volume Forecast (2024-2036).   283
  • Table 65. Green Hydrogen Demand by Sector (2024, 2030, 2036).            284
  • Table 66. 2030 Demand (Mt H₂) - Mid-Range Scenario       284
  • Table 67. 2036 Demand (Mt H₂) - Mid-Range Scenario       285
  • Table 68. Regional Market Breakdown - Revenue & Volume (2030).          285
  • Table 69. Regional Market Breakdown - Revenue & Volume (2036).          286
  • Table 70. Electrolyzer Market Economics (2024-2036).    287
  • Table 71. Green Hydrogen Price Evolution by Application (2024-2036, $/kg H₂).              288
  • Table 72. Green hydrogen application markets.      289
  • Table 73. Green hydrogen projects. 290
  • Table 74. Traditional Hydrogen Production.               292
  • Table 75. Hydrogen Production Processes.                293
  • Table 76. Comparison of hydrogen types.   294
  • Table 77.  Characteristics of typical water electrolysis technologies        303
  • Table 78. Advantages and disadvantages of water electrolysis technologies.    304
  • Table 79. Classifications of Alkaline Electrolyzers.               310
  • Table 80. Advantages & limitations of AWE.               310
  • Table 81. Key performance characteristics of AWE.             311
  • Table 82. Projected Cost Reductions for AWE.        315
  • Table 83. Companies in the AWE market.   316
  • Table 84. Comparison of Commercial AEM Materials.       322
  • Table 85. Companies in the AMEL market. 325
  • Table 86. Levelized Cost of Hydrogen (LCOH) from PEMEL, Current LCOH Range (2024-2025).           334
  • Table 87. Companies in the PEMEL market.              336
  • Table 88. Future Cost Projections for SOEC.             346
  • Table 89. Companies in the SOEC market. 346
  • Table 90. Other types of electrolyzer technologies               347
  • Table 91. Electrochemical CO₂ Reduction Technologies/ 351
  • Table 92. Cost Comparison of CO₂ Electrochemical Technologies.          353
  • Table 93. Companies developing other electrolyzer technologies.            360
  • Table 96. Market overview-hydrogen storage and transport.          366
  • Table 97. Summary of different methods of hydrogen transport. 367
  • Table 98. Market players in hydrogen storage and transport.         370
  • Table 99. Market overview hydrogen fuel cells-applications, market players and market challenges.                371
  • Table 100. Categories and examples of solid biofuel.         373
  • Table 101. Comparison of biofuels and e-fuels to fossil and electricity.  375
  • Table 102. Classification of biomass feedstock.    376
  • Table 103. Biorefinery feedstocks.   376
  • Table 104. Feedstock conversion pathways.             377
  • Table 105. Biodiesel production techniques.            378
  • Table 106. Advantages and disadvantages of biojet fuel   379
  • Table 107. Production pathways for bio-jet fuel.    380
  • Table 108. Applications of e-fuels, by type.                383
  • Table 109. Overview of e-fuels.          384
  • Table 110. Benefits of e-fuels.             384
  • Table 111. eFuel production facilities, current and planned.         387
  • Table 112. Market overview for hydrogen vehicles-applications, market players and market challenges.                392
  • Table 113. Cost Components for Green ammonia,              398
  • Table 114. Blue ammonia projects. 399
  • Table 115. Ammonia fuel cell technologies.              400
  • Table 116. Market overview of green ammonia in marine fuel.      401
  • Table 117. Summary of marine alternative fuels.   402
  • Table 118. Estimated costs for different types of ammonia.          403
  • Table 119. Comparison of biogas, biomethane and natural gas. 406
  • Table 120. Hydrogen-based steelmaking technologies.    410
  • Table 121. Comparison of green steel production technologies. 411
  • Table 122. Advantages and disadvantages of each potential hydrogen carrier. 413
  • Table 123. Carbon Capture, Utilisation and Storage (CCUS) market drivers and trends.             529
  • Table 124. Global Investment in Carbon Capture Technologies (2010-2024)     531
  • Table 125. CCUS VC deals 2022-2025.        532
  • Table 126. CCUS government funding and investment-10 year outlook. 535
  • Table 127. Demonstration and commercial CCUS facilities in China.     538
  • Table 128. Global commercial CCUS facilities-in operation.         543
  • Table 129. Global commercial CCUS facilities-under development/construction.         546
  • Table 130. Cost Reduction Using Proven and Emerging Technologies.    553
  • Table 131. Key market barriers for CCUS.   555
  • Table 132. Key compliance carbon pricing initiatives around the world. 558
  • Table 133. CCUS business models: full chain, part chain, and hubs and clusters.         561
  • Table 134. CCUS capture capacity forecast by CO₂ endpoint, Mtpa of CO₂, to 2046.   569
  • Table 135. Capture capacity by region to 2046, Mtpa.        569
  • Table 136. CCUS revenue potential for captured CO₂ offtaker, billion US $ to 2046.     570
  • Table 137. CCUS capacity forecast by capture type, Mtpa of CO₂, to 2046.        570
  • Table 138. Point-source CCUS capture capacity forecast by CO₂ source sector, Mtpa of CO₂, to 2046.                570
  • Table 139. CCUS Cost Projections 2025-2046.      571
  • Table 140. CO2 utilization and removal pathways 572
  • Table 141. Approaches for capturing carbon dioxide (CO2) from point sources.              576
  • Table 142. CO2 capture technologies.          577
  • Table 143. Advantages and challenges of carbon capture technologies.               578
  • Table 144. Overview of commercial materials and processes utilized in carbon capture.          578
  • Table 145. Methods of CO2 transport.          584
  • Table 146. Comparison of CO2 Transportation Methods. 586
  • Table 147. Estimated capital costs for commercial-scale carbon capture.          587
  • Table 148. Key Milestones in Carbon Market Development             590
  • Table 149.Carbon Credit Prices by Market. 591
  • Table 150. Carbon Credit Project Types.      592
  • Table 151. Life Cycle Assessment of CCUS Technologies 593
  • Table 152. Environmental Impact Assessment for CCUS Technologies. 593
  • Table 153. Comparison of CO₂ capture technologies.        596
  • Table 154. Typical conditions and performance for different capture technologies.      599
  • Table 155. Conditions and Performance for Capture Technologies           600
  • Table 156. Carbon Capture Technology Providers for Existing Large-Scale Projects.     602
  • Table 157.Capture Percentages by technology.      604
  • Table 158. Metrics for CO2 Capture Agents.             608
  • Table 159. Energy consumption by technology.      609
  • Table 160. Technology Readiness of Carbon capture Technologies.         610
  • Table 161. Global CCUS Facilities Pipeline                611
  • Table 162. PSCC technologies.          612
  • Table 163. Point source examples.  613
  • Table 164. Comparison of point-source CO₂ capture systems     613
  • Table 165. Blue hydrogen projects.  623
  • Table 166. Commercial CO₂ capture systems for blue H2.             624
  • Table 167. Market players in blue hydrogen.             625
  • Table 168. CCUS Projects in the Cement Sector.   626
  • Table 169. Carbon capture technologies in the cement sector.   627
  • Table 170. Cost and technological status of carbon capture in the cement sector.        628
  • Table 171. Assessment of carbon capture materials           630
  • Table 172. Chemical solvents used in post-combustion. 633
  • Table 173. Comparison of key chemical solvent-based systems.              634
  • Table 174. Chemical absorption solvents used in current operational CCUS point-source projects. 636
  • Table 175.Amine Solvent Carbon Capture Technology Providers for Post-Combustion Capture           637
  • Table 176.Comparison of key physical absorption solvents.          638
  • Table 177.Physical solvents used in current operational CCUS point-source projects.               638
  • Table 178. Emerging solvents for carbon capture  640
  • Table 179. Emerging Solvents for Carbon Capture.              641
  • Table 180. Oxygen separation technologies for oxy-fuel combustion.     644
  • Table 181. Large-scale oxyfuel CCUS cement projects.    645
