The Global Market for Direct Air Capture (DAC) 2023-2033

0

Published June 2023 | 193 pages, 49 tables, 70 figures | Download table of contents

There is a growing market demand for clean technologies and products with reduced emissions. Direct Air Capture (DAC) is an emerging carbon dioxide removal strategy that uses advanced, mainly proprietary technology to capture and store or utilize carbon dioxide directly from the ambient air. Captured CO2 can be permanently stored in deep geological formations and depleted aquifers. Novel technologies can trap CO2 in rocks, via mineralization. Captured CO2 can also be used in a range of applications.

The ability to sell or convert CO2 into useful products provides a commercialization pathway for DAC, with products including:

  • Concrete and Cement.
  • Precursors for plastics, chemicals, feedstocks etc.
  • Synthetic Fuels.
  • Food processing. 
  • Enhanced oil recovery.

 

While the market is in its infancy, with a relatively small amount of DAC plants in operation (mainly in Europe, USA, Canada and Japan), the potential of these technologies will play a growing role in the carbon capture market. Companies are being incentivized to develop the technology with the US government offering $3.5 billion in grants.

Report contents include:

  • Analysis of the overall market for Carbon Capture, Utilization and Storage (CCUS).
  • Costs for DAC, current and targeted. 
  • Pros and cons of DAC. 
  • In-depth DAC technology analysis. 
  • Comparative analysis of DAC to other carbon capture tech. 
  • Commercialization and plants including production capacities.
  • Market challenges.
  • Key players analysis. 
  • Markets for CO2 captured by DAC. 
  • Profiles of 62 companies involved in Direct Air Capture (DAC). Companies profiled include AspiraDAC, Carbofex Oy, CarbonCapture Inc., Charm Industrial, Climeworks, Holocene, 44.01, Mission Zero Technologies, Noya, Occidental Petroleum Corp., and Removr. 

 

 

1              ABBREVIATIONS               13

 

2              RESEARCH METHODOLOGY         14

  • 2.1          Definition of Carbon Capture, Utilisation and Storage (CCUS)        14
  • 2.2          Technology Readiness Level (TRL)             15
  • 2.3          Key market barriers for CCUS      17

 

3              INTRODUCTION 18

  • 3.1          What is CCUS?  18
    • 3.1.1      Carbon Capture 23
      • 3.1.1.1   Source Characterization 23
      • 3.1.1.2   Purification         24
      • 3.1.1.3   CO2 capture technologies            25
    • 3.1.2      Carbon Utilization            28
      • 3.1.2.1   CO2 utilization pathways              29
    • 3.1.3      Carbon storage 30
      • 3.1.3.1   Passive storage 30
      • 3.1.3.2   Enhanced oil recovery   31
  • 3.2          The current Direct Air Capture (DAC) market       32
  • 3.3          CCSUS Market map         33
  • 3.4          Commercial CCUS facilities and projects 36
    • 3.4.1      Facilities               37
      • 3.4.1.1   Operational        37
      • 3.4.1.2   Under development/construction            39
  • 3.5          CCUS Value Chain             45
  • 3.6          Transporting CO2             46
    • 3.6.1      Methods of CO2 transport           46
      • 3.6.1.1   Pipeline 47
      • 3.6.1.2   Ship       48
      • 3.6.1.3   Road      48
      • 3.6.1.4   Rail         48
    • 3.6.2      Safety   49
  • 3.7          Costs     49
    • 3.7.1      Cost of CO2 transport     51
  • 3.8          Carbon credits   54

 

4              CARBON CAPTURE           55

  • 4.1          CO2 capture from point sources 56
    • 4.1.1      Transportation  57
    • 4.1.2      Global point source CO2 capture capacities          57
    • 4.1.3      By source            59
    • 4.1.4      By endpoint       60
  • 4.2          Main carbon capture processes 61
    • 4.2.1      Materials             61
    • 4.2.2      Post-combustion             63
    • 4.2.3      Oxy-fuel combustion      64
    • 4.2.4      Liquid or supercritical CO2: Allam-Fetvedt Cycle 65
    • 4.2.5      Pre-combustion 66

