The Global Market for Advanced Fire-retardant and Fire-resistant Coatings and Materials 2026-2036

0

cover

cover

  • Published: December 2025
  • Pages: 395
  • Tables: 107
  • Figures: 24

 

The global market for advanced fire-retardant and fire-resistant coatings and materials represents one of the most dynamic and rapidly evolving segments within the broader fire protection industry. Driven by increasingly stringent safety regulations, the electrification of transportation, and the proliferation of battery energy storage systems, this market is experiencing unprecedented growth and technological transformation.

Fire-retardant coatings are designed to delay ignition, prevent flame spread, and reduce heat transfer to protected substrates, while fire-resistant coatings provide protection against fully developed fires, preventing structural collapse and maintaining integrity for specified durations. The market encompasses a diverse range of material technologies including intumescent and non-intumescent coatings, cementitious spray-applied products, mineral fiber solutions, high-performance fabrics and textiles, aerogel-based insulation, nano-engineered materials, and bio-based sustainable alternatives.

The market is projected to grow substantially over the forecast period 2026-2036, driven by several converging factors. The rapid expansion of electric vehicle production has created significant demand for thermal barrier materials capable of preventing thermal runaway propagation in lithium-ion battery packs. Similarly, the global deployment of grid-scale battery energy storage systems, which exceeded 45 GWh of annual installations in 2024, has emerged as a major growth driver. 

Building and construction remains the largest traditional application segment, accounting for a substantial portion of overall demand. Regulatory frameworks including updated building codes, the EU Construction Products Regulation, and national fire safety standards continue to mandate higher levels of passive fire protection in commercial, residential, and industrial structures. The oil and gas industry represents another significant end-use sector, with offshore platforms, refineries, and LNG facilities requiring specialized fire protection solutions capable of withstanding hydrocarbon fire scenarios.

From a technology perspective, intumescent coatings continue to dominate the market due to their thin-film application, aesthetic versatility, and proven performance in protecting steel structures. These coatings expand upon heat exposure to form an insulating carbonaceous char layer, typically achieving expansion ratios of 20 to 100 times their original thickness. However, non-intumescent formulations based on phosphorus, nitrogen, and silicon chemistries are gaining market share, particularly as environmental regulations increasingly restrict halogenated flame retardants due to concerns over bioaccumulation and toxic combustion byproducts.

Regionally, Asia-Pacific leads global demand, driven by rapid industrialization, infrastructure development, and the concentration of electric vehicle and battery manufacturing capacity in China, South Korea, and Japan. North America and Europe represent mature but growing markets, with demand supported by stringent regulatory environments and significant investments in renewable energy infrastructure. The Middle East and Africa region shows strong growth potential, particularly in oil and gas applications and large-scale construction projects.

The market faces several challenges including the high cost of advanced materials such as aerogels, supply chain constraints for key raw materials including ammonium polyphosphate and expandable graphite, and the technical complexity of achieving regulatory certification across multiple jurisdictions. Additionally, the transition away from halogenated flame retardants presents formulation challenges, as alternative chemistries often require higher loading levels to achieve equivalent fire performance.

Looking forward, innovation in nano-enhanced formulations, smart self-healing coatings, and sustainable bio-based materials will shape market development. The integration of fire protection with thermal management in electrified applications represents a significant opportunity, as manufacturers seek multifunctional materials that address both thermal runaway prevention and everyday heat dissipation requirements. As energy storage deployments accelerate and fire safety incidents continue to drive regulatory action, the advanced fire-retardant and fire-resistant coatings and materials market is positioned for sustained long-term growth across all major application segments and geographic regions.

This comprehensive market research report provides an in-depth analysis of the global fire-retardant and fire-resistant coatings and materials industry, covering the forecast period 2025-2036. As fire safety regulations tighten worldwide and new applications emerge in electric vehicles, battery energy storage systems, and aerospace, the demand for advanced fire protection solutions continues to accelerate across multiple industry sectors.

The report delivers detailed market sizing, growth projections, and technology assessments for the full spectrum of fire protection materials including intumescent coatings, non-intumescent formulations, cementitious materials, mineral fiber solutions, aerogel-based insulation, nano-engineered materials, and bio-based sustainable alternatives. With over 390 pages of analysis, 107 data tables, and 24 figures, this report represents the most comprehensive resource available for understanding the fire protection materials market landscape.

A key focus of this report is the rapidly growing electric vehicle and battery energy storage system segments, where thermal runaway prevention has become a critical safety requirement. The report examines cell-level and pack-level fire protection strategies, material intensity trends, immersion cooling systems, and the specific material requirements for lithium-ion battery applications. Detailed case studies of major BESS fire incidents provide valuable insights into failure modes and the evolving regulatory response.

