The Global Market for Antimicrobial Additives and Coatings to 2030

0

Published February 4 2021, 325 pages, 52 tables, 54 figures

In the light of the global COVID-19 crisis, opportunities in antimicrobial coatings and additives are growing fast, with previous market hindrances such as cost less of an issue for application in healthcare, touch screens and packaging. Antimicrobial coatings can provide long-lasting protection against fungi, bacteria and in some case, viruses. They are used to sterilize medical devices and surfaces to mitigate the impact of healthcare associated infections. Antimicrobial coatings are also being increasingly adopted in food processing and packaging, aerospace, interiors, glass, HVAC ventilation and a wide range of high touch areas. 

Report contents include:

  • Assessment of antimicrobial coatings including nanosilver/silver-ion coatings, copper coatings, photocatalytic coatings, Silane Quaternary Ammonium Compounds, biobased antimicrobial coatings, hydrogels, antimicrobial enzymes, adaptive biomaterials, piezoelectrics, polyDADMAC, liquid metals and antimicrobial nanomaterials. 
  • Market revenues for antimicrobial coatings to 2030, by markets and technologies.
  • Assessment of end users markets for antimicrobial coatings including household and indoor surfaces, medical and healthcare settings, clothing and medical textiles, food packaging and processing etc. 
  • 183 company profiles including products, technology base, target markets and contact details. Companies features include Allied Bioscience, Advanced Materials-JTJ s.r.o., Bio-Fence, Bio-Gate AG, Covalon Technologies Ltd., Dyphox, EnvisionSQ, GrapheneCA, Halomine, Inc. , Integricote, Nano Came Co. Ltd., NanoTouch Materials LLC, NitroPep, OrganoClick, HeiQ Materials, Green Earth Nano Science, Kastus,  sdst, myNano and many more.  

 

Table of contents (PDF)

1              EXECUTIVE SUMMARY   23

  • 1.1          Antimicrobial additives and coatings market growing       23
    • 1.1.1      Advantages        24
    • 1.1.2      Properties           24
    • 1.1.3      Applications       24
  • 1.2          Antimicrobial and anti-viral coatings and surfaces             25
    • 1.2.1      Self-cleaning antimicrobial coatings and surfaces               25
      • 1.2.1.1   Bionic self-cleaning coatings        25
      • 1.2.1.2   Photocatalytic self-cleaning coatings       27
      • 1.2.1.3   Anti-fouling and easy-to-clean nanocoatings       29
    • 1.2.2      Anti-viral coatings and surfaces 30
    • 1.2.3      Nanomaterials  32
    • 1.2.4      Cleanliness of indoor and public areas driving demand for antimicrobials 34
    • 1.2.5      Application in healthcare environments 34
      • 1.2.5.1   COVID-19 and hospital-acquired infections (HAIs)              34
      • 1.2.5.2   Reusable Personal Protective Equipment (PPE)   35
      • 1.2.5.3   Facemask coatings           35
      • 1.2.5.4   Wipe on coatings             36
      • 1.2.5.5   Long-term mitigation of surface contamination with nanocoatings             36
  • 1.3          Main market players by antimicrobial technology area    37
  • 1.4          Global market size and opportunity to 2030          40
    • 1.4.1      End user markets for antimicrobial coatings         40
    • 1.4.2      Global forecast for antimicrobial coatings to 2030              41
  • 1.5          Market and technical challenges               44
  • 1.6          Market drivers and trends            45

 