 

5              THE DIRECT AIR CAPTURE MARKET           68

  • 5.1          Technology description 68
    • 5.1.1      Solid and liquid DAC        68
  • 5.2          Advantages of DAC          70
  • 5.3          Deployment       70
  • 5.4          Point source carbon capture versus Direct Air Capture     71
  • 5.5          Technologies     72
    • 5.5.1      Solid sorbents   73
    • 5.5.2      Liquid sorbents 75
    • 5.5.3      Liquid solvents  76
    • 5.5.4      Airflow equipment integration   77
    • 5.5.5      Passive Direct Air Capture (PDAC)             77
    • 5.5.6      Direct conversion             78
    • 5.5.7      Co-product generation  78
    • 5.5.8      Low Temperature DAC  78
    • 5.5.9      Regeneration methods 78
  • 5.6          Commercialization and plants     79
  • 5.7          Metal-organic frameworks (MOFs) in DAC             80
  • 5.8          DAC plants and projects-current and planned      80
  • 5.9          Costs     87
  • 5.10        Market challenges for DAC           92
  • 5.11        Market prospects for direct air capture  93
  • 5.12        Players and production  93
  • 5.13        Co2 utilization pathways               94
  • 5.14        Markets for DAC               96
    • 5.14.1    Fuels     96
      • 5.14.1.1                Overview            96
      • 5.14.1.2                Production routes            98
      • 5.14.1.3                Methanol            99
      • 5.14.1.4                Algae based biofuels       100
      • 5.14.1.5                CO₂-fuels from solar        101
      • 5.14.1.6                Companies         102
      • 5.14.1.7                Challenges          105
    • 5.14.2    Chemicals, plastics and polymers              106
      • 5.14.2.1                Overview            106
      • 5.14.2.2                Scalability            106
      • 5.14.2.3                Plastics and polymers     107
      • 5.14.2.4                Urea production               109
      • 5.14.2.5                Inert gas in semiconductor manufacturing            110
      • 5.14.2.6                Carbon nanotubes           110
      • 5.14.2.7                Companies         110
    • 5.14.3    Construction materials   112
      • 5.14.3.1                Overview            112
      • 5.14.3.2                CCUS technologies          114
      • 5.14.3.3                Carbonated aggregates 116
      • 5.14.3.4                Additives during mixing 118
      • 5.14.3.5                Concrete curing 118
      • 5.14.3.6                Costs     119
      • 5.14.3.7                Companies         119
      • 5.14.3.8                Challenges          121
    • 5.14.4    CO2 Utilization in Biological Yield-Boosting           122
      • 5.14.4.1                Overview            122
      • 5.14.4.2                Applications       122
      • 5.14.4.3                Companies         125
    • 5.14.5    Food and feed production            126
    • 5.14.6    CO₂ Utilization in Enhanced Oil Recovery               127
      • 5.14.6.1                Overview            127
      • 5.14.6.2                CO₂-EOR facilities and projects   128
  • 5.15        Storage 131
    • 5.15.1    CO2 storage sites             132
      • 5.15.1.1                Storage types for geologic CO2 storage  132
      • 5.15.1.2                Oil and gas fields              134
      • 5.15.1.3                Saline formations             135
  • 5.15.2    Global CO2 storage capacity        138
  • 5.15.3    Costs     139

 

6              COMPANY PROFILES       141 (62 company profiles)

 

7              REFERENCES       190

 