The report also explores emerging applications including spacecraft thermal protection systems, cultural heritage fire protection, electric aviation and eVTOL platforms, tunnel infrastructure, marine and offshore installations, and data center fire safety. Each application segment receives detailed analysis of technical requirements, material selection criteria, and market opportunities through 2036.

Report Contents Include:

  • Executive summary with market overview, growth projections, and key trends
  • Comprehensive introduction covering fire protection evolution, classification systems, and regulatory frameworks
  • Detailed materials analysis including intumescent coatings, non-intumescent formulations, cementitious materials, mineral fibers, high-performance textiles, aerogels, nano-engineered materials, and bio-based solutions
  • EV battery-specific materials assessment covering ceramics, mica, aerogels, phase change materials, and fire-resistant polymers
  • BESS-specific fire protection analysis including thermal interface materials, cooling technologies, fire suppression systems, and deflagration venting
  • Spacecraft thermal protection systems covering tile-based TPS, expandable aerodynamic decelerators, and ablative materials
  • Cultural heritage fire protection applications and case studies
  • Smoke and toxicity considerations for fire retardant formulations
  • Substrate-specific coating formulations for steel, wood, concrete, composites, and plastics
  • Smart and self-healing fire protection coating technologies
  • Application methods and equipment analysis
  • Market analysis by application sector including building and construction, oil and gas, transportation, power generation, electronics, aerospace, marine, and data centers
  • Global market forecasts by region, material type, application, and end-user industry
  • Regulatory landscape covering global standards, EV and BESS safety requirements, and halogen-free regulations
  • Comprehensive company profiles with product portfolios and strategic positioning

 

This report features detailed profiles of 85 leading companies active in the fire-retardant and fire-resistant coatings and materials market: 3M Company, ABIS Aerogel, ADA Technologies, Aerobel, Aerogel Core, Aerogel Inside, AIS, Akzo Nobel, Alexium, Alkegen, AllCell Technologies, Altek Advanced Materials, AOK Technology, Arclin, Armacell, Asahi Kasei, Ascend Performance Materials, Asheville Mica, Aspen Aerogels, Axalta Coating Systems, Axim Mica, Avanzare Innovacion Tecnologica, BASF, Bass Metals, Belcor, Bergstrom, Blueshift Materials, Cabot Corporation, Carrar, CFP Composites, Cogebi, Denka, Dow, DuPont, Elmelin, Elven Technologies, FibreCoat, Fike Corporation, Fireguardia, FirePro, Fireaway/Stat-X, First Graphene, Freudenberg Sealing Technologies, FUCHS, Fujipoly, Global Graphene Group, H.B. Fuller, HeetShield, Hilti Corporation, IBIH Advanced Materials, INCAPTEK, JIOS Aerogel, Johnson Controls, Keey Aerogel, KULR Technology, LG Chem, MAHLE, Mitsubishi Chemical Group, Morgan Advanced Materials, NanoTech Materials and more......

 

 

 

 

1             EXECUTIVE SUMMARY            22

  • 1.1        Market Overview          22
  • 1.2        Definition and Classification of Advanced Advanced Fire-retardant and Fire-resistant Coatings and Materials 23
  • 1.3        Market Size and Growth Projections               24
  • 1.4        Technology Evolution and Innovation Landscape  27
  • 1.5        Regional Market Analysis      28
  • 1.6        Key Growth Drivers and Market Restraints 29
  • 1.7        Regulations     31
  • 1.8        Future Outlook and Growth Opportunities 33
  • 1.9        Thermal Runaway and Fires in EVs  35
  • 1.10     Advanced Fire-retardant and Fire-resistant Coatings and Materials: Main Categories  36
  • 1.11     Thermal Runaway and Fires in BESS              37
  • 1.12     Material Comparison               38
  • 1.13     Intumescent vs Non-Intumescent Coatings Overview       39
  • 1.14     Material Intensity (kg/kWh)   40
  • 1.15     Pricing Comparison by Battery Form Factor              42
  • 1.16     BESS Thermal Management and Fire Safety Market Overview      44

 

2             INTRODUCTION          47

  • 2.1        The Evolution of Advanced Fire-retardant and Fire-resistant Coatings and Materials and Coatings                47
  • 2.2        Classification of Fire-retardant and Fire-resistant Coatings and Materials           49
  • 2.3        Fire-retardant vs Fire-resistant Coatings: Definitions and Mechanisms 50
  • 2.4        Global Fire Safety Standards and Regulations         50
  • 2.5        Fire Protection Market Value Chain 51
  • 2.6        Technology Readiness Assessment Framework     52
  • 2.7        Fires and Recalls in EVs          53
  • 2.8        Causes and Stages of Thermal Runaway     55
  • 2.9        Regulations for Fire Protection           56

 