  • Table 182. Commercially available physical solvents for pre-combustion carbon capture.      649
  • Table 183. Main capture processes and their separation technologies. 649
  • Table 184. Absorption methods for CO2 capture overview.            650
  • Table 185. Commercially available physical solvents used in CO2 absorption. 652
  • Table 186. Adsorption methods for CO2 capture overview.            654
  • Table 187. Solid sorbents explored for carbon capture.    656
  • Table 188. Carbon-based adsorbents for CO₂ capture.     658
  • Table 189. Polymer-based adsorbents.        659
  • Table 190. Solid sorbents for post-combustion CO₂ capture.       661
  • Table 191. Emerging Solid Sorbent Systems.            662
  • Table 192. Membrane-based methods for CO2 capture overview.             663
  • Table 193. Comparison of membrane materials for CCUS              665
  • Table 194. Commercial status of membranes in carbon capture                666
  • Table 195. Membranes for pre-combustion capture.          670
  • Table 196. Status of cryogenic CO₂ capture technologies.              674
  • Table 197. Cryogenic Direct Air Capture Companies          675
  • Table 198. Benefits and drawbacks of microalgae carbon capture.           680
  • Table 199. Comparison of main separation technologies.               681
  • Table 200. Technology readiness level (TRL) of gas separation technologies       682
  • Table 201. Opportunities and Barriers by sector.   682
  • Table 202. DAC technologies.             687
  • Table 203. Advantages and disadvantages of DAC.              690
  • Table 204. Advantages of DAC as a CO2 removal strategy.              691
  • Table 205. Potential for DAC removal versus other carbon removal methods.   692
  • Table 206. Companies developing airflow equipment integration with DAC.      698
  • Table 207. Companies developing Passive Direct Air Capture (PDAC) technologies.    698
  • Table 208. Companies developing regeneration methods for DAC technologies.            699
  • Table 209. DAC companies and technologies.        701
  • Table 210. Global capacity of direct air capture facilities.               702
  • Table 211. DAC technology developers and production.  702
  • Table 212. DAC projects in development.   704
  • Table 213. DACCS carbon removal capacity forecast (million metric tons of CO₂ per year), 2024-2046, base case.       704
  • Table 214. DACCS carbon removal capacity forecast (million metric tons of CO₂ per year), 2030-2046, optimistic case.           705
  • Table 215. Costs summary for DAC.               706
  • Table 216. Typical cost contributions of the main components of a DACCS system.    707
  • Table 217. Cost estimates of DAC.  711
  • Table 218. Challenges for DAC technology.               712
  • Table 219. DAC companies and technologies.        715
  • Table 220. Example CO2 utilization pathways.        716
  • Table 221. Markets for Direct Air Capture and Storage (DACCS). 718
  • Table 222. Market overview for CO2 derived fuels.               719
  • Table 223. Compnaies in Methanol Production from CO2.             722
  • Table 224. Microalgae products and prices.              724
  • Table 225. Main Solar-Driven CO2 Conversion Approaches.         725
  • Table 226. Companies in CO2-derived fuel products.        726
  • Table 227. Commodity chemicals and fuels manufactured from CO2.  729
  • Table 228. CO2 utilization products developed by chemical and plastic producers.     731
  • Table 229. Companies in CO2-derived chemicals products.         732
  • Table 230. Carbon capture technologies and projects in the cement sector       736
  • Table 231. Companies in CO2 derived building materials.              740
  • Table 232. Market challenges for CO2 utilization in construction materials.       742
  • Table 233. Companies in CO2 Utilization in Biological Yield-Boosting.   745
  • Table 234. CO2 sequestering technologies and their use in food.              746
  • Table 235. Applications of CCS in oil and gas production.               746
  • Table 236. AI Applications in Carbon Capture.        751
  • Table 237. Renewable Energy Integration in Carbon Capture.       752
  • Table 238. Mobile Carbon Capture Applications.  752
  • Table 239. Carbon Capture Retrofitting.      753
  • Table 240. CCUS Projects in the Cement Sector    754
  • Table 241. Benchmarking Carbon Capture Technologies in the Cement Sector.               756
  • Table 242. Post-combustion capture for BF-BOF processes          758
  • Table 243. CCUS Project Pipeline for the Steel Sector.       760
  • Table 244.Market Drivers for Carbon Dioxide Removal (CDR).      766
  • Table 245. CDR versus CCUS              767
  • Table 246. Status and Potential of CDR Technologies.       769
  • Table 247. Main CDR methods.         770
  • Table 248. Novel CDR Methods         771
  • Table 249.Carbon Dioxide Removal Technology Benchmarking  772
  • Table 250. CDR Value Chain.              773
  • Table 251. Engineered Carbon Dioxide Removal Value Chain       774
  • Table 252. Carbon pricing and carbon markets       778
  • Table 253. Carbon Removal vs Emission Reduction Offsets.         779
  • Table 254. Carbon Crediting Programs.       780
  • Table 255. Channels for Purchasing Voluntary Carbon Credits    783
  • Table 256. Voluntary Carbon Credits Trading Platforms and Exchanges.               784
  • Table 257. Voluntary Carbon Credits Key Market Players and Projects.  785
  • Table 258. Nature-Based Solutions Market Dynamics.      786
  • Table 259. Voluntary Carbon Credits Pricing by Category and Project Type.        787
  • Table 260. Price Range Analysis by Project Quality and Type:        788
  • Table 261. Compliance Carbon Credits Key Market Players and Projects.            789
  • Table 262. Comparison of Voluntary and Compliance Carbon Credits.  790
  • Table 263. Durable Carbon Removal Buyers.           791
  • Table 264. Prices of CDR Credits.     791
  • Table 265. Major Corporate Carbon Credit Commitments.            792
  • Table 266. Key Carbon Market Regulations and Support Mechanisms.  793
  • Table 267. Carbon credit prices by company and technology.      794
  • Table 268. Carbon Credit Exchanges and Trading Platforms.         795
  • Table 269. OTC Carbon Market Characteristics.    795
  • Table 270. Challenges and Risks.    798
  • Table 271. TRL of Biomass Conversion Processes and Products by Feedstock.                800
  • Table 272. BiCRS feedstocks.             801
  • Table 273. BiCRS conversion pathways.      802
  • Table 274. BiCRS Technological Challenges.            803
  • Table 275. CO₂ capture technologies for BECCS.  808
  • Table 276. Existing and planned capacity for sequestration of biogenic carbon.              810
  • Table 277. Existing facilities with capture and/or geologic sequestration of biogenic CO2.       810
  • Table 278. Challenges of BECCS      813
  • Table 279. Ex Situ Mineralization CDR Methods.    814
  • Table 280. Source Materials for Ex Situ Mineralization.      815
  • Table 281. Companies in CO₂-derived Concrete.   817
  • Table 282. Enhanced Weathering Applications.     819
  • Table 283. Enhanced Weathering Materials and Processes.          820
  • Table 284. Enhanced Weathering Companies         821
  • Table 285. Trends and Opportunities in Enhanced Weathering.   822
  • Table 286. Challenges and Risks in Enhanced Weathering.            822
  • Table 287. Cost analysis of enhanced weathering.               823
  • Table 288. Nature-based CDR approaches.              825
  • Table 289. Comparison of A/R and BECCS.               826
  • Table 290. Forest Carbon Removal Projects.            827
  • Table 291. Companies in Robotics in A/R.  828
  • Table 292. Trends and Opportunities in Afforestation/Reforestation.       829
  • Table 293.Challenges and Risks in Afforestation/Reforestation. 830
  • Table 294. Soil carbon sequestration practices.     832
  • Table 295. Soil sampling and analysis methods.   834
  • Table 296. Remote sensing and modeling techniques.      834
  • Table 297. Carbon credit protocols and standards.             834
  • Table 298. Trends and opportunities in soil carbon sequestration (SCS).              835
  • Table 299. Key aspects of soil carbon credits.         836
  • Table 300. Challenges and Risks in SCS.     836