List of Tables

  • Table 1. Technology Readiness Level (TRL) Examples.       15
  • Table 2. Key market barriers for CCUS.    17
  • Table 3. CO2 utilization and removal pathways   20
  • Table 4. Approaches for capturing carbon dioxide (CO2) from point sources.         23
  • Table 5. CO2 capture technologies.          25
  • Table 6. Advantages and challenges of carbon capture technologies.        26
  • Table 7. Overview of commercial materials and processes utilized in carbon capture.        27
  • Table 8. Global commercial CCUS facilities-in operation. 37
  • Table 9. Global commercial CCUS facilities-under development/construction.      39
  • Table 10. Methods of CO2 transport.       47
  • Table 11. Carbon capture, transport, and storage cost per unit of CO2      49
  • Table 12. Estimated capital costs for commercial-scale carbon capture.   50
  • Table 13. Point source examples.              56
  • Table 14. Assessment of carbon capture materials             61
  • Table 15. Chemical solvents used in post-combustion.    64
  • Table 16. Commercially available physical solvents for pre-combustion carbon capture.   67
  • Table 17. Advantages and disadvantages of DAC.               69
  • Table 18. Advantages of DAC as a CO2 removal strategy. 70
  • Table 19. Companies developing airflow equipment integration with DAC.             77
  • Table 20. Companies developing Passive Direct Air Capture (PDAC) technologies. 77
  • Table 21. Companies developing regeneration methods for DAC technologies.     78
  • Table 22. DAC companies and technologies.         79
  • Table 23. DAC technology developers and production.    81
  • Table 24. DAC projects in development. 86
  • Table 25. Costs summary for DAC.            87
  • Table 26. Cost estimates of DAC.               90
  • Table 27. Challenges for DAC technology.              92
  • Table 28. DAC companies and technologies.         93
  • Table 29. Example CO2 utilization pathways.       94
  • Table 30. Markets for DAC.          96
  • Table 31. Market overview for CO2 derived fuels.              96
  • Table 32. Microalgae products and prices.             100
  • Table 33. Main Solar-Driven CO2 Conversion Approaches.             102
  • Table 34. Companies in CO2-derived fuel products.          102
  • Table 35. Commodity chemicals and fuels manufactured from CO2.          107
  • Table 36. CO2 utilization products developed by chemical and plastic producers. 108
  • Table 37. Companies in CO2-derived chemicals products.               110
  • Table 38. Carbon capture technologies and projects in the cement sector               114
  • Table 39. Companies in CO2 derived building materials.  119
  • Table 40. Market challenges for CO2 utilization in construction materials.               121
  • Table 41. Companies in CO2 Utilization in Biological Yield-Boosting.          125
  • Table 42. CO2 sequestering technologies and their use in food.   126
  • Table 43. Applications of CCS in oil and gas production.   127
  • Table 44. Storage and utilization of CO2. 131
  • Table 45. Global depleted reservoir storage projects.      133
  • Table 46. Global CO2 ECBM storage projects.      133
  • Table 47. CO2 EOR/storage projects.       134
  • Table 48. Global storage sites-saline aquifer projects.      136
  • Table 49. Global storage capacity estimates, by region.   138

 