3             MATERIALS AND COATINGS 58

  • 3.1        Intumescent Coatings and Materials             58
    • 3.1.1    Working Principles and Mechanisms            58
    • 3.1.2    Product Types and Formulations      60
    • 3.1.3    Acid Sources (APP, Melamine Phosphate)  61
    • 3.1.4    Carbon Sources (PER, Alkali Lignin, Starches)        62
    • 3.1.5    Blowing Agents (Melamine, Expandable Graphite)               63
    • 3.1.6    Polymeric Binders      64
    • 3.1.7    Performance Characteristics              64
    • 3.1.8    Recent Innovations and Future Developments        65
    • 3.1.9    Nano-enhanced Intumescent Coatings       66
    • 3.1.10 Cost Structure Analysis          67
  • 3.2        Non-Intumescent Coatings  68
    • 3.2.1    Working Principles and Mechanisms            68
    • 3.2.2    Halogen-Based Formulations             69
    • 3.2.3    Phosphorus-Based Formulations    70
    • 3.2.4    Nitrogen-Based Formulations            72
    • 3.2.5    Silicon-Based Formulations 73
    • 3.2.6    Multi-Element Synergistic Formulations      74
    • 3.2.7    Environmental and Health Considerations 74
  • 3.3        Cementitious Materials          75
    • 3.3.1    Formulation and Technical Properties           75
    • 3.3.2    Application Methods and Techniques           77
    • 3.3.3    Performance Parameters       78
    • 3.3.4    Technological Advancements             79
    • 3.3.5    Comparative Cost Analysis  80
  • 3.4        Mineral Fiber-Based Solutions           81
    • 3.4.1    Material Composition and Types      81
    • 3.4.2    Manufacturing Processes      82
    • 3.4.3    Performance Characteristics              83
  • 3.5        High-Performance Fabrics and Textiles        85
    • 3.5.1    Material Composition              86
    • 3.5.2    Technical Specifications        87
    • 3.5.3    Performance Benchmarking 89
    • 3.5.4    Emerging Technologies            91
    • 3.5.5    Application-Specific Adaptations    92
    • 3.5.6    Fire-retardant Treatments for Textiles            94
  • 3.6        Aerogel-Based Insulation      94
    • 3.6.1    Material Properties and Characteristics      95
    • 3.6.2    Production Processes              96
    • 3.6.3    Fire Resistance Performance              97
    • 3.6.4    Commercialization    98
    • 3.6.5    Aerogels for BESS Fire Protection     99
    • 3.6.6    F-TPS Aerogel Applications (Spacecraft)     100
  • 3.7        Nano-Engineered Advanced Fire-retardant and Fire-resistant Coatings and Materials                101
    • 3.7.1    Nanomaterials in Fire Protection      101
    • 3.7.2    Performance Enhancement Mechanisms  103
    • 3.7.3    Commercialization Challenges         104
  • 3.8        Bio-Based and Sustainable Advanced Fire-retardant and Fire-resistant Coatings and Materials                107
    • 3.8.1    Raw Material Sources and Processing          107
    • 3.8.2    Performance Characteristics              108
    • 3.8.3    Environmental Impact Assessment                110
    • 3.8.4    Market Readiness and Adoption Barriers    111
    • 3.8.5    Future Development Roadmap         112
  • 3.9        EV Battery-Specific Materials             114
    • 3.9.1    Ceramics and Non-Wovens 114
    • 3.9.2    Mica Materials              116
    • 3.9.3    Aerogels for EV Applications                118
    • 3.9.4    Fire-Resistant Coatings           119
    • 3.9.5    Encapsulants and Foams      120
    • 3.9.6    Phase Change Materials         121
    • 3.9.7    Fire-Resistant Tapes and Polymers 122
  • 3.10     BESS-Specific Materials         123
    • 3.10.1 Thermal Interface Materials 123
    • 3.10.2 Polymer and Silicone Foams               125
    • 3.10.3 Thermal Ceramics for BESS 126
    • 3.10.4 Fire Protection Coatings for BESS    127
    • 3.10.5 Cell Spacers for Thermal Runaway Mitigation         128
  • 3.11     Ablative Thermal Protection Materials          129
    • 3.11.1 Ablation Mechanisms              130
    • 3.11.2 Honeycomb Ablators (AVCOAT)        131
    • 3.11.3 PICA (Phenolic Impregnated Carbon Ablator)          132
    • 3.11.4 Carbon Phenolic          133
    • 3.11.5 3D Woven TPS (HEEET)           134
  • 3.12     Smoke and Toxicity Considerations 135
    • 3.12.1 Smoke density measurements          135
    • 3.12.2 Toxic gas emissions (CO, HCN, HCl, NOx) 136
    • 3.12.3 Halogen-free formulations for reduced toxicity       137
    • 3.12.4 Regulatory requirements for smoke/toxicity (EN 45545 for rail, aviation standards)      138
    • 3.12.5 Impact of different fire retardant chemistries on smoke production         139
  • 3.13     Substrate-Specific Coating Formulations   140
    • 3.13.1 Steel structural fire protection (intumescent vs cementitious)     141
    • 3.13.2 Wood and timber treatments (transparent vs opaque)      141
    • 3.13.3 Concrete and masonry coatings       142
    • 3.13.4 Composite materials (CFRP, GFRP) 143
    • 3.13.5 Plastic and polymer substrates         144
    • 3.13.6 Fabric and textile treatments               146
  • 3.14     Smart and Self-Healing Fire Protection Coatings   147
    • 3.14.1 Self-healing intumescent coatings (microencapsulated healing agents)              147
    • 3.14.2 Smart coatings with embedded sensors     148
    • 3.14.3 Temperature-responsive colour-changing indicators          149
    • 3.14.4 IoT-enabled fire protection monitoring         150
    • 3.14.5 Nano-engineered self-repairing systems    151
  • 3.15     Application Methods and Equipment            152
    • 3.15.1 Spray application (airless, HVLP, electrostatic)       152
    • 3.15.2 Brush and roller application 153
    • 3.15.3 Dip coating for textiles             154
    • 3.15.4 Powder coating with fire retardants 155
    • 3.15.5 Automated application systems       156
    • 3.15.6 Quality control and thickness measurement           157

