The Global Market for Carbon Dioxide (CO₂) Utilization 2024-2045

0

  • Published: January 2024
  • Pages: 231
  • Tables: 52
  • Figures: 50
  • Companies profiled: 82
  • Series: Bio-economy

 

There are a wide range of commercial opportunities in carbon dioxide (CO2) utilization, from aviation fuel to sportswear. This extensive report provides a detailed analysis of the growing global market for carbon utilization, forecasting growth in CO2 utilization across chemicals, fuels, polymers, building materials, agriculture and other sectors.

It assesses the addressable emissions sources by industry segment and competing carbon removal solutions while profiling key corporate players across the value chain spanning CO2 capture, CO2 conversion via thermochemical, electrochemical, catalytic and biological routes as well as mineralization concepts.

Multiple product opportunity areas are examined including synthetic hydrocarbon fuels and feedstocks, polycarbonates, polyols, industrial gases, enhanced oil recovery, yield boosting technologies, carbon nanomaterials and sustainable building products.

The report analyzes drivers, developments, investments, and challenges associated with transitioning CO2 into a viable renewable feedstock at scale. Regional market demand analysis covers North America, Europe, Asia Pacific, China and Rest of World geographies. Technology readiness and outlook is provided for different CO2 utilization pathways guiding research and adoption roadmaps. Report contents include:

  • Carbon Capture, Utilization and Storage (CCUS) market  overview across industrial sectors and competing removal solutions
  • Global market forecasts for Carbon Utilization from 2022 to 2045 - volumes and revenues
  • Analysis of CO2 conversion technologies - thermochemical, electrochemical, biological etc.
  • Assessment of synthetic hydrocarbon fuels, chemicals, polymers and building materials made from captured CO2
  • Analysis of CO2 reuse across agriculture, horticulture, enhanced oil recovery
  • Emerging concepts around mineralization pathways for carbon removal
  • Review of investments, policies, developments, partnerships, and funding
  • Profiles of 80+ companies across the CCUS value chain (full list of companies profiled in table of contents)
  • Evaluation of technology readiness, scalability challenges, projected adoption roadmaps
  • Regional market demand analysis - North America, Europe, Asia Pacific, China, RoW

 

Download table of contents (PDF)

1              ABBREVIATIONS               14

 

2              RESEARCH METHODOLOGY         15

 

3              EXECUTIVE SUMMARY   16

  • 3.1          Main sources of carbon dioxide emissions             16
  • 3.2          CO2 as a commodity       18
  • 3.3          Carbon Dioxide (CO2) as a renewable carbon feedstock  20
    • 3.3.1      Chemicals            20
    • 3.3.2      Fuels     21
    • 3.3.3      Polymers             21
    • 3.3.4      Construction materials   22
    • 3.3.5      Food and feed   22
    • 3.3.6      Consumer products        23
  • 3.4          Meeting climate targets 23
  • 3.5          Market drivers and trends            24
  • 3.6          The current market and future outlook  25
  • 3.7          Industry developments 2020-2024            27
  • 3.8          Investments and funding              33
    • 3.8.1      Venture Capital Funding                33
      • 3.8.1.1   2010-2023            34
      • 3.8.1.2   Carbon utilization VC deals 2022-2024     34
  • 3.9          Government CCUS initiatives      37
    • 3.9.1      North America   37
    • 3.9.2      Europe 37
    • 3.9.3      China     38
  • 3.10        Market map       41
  • 3.11        Commercial CCUS facilities and projects 44
    • 3.11.1    Facilities               45
      • 3.11.1.1                Operational        45
      • 3.11.1.2                Under development/construction            47
  • 3.12        CCUS Value Chain             53
  • 3.13        Carbon credits   54
  • 3.14        CO₂ utilization forecast  54
    • 3.14.1    By market           54
    • 3.14.2    By revenues       55

 

4              CARBON UTILIZATION    57

  • 4.1          Overview            57
    • 4.1.1      Current market status    58
    • 4.1.2      Production capacities     62
    • 4.1.3      Benefits of carbon utilization       62
    • 4.1.4      Market challenges           64
  • 4.2          Co2 utilization pathways               65

 