List of Figures

  • Figure 1. Schematic of CCUS process.      18
  • Figure 2. Pathways for CO2 utilization and removal.          19
  • Figure 3. A pre-combustion capture system.        25
  • Figure 4. Carbon dioxide utilization and removal cycle.    29
  • Figure 5. Various pathways for CO2 utilization.    30
  • Figure 6. Example of underground carbon dioxide storage.            31
  • Figure 7. Carbon Capture, Utilization, & Storage (CCUS) Market Map.       35
  • Figure 8. CCS deployment projects, historical and to 2035.             36
  • Figure 9. Existing and planned CCS projects.         45
  • Figure 10. CCUS Value Chain.      45
  • Figure 11. Transport of CCS technologies.              46
  • Figure 12. Railroad car for liquid CO₂ transport    49
  • Figure 13. Estimated costs of capture of one metric ton of carbon dioxide (Co2) by sector.              51
  • Figure 14. Cost of CO2 transported at different flowrates              52
  • Figure 15. Cost estimates for long-distance CO2 transport.            53
  • Figure 16. CO2 capture and separation technology.          55
  • Figure 17. Global capacity of point-source carbon capture and storage facilities.  58
  • Figure 18. Global carbon capture capacity by CO2 source, 2021.   59
  • Figure 19. Global carbon capture capacity by CO2 source, 2030.   59
  • Figure 20. Global carbon capture capacity by CO2 endpoint, 2021 and 2030.          60
  • Figure 21. Post-combustion carbon capture process.        63
  • Figure 22. Postcombustion CO2 Capture in a Coal-Fired Power Plant.        64
  • Figure 23. Oxy-combustion carbon capture process.         65
  • Figure 24. Liquid or supercritical CO2 carbon capture process.     66
  • Figure 25. Pre-combustion carbon capture process.          67
  • Figure 26. CO2 captured from air using liquid and solid sorbent DAC plants, storage, and reuse.   69
  • Figure 27. Global CO2 capture from biomass and DAC in the Net Zero Scenario.   69
  • Figure 28. Potential for DAC removal versus other carbon removal methods.        71
  • Figure 29.  DAC technologies.     72
  • Figure 30. Schematic of Climeworks DAC system.               73
  • Figure 31. Climeworks’ first commercial direct air capture (DAC) plant, based in Hinwil, Switzerland.          74
  • Figure 32.  Flow diagram for solid sorbent DAC.  75
  • Figure 33. Direct air capture based on high temperature liquid sorbent by Carbon Engineering.    76
  • Figure 34. Global capacity of direct air capture facilities. 81
  • Figure 35. Global map of DAC and CCS plants.      87
  • Figure 36. Schematic of costs of DAC technologies.           88
  • Figure 37. DAC cost breakdown and comparison.               89
  • Figure 38. Operating costs of generic liquid and solid-based DAC systems.              91
  • Figure 39. Co2 utilization pathways and products.             95
  • Figure 40. Conversion route for CO2-derived fuels and chemical intermediates.   98
  • Figure 41.  Conversion pathways for CO2-derived methane, methanol and diesel.               98
  • Figure 42. CO2 feedstock for the production of e-methanol.         99
  • Figure 43. Schematic illustration of (a) biophotosynthetic, (b) photothermal, (c) microbial-photoelectrochemical, (d) photosynthetic and photocatalytic (PS/PC), (e) photoelectrochemical (PEC), and (f) photovoltaic plus electrochemical (PV+EC) approaches for CO2 c     101
  • Figure 44. Audi synthetic fuels.  103
  • Figure 45.  Conversion of CO2 into chemicals and fuels via different pathways.    106
  • Figure 46.  Conversion pathways for CO2-derived polymeric materials      108
  • Figure 47. Conversion pathway for CO2-derived building materials.           113
  • Figure 48. Schematic of CCUS in cement sector.  114
  • Figure 49. Carbon8 Systems’ ACT process.            117
  • Figure 50. CO2 utilization in the Carbon Cure process.     118
  • Figure 51. Algal cultivation in the desert.               123
  • Figure 52. Example pathways for products from cyanobacteria.   124
  • Figure 53. Typical Flow Diagram for CO2 EOR.      128
  • Figure 54. Large CO2-EOR projects in different project stages by industry.              130
  • Figure 55. CO2 Storage Overview - Site Options  132
  • Figure 56.  CO2 injection into a saline formation while producing brine for beneficial use.               136
  • Figure 57. Subsurface storage cost estimation.    140
  • Figure 58. Schematic of carbon capture solar project.      143
  • Figure 59. Carbonminer DAC technology.              148
  • Figure 60. Carbon Blade system. 149
  • Figure 61. Direct Air Capture Process.     153
  • Figure 62. Orca facility.  157
  • Figure 63. Holy Grail DAC system.             169
  • Figure 64. Infinitree swing method.         171
  • Figure 65. Audi/Krajete DAC unit.             173
  • Figure 66. Neustark modular plant.          176
  • Figure 67. 3D model of 100,000 tpa DAC plant     180
  • Figure 68. RepAir technology.     181
  • Figure 69. Skytree pilot DAC unit.              183
  • Figure 70. Soletair Power unit.   184

 

 

The Global Market for Direct Air Capture (DAC) 2023-2033
The Global Market for Direct Air Capture (DAC) 2023-2033
PDF download.

The Global Market for Direct Air Capture (DAC) 2023-2033
The Global Market for Direct Air Capture (DAC) 2023-2033
PDF and print edition (including tracked delivery).

Payment methods: Visa, Mastercard, American Express, Paypal. 

To purchase by invoice (bank transfer) contact info@futuremarketsinc.com or select Bank Transfer (Invoice) as a payment method at checkout.