2              TYPE OF ANTIMICROBIAL COATINGS        49

  • 2.1          Metallic-based coatings 49
  • 2.2          Polymer-based coatings 50
  • 2.3          Mode of action  53
  • 2.4          Nanosilver or silver-ion antimicrobial coatings and additives         55
    • 2.4.1      Properties           55
    • 2.4.2      Mode of action  56
    • 2.4.3      Environmental considerations    56
    • 2.4.4      SWOT analysis   57
    • 2.4.5      Products and applications             58
      • 2.4.5.1   Silver nanocoatings         58
      • 2.4.5.2   Antimicrobial silver paints            59
    • 2.4.6      Markets               59
      • 2.4.6.1   Textiles 60
      • 2.4.6.2   Wound dressings             60
      • 2.4.6.3   Consumer products        60
      • 2.4.6.4   Air filtration        60
    • 2.4.7      Companies         60
  • 2.5          Copper antimicrobial coatings and additives        62
    • 2.5.1      Properties           62
    • 2.5.2      Mode of action  62
    • 2.5.3      SWOT analysis   63
    • 2.5.4      Application in antimicrobial coatings       63
    • 2.5.5      Companies         63
  • 2.6          Zinc oxide coatings and additives              65
    • 2.6.1      Properties           65
    • 2.6.2      Mode of action  66
    • 2.6.3      Application in antimicrobial coatings       67
    • 2.6.4      Companies         70
  • 2.7          Photocatalytic coatings (Titanium Dioxide)           71
    • 2.7.1      Development of photcatalytic coatings   72
      • 2.7.1.1   Market drivers and trends            73
    • 2.7.2      Mode of action  74
    • 2.7.3      Glass coatings    75
    • 2.7.4      Interior coatings               76
    • 2.7.5      Improving indoor air quality        76
    • 2.7.6      SWOT analysis   78
    • 2.7.7      Application in antimicrobial coatings       79
      • 2.7.7.1   Self-Cleaning coatings-glass         80
      • 2.7.7.2   Self-cleaning coatings-building and construction surfaces               81
      • 2.7.7.3   Photocatalytic oxidation (PCO) indoor air filters  82
      • 2.7.7.4   Water treatment             83
      • 2.7.7.5   Medical facilities               83
      • 2.7.7.6   Antimicrobial coating indoor light activation         84
    • 2.7.8      Companies         84
  • 2.8          Silane Quaternary Ammonium Compounds          87
    • 2.8.1      Mode of action  87
    • 2.8.2      Application in antimicrobial coatings       88
    • 2.8.3      Companies         88
  • 2.9          Biobased antimicrobial coatings 90
    • 2.9.1      Chitosan              90
      • 2.9.1.1   Properties           90
      • 2.9.1.2   Application in antimicrobial coatings       91
    • 2.9.2      Antimicrobial peptide (AMP) coatings     93
      • 2.9.2.1   Properties           93
      • 2.9.2.2   Application in antimicrobial coatings       93
    • 2.9.3      NanoCellulose (Nanocrystalline, Nanofibrillated, and Bacterial Cellulose) 96
      • 2.9.3.1   Properties           96
      • 2.9.3.2   Application in antimicrobial coatings       97
    • 2.9.4      Natural fibers    98
      • 2.9.4.1   Properties           99
      • 2.9.4.2   Application in antimicrobial coatings       99
    • 2.9.5      Starch   100
      • 2.9.5.1   Properties           101
      • 2.9.5.2   Application in antimicrobial coatings       101
    • 2.9.6      Alginate               102
      • 2.9.6.1   Properties           102
      • 2.9.6.2   Application in antimicrobial coatings       102
    • 2.9.7      Adaptive biomaterials    103
      • 2.9.7.1   Properties           103
      • 2.9.7.2   Application in antimicrobial coatings       103
    • 2.9.8      Antimicrobial enzymes  104
      • 2.9.8.1   Properties           104
      • 2.9.9      Application in antimicrobial coatings       104
  • 2.10        Hydrogels            105
    • 2.10.1    Properties           105
    • 2.10.2    Application in antimicrobial coatings       105
  • 2.11        Antibacterial liquid metals           108
    • 2.11.1    Properties           108
    • 2.11.2    Application in antimicrobial coatings       108
  • 2.12        Self-cleaning antimicrobial coatings         109
    • 2.12.1    Hydrophilic coatings       109
    • 2.12.2    Hydrophobic coatings     109
      • 2.12.2.1                Properties           110
      • 2.12.2.2                Application in facemasks              110
  • 2.13        Superhydrophobic coatings and surfaces               111
    • 2.13.1    Properties           111
      • 2.13.1.1                Antibacterial use              112
  • 2.14        Oleophobic and omniphobic coatings and surfaces           113
    • 2.14.1    SLIPS     113
    • 2.14.2    Covalent bonding             114
    • 2.14.3    Step-growth graft polymerization             114
  • 2.15        Other antimicrobial materials additives in coatings            117
    • 2.15.1    Graphene           117
      • 2.15.1.1                Properties           117
      • 2.15.1.2                Graphene oxide 118
      • 2.15.1.3                Anti-bacterial activity      118
      • 2.15.1.4                Reduced graphene oxide (rGO) 119
      • 2.15.1.5                Application in antimicrobial coatings       120
    • 2.15.2    Silicon dioxide/silica nanoparticles (Nano-SiO2)  121
      • 2.15.2.1                Properties           122
      • 2.15.2.2                Application in antimicrobial coatings       123
    • 2.15.3    Polyhexamethylene biguanide (PHMB)  126
      • 2.15.3.1                Properties           126
      • 2.15.3.2                Application in antimicrobial coatings       126
    • 2.15.4    Single-walled carbon nanotubes (SWCNTs)           127
      • 2.15.4.1                Properties           127
      • 2.15.4.2                Application in antimicrobial coatings       127
    • 2.15.5    polyDADMAC    128
      • 2.15.5.1                Properties           128
      • 2.15.5.2                Application in antimicrobial coatings       129
    • 2.15.6    Fullerenes           129
      • 2.15.6.1                Properties           129
      • 2.15.6.2                Application in antimicrobial coatings       130
    • 2.15.7    Gold nanoparticles          131
      • 2.15.7.1                Properties           131
      • 2.15.7.2                Application in antimicrobial coatings       131
    • 2.15.8    Cerium oxide nanoparticles         132
      • 2.15.8.1                Properties           132
      • 2.15.8.2                Application in antimicrobial coatings       132
    • 2.15.9    Iron oxide nanoparticles               133
      • 2.15.9.1                Properties           133
      • 2.15.9.2                Application in antimicrobial coatings       134
    • 2.15.10  Magnesium oxide nanoparticles 135
      • 2.15.10.1              Properties           135
      • 2.15.10.2              Application in antimicrobial coatings       135
    • 2.15.11  Nitric oxide nanoparticles             136
      • 2.15.11.1              Properties           136
      • 2.15.11.2              Application in antimicrobial coatings       137
    • 2.15.12  Aluminium oxide nanoparticles  138
      • 2.15.12.1              Properties           138
      • 2.15.12.2              Application in antimicrobial coatings       139
    • 2.15.13  Calcium Hydroxide          139
      • 2.15.13.1              Properties           139
      • 2.15.13.2              Application in antimicrobial coatings       140
    • 2.15.14  Piezoelectrics    141