  • Table 301. Summary of key properties of biochar. 841
  • Table 302. Biochar physicochemical and morphological properties         841
  • Table 303. Biochar feedstocks-source, carbon content, and characteristics.    843
  • Table 304. Biochar production technologies, description, advantages and disadvantages.    844
  • Table 305. Comparison of slow and fast pyrolysis for biomass.  846
  • Table 306. Comparison of thermochemical processes for biochar production.                848
  • Table 307. Biochar production equipment manufacturers.            848
  • Table 308. Competitive materials and technologies that can also earn carbon credits.              851
  • Table 309. Bio-oil-based CDR pros and cons.          853
  • Table 310. Ocean-based CDR methods.     856
  • Table 311. Technology Readiness Level (TRL) Chart for Ocean-based CDR.        857
  • Table 312. Benchmarking of Ocean-based CDR Methods.              857
  • Table 313. Ocean-based CDR: Biotic Methods.      859
  • Table 314. Market Players in Ocean-based CDR.   864
  • Table 315. Carbon Pricing Evolution.             1114
  • Table 316. Electric Heating Technology Maturity.   1116
  • Table 317. Industrial Heat Pump Technology Readiness. 1117
  • Table 318. COP Performance by Temperature.         1117
  • Table 319. Microwave Industrial Heating Maturity.                1117
  • Table 320. Plasma Technology Readiness. 1117
  • Table 321. Biomass Technology Maturity Matrix.    1118
  • Table 322. Hydrogen Combustion Technology Status.       1118
  • Table 323. Levelized Cost of Heat by Technology (2026). 1123
  • Table 324. LCOH Projections 2036. 1123
  • Table 325. Abatement Cost Analysis.            1124
  • Table 326. Cumulative Abatement Potential 2026-2036. 1124
  • Table 327. Electric Heating Market Overview.          1125
  • Table 328. Resistance Heating Applications by Temperature Range.       1125
  • Table 329. Direct Resistance Technology Specifications: 1125
  • Table 330. Indirect Resistance Equipment Types: 1126
  • Table 331. Infrared Heating Technology Matrix.       1126
  • Table 332. Induction Heating Efficiency by Frequency.       1126
  • Table 333. High-Frequency Induction Specifications.         1127
  • Table 334. Medium-Frequency System Performance.        1127
  • Table 335. Low-Frequency Applications.    1128
  • Table 336. Microwave Heating Applications in Industry     1128
  • Table 337. Single-Mode System Characteristics.   1128
  • Table 338. Multi-Mode System Specifications.        1129
  • Table 339. Control Technology Features.     1129
  • Table 340. Plasma Technology Applications.            1129
  • Table 341. Plasma Technology Applications             1130
  • Table 342. Cascade System Performance. 1135
  • Table 343. Biomass Heat Market Projections.          1137
  • Table 344. Biomass Feedstock Characteristics.     1140
  • Table 345. Biomass Combustion Technologies Comparison.       1141
  • Table 346. Emerging Biomass Technology Assessment.   1143
  • Table 347. Solar Thermal Industrial Applications   1146
  • Table 348. Geothermal Technology Applications   1148
  • Table 349. EGS Technology Characteristics.             1149
  • Table 350. Heat Storage Technology Comparison.               1150
  • Table 351. Digital Technology Implementation Cases.       1152
  • Table 352. Chemical Industry Decarbonization Trajectory.             1154
  • Table 353. Food Processing Decarbonization Economics (2026).              1155
  • Table 354. Paper and Pulp Decarbonization Pathway.         1155
  • Table 355. Glass Industry Decarbonization Technologies.               1156
  • Table 356. Steel Industry Decarbonization Market Projections.   1158
  • Table 357. Cement Industry Decarbonization Pathways.  1159
  • Table 358. Waste Heat Temperature Distribution. 1161
  • Table 359. Global Grid Upgrade Investment (2026-2036).               1203
  • Table 360. Power Quality Requirements by Industrial Process.    1204
  • Table 361. Market for Power Quality Solutions (2026-2036).         1205
  • Table 362. Regional Power Quality Standards Compliance.           1205
  • Table 363. Industrial Load Growth Projections by Sector (2026-2036).  1206
  • Table 364. Transmission and Distribution Upgrade Requirements.           1207
  • Table 365. Capacity Planning Tools Market.               1207
  • Table 366. Smart Grid Technology Deployment by Function.         1208
  • Table 367. Communication Infrastructure Requirements.               1209
  • Table 368. Battery Storage Market by Technology (2026-2036)    1210
  • Table 369. Industrial Battery Storage Applications and Requirements.   1210
  • Table 370. Regional Battery Storage Deployment (2026-2036).   1210
  • Table 371. Battery Energy Management Systems Market. 1211
  • Table 372. Thermal Storage Technology Comparison         1212
  • Table 373. Industrial Thermal Storage Applications by Sector.      1212
  • Table 374. Thermal Storage Market Forecast (2026-2036)              1213
  • Table 375. Hybrid Storage System Configurations.               1213
  • Table 376. Hybrid System Performance Metrics.    1214
  • Table 377. Industrial Wind Power Deployment (2026-2036).         1215
  • Table 378. Wind Turbine Technology Evolution.      1215
  • Table 379. Wind Integration Requirements by Scale.           1216
  • Table 380. Regional Wind Resource and Industrial Adoption.       1216
  • Table 381. Hybrid System Configurations and Performance.         1217
  • Table 382. Hybrid System Market Growth (2026-2036).    1218
  • Table 383. Hybrid System Control and Optimization           1218
  • Table 384. Economic Analysis of Hybrid Systems 1218
  • Table 385. Electric Heating Technology Market Overview (2026-2036). 1219
  • Table 386. Resistance Heating Market Segmentation.       1220
  • Table 387. Direct Resistance Heating Applications.            1220
  • Table 388. Direct Resistance Heating Equipment Market.               1221
  • Table 389. Indirect Resistance Heating Technologies.        1221
  • Table 390. Indirect Resistance Heating Furnace Market    1222
  • Table 391. Immersion Heater Configurations.         1223
  • Table 392. Immersion Heating Market by Industry.               1223
  • Table 393. Control System Technologies and Capabilities.            1224
  • Table 394. Control System Market Evolution            1224
  • Table 395. Induction Heating Frequency Ranges and Applications.          1225
  • Table 396. High-Frequency Induction Applications and Performance.    1226
  • Table 397. High-Frequency System Market Analysis.          1226
  • Table 398. Medium-Frequency Applications Matrix.            1227
  • Table 399. Medium-Frequency Equipment Market.              1227
  • Table 400. Low-Frequency System Applications and Specifications.       1228
  • Table 401. Low-Frequency Market by End-Use Industry.   1228
  • Table 402. Induction Power Supply Technology Comparison        1229
  • Table 403. Power Supply Features and Capabilities.           1229
  • Table 404. Power Supply Market Forecast   1230
  • Table 405. Infrared Technology Overview and Wavelength Characteristics.        1230
  • Table 406. Infrared Heating Market Segmentation (2026-2036)   1231
  • Table 407. Short-Wave System Performance Characteristics        1231
  • Table 408. Short-Wave Applications and Market Size          1232
  • Table 409. Medium-Wave Industrial Applications 1232
  • Table 410. Long-Wave System Characteristics and Performance.              1233
  • Table 411. Long-Wave Market by Application.          1233
  • Table 412. Hybrid System Configurations   1234
  • Table 413. Hybrid System Market Analysis 1234
  • Table 414. Dielectric Heating Technology Comparison     1235
  • Table 415. Microwave System Specifications and Performance  1235
  • Table 416. Microwave Heating Industrial Applications       1236
  • Table 417. RF System Design and Capabilities        1236
  • Table 418. RF Heating Market Segmentation.           1237
  • Table 419. Dielectric Heating Control Technologies             1237
  • Table 420. Control System Market and Adoption.  1238
  • Table 421. Advanced Control Performance Improvements             1238
  • Table 422. Plasma Technology Classification          1239
  • Table 423. Plasma Heating Market Overview (2026-2036)              1239
  • Table 424. Thermal Plasma System Types  1240