5              TRANSFORMATION PROCESSES 68

  • 5.1          Thermochemical              68
    • 5.1.1      Process overview             68
    • 5.1.2      Plasma-assisted CO2 conversion 71
  • 5.2          Electrochemical conversion of CO2           72
    • 5.2.1      Process overview             73
  • 5.3          Photocatalytic and photothermal catalytic conversion of CO2       75
  • 5.4          Catalytic conversion of CO2         75
  • 5.5          Biological conversion of CO2       76
  • 5.6          Copolymerization of CO2              80
  • 5.7          Mineral carbonation       81

 

6              CO2-DERIVED PRODUCTS             85

  • 6.1          Fuels     85
    • 6.1.1      Overview            85
    • 6.1.2      Production routes            88
      • 6.1.2.1   Electrolyzers      89
      • 6.1.2.2   Low-carbon hydrogen    89
    • 6.1.3      Products & applications 91
      • 6.1.3.1   Vehicles               91
      • 6.1.3.2   Shipping               91
      • 6.1.3.3   Aviation               92
      • 6.1.3.4   Costs     93
      • 6.1.3.5   Ethanol 93
      • 6.1.3.6   Methanol            94
      • 6.1.3.7   Sustainable Aviation Fuel              98
      • 6.1.3.8   Methane             98
      • 6.1.3.9   Algae based biofuels       99
      • 6.1.3.10                CO₂-fuels from solar        100
    • 6.1.4      Challenges          102
    • 6.1.5      SWOT analysis   103
    • 6.1.6      Companies         104
  • 6.2          Chemicals, Plastics & Polymers  106
    • 6.2.1      Overview            106
    • 6.2.2      Scalability            108
    • 6.2.3      Products              108
      • 6.2.3.1   Feedstocks         110
      • 6.2.3.2   Pathways            111
      • 6.2.3.3   Conversion into energy-rich intermediates           112
        • 6.2.3.3.1               Electrochemical technologies     113
        • 6.2.3.3.2               Costs     113
        • 6.2.3.3.3               Hydrogen (H2) and electrochemical CO2 utilization coupling         113
        • 6.2.3.3.4               Products from CO₂ reduction      114
        • 6.2.3.3.5               Microbial conversion      115
        • 6.2.3.3.6               Plasma technology          116
        • 6.2.3.3.7               Aromatic hydrocarbons 117
        • 6.2.3.3.8               Photocatalytic reduction               117
      • 6.2.3.4   Urea production               118
      • 6.2.3.5   CO₂-derived polymers   118
        • 6.2.3.5.1               Polycarbonate (PC)         119
          • 6.2.3.5.1.1           Aliphatic polycarbonate 119
          • 6.2.3.5.1.2           Polycarbonate polyols    120
        • 6.2.3.5.2               Polyhydroxyalkanoates (PHA)     120
        • 6.2.3.5.3               Polyurethanes  121
        • 6.2.3.5.4               Polycyclic aromatics        121
        • 6.2.3.5.5               Nylon    121
        • 6.2.3.5.6               Polyethylene     121
        • 6.2.3.5.7               Polypropylene  122
      • 6.2.3.6   Inert gas in semiconductor manufacturing            122
      • 6.2.3.7   Advanced carbon materials          122
        • 6.2.3.7.1               Carbon Nanotubes          122
        • 6.2.3.7.2               Graphene           122
        • 6.2.3.7.3               Carbon Black      123
        • 6.2.3.7.4               3D-Printed Carbons         123
    • 6.2.4      SWOT analysis   124
    • 6.2.5      Companies         125
  • 6.3          Construction materials   127
    • 6.3.1      Overview            127
    • 6.3.2      Market structure              129
    • 6.3.3      CCUS technologies in the cement industry            132
    • 6.3.4      Products              134
      • 6.3.4.1   Carbonated aggregates 134
      • 6.3.4.2   Additives during mixing 135
      • 6.3.4.3   Carbonates from natural minerals             136
      • 6.3.4.4   Carbonates from waste 137
    • 6.3.5      Concrete curing 138
    • 6.3.6      Costs     138
    • 6.3.7      Challenges          139
    • 6.3.8      SWOT analysis   140
    • 6.3.9      Companies         141
  • 6.4          CO2 Utilization in Biological Yield-Boosting           143
    • 6.4.1      Overview            143
    • 6.4.2      Products & applications 144
      • 6.4.2.1   Greenhouses     144
      • 6.4.2.2   Algae cultivation               145
        • 6.4.2.2.1               Markets               146
      • 6.4.2.3   Microbial conversion      147
        • 6.4.2.3.1               Food and feed production            149
        • 6.4.2.3.2               Proteins               149
    • 6.4.3      Challenges          150
    • 6.4.4      SWOT analysis   151
    • 6.4.5      Companies         152
  • 6.5          CO₂ Utilization in Enhanced Oil Recovery               153
    • 6.5.1      Overview            153
      • 6.5.1.1   Process 155
      • 6.5.1.2   CO₂ sources        156
    • 6.5.2      CO₂-EOR facilities and projects   157
    • 6.5.3      Challenges          159
    • 6.5.4      SWOT analysis   160
    • 6.5.5      Companies         161
  • 6.6          Enhanced mineralization               161
    • 6.6.1      Advantages        161
    • 6.6.2      In situ and ex-situ mineralization               162
    • 6.6.3      Enhanced mineralization pathways          163
    • 6.6.4      Challenges          164