 

3              ENVIRONMENTAL AND REGULATORY      142

 

4              MARKETS FOR ANTIMICROBIAL COATINGS           144

  • 4.1          HOUSEHOLD AND INDOOR SURFACES     144
    • 4.1.1      Market drivers and trends            144
    • 4.1.2      Applications       145
      • 4.1.2.1   Self-cleaning and easy-to-clean 145
      • 4.1.2.2   Indoor pollutants and air quality                145
    • 4.1.3      Global market size           147
  • 4.2          MEDICAL & HEALTHCARE SETTINGS         149
    • 4.2.1      Market drivers and trends            149
    • 4.2.2      Applications       150
      • 4.2.2.1   Antimicrobial resistance               151
      • 4.2.2.2   Medical surfaces and Hospital Acquired Infections (HAI) 152
      • 4.2.2.3   Wound dressings             153
      • 4.2.2.4   Medical equipment and instruments       154
      • 4.2.2.5   Fabric supplies scrubs, linens, masks (medical textiles)    155
      • 4.2.2.6   Medical implants              155
    • 4.2.3      Global market size           156
  • 4.3          CLOTHING AND TEXTILES              159
    • 4.3.1      Market drivers and trends            159
    • 4.3.2      Applications       160
      • 4.3.2.1   Antimicrobial clothing    160
    • 4.3.3      Global market size           165
  • 4.4          FOOD & BEVERAGE PRODUCTION AND PACKAGING         168
    • 4.4.1      Market drivers and trends            168
    • 4.4.2      Applications       169
      • 4.4.2.1   Antimicrobial coatings in food processing equipment, conveyor belts and preparation surfaces    170
      • 4.4.2.2   Antimicrobial coatings and films in food packaging            170
      • 4.4.2.3   Agriculture          171
    • 4.4.3      Global market size           172
  • 4.5          OTHER MARKETS              174
    • 4.5.1      Automotive and transportation interiors                174
    • 4.5.2      Water and air filtration  176

 

5              GLOBAL MARKET REVENUES       179

  • 5.1          By technology   179
  • 5.2          By market           180

 

6              ANTIMICROBIAL COATINGS COMPANY PROFILES 181 (183 company profiles)

 

7              RECENT RESEARCH IN ACADEMIA             313

 

8              AIMS AND OBJECTIVES OF THE STUDY     314

 

9              RESEARCH METHODOLOGY         315

 

10           REFERENCES       316

 