  • Table 425. Thermal Plasma Industrial Applications             1240
  • Table 426. Non-Thermal Plasma Technologies        1241
  • Table 427. Non-Thermal Plasma Application Markets.       1241
  • Table 428. Hybrid Plasma Configurations and Capabilities            1242
  • Table 429. Hybrid Plasma Market Development     1242
  • Table 430. Electrochemical Process Market Overview.      1243
  • Table 431. Electrolysis Technology Comparison Matrix.    1244
  • Table 432. Alkaline Electrolyzer Performance and Economics.    1244
  • Table 433. Alkaline Electrolysis Market by Application       1244
  • Table 434. PEM Electrolyzer Technology Specifications.   1245
  • Table 435. PEM Electrolysis Market Development 1246
  • Table 436. SOEC Technology Characteristics and Development.               1246
  • Table 437. SOEC Application Opportunities and Market Potential.           1247
  • Table 438. Electrochemical Reactor Market Overview.      1247
  • Table 439. Flow Reactor Design Configurations.    1248
  • Table 440. Flow Reactor Industrial Applications     1248
  • Table 441. Flow Reactor Performance Metrics         1249
  • Table 442. Batch Reactor Design Parameters.         1249
  • Table 443. Batch Reactor Market Segmentation.   1250
  • Table 444. Emerging Reactor Technologies                1250
  • Table 445. Novel Reactor Market Development       1251
  • Table 446. Novel Reactor Performance Comparison.         1252
  • Table 447. Membrane Technology Market Landscape        1252
  • Table 448. Ion Exchange Membrane Types and Properties.             1253
  • Table 449. Ion Exchange Membrane Market by Application.           1253
  • Table 450. Ceramic Membrane Material Systems. 1254
  • Table 451. Ceramic Membrane Application Markets.          1254
  • Table 452. Composite Membrane Architectures.   1255
  • Table 453. Composite Membrane Market Development.  1256
  • Table 454. Composite Membrane Performance Benchmarks.     1256
  • Table 455. Industrial Motor Market Overview (2026-2036).             1257
  • Table 456. Motor Technology Performance Comparison. 1257
  • Table 457. Permanent Magnet Motor Market Segmentation           1258
  • Table 458. Synchronous Reluctance Motor Characteristics           1259
  • Table 459. High-Speed Motor Application Markets               1259
  • Table 460. Emerging Technology Market Overview                1260
  • Table 461. Digital Twin Implementation Levels        1261
  • Table 462. Process Modeling Approaches and Capabilities           1261
  • Table 463. Real-Time Optimization System Capabilities   1262
  • Table 464. AI/ML Technology Application Matrix     1262
  • Table 465. Predictive Maintenance Implementation Tiers                1263
  • Table 466. AI-Based Process Optimization Performance  1264
  • Table 467. AI Energy Management System Capabilities    1264
  • Table 468. Energy Management AI Market by Industry        1265
  • Table 469. Novel Heating Technology Landscape  1265
  • Table 470. Ultrasonic Heating System Specifications.       1266
  • Table 471. Ultrasonic Heating Application Markets.             1267
  • Table 472. Electron Beam System Characteristics               1267
  • Table 473. Laser Processing Technology Matrix.     1268
  • Table 474. Laser Processing Industrial Market.       1268
  • Table 475. Chemical Industry Electrification Overview.    1269
  • Table 476. Chemical Process Heating Electrification Status          1269
  • Table 477. Chemical Plant Energy Integration Opportunities.       1270
  • Table 478. Metal Processing Electrification Landscape.   1271
  • Table 479. Metal Melting Technology Adoption.      1271
  • Table 480. Heat Treatment Electrification Market  1272
  • Table 481. Surface Processing Electrification Technologies.          1272
  • Table 482. Food & Beverage Electrification Overview          1273
  • Table 483. Food Heating Technology Comparison.              1274
  • Table 484. Industrial Food Cooling Technology Evolution.               1274
  • Table 485. Cooling Application Market by Segment.            1275
  • Table 486. Food Process Integration Opportunities              1275
  • Table 487. Process Integration Market Analysis      1276
  • Table 488. Mining & Minerals Electrification Landscape   1276
  • Table 489. Mining Equipment Electrification Status             1277
  • Table 490. Mining Equipment Market by Type           1278
  • Table 491. Mineral Processing Electrification Opportunities          1278
  • Table 492. Mineral Processing Technology Market 1279
  • Table 493. Mineral Processing by Commodity         1279
  • Table 494. AI/ML System Performance Metrics       1409
  • Table 495. Computer Vision System Specifications             1410
  • Table 496. Deep Learning Model Performance.       1411
  • Table 497. NIR Spectroscopy System Specifications.         1412
  • Table 498. Robotic Sorting System Performance.  1414
  • Table 499. Summary of non-catalytic pyrolysis technologies.      1417
  • Table 500. Summary of catalytic pyrolysis technologies. 1418
  • Table 501. Summary of pyrolysis technique under different operating conditions.         1422
  • Table 502. Biomass materials and their bio-oil yield.          1423
  • Table 503. Biofuel production cost from the biomass pyrolysis process.              1423
  • Table 504. Pyrolysis companies and plant capacities, current and planned.      1426
  • Table 505. Summary of gasification technologies.                1427
  • Table 506. Advanced recycling (Gasification) companies.              1432
  • Table 507. Summary of dissolution technologies. 1433
  • Table 508. Advanced recycling (Dissolution) companies 1434
  • Table 509. Depolymerisation processes for PET, PU, PC and PA, products and yields. 1436
  • Table 510. Summary of hydrolysis technologies-feedstocks, process, outputs, commercial maturity and technology developers.           1437
  • Table 511. Summary of Enzymolysis technologies-feedstocks, process, outputs, commercial maturity and technology developers. 1438
  • Table 512. Summary of methanolysis technologies-feedstocks, process, outputs, commercial maturity and technology developers. 1440
  • Table 513. Summary of glycolysis technologies-feedstocks, process, outputs, commercial maturity and technology developers.           1441
  • Table 514. Summary of aminolysis technologies. 1444
  • Table 515. Advanced recycling (Depolymerisation) companies and capacities (current and planned).                1445
  • Table 516. Overview of hydrothermal cracking for advanced chemical recycling.            1446
  • Table 517. Overview of Pyrolysis with in-line reforming for advanced chemical recycling.         1446
  • Table 518. Overview of microwave-assisted pyrolysis for advanced chemical recycling.            1447
  • Table 519. Overview of plasma pyrolysis for advanced chemical recycling.        1448
  • Table 520. Overview of plasma gasification for advanced chemical recycling.  1448
  • Table 521. Summary of carbon fiber (CF) recycling technologies. Advantages and disadvantages.    1450
  • Table 522. Retention rate of tensile properties of recovered carbon fibres by different recycling processes.       1451
  • Table 523. Recycled carbon fiber producers, technology and capacity. 1452
  • Table 524.  Current thermoset recycling routes.     1453
  • Table 525. Companies developing advanced thermoset recycing routes.             1461
  • Table 526. Global Production of Critical Materials by Country (Top 10 Countries).         1463
  • Table 527. Projected Demand for Critical Materials in Clean Energy Technologies (2024-2040).          1463
  • Table 528. Primary global suppliers of critical raw materials.        1464
  • Table 529. Markets and applications: copper.          1466
  • Table 530. Technologies and Techniques for Copper Extraction and Recovery. 1466
  • Table 531. Markets and applications: nickel.            1468
  • Table 532. Technologies and Techniques for Nickel Extraction and Recovery.    1469
  • Table 533. Markets and applications: cobalt.           1470
  • Table 534. Technologies and Techniques for Cobalt Extraction and Recovery.   1471
  • Table 535. Markets and applications: rare earth elements.             1472
  • Table 536. Technologies and Techniques for Rare Earth Elements Extraction and Recovery.    1473