 

7              COMPANY PROFILES       165

  • 7.1          Aether Diamonds             165
  • 7.2          Aircela Inc           165
  • 7.3          Air Company      166
  • 7.4          Air Protein          166
  • 7.5          Algal Bio Co., Ltd.             167
  • 7.6          Algenol 168
  • 7.7          Arborea               168
  • 7.8          Arkeon Biotechnologies 169
  • 7.9          Asahi Kasei         170
  • 7.10        Avantium N.V.   171
  • 7.11        Azolla    172
  • 7.12        Blue Planet Systems Corporation              172
  • 7.13        BluSky, Inc.         173
  • 7.14        Brilliant Planet Systems 174
  • 7.15        C4X Technologies Inc.     174
  • 7.16        C2CNT LLC           175
  • 7.17        Cambridge Carbon Capture Ltd. 176
  • 7.18        CarbiCrete          177
  • 7.19        Carboclave          178
  • 7.20        Carbo Culture    178
  • 7.21        Carbon Corp       179
  • 7.22        Carbonaide Oy  180
  • 7.23        Carbonova          180
  • 7.24        Carbon8 Systems             181
  • 7.25        Carbon Blue        182
  • 7.26        CarbonBuilt        182
  • 7.27        CarbonCure Technologies Inc.    183
  • 7.28        CarbonFree        185
  • 7.29        Carbon Limit       185
  • 7.30        Carbon Recycling International  186
  • 7.31        Carbon Sink LLC 187
  • 7.32        Carbon Upcycling Technologies  188
  • 7.33        Celanese Corporation    189
  • 7.34        CERT Systems, Inc.           189
  • 7.35        Chiyoda Corporation       190
  • 7.36        CleanO2               192
  • 7.37        CO2 Gro, Inc.      192
  • 7.38        Concrete4Change            193
  • 7.39        Coval Energy B.V.             193
  • 7.40        Covestro AG       194
  • 7.41        Deep Branch Biotechnology        195
  • 7.42        Dimensional Energy        195
  • 7.43        ecoLocked GmbH             197
  • 7.44        Electrochaea GmbH        197
  • 7.45        Empower Materials, Inc.               198
  • 7.46        enaDyne GmbH 199
  • 7.47        Fairbrics               199
  • 7.48        Fortera Corporation        200
  • 7.49        Greenore Cleantech       200
  • 7.50        HYCO1, Inc.         201
  • 7.51        1point8 202
  • 7.52        LanzaJet               202
  • 7.53        Lanzatech            203
  • 7.54        Liquid Wind AB 205
  • 7.55        Low Carbon Korea           206
  • 7.56        Low Carbon Materials    207
  • 7.57        Made of Air GmbH          207
  • 7.58        Mars Materials  208
  • 7.59        MCi Carbon        209
  • 7.60        Mineral Carbonation International (MCi) Carbon 210
  • 7.61        Neustark AG      210
  • 7.62        Newlight Technologies LLC           211
  • 7.63        Novo Nutrients 212
  • 7.64        Oakbio  213
  • 7.65        Obrist Group      213
  • 7.66        O.C.O    214
  • 7.67        OxEon Energy, LLC           214
  • 7.68        Oxylum 215
  • 7.69        Paebbl AB            216
  • 7.70        Phytonix Corporation     216
  • 7.71        Prometheus Fuels, Inc.  217
  • 7.72        Prometheus Materials   217
  • 7.73        Seratech              218
  • 7.74        SkyNano Technologies   219
  • 7.75        Solar Foods Oy  219
  • 7.76        Solidia Technologies       220
  • 7.77        Synhelion            221
  • 7.78        Syzygy Plasmonics, Inc.  221
  • 7.79        Tandem Technical            222
  • 7.80        Twelve 223
  • 7.81        UP Catalyst         225
  • 7.82        ViridiCO2             226