TABLES

  • Table 1. Summary for bionic self-cleaning nanocoatings. 25
  • Table 2. Market summary for photocatalytic self-cleaning coatings.           27
  • Table 3: Summary of anti-fouling and easy-to-clean coatings.       29
  • Table 4. Types of nanomaterials used in Advanced Bactericidal & Viricidal Coatings and Surfaces, benefits and applications.       32
  • Table 5. Main market players by antimicrobial technology area.  37
  • Table 6: End user markets for antimicrobial coatings.       40
  • Table 7: Total global revenues for antimicrobial coatings, 2019-2030, USD.            41
  • Table 8: Total global revenues for antimicrobial coatings, 2019-2030, millions USD, conservative estimate, by coatings type.     42
  • Table 9: Market and technical challenges for antimicrobial coatings.         44
  • Table 10. Market drivers and trends in    45
  • Table 11: Polymer-based coatings for Bactericidal & Viricidal Surfaces.     51
  • Table 12. Growth Modes of Bacteria and characteristics. 53
  • Table 13. SWOT analysis for application of nanosilver and silver-ion antimicrobial coatings.            57
  • Table 14. Markets and applications for nanosilver-based Advanced Bactericidal & Viricidal Coatings and Surfaces. 59
  • Table 15. Companies developing coatings and additives based on nano-silver or silver-ions.           61
  • Table 16. SWOT analysis for application of copper antimicrobial coatings.               63
  • Table 17. Companies developing antimicrobial coatings based on nano-copper or copper-ions.    63
  • Table 18. Antibacterial effects of ZnO NPs in different bacterial species.  68
  • Table 19. Companies developing antimicrobial coatings based on zinc oxide.         70
  • Table 20. Photocatalytic coatings- principles, properties and applications.               71
  • Table 21. Development of photocatalytic coatings, by generation.             72
  • Table 22. SWOT analysis for application of photocatalytic coatings.            78
  • Table 23. Companies developing antimicrobial and self-cleaning photocatalytic coatings. 85
  • Table 24. Companies developing antimicrobial Silane Quaternary Ammonium Compounds.           88
  • Table 25. Mechanism of chitosan antimicrobial action.    91
  • Table 26. Types of antibacterial AMP coatings.    94
  • Table 27. AMP contact-killing surfaces.   94
  • Table 28. Types of adaptive biomaterials in antimicrobial coatings.            103
  • Table 29. Types of antibacterial hydrogels.           105
  • Table 30: Contact angles of hydrophilic, super hydrophilic, hydrophobic and superhydrophobic surfaces. 110
  • Table 31. Applications of oleophobic & omniphobic coatings.       115
  • Table 32: Graphene properties relevant to application in coatings.             117
  • Table 33. Bactericidal characters of graphene-based materials.   119
  • Table 34. Markets and applications for antimicrobial and antiviral graphene coatings.       120
  • Table 35. Types of carbon-based nanoparticles as antimicrobial agent, their mechanisms of action and characteristics.                130
  • Table 36: Market drivers and trends for antimicrobial coatings in household and indoor surface market.  144
  • Table 37: Market for antimicrobial coatings in household and indoor surfaces to 2030, by revenues and types.     147
  • Table 38: Market drivers and trends for antimicrobial coatings in medicine and healthcare.            149
  • Table 39: Nanocoatings applied in the medical industry-type of coating, nanomaterials utilized, benefits and applications.       151
  • Table 40. Types of advanced antimicrobial medical device coatings.           154
  • Table 41: Types of advanced coatings applied in medical implants.             155
  • Table 42: Nanomaterials utilized in medical implants.      156
  • Table 43: Market for antimicrobial coatings in medical and healthcare settings to 2030, by revenues and types.   157
  • Table 44: Market drivers and trends for antimicrobial coatings in the textiles and apparel industry.             159
  • Table 45: Applications in textiles, by advanced materials type and benefits thereof.           161
  • Table 46: Advanced cocoatings applied in the textiles industry-type of coating, nanomaterials utilized, benefits and applications.       163
  • Table 47: Market for antimicrobial coatings in clothing and textiles to 2030, by revenues and types.          166
  • Table 48: Market drivers and trends for antimicrobial coatings in the packaging market.  168
  • Table 49: Market for antimicrobial coatings in food and beverage production & packaging to 2030, by revenues and types.   172
  • Table 50: Advanced coatings applied in the automotive industry.               174
  • Table 51: Applications in air and water filters, by advanced materials type and benefits thereof.  177
  • Table 52. Advanced Bactericidal & Viricidal Coatings and Surfaces development in academia.        313

 