 

4             BATTERY PROTECTION SYSTEMS IN EVs      159

  • 4.1        Cell and Pack Design Considerations           160
    • 4.1.1    Cell-to-Pack Architectures    160
    • 4.1.2    Cell-to-Chassis Designs        162
    • 4.1.3    Large Cell Formats     163
    • 4.1.4    Thermal Runaway in Cell-to-Pack Systems               164
  • 4.2        Fire Protection Material Testing for Thermal Runaway         165
  • 4.3        Material Benchmarking           166
    • 4.3.1    Thermal Properties Comparison      168
    • 4.3.2    Electrical Properties Assessment    168
    • 4.3.3    Mechanical Properties Evaluation   169
    • 4.3.4    Cost Structure Analysis          170
  • 4.4        Immersion Cooling Systems                172
    • 4.4.1    Introduction to Immersion Cooling 173
    • 4.4.2    Immersion Cooling Fluid Requirements       176
    • 4.4.3    Architecture and Implementation    176
    • 4.4.4    Impact on Advanced Fire-retardant and Fire-resistant Coatings and Materials 178

 

5             BATTERY ENERGY STORAGE SYSTEMS (BESS) FIRE PROTECTION              180

  • 5.1        BESS Market Overview and Fire Safety Challenges              180
    • 5.1.1    Grid-scale BESS           180
    • 5.1.2    Commercial & Industrial (C&I) BESS              181
    • 5.1.3    Residential BESS         182
  • 5.2        BESS Fire Incidents and Case Studies          183
  • 5.3        Passive vs Active Thermal Management for BESS  185
  • 5.4        BESS Cooling Technologies  187
    • 5.4.1    Forced Air Cooling      187
    • 5.4.2    Liquid Cooling Systems          188
    • 5.4.3    Immersion Cooling    189
  • 5.5        Fire Suppression Systems for BESS 190
    • 5.5.1    Water-based Systems              190
    • 5.5.2    Condensed Aerosol Systems              191
    • 5.5.3    Gas Detection and Off-gas Sensors               192
  • 5.6        Deflagration Venting Systems             193
  • 5.7        BESS Developer Strategies   194
  • 5.8        Second-Life Battery Fire Safety          194
    • 5.8.1    Repurposed EV batteries for stationary storage     194
    • 5.8.2    Additional fire risks from aged/degraded cells         196
    • 5.8.3    Testing and certification requirements          197
    • 5.8.4    State of Health (SoH) impact on thermal stability 198
    • 5.8.5    Fire protection material requirements for second-life applications           199
  • 5.9        Containerized BESS Fire Protection                200
    • 5.9.1    Shipping container-based BESS systems   200
    • 5.9.2    Fire containment within containers 201
    • 5.9.3    Ventilation and suppression integration      202
    • 5.9.4    Spacing requirements between containers               203
    • 5.9.5    Case studies  204

 

6             SPACECRAFT THERMAL PROTECTION SYSTEMS     205

  • 6.1        Introduction to TPS for Atmospheric Re-entry          205
  • 6.2        Categories of Thermal Protection Systems                207
  • 6.3        Tile-Based TPS              208
    • 6.3.1    Silica-Based Tiles       208
    • 6.3.2    Reinforced Carbon-Carbon (RCC)   209
    • 6.3.3    TUFROC            210
    • 6.3.4    SpaceX Starship TPS 211
  • 6.4        Expandable Aerodynamic Decelerators (EADs)      212
    • 6.4.1    HIAD (Hypersonic Inflatable Aerodynamic Decelerators) 212
    • 6.4.2    MDAD (Mechanically Deployable Aerodynamic Decelerators)      213
  • 6.5        Ablative TPS    214
  • 6.6        Commercial Space Applications      216