 

8              REFERENCES       227

 

List of Tables

  • Table 1. Key emerging application areas and opportunities for CO2 utilization.      20
  • Table 2. CO2 transformation and utilization market drivers and trends.    24
  • Table 3. Carbon utilization industry developments 2020-2024.     27
  • Table 4. Carbon utilization VC deals 2022-2024.   34
  • Table 5. Demonstration and commercial CCUS facilities in China. 38
  • Table 6. Global commercial CCUS facilities-in operation. 45
  • Table 7. Global commercial CCUS facilities-under development/construction.      47
  • Table 8. CO₂ utilization forecast by market (million metric tonnes), 2022-2045.     54
  • Table 9. CO₂ utilization forecast by market (billion USD), 2022-2045.          55
  • Table 10. Carbon utilization revenue forecast by product (US$).  62
  • Table 11. Production capacities for CO2 based products. 62
  • Table 12. CO2 utilization and removal pathways.               62
  • Table 13. Market challenges for CO2 utilization.  64
  • Table 14. Example CO2 utilization pathways.       65
  • Table 15. CO2 derived products via Thermochemical conversion-applications, advantages and disadvantages.       68
  • Table 16. CO2 derived products via electrochemical conversion-applications, advantages and disadvantages.        73
  • Table 17. CO2 derived products via biological conversion-applications, advantages and disadvantages.     78
  • Table 18. Companies developing and producing CO2-based polymers.     80
  • Table 19. Companies developing mineral carbonation technologies.          83
  • Table 20. Market overview for CO2 derived fuels.              86
  • Table 21. Main production routes and processes for manufacturing fuels from captured carbon dioxide.  89
  • Table 22. CO₂-derived fuels projects.      90
  • Table 23. Thermochemical methods to produce methanol from CO2.        95
  • Table 24. pilot plants for CO2-to-methanol conversion.  97
  • Table 25. Microalgae products and prices.             100
  • Table 26. Main Solar-Driven CO2 Conversion Approaches.             102
  • Table 27. Market challenges for CO2 derived fuels.           102
  • Table 28. Companies in CO2-derived fuel products.          104
  • Table 29. Commodity chemicals and fuels manufactured from CO2.          108
  • Table 30. Market potential for CO₂-derived chemicals.    109
  • Table 31. Feedstocks for producing CO2-derived chemicals.          110
  • Table 32. Common pathways and products associated with the utilization of carbon dioxide (CO2) in chemical processes            111
  • Table 33. Methods for converting CO₂  into CO or syngas for chemical intermediate.         112
  • Table 34. Costs of CO₂ electrochemical technologies        113
  • Table 35. Key CO2-consuming microorganisms that can be used for chemical production.               115
  • Table 36.  Key companies focused on microbial conversion of CO2 into chemicals and products.   116
  • Table 37. Conversion pathways for CO2-derived polymeric materials.       118
  • Table 38. Companies in CO2-derived chemicals products.               125
  • Table 39. Conversion pathway for CO2-derived building materials.             128
  • Table 40. Carbon capture technologies and projects in the cement sector               132
  • Table 41. Carbonation of recycled concrete companies.  137
  • Table 42. Current and projected costs for some key CO2 utilization applications in the construction industry.         139
  • Table 43. Market challenges for CO2 utilization in construction materials.               139
  • Table 44. Companies in CO2 derived building materials.  141
  • Table 45. CO₂ utilization in biological processes. 143
  • Table 46.  Markets and applications for CO2-enhanced algae cultivation products.              146
  • Table 47. Market challenges CO2 utilization in biological yield boosting.  150
  • Table 48. Companies in CO2 Utilization in Biological Yield-Boosting.          152
  • Table 49. Applications of CCS in oil and gas production.   154
  • Table 50. CO₂-EOR designs.          154
  • Table 51. Challenges for CO2 utilization in enhanced oil recovery (EOR).  159
  • Table 52. CO₂-EOR companies.   161