FIGURES

  • Figure 1: Self-cleaning superhydrophobic coating schematic.        27
  • Figure 2: Principle of superhydrophilicity.              28
  • Figure 3: Schematic of photocatalytic air purifying pavement.      29
  • Figure 4. Schematic of anti-viral coating using nano-actives for inactivation of any adhered virus on the surfaces. 32
  • Figure 5. Face masks coated with antibacterial & antiviral nanocoating.   36
  • Figure 6: Global revenues for antimicrobial coatings, 2019-2030, USD, conservative estimate.       42
  • Figure 7: Total global revenues for Advanced Bactericidal & Viricidal Coatings, 2019-2030, millions USD, conservative estimate, by coatings type.          43
  • Figure 8. Antibacterial mechanisms of metal and metallic oxide nanoparticles.     50
  • Figure 9 Anti-bacterial mechanism of silver nanoparticle coating.                56
  • Figure 10. Schematic of antibacterial activity of ZnO NPs.               68
  • Figure 11. Titanium dioxide-coated glass (left) and ordinary glass (right). 74
  • Figure 12. Schematic of photocatalytic indoor air purification filter.           74
  • Figure 13. Schematic indoor air filtration.              77
  • Figure 14. Mechanism of photocatalysis on a surface treated with TiO2 nanoparticles.      78
  • Figure 15.  Schematic showing the self-cleaning phenomena on superhydrophilic surface.              80
  • Figure 16: Schematic of photocatalytic air purifying pavement.   81
  • Figure 17:  Self-Cleaning mechanism utilizing photooxidation.      82
  • Figure 18: Photocatalytic oxidation (PCO) air filter.            83
  • Figure 19: Schematic of photocatalytic water purification.              83
  • Figure 20. TEM images of Burkholderia seminalis treated with (a, c) buffer (control) and (b, d) 2.0 mg/mL chitosan; (A: additional layer; B: membrane damage).               91
  • Figure 21. Antimicrobial peptides.            93
  • Figure 22: Types of nanocellulose.            96
  • Figure 23.  Applications of antibacterial hydrogels             105
  • Figure 24: (a) Water drops on a lotus leaf.             109
  • Figure 25: A schematic of (a) water droplet on normal hydrophobic surface with contact angle greater than 90° and (b) water droplet on a superhydrophobic surface with a contact angle > 150°.              110
  • Figure 26: Contact angle on superhydrophobic coated surface.   112
  • Figure 27: Self-cleaning nanocellulose dishware. 113
  • Figure 28: SLIPS repellent coatings.          114
  • Figure 29: Omniphobic coatings.                115
  • Figure 30: Antimicrobial activity of Graphene oxide (GO).              119
  • Figure 31: Hydrophobic easy-to-clean coating.    123
  • Figure 32. Mechanism of antimicrobial activity of carbon nanotubes.       127
  • Figure 33: Fullerene schematic. 130
  • Figure 34. Market for antimicrobial coatings in household and indoor surfaces to 2030, by revenues and types.    148
  • Figure 35. Nano-coated self-cleaning touchscreen.           153
  • Figure 36: Anti-bacertial sol-gel nanoparticle silver coating.           154
  • Figure 37. Market for antimicrobial coatings in medical and healthcare settings to 2030, by revenues and types.  158
  • Figure 38: Omniphobic-coated fabric.     161
  • Figure 39. Market for antimicrobial coatings in clothing and textiles to 2030, by revenues and types.         167
  • Figure 40. Steps during food processing and where contamination might occur from various sources.        170
  • Figure 41: Oso fresh food packaging incorporating antimicrobial silver.    171
  • Figure 42. Market for antimicrobial coatings in food and beverage production & packaging to 2030, by revenues and types.   173
  • Figure 43. Global market for antimicrobial coatings by technology, 2018-2030, million USD.           179
  • Figure 44. Global market for antimicrobial coatings by technology, 2018-2030, million USD.           180
  • Figure 45. Lab tests on DSP coatings.       215
  • Figure 46. GermStopSQ mechanism of action.     217
  • Figure 47. GrapheneCA anti-bacterial and anti-viral coating.          224
  • Figure 48. NOx reduction with TioCem®. 231
  • Figure 49. Microlyte® Matrix bandage for surgical wounds.           234
  • Figure 50. Self-cleaning nanocoating applied to face masks.          237
  • Figure 51. NanoSeptic surfaces. 266
  • Figure 52. NascNanoTechnology personnel shown applying MEDICOAT to airport luggage carts.   272
  • Figure 53. V-CAT® photocatalyst mechanism.      306
  • Figure 54. Applications of Titanystar.       310

 

 

The Global Market for Antimicrobial Additives and Coatings to 2030
The Global Market for Antimicrobial Additives and Coatings to 2030
PDF download.

The Global Market for Antimicrobial Additives and Coatings to 2030
The Global Market for Antimicrobial Additives and Coatings to 2030
Print edition (including tracked delivery).

The Global Market for Antimicrobial Additives and Coatings to 2030
The Global Market for Antimicrobial Additives and Coatings to 2030
PDF and Print edition (including tracked delivery).

To purchase by invoice (bank transfer or cheque) contact info@futuremarketsinc.com.