  • Table 537. Markets and applications: lithium.         1475
  • Table 538. Technologies and Techniques for Lithium Extraction and Recovery. 1476
  • Table 539. Markets and applications: gold.               1477
  • Table 540. Technologies and Techniques for Gold Extraction and Recovery.       1478
  • Table 541. Markets and applications: uranium.      1479
  • Table 542. Technologies and Techniques for Uranium Extraction and Recovery.               1479
  • Table 543. Markets and applications: zinc. 1480
  • Table 544. Zinc Extraction and Recovery Technologies.     1481
  • Table 545. Markets and applications: manganese.              1483
  • Table 546. Manganese Extraction and Recovery Technologies.    1483
  • Table 547. Markets and applications: tantalum.    1484
  • Table 548. Tantalum Extraction and Recovery Technologies.         1485
  • Table 549. Markets and applications: niobium.      1486
  • Table 550. Niobium Extraction and Recovery Technologies.           1487
  • Table 551. Markets and applications: indium.         1488
  • Table 552. Indium Extraction and Recovery Technologies.              1489
  • Table 553. Markets and applications: gallium.        1490
  • Table 554. Gallium Extraction and Recovery Technologies.            1490
  • Table 555. Markets and applications: germanium.               1491
  • Table 556. Germanium Extraction and Recovery Technologies.   1492
  • Table 557. Markets and applications: antimony.    1492
  • Table 558. Antimony Extraction and Recovery Technologies.        1493
  • Table 559. Markets and applications: scandium.  1494
  • Table 560. Scandium Extraction and Recovery Technologies.       1494
  • Table 561. Graphite Markets and Applications.       1496
  • Table 562. Graphite Extraction and Recovery Techniques and Technologies.     1497
  • Table 563. Comparison of Primary vs Secondary Production for Key Materials.                1499
  • Table 564. Environmental Impact Comparison: Primary vs Secondary Production.       1500
  • Table 565. Technologies for critical material recovery from secondary sources.              1500
  • Table 566. Technologies for critical raw material recovery from secondary sources.     1502
  • Table 567. Critical raw material extraction technologies. 1503
  • Table 568. Pyrometallurgical extraction methods. 1507
  • Table 569. Bioleaching processes and their applicability to critical materials.  1509
  • Table 570. Comparative analysis of metal recovery technologies.             1539
  • Table 571. Technology readiness of critical material recovery technologies by secondary material sources.            1541
  • Table 572. Global critical raw materials recovery market by material types (2025-2040), by ktonnes.                1545
  • Table 573. Global critical raw materials recovery market by material types (2025-2040), by value (Billions USD).               1546
  • Table 574. Global critical raw materials recovery market by recovery source (2025-2040), in ktonnes.                1547
  • Table 575. Global critical raw materials recovery market by recovery source (2025-2040), by value (Billions USD).               1548
  • Table 576. Global critical raw materials recovery market by region (2025-2040), by ktonnes. 1549
  • Table 577. Global critical raw materials recovery market by region (2025-2040), by value (Billions USD).                1550
  • Table 578. Global Environmental Technologies Market Forecast (2026-2036). 1785
  • Table 579. Technology Segment Market Share (2026 vs 2036).    1785
  • Table 580. Membrane Technology Market Analysis (2026-2036). 1786
  • Table 581. Next-Generation Membrane Performance Characteristics.   1786
  • Table 582. Advanced Membrane Process Comparison.    1786
  • Table 583. Integrated Membrane Systems Market Forecast.          1787
  • Table 584. Anti-Fouling Technology Performance Matrix. 1787
  • Table 585. AOP Technology Market Analysis (2026-2036).              1788
  • Table 586. Photocatalytic Material Performance Comparison.    1788
  • Table 587. Photocatalytic Reactor Configurations.              1789
  • Table 588. Electrochemical AOP Electrode Materials.       1789
  • Table 589. Electrochemical AOP Process Parameters.      1789
  • Table 590. Biological Treatment Technology Market (2026-2036).             1790
  • Table 591. Advanced Bioreactor Performance Characteristics.   1790
  • Table 592. Nutrient Removal Performance in Advanced Bioreactors.      1790
  • Table 593. Biogas Production and Energy Recovery.            1791
  • Table 594. Specialized Microbial Consortia Applications.               1791
  • Table 595. Microbial Product Market Forecast.       1791
  • Table 596. Bioaugmentation Strategy Performance.            1792
  • Table 597. Bioaugmentation Success Factors.       1792
  • Table 598. Air Quality Management Technology Market (2026-2036).     1792
  • Table 599. Emission Control Technology Comparison.     1793
  • Table 600. Advanced Particulate Matter Control Technologies.   1793
  • Table 601. Particulate Control Performance by Industry.  1794
  • Table 602. Particulate Control Technology Investment Forecast.                1794
  • Table 603. Gas Treatment Technology Performance Matrix.           1794
  • Table 604. NOx Control Technology Comparison. 1795
  • Table 605. VOC Abatement Technology Selection Criteria               1795
  • Table 606. Air Quality Monitoring Technology Evolution.   1796
  • Table 607. Air Quality Monitoring Network Economics.     1796
  • Table 608. AI-Enabled Monitoring System Capabilities.    1796
  • Table 609. Remediation Technology Market Overview (2026-2036).         1797
  • Table 610. In-Situ Remediation Technology Comparison. 1797
  • Table 611. In-Situ Chemical Oxidation (ISCO) Reagent Performance.     1798
  • Table 612. ISCO Application Methods and Costs. 1798
  • Table 613. In-Situ Chemical Reduction (ISCR) Technology.             1798
  • Table 614. Chemical Amendment Market Forecast.            1798
  • Table 615. Enhanced Bioremediation Technology Performance. 1799
  • Table 616. Biostimulation Amendment Selection. 1799
  • Table 617. Monitored Natural Attenuation Criteria.              1800
  • Table 618. Bioremediation Market Segmentation. 1800
  • Table 619. Digital Environmental Technology Market (2026-2036).           1800
  • Table 620. IoT Sensor Technology Specifications.  1801
  • Table 621. Sensor Network Architecture Comparison.      1801
  • Table 622. Sensor Network Deployment Economics.         1802
  • Table 623. Environmental Data Integration Platforms.       1802
  • Table 624. Data Management and Storage Costs. 1802
  • Table 625. Environmental Analytics Platform Capabilities.             1803
  • Table 626. Analytics Platform Market Adoption.     1803
  • Table 627. AI/ML Applications in Environmental Management     1803
  • Table 628. Predictive Monitoring System Performance      1804
  • Table 629. AI-Driven Process Optimization Results.            1804
  • Table 630. Optimization Algorithm Performance Comparison      1804
  • Table 631. Process Optimization Economic Analysis.        1805
  • Table 632. AI-Based Environmental Risk Assessment.      1805
  • Table 633. Risk Assessment Model Features.           1805
  • Table 634. Emerging Environmental Technologies Market (2026-2036)  1806
  • Table 635. Novel Material Technology Development Timeline.     1806
  • Table 636. Novel Material Performance vs. Conventional.               1807
  • Table 637. Nanomaterial Applications in Environmental Technologies.  1807
  • Table 638. Technology Maturity and Market Readiness (2026-2036).       1813
  • Table 639. Regional Market Distribution (2026 vs 2036).  1813
  • Table 640. Technology Adoption Barriers and Solutions.  1813
  • Table 641. Future Technology Trends (2030-2036).              1814
  • Table 642. Global trends and drivers in sustainable construction materials.      1873
  • Table 643. Global revenues in sustainable construction materials, by materials type, 2020-2036 (millions USD).             1875
  • Table 644. Global revenues in sustainable construction materials, by market, 2020-2036 (millions USD).                1878
  • Table 645. Global revenues in building energy systems for green buildings, by technology type, 2020-2036 (millions USD). 1880