 

7             CULTURAL HERITAGE APPLICATIONS     217

  • 7.1        Fire Risk in Heritage Facilities             217
  • 7.2        Active vs Passive Fire Protection in Heritage             218
  • 7.3        Fire-retardant Coatings for Historic Buildings          219
    • 7.3.1    Wooden Structures and Panels         220
    • 7.3.2    Historic Textiles            221
    • 7.3.3    Support and Storage Materials           222
  • 7.4        Challenges and Limitations 223
  • 7.5        Case Studies  224

 

8             MARKET ANALYSIS BY APPLICATION              226

  • 8.1        Building and Construction    226
    • 8.1.1    Residential Construction       228
    • 8.1.2    Commercial Buildings             229
    • 8.1.3    Industrial Facilities    230
    • 8.1.4    Critical Infrastructure               231
    • 8.1.5    Retrofit and Renovation Projects      231
  • 8.2        Oil and Gas Industry 232
    • 8.2.1    Offshore Platforms    233
    • 8.2.2    Refineries and Processing Facilities               234
  • 8.3        Transportation Sector               236
    • 8.3.1    Automotive Applications        237
    • 8.3.2    Electric Vehicle Battery Systems      238
    • 8.3.3    Aerospace and Aviation          241
    • 8.3.4    Marine and Shipbuilding        243
    • 8.3.5    Rail Transport 245
  • 8.4        Power Generation       246
  • 8.5        Battery Energy Storage Systems        246
  • 8.6        Conventional Power Plants  248
    • 8.6.1    Nuclear Facilities        249
    • 8.6.2    Renewable Energy Infrastructure     250
    • 8.6.3    Energy Storage Systems         252
  • 8.7        Electronics and Telecommunications           254
    • 8.7.1    Data Centers  254
    • 8.7.2    Electronic Devices and Components            256
    • 8.7.3    Telecommunications Infrastructure               257
    • 8.7.4    Busbar and High Voltage Cable Insulation 258
    • 8.7.5    Technical Requirements         260
  • 8.8        Aerospace and Space              260
  • 8.9        Cultural Heritage         262
  • 8.10     Tunnel and Underground Infrastructure       264
    • 8.10.1 Tunnel fire dynamics and temperature profiles       264
    • 8.10.2 Fire protection for tunnel linings       265
    • 8.10.3 Cable fire protection in tunnels         265
    • 8.10.4 Ventilation interaction with passive protection       265
    • 8.10.5 Metro/subway applications  266
    • 8.10.6 Underground data center protection              266
  • 8.11     Electric Aviation and eVTOL 267
    • 8.11.1 Urban Air Mobility (UAM) battery fire challenges    267
    • 8.11.2 Weight-critical fire protection solutions      268
    • 8.11.3 Certification requirements (FAA, EASA)        268
    • 8.11.4 Hydrogen fuel cell aircraft fire protection    269
    • 8.11.5 Thermal runaway propagation in aviation battery packs   270
  • 8.12     Marine and Offshore 271
    • 8.12.1 SOLAS fire protection requirements               271
    • 8.12.2 Offshore platform fire protection (hydrocarbon fires)         272
    • 8.12.3 Ship battery room fire safety (electric/hybrid vessels)        272
    • 8.12.4 LNG carrier fire protection    273
    • 8.12.5 Floating wind turbine battery systems          274
  • 8.13     Data Center Fire Protection  275
    • 8.13.1 Lithium-ion UPS battery fire risks     275
    • 8.13.2 Server room fire suppression compatibility               276
    • 8.13.3 Clean agent systems for electronics              276
    • 8.13.4 Fire protection for hyperscale facilities        277
    • 8.13.5 Edge data centre challenges               278

 

9             GLOBAL MARKET FORECAST              279

  • 9.1        Overall Market Size and Growth Rate (2025-2036) 280
  • 9.2        Market by Material Type          282
    • 9.2.1    Intumescent Coatings Market             283
    • 9.2.2    Non-Intumescent Coatings Market 284
  • 9.3        Market by Application              285
  • 9.4        Market by Region         287
  • 9.5        Market by End-User Industry               288
  • 9.6        EV Battery Demand Forecast              290
    • 9.6.1    Material Intensity Projections             291
    • 9.6.2    Cell-level Advanced Fire-retardant and Fire-resistant Coatings and Materials Forecast (2021-2036)  291
    • 9.6.3    Pack-level Advanced Fire-retardant and Fire-resistant Coatings and Materials Forecast (2021-2036)  293
    • 9.6.4    Advanced Fire-retardant and Fire-resistant Coatings and Materials by Vehicle Type     296
  • 9.7        BESS Thermal Management and Fire Protection Forecast               297
  • 9.8        Spacecraft TPS Market Forecast       298
  • 9.9        Pricing Trends and Forecast 299