 

List of Figures

  • Figure 1. Carbon emissions by sector.      17
  • Figure 2. Overview of CCUS market          19
  • Figure 3. Pathways for CO2 use. 19
  • Figure 4. Regional capacity share 2022-2033.        26
  • Figure 5. Global investment in carbon capture 2010-2023, millions USD. 34
  • Figure 6. Carbon Capture, Utilization, & Storage (CCUS) Market Map.       43
  • Figure 7. CCS deployment projects, historical and to 2035.             44
  • Figure 8. Existing and planned CCS projects.         53
  • Figure 9. CCUS Value Chain.         53
  • Figure 10. CO₂ utilization forecast by market (million metric tonnes), 2022-2045. 55
  • Figure 11. CO₂ utilization forecast by market (billion USD), 2022-2045.      56
  • Figure 12. Carbon dioxide utilization and removal cycle.  57
  • Figure 13. CO2 non-conversion and conversion technology, advantages and disadvantages.           58
  • Figure 14. Applications for CO2. 61
  • Figure 15. Cost to capture one metric ton of carbon, by sector.    61
  • Figure 16. Life cycle of CO2-derived products and services.            64
  • Figure 17. Co2 utilization pathways and products.             67
  • Figure 18. Plasma technology configurations and their advantages and disadvantages for CO2 conversion.              71
  • Figure 19. Electrochemical CO₂ reduction products.          72
  • Figure 20. LanzaTech gas-fermentation process. 76
  • Figure 21. Schematic of biological CO2 conversion into e-fuels.   77
  • Figure 22. Econic catalyst systems.           80
  • Figure 23. Mineral carbonation processes.            83
  • Figure 24. Conversion route for CO2-derived fuels and chemical intermediates.   87
  • Figure 25.  Conversion pathways for CO2-derived methane, methanol and diesel.               88
  • Figure 26. CO2 feedstock for the production of e-methanol.         96
  • Figure 27. Schematic illustration of (a) biophotosynthetic, (b) photothermal, (c) microbial-photoelectrochemical, (d) photosynthetic and photocatalytic (PS/PC), (e) photoelectrochemical (PEC), and (f) photovoltaic plus electrochemical (PV+EC) approaches for CO2.      101
  • Figure 28. SWOT analysis: CO2 utilization in fuels.             103
  • Figure 29. Audi synthetic fuels.  104
  • Figure 30.  Conversion of CO2 into chemicals and fuels via different pathways.    107
  • Figure 31. SWOT analysis: CO2 utilization in chemicals, plastics & polymers.          124
  • Figure 32. Schematic of CCUS in cement sector.  129
  • Figure 33. Carbon8 Systems’ ACT process.            134
  • Figure 34. CO2 utilization in the Carbon Cure process.     135
  • Figure 35. SWOT analysis: CO2 utilization in construction materials.          141
  • Figure 36. Algal cultivation in the desert.               145
  • Figure 37. Example pathways for products from cyanobacteria.   148
  • Figure 38. SWOT analysis: CO2 Utilization in Biological Yield-Boosting       152
  • Figure 39. Typical Flow Diagram for CO2 EOR.      156
  • Figure 40. Large CO2-EOR projects in different project stages by industry.              158
  • Figure 41. SWOT analysis: CO2 Utilization in EOR.              160
  • Figure 42. Carbon mineralization pathways.         164
  • Figure 43. CarbonCure Technology.         184
  • Figure 44. CRI process.   186
  • Figure 45. Colyser process.          194
  • Figure 46. Made of Air's HexChar panels.               208
  • Figure 47. Neustark modular plant.          211
  • Figure 48. O12 Reactor. 223
  • Figure 49. Sunglasses with lenses made from CO2-derived materials.        224
  • Figure 50. CO2 made car part.    224

 

 

 

The Global Market for Carbon Dioxide (CO₂) Utilization 2024-2045
The Global Market for Carbon Dioxide (CO₂) Utilization 2024-2045
PDF download/by email.

The Global Market for Carbon Dioxide (CO₂) Utilization 2024-2045
The Global Market for Carbon Dioxide (CO₂) Utilization 2024-2045
PDF and print edition (including tracked FEDEX delivery).

Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer. 

To purchase by invoice (bank transfer) contact info@futuremarketsinc.com or select Bank Transfer (Invoice) as a payment method at checkout.