  • Table 646. Global revenues in smart building technologies for green buildings, by application, 2020-2036 (millions USD). 1882
  • Table 647. Global revenues in advanced construction methods for green buildings, 2020-2036 (millions USD).  1884
  • Table 648. Global revenues in green building technologies by major regions, 2020-2036 (millions USD).                1886
  • Table 649. Types of Sustainable Wood Products.  1888
  • Table 650. Types of Recycled Construction Materials.       1890
  • Table 651. Types of Bio-based Construction Materials.     1892
  • Table 652. Established bio-based construction materials.             1894
  • Table 653. Advanced Insulation Materials Comparison.   1896
  • Table 654. Installation Methods for Insulation Systems.   1898
  • Table 655. Performance Metrics Table for Insulation Systems.     1900
  • Table 656. Integration Technologies for Smart Windows. 1904
  • Table 657. Manufacturing Processes for Modular Construction. 1907
  • Table 658. Assembly Systems for Modular Construction.                1909
  • Table 659. Printing Systems for Construction 3D Printing.               1912
  • Table 660. Advanced Ventilation Systems. 1927
  • Table 661. Advanced Filtration Technologies.          1929
  • Table 662. Air Quality Monitoring Parameters.         1930
  • Table 663. Types of self-healing concrete.  1938
  • Table 664. General properties and value of aerogels.         1950
  • Table 665. Key properties of silica aerogels.             1951
  • Table 666. Chemical precursors used to synthesize silica aerogels.        1952
  • Table 667. Commercially available aerogel-enhanced blankets. 1956
  • Table 668. Typical structural properties of metal oxide aerogels.                1961
  • Table 669. Polymer aerogels companies.   1962
  • Table 670. Types of biobased aerogels.        1963
  • Table 671. Carbon aerogel companies.        1970
  • Table 672. Carbon capture technologies and projects in the cement sector       1975
  • Table 673. Carbonation of recycled concrete companies.              1980
  • Table 674. Current and projected costs for some key CO2 utilization applications in the construction industry.            1981
  • Table 675. Market challenges for CO2 utilization in construction materials.       1981
  • Table 676. Temperature Ranges Achieved by Different Energy Sources for Cement Kilns.         1983
  • Table 677. Benchmarking Cement High Temperature Heat Technologies.            1984
  • Table 678. Companies in Renewable Power Sources for Electric Kilns   1985
  • Table 679. Fuel Switching and CCS Projects in the Cement Sector.          1986
  • Table 680. Benchmarking of Alternative Fuels.        1992
  • Table 681. Benchmarking Kiln Electrification Technologies for Cement Production.     1994
  • Table 682. Electric Arc Plasma Technologies for Cement Production.     1995
  • Table 683. Comparing Conventional Cement Production with CCUS to Electrified Cement Production with CCUS.     1998
  • Table 684. Technologies in CSP for Cement Pyroprocesses.          2001

 

List of Figures

  • Figure 1. Share of (a) production, (b) energy consumption and (c) CO2 emissions from different steel making routes.              127
  • Figure 2. Transition to hydrogen-based production.             128
  • Figure 3. CO2 emissions from steelmaking (tCO2/ton crude steel).          130
  • Figure 4. CO2 emissions of different process routes for liquid steel.        139
  • Figure 5. Hydrogen Direct Reduced Iron (DRI) process.     142
  • Figure 6. Molten oxide electrolysis process.              144
  • Figure 7. Flash ironmaking process.               160
  • Figure 8. Hydrogen Plasma Iron Ore Reduction process.  161
  • Figure 9. Green steel market map.   176
  • Figure 10. SWOT analysis: Green steel.        177
  • Figure 11. Low-Emissions Steel Production Capacity 2020-2036 (Million Metric Tons).              193
  • Figure 12. ArcelorMittal decarbonization strategy.                211
  • Figure 13. HYBRIT process schematic.         221
  • Figure 14. Schematic of HyREX technology.              233
  • Figure 15. EAF Quantum.       234
  • Figure 16. Hydrogen value chain.     260
  • Figure 17. Current Annual H2 Production.  270
  • Figure 18. Principle of a PEM electrolyser.   274
  • Figure 19. Power-to-gas concept.     276
  • Figure 20. Schematic of a fuel cell stack.    277
  • Figure 21. High pressure electrolyser - 1 MW.          278
  • Figure 22. SWOT analysis: green hydrogen.               298
  • Figure 23. Types of electrolysis technologies.          298
  • Figure 24. Typical Balance of Plant including Gas processing.     301
  • Figure 25. Schematic of alkaline water electrolysis working principle.    312
  • Figure 26. Alkaline water electrolyzer.            313
  • Figure 27. Typical system design and balance of plant for an AEM electrolyser.                319
  • Figure 28. Schematic of PEM water electrolysis working principle.            327
  • Figure 29. Typical system design and balance of plant for a PEM electrolyser.   329
  • Figure 30. Schematic of solid oxide water electrolysis working principle.             339
  • Figure 31. Typical system design and balance of plant for a solid oxide electrolyser.     340
  • Figure 35. Process steps in the production of electrofuels.             382
  • Figure 36. Mapping storage technologies according to performance characteristics.  383
  • Figure 37. Production process for green hydrogen.              385
  • Figure 38. E-liquids production routes.        386
  • Figure 39. Fischer-Tropsch liquid e-fuel products. 386
  • Figure 40. Resources required for liquid e-fuel production.            387
  • Figure 41. Levelized cost and fuel-switching CO2 prices of e-fuels.          389
  • Figure 42. Cost breakdown for e-fuels.         391
  • Figure 43. Hydrogen fuel cell powered EV.  392
  • Figure 44. Green ammonia production and use.    395
  • Figure 45. Classification and process technology according to carbon emission in ammonia production.     396
  • Figure 46. Schematic of the Haber Bosch ammonia synthesis reaction.               397
  • Figure 47. Schematic of hydrogen production via steam methane reformation.               397
  • Figure 48. Estimated production cost of green ammonia.               403
  • Figure 49. Renewable Methanol Production Processes from Different Feedstocks.       405
  • Figure 50. Production of biomethane through anaerobic digestion and upgrading.        406
  • Figure 51. Production of biomethane through biomass gasification and methanation.               407
  • Figure 52. Production of biomethane through the Power to methane process.  407
  • Figure 53. Transition to hydrogen-based production.          409
  • Figure 54. CO2 emissions from steelmaking (tCO2/ton crude steel).       410
  • Figure 55. Hydrogen Direct Reduced Iron (DRI) process.  412
  • Figure 56. Three Gorges Hydrogen Boat No. 1.         414
  • Figure 57. PESA hydrogen-powered shunting locomotive.               415
  • Figure 58. Symbiotic™ technology process.               417
  • Figure 59. Alchemr AEM electrolyzer cell.   420
  • Figure 60. Domsjö process.  438
  • Figure 61. EL 2.1 AEM Electrolyser.  441
  • Figure 62. Enapter – Anion Exchange Membrane (AEM) Water Electrolysis.         442
  • Figure 63. Direct MCH® process.      443
  • Figure 64. FuelPositive system.         450
  • Figure 65. Using electricity from solar power to produce green hydrogen.            453
  • Figure 66. Left: a typical single-stage electrolyzer design, with a membrane separating the hydrogen and oxygen gasses. Right: the two-stage E-TAC process.           463
  • Figure 67. Hystar PEM electrolyser. 472
  • Figure 68. OCOchem’s Carbon Flux Electrolyzer.   487
  • Figure 69.  CO2 hydrogenation to jet fuel range hydrocarbons process. 491
  • Figure 70. The Plagazi ® process.      496
  • Figure 71. Sunfire process for Blue Crude production.       509
  • Figure 72. O12 Reactor.           519
  • Figure 73. Sunglasses with lenses made from CO2-derived materials.  519
  • Figure 74. CO2 made car part.           520
  • Figure 75. Carbon emissions by sector.        524
  • Figure 76. Overview of CCUS market              525
  • Figure 77. CCUS business model.   527
  • Figure 78. Pathways for CO2 use.     528