 

10          REGULATORY LANDSCAPE AND STANDARDS         300

  • 10.1     Global Fire Safety Regulations           300
  • 10.2     Regional Regulatory Frameworks     302
  • 10.3     Industry-Specific Regulations            303
  • 10.4     EV Battery Safety Standards 304
  • 10.5     BESS Safety Standards           306
  • 10.6     Testing and Certification Requirements       307
  • 10.7     Environmental Regulations  308
  • 10.8     Halogen-Free Regulations    310
    • 10.8.1 EU REACH restrictions on brominated flame retardants  310
    • 10.8.2 California Proposition 65       310
    • 10.8.3 RoHS compliance for electronics     311
    • 10.8.4 PFAS-free requirements          311
    • 10.8.5 Green building certification requirements (LEED, BREEAM)           312

 

11          COMPANY PROFILES                313 (85 company profiles)

 

12          APPENDICES  387

  • 12.1     Research Methodology           387
  • 12.2     List of Abbreviations  388
  • 12.3     Fire Testing Standards and Protocols             390
  • 12.4     Glossary of Terms       391

 

13          REFERENCES 392

 

List of Tables

  • Table 1. Classification of Fire-retardant and Fire-resistant Coatings and Materials by Type.     23
  • Table 2. Global Fire-retardant and Fire-resistant Coatings and Materials Market Size, 2025-2036 (USD Billion).              24
  • Table 3. Performance Comparison of Key Fire Protection Material Categories   27
  • Table 4. Regional Market Share Breakdown, 2025-2036 (%)           28
  • Table 5. Key Growth Drivers and Market Restraints.             29
  • Table 6. Summary of BESS Fire Safety Events, Causes and Regulations.               37
  • Table 7. Global BESS Failure Incidents by Region (2018-2025).   38
  • Table 8. Intumescent vs Non-Intumescent Coatings Overview.   39
  • Table 9. Material Intensity Metrics for Key Applications (kg/m²). 40
  • Table 10. Material Intensity for EV Battery Applications (kg/kWh)               41
  • Table 11. Price Comparison of Advanced Fire-retardant and Fire-resistant Coatings and Materials by Category (USD/kg)      42
  • Table 12. BESS Thermal Management and Fire Safety Technology Classification.          44
  • Table 13. BESS TM & FP Materials Benchmarking (Temperature Resistance vs Thermal Conductivity).                45
  • Table 14. BESS Fire Safety Systems Benchmarking, Costs ($/kWh), Commercial Use. 46
  • Table 15. TM & FP Materials and Systems Value for BESS, US$B, 2026-2036.    47
  • Table 16. Evolution Timeline of Advanced Fire-retardant and Fire-resistant Coatings and Materials, 1950-2025      48
  • Table 17. Fire-retardant vs Fire-resistant Coating Properties Comparison.          50
  • Table 18. Key Global Fire Safety Standards by Region         50
  • Table 19. Major EV Fire Incidents and Recalls, 2018-2024.             53
  • Table 20. Stages of Thermal Runaway in Lithium-ion Batteries.   55
  • Table 21. Li-ion Cell Temperature and Likely Outcome.     56
  • Table 22. Regulations for Fire Protection.    56
  • Table 23. Intumescent Material Formulations and Applications  60
  • Table 24. Nanomaterial Additives for Intumescent Coatings,        66
  • Table 25. Non-Intumescent Coating Formulation Types.  68
  • Table 26. Halogen-Based Fire Retardant Compounds and Synergists.    69
  • Table 27. Phosphorus-Based Fire Retardant Compounds and Applications.      70
  • Table 28. Multi-Element Fire Retardant Formulation Performance.           74
  • Table 29. 8Environmental Impact Assessment of Fire Retardant Formulation Types.    75
  • Table 30. Cementitious Fire Protection Material Properties            76
  • Table 31. Performance Parameters for Cementitious Materials.  78
  • Table 32. Cementitious Materials Comparative Cost Analysis.    80
  • Table 33. Mineral Fiber-Based Solutions Material Composition and Types.         81
  • Table 34. Mineral Fiber-Based Solutions Manufacturing Processes.         82
  • Table 35. Mineral Fiber-Based Solutions Performance Characteristics. 83
  • Table 36. Mineral Fiber-Based Solutions Comparison.      84
  • Table 37. High-Performance Fabrics and Textiles Technical Specifications.        87
  • Table 38. Aerogel Types and Performance Characteristics.            95
  • Table 39. Nanomaterials used in fire protection.    101
  • Table 40. Nano-Engineered Advanced Fire-retardant and Fire-resistant Coatings and Materials Applications   105
  • Table 41. Bio-Based Advanced Fire-retardant and Fire-resistant Coatings and Materials Properties and Applications   108
  • Table 42. Bio-Based and Sustainable Advanced Fire-retardant and Fire-resistant Coatings and Materials Environmental Impact Assessment.              110
  • Table 43. Bio-Based and Sustainable Advanced Fire-retardant and Fire-resistant Coatings and Materials Market Readiness and Adoption Barriers.  111
  • Table 44. Ceramic and Non-Woven Materials Comparison for EV Batteries.       114
  • Table 45. Mica Fire Protection Products Specifications.    116
  • Table 46. Aerogel Products for EV Battery Applications.   118
  • Table 47. Thermal Performance of Aerogels in Battery Fire Tests 119
  • Table 48. Thermal Conductivity vs. Fire Resistance of Key Materials        122
  • Table 49. BESS Thermal Management and Advanced Fire-retardant and Fire-resistant Coatings and Materials Benchmarking.      123
  • Table 50. BESS Fire Safety Systems Benchmarking (Costs $/kWh).           127
  • Table 51. Ablator Material Families Comparison.  129
  • Table 52. Smoke Density Requirements by Application Sector     135
  • Table 53. Toxic Gas Emissions by Fire Retardant Type.       136
  • Table 54. Recommended Coating Systems by Substrate Type      140
  • Table 55. Substrate Compatibility and Adhesion Requirements  146
  • Table 56. Smart Coating Technologies and TRL Levels        151
  • Table 57. Application Methods by Coating Type and Substrate     158
  • Table 58. Dry Film Thickness Requirements by Fire Rating              159
  • Table 59. Fire Protection Material Testing Setup for Battery Applications.             166
  • Table 60. Gravimetric Energy Density by Battery Architecture (Wh/kg)    166
  • Table 61. Fire Protection Material Test Standards for EV Applications      167
  • Table 62. Thermal Runaway Propagation Patterns in Different Battery Architectures.   168
  • Table 63. Thermal Conductivity vs. Temperature Performance of Battery Advanced Fire-retardant and Fire-resistant Coatings and Materials.          170
  • Table 64. Thermal Property Comparison of Battery Advanced Fire-retardant and Fire-resistant Coatings and Materials 172
  • Table 65. Immersion Cooling Fluid Requirements and Specifications     174
  • Table 66. Immersion Cooling System Architecture for EV Batteries.          174
  • Table 67. Performance Comparison of Immersion Cooling Fluids.            176
  • Table 68. Mechanical Property Comparison of Battery Advanced Fire-retardant and Fire-resistant Coatings and Materials           178
  • Table 69. BESS Fire Incidents Summary (2018-2025).       183
  • Table 70. Second-Life Battery Fire Risk Factors vs New Batteries               199
  • Table 71. Categories of Thermal Protection Systems.         207
  • Table 72. Active vs Passive Fire Protection in Heritage.      218
  • Table 73. Building & Construction Fire Protection Material Requirements by Building Type.     226
  • Table 74. Fire Protection Material Usage by Building Type.               227
  • Table 75. Oil & Gas Industry Fire Protection Material Applications and Requirements  232
  • Table 76. Automotive Fire Protection Material Requirements by Vehicle Type     236
  • Table 77. Fire Protection Material Distribution in Modern Vehicles.           237
  • Table 78. EV Battery Fire Protection Material Integration Points. 239
  • Table 79. Aerospace Fire Protection Material Standards and Applications,         241
  • Table 80. Fire Protection Material Usage in Aerospace Applications.       242
  • Table 81. Power Generation Facility Fire Protection Requirements.           246
  • Table 82. Fire Protection Requirements for Energy Storage Systems.       252
  • Table 83. Data Center Fire Protection Material Distribution.          254
  • Table 84. Electronic Component Fire Protection Specifications  256
  • Table 85. Busbar and Cable Insulation Materials Comparison     258
  • Table 86. Tunnel Fire Protection Standards (NFPA 502, EU Directive 2004/54)  266
  • Table 87. Advanced Fire-retardant and Fire-resistant Coatings and Materials for Tunnel Applications                266
  • Table 88. eVTOL Battery Fire Protection Requirements vs Ground EVs    270
  • Table 89. Aviation Fire Protection Material Weight Comparison   271
  • Table 90. Marine Fire Protection Standards (SOLAS, IMO MSC)   274
  • Table 91. Offshore Platform Fire Protection Material Specifications          275
  • Table 92. Data Centre Fire Suppression System Comparison       278
  • Table 93. Battery Room Fire Protection Requirements       279
  • Table 94. Global Fire-retardant and Fire-resistant Coatings and Materials Market Size by Region, 2025-2036 (USD Million).    280
  • Table 95. Global Fire-retardant and Fire-resistant Coatings and Materials Market Size by Material Type, 2025-2036 (USD Million).      282
  • Table 96. Global Fire-retardant and Fire-resistant Coatings and Materials Market Size by Application, 2025-2036 (USD Million).      285
  • Table 97. Global Fire-retardant and Fire-resistant Coatings and Materials Market Size by Region, 2025-2036 (USD Million).    287
  • Table 98. Global Fire-retardant and Fire-resistant Coatings and Materials Market Size by End-User Industry, 2025-2036 (USD Million). 288
  • Table 99. Cell-level Fire Protection Material Demand, 2025-2036 (Metric Tons).              291
  • Table 100. Pack-level Fire Protection Material Demand, 2025-2036 (Metric Tons)           293
  • Table 101. Total Advanced Fire-retardant and Fire-resistant Coatings and Materials Forecast by Mass                294
  • Table 102. Total Advanced Fire-retardant and Fire-resistant Coatings and Materials Forecast by Value                295
  • Table 103. Fire Protection Material Demand by Vehicle Type, 2025-2036 (Metric Tons)                296
  • Table 104. BESS TM & FP Market Value Forecast 2026-2036.        297
  • Table 105. Average Pricing Forecast for Key Materials, 2025-2036 (USD/kg)       299
  • Table 106. Global Halogen-Free Regulations Timeline       312
  • Table 107. Restricted Flame Retardant Substances by Region     313