  • Figure 79. Regional capacity share 2025-2035.      530
  • Figure 80. Global investment in carbon capture 2010-2024, millions USD.         532
  • Figure 81. Carbon Capture, Utilization, & Storage (CCUS) Market Map. 542
  • Figure 82. CCS deployment projects, historical and to 2035.       543
  • Figure 83. Existing and planned CCS projects.        552
  • Figure 84. CCUS Value Chain.            554
  • Figure 85. A pre-combustion capture system.         577
  • Figure 86. Carbon dioxide utilization and removal cycle.  581
  • Figure 87. Various pathways for CO2 utilization.    582
  • Figure 88. Example of underground carbon dioxide storage.         583
  • Figure 89. Transport of CCS technologies. 584
  • Figure 90. Railroad car for liquid CO₂ transport       586
  • Figure 91. Estimated costs of capture of one metric ton of carbon dioxide (Co2) by sector.     588
  • Figure 92. Cost of CO2 transported at different flowrates 589
  • Figure 93. Cost estimates for long-distance CO2 transport.          590
  • Figure 94. CO2 capture and separation technology.            597
  • Figure 96. Global carbon capture capacity by CO2 source, 2024.             617
  • Figure 97. Global carbon capture capacity by CO2 source, 2046.             618
  • Figure 98. SMR process flow diagram of steam methane reforming with carbon capture and storage (SMR-CCS).    619
  • Figure 99. Process flow diagram of autothermal reforming with a carbon capture and storage (ATR-CCS) plant.  620
  • Figure 100. POX process flow diagram.        621
  • Figure 101. Process flow diagram for a typical SE-SMR.    622
  • Figure 102. Post-combustion carbon capture process.     632
  • Figure 103. Post-combustion CO2 Capture in a Coal-Fired Power Plant.              633
  • Figure 104. Oxy-combustion carbon capture process.      645
  • Figure 105. Process schematic of chemical looping.          647
  • Figure 106. Liquid or supercritical CO2 carbon capture process.               648
  • Figure 107. Pre-combustion carbon capture process.       648
  • Figure 108. Amine-based absorption technology. 652
  • Figure 109. Pressure swing absorption technology.              656
  • Figure 110. Membrane separation technology.        664
  • Figure 111. Liquid or supercritical CO2 (cryogenic) distillation.   673
  • Figure 112. Cryocap™ process.          675
  • Figure 113. Calix advanced calcination reactor.     677
  • Figure 114. LEILAC process. 678
  • Figure 115. Fuel Cell CO2 Capture diagram.            679
  • Figure 116. Microalgal carbon capture.        680
  • Figure 117. Cost of carbon capture.               684
  • Figure 118. CO2 capture capacity to 2030, MtCO2.            685
  • Figure 119. Capacity of large-scale CO2 capture projects, current and planned vs. the Net Zero Scenario, 2020-2030.              686
  • Figure 120. CO2 captured from air using liquid and solid sorbent DAC plants, storage, and reuse.     689
  • Figure 121. Global CO2 capture from biomass and DAC in the Net Zero Scenario.         690
  • Figure 122.  DAC technologies.          694
  • Figure 123. Schematic of Climeworks DAC system.            695
  • Figure 124. Climeworks’ first commercial direct air capture (DAC) plant, based in Hinwil, Switzerland.                696
  • Figure 125.  Flow diagram for solid sorbent DAC.   696
  • Figure 126. Direct air capture based on high temperature liquid sorbent by Carbon Engineering.        698
  • Figure 127. Schematic of costs of DAC technologies.        709
  • Figure 128. DAC cost breakdown and comparison.             710
  • Figure 129. Operating costs of generic liquid and solid-based DAC systems.    712
  • Figure 130. Co2 utilization pathways and products.            718
  • Figure 131. Conversion route for CO2-derived fuels and chemical intermediates.         720
  • Figure 132.  Conversion pathways for CO2-derived methane, methanol and diesel.     721
  • Figure 133. CO2 feedstock for the production of e-methanol.      722
  • Figure 134. Schematic illustration of (a) biophotosynthetic, (b) photothermal, (c) microbial-photoelectrochemical, (d) photosynthetic and photocatalytic (PS/PC), (e) photoelectrochemical (PEC), and (f) photovoltaic plus electrochemical (PV+EC) approaches for CO2 c           725
  • Figure 135. Audi synthetic fuels.       726
  • Figure 136.  Conversion of CO2 into chemicals and fuels via different pathways.            729
  • Figure 137.  Conversion pathways for CO2-derived polymeric materials               730
  • Figure 138. Conversion pathway for CO2-derived building materials.     735
  • Figure 139. Schematic of CCUS in cement sector.                736
  • Figure 140. Carbon8 Systems’ ACT process.             738
  • Figure 141. CO2 utilization in the Carbon Cure process.  739
  • Figure 142. Algal cultivation in the desert.  743
  • Figure 143. Example pathways for products from cyanobacteria.              744
  • Figure 144. Typical Flow Diagram for CO2 EOR.     747
  • Figure 145. Large CO2-EOR projects in different project stages by industry.       749
  • Figure 146. Process Flow of Carbon Trading: Total Carbon Credits (CCs), amounting to CCB (MtCO2e) = (c) – EB, are issued to firm with CHG emissions below the allowance. These credits can be subsequently sold to firm with emissions exceeding the allowance. In the representation, the latter firm must purchase total credits equivalent to CCA (MtCO2e) = EA – (c).        782
  • Figure 147. BiCRS Value Chain.         801
  • Figure 148. Bioenergy with carbon capture and storage (BECCS) process.          805
  • Figure 149. Capture of carbon dioxide from the atmosphere using bricks of calcium hydroxide.          816
  • Figure 150. Carbon capture using mineral carbonation.   818
  • Figure 151. SWOT analysis: enhanced weathering.              824
  • Figure 152. SWOT analysis: afforestation/reforestation.   831
  • Figure 153. SWOT analysis: SCS.      837
  • Figure 154. Schematic of biochar production.         838
  • Figure 155. Biochars from different sources, and by pyrolyzation at different temperatures.   839
  • Figure 156. Compressed biochar.    842
  • Figure 157. Biochar production diagram.   844
  • Figure 158. Pyrolysis process and by-products in agriculture.      846
  • Figure 159. SWOT analysis: Biochar for CDR.           856
  • Figure 160. SWOT analysis: Ocean-based CDR.    864
  • Figure 161. Air Products production process.          872
  • Figure 162. ALGIECEL PhotoBioReactor.     877
  • Figure 163. Schematic of carbon capture solar project.    883
  • Figure 164. Aspiring Materials method.        884
  • Figure 165. Aymium’s Biocarbon production.          887
  • Figure 166. Capchar prototype pyrolysis kiln.          906
  • Figure 167. Carbonminer technology.           913
  • Figure 168. Carbon Blade system.   918
  • Figure 169. CarbonCure Technology.             925
  • Figure 170. Direct Air Capture Process.        927
  • Figure 171. CRI process.        930
  • Figure 172. PCCSD Project in China.             945
  • Figure 173. Orca facility.         947
  • Figure 174. Process flow scheme of Compact Carbon Capture Plant.    952
  • Figure 175. Colyser process.               954
  • Figure 176. ECFORM electrolysis reactor schematic.         963
  • Figure 177. Dioxycle modular electrolyzer. 964
  • Figure 178. Fuel Cell Carbon Capture.          985
  • Figure 179. Topsoe's SynCORTM autothermal reforming technology.      995
  • Figure 180. Heirloom DAC facilities.              997
  • Figure 181. Carbon Capture balloon.            998
  • Figure 182. Holy Grail DAC system. 1000
  • Figure 183. INERATEC unit.   1006
  • Figure 184. Infinitree swing method.              1007
  • Figure 185. Audi/Krajete unit.              1013
  • Figure 186. Made of Air's HexChar panels. 1023
  • Figure 187. Mosaic Materials MOFs.              1033
  • Figure 188. Neustark modular plant.             1038
  • Figure 189. OCOchem’s Carbon Flux Electrolyzer.                1046
  • Figure 190. ZerCaL™ process.              1049
  • Figure 191. CCS project at Arthit offshore gas field.             1060
  • Figure 192. RepAir technology.           1066
  • Figure 193. Aker (SLB Capturi) carbon capture system.    1080
  • Figure 194. Soletair Power unit.         1082
  • Figure 195. Sunfire process for Blue Crude production.    1089