 

List of Figures

  • Figure 1. Global Fire-retardant and Fire-resistant Coatings and Materials Market Size, 2025-2036 (USD Billion)..            25
  • Figure 2. Intumescent Coating Expansion Mechanism.    40
  • Figure 3. Fire Protection Market Value Chain.          51
  • Figure 4. Working Principle of Intumescent Materials.       59
  • Figure 5. Fire Resistant Aerogel.        95
  • Figure 6. Aerogel Microstructure and Fire Resistance Mechanism.           97
  • Figure 7. Bio-Based and Sustainable Advanced Fire-retardant and Fire-resistant Coatings and Materials.                113
  • Figure 8. Phase Change Material Working Mechanism for Fire Protection.           121
  • Figure 9. Cell-to-Pack Architecture.                160
  • Figure 10. Cell-to-Chassis Design Principles.          162
  • Figure 11. EV Battery Design Requirements for Fire Protection.   238
  • Figure 12. Global Fire-retardant and Fire-resistant Coatings and Materials Market Size by Region, 2025-2036 (USD Million).    281
  • Figure 13. Global Fire-retardant and Fire-resistant Coatings and Materials Market Size by Material Type, 2025-2036 (USD Million).      283
  • Figure 14. Global Fire-retardant and Fire-resistant Coatings and Materials Market Size by Application, 2025-2036 (USD Million).      286
  • Figure 15. Global Fire-retardant and Fire-resistant Coatings and Materials Market Size by Region, 2025-2036 (USD Million).    288
  • Figure 16. Global Fire-retardant and Fire-resistant Coatings and Materials Market Size by End-User Industry, 2025-2036 (USD Million). 289
  • Figure 17. Global EV Battery Demand Forecast, 2025-2036 (GWh)           290
  • Figure 18. Cell-level Fire Protection Material Demand, 2025-2036 (Metric Tons).            292
  • Figure 19. Alkegen Prism cell spacers for thermal runaway prevention and delay.          323
  • Figure 20. A pencil resting on a PyroThin thermal barrier to show its comparative thickness.  331
  • Figure 21. SLENTEX® roll (piece).      335
  • Figure 22. Keey Aerogel.          361
  • Figure 23. Fire-resistance in Keey Aerogel. 361
  • Figure 24. The Sixth Element graphene products.  377

 

 

 

 

 

Purchasers will receive the following:

  • PDF report download/by email. 
  • Comprehensive Excel spreadsheet of all data.
  • Mid-year Update

 

The Global Market for Advanced Fire-retardant and Fire-resistant Coatings and Materials 2026-2036
The Global Market for Advanced Fire-retardant and Fire-resistant Coatings and Materials 2026-2036
PDF download/by email.

The Global Market for Advanced Fire-retardant and Fire-resistant Coatings and Materials 2026-2036
The Global Market for Advanced Fire-retardant and Fire-resistant Coatings and Materials 2026-2036
PDF and Print Edition (including tracked delivery).

 

Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer. To order by Bank Transfer (Invoice) select this option from the payment methods menu after adding to cart, or contact info@futuremarketsinc.com