  • Figure 196. CALF-20 has been integrated into a rotating CO2 capture machine (left), which operates inside a CO2 plant module (right).   1091
  • Figure 197. Takavator.               1093
  • Figure 198. O12 Reactor.        1098
  • Figure 199. Sunglasses with lenses made from CO2-derived materials.               1098
  • Figure 200. CO2 made car part.        1099
  • Figure 201. Molecular sieving membrane.  1102
  • Figure 202. Form Energy's iron-air batteries.             1335
  • Figure 203. Highview Power- Liquid Air Energy Storage Technology.          1352
  • Figure 204. phelas Liquid Air Energy Storage System AURORA.   1374
  • Figure 205. Schematic layout of a pyrolysis plant. 1416
  • Figure 206. Waste plastic production pathways to (A) diesel and (B) gasoline   1421
  • Figure 207. Schematic for Pyrolysis of Scrap Tires.              1424
  • Figure 208. Used tires conversion process.               1425
  • Figure 210. Overview of biogas utilization. 1429
  • Figure 211. Biogas and biomethane pathways.       1430
  • Figure 212. Products obtained through the different solvolysis pathways of PET, PU, and PA. 1435
  • Figure 213. SWOT analysis-Hydrolysis for advanced chemical recycling.             1438
  • Figure 214. SWOT analysis-Enzymolysis for advanced chemical recycling.         1439
  • Figure 215. SWOT analysis-Methanolysis for advanced chemical recycling.       1441
  • Figure 216. SWOT analysis-Glycolysis for advanced chemical recycling.              1443
  • Figure 217. SWOT analysis-Aminolysis for advanced chemical recycling.            1444
  • Figure 218. Copper demand outlook.            1465
  • Figure 219. Global nickel demand outlook.               1467
  • Figure 220. Global cobalt demand outlook.              1470
  • Figure 221. Global lithium demand outlook.             1475
  • Figure 222. Global graphite demand outlook.          1496
  • Figure 223.  Solvent extraction (SX) in hydrometallurgy.    1505
  • Figure 224. SWOT analysis: hydrometallurgical extraction.            1507
  • Figure 225. SWOT analysis: pyrometallurgical extraction of critical materials.  1508
  • Figure 226. SWOT analysis: biometallurgy for critical material extraction.           1511
  • Figure 227. SWOT analysis: ionic liquids and deep eutectic solvents for critical material extraction. 1514
  • Figure 228. SWOT analysis: electrochemical leaching for critical material extraction. 1516
  • Figure 229. SWOT analysis: supercritical fluid extraction technology.     1517
  • Figure 230. SWOT analysis: solvent extraction recovery technology.        1521
  • Figure 231. SWOT analysis: ion exchange resin recovery technology.      1523
  • Figure 232. SWOT analysis: ionic liquids and deep eutectic solvents for critical material recovery.    1527
  • Figure 233. SWOT analysis: precipitation for critical material recovery.  1530
  • Figure 234. SWOT analysis: biosorption for critical material recovery.     1533
  • Figure 235. SWOT analysis: electrowinning for critical material recovery.             1535
  • Figure 236. SWOT analysis: direct critical material recovery technology.              1539
  • Figure 237. Global critical raw materials recovery market by material types (2025-2040), by ktonnes.                1546
  • Figure 238. Global critical raw materials recovery market by material types (2025-2040), by value (Billions USD).               1547
  • Figure 239. Global critical raw materials recovery market by recovery source (2025-2040), by ktonnes.                1548
  • Figure 240. Global critical raw materials recovery market by recovery source (2025-2040), by value.                1549
  • Figure 241. Global critical raw materials recovery market by region (2025-2040), by ktonnes.               1550
  • Figure 242. Global critical raw materials recovery market by region (2025-2040), by value (Billions USD).                1551
  • Figure 243. NewCycling process.     1563
  • Figure 244. ChemCyclingTM prototypes.     1571
  • Figure 245. ChemCycling circle by BASF.    1572
  • Figure 246. Recycled carbon fibers obtained through the R3FIBER process.      1574
  • Figure 247. Cassandra Oil  process.               1587
  • Figure 248. CuRe Technology process.         1601
  • Figure 249. MoReTec.                1680
  • Figure 250. Chemical decomposition process of polyurethane foam.    1686
  • Figure 251. OMV ReOil process.        1702
  • Figure 252. Schematic Process of Plastic Energy’s TAC Chemical Recycling.     1709
  • Figure 253. Easy-tear film material from recycled material.            1735
  • Figure 254. Polyester fabric made from recycled monomers.       1740
  • Figure 255. A sheet of acrylic resin made from conventional, fossil resource-derived MMA monomer (left) and a sheet of acrylic resin made from chemically recycled MMA monomer (right).         1759
  • Figure 256. Teijin Frontier Co., Ltd. Depolymerisation process.   1766
  • Figure 257. The Velocys process.     1776
  • Figure 258. The Proesa® Process.     1778
  • Figure 259. Worn Again products.    1781
  • Figure 260. Anti-Fouling Material Development Roadmap.             1788
  • Figure 261. Gradiant Forever Gone. 1844
  • Figure 262. PFAS Annihilator® unit. 1865
  • Figure 263. Global revenues in sustainable construction materials, by materials type, 2020-2036 (millions USD).             1877
  • Figure 264. Global revenues in sustainable construction materials, by market, 2020-2036 (millions USD).  1879
  • Figure 265. Global revenues in building energy systems for green buildings, by technology type, 2020-2036 (millions USD). 1881
  • Figure 266. Global revenues in smart building technologies for green buildings, by application, 2020-2036 (millions USD). 1883
  • Figure 267. Global revenues in advanced construction methods for green buildings, 2020-2036 (millions USD).  1885
  • Figure 268. Global revenues in green building technologies by major regions, 2020-2036 (millions USD).                1886
  • Figure 269. Luum Temple, constructed from Bamboo.      1894
  • Figure 270. Typical structure of mycelium-based foam.   1934
  • Figure 271. Commercial mycelium composite construction materials. 1935
  • Figure 272. Self-healing concrete test study with cracked concrete (left) and self-healed concrete after 28 days (right).              1938
  • Figure 273. Self-healing bacteria crack filler for concrete.               1939
  • Figure 274. Self-healing bio concrete.           1940
  • Figure 275. Microalgae based biocement masonry bloc. 1942
  • Figure 276. Classification of aerogels.          1949
  • Figure 277. Flower resting on a piece of silica aerogel suspended in mid air by the flame of a bunsen burner.                1951
  • Figure 278. Monolithic aerogel.          1953
  • Figure 279. Aerogel granules.              1955
  • Figure 280. Internal aerogel granule applications. 1955
  • Figure 281. 3D printed aerogels.       1958
  • Figure 282. Lignin-based aerogels.  1967
  • Figure 283. Fabrication routes for starch-based aerogels.               1968
  • Figure 284. Graphene aerogel.           1972
  • Figure 285. Carbon8 Systems’ ACT process.             1977
  • Figure 286. CO2 utilization in the Carbon Cure process.  1978
  • Figure 287. Aizawa self-healing concrete.   2023
  • Figure 288. ArcelorMittal decarbonization strategy.             2028
  • Figure 289. Thermal Conductivity Performance of ArmaGel HT.  2031
  • Figure 290. SLENTEX® roll (piece).    2036
  • Figure 291. Biozeroc Biocement.      2041
  • Figure 292. Carbon Re’s DeltaZero dashboard.      2058
  • Figure 293. Neustark modular plant.             2137
  • Figure 294. HIP AERO paint. 2147
  • Figure 295. Schematic of HyREX technology.           2153
  • Figure 296. EAF Quantum.    2156
  • Figure 297. CNF insulation flat plates.          2164
  • Figure 298. Quartzene®.          2182

 

 

 

 

Purchasers will receive the following:

  • PDF report download/by email. 
  • Comprehensive Excel spreadsheet of all data.
  • Mid-year Update

 

The Global Industrial Decarbonization Market 2026-2036
The Global Industrial Decarbonization Market 2026-2036
PDF download.

 

Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer. To order by Bank Transfer (Invoice) select this option from the payment methods menu after adding to cart, or contact info@futuremarketsinc.com