The Global Market for Glass Substrates for Semiconductors 2026-2036

0

cover

cover

  • Published: October 2025
  • Pages: 337
  • Tables: 93
  • Figures: 29

 

The global market for glass substrates in semiconductor applications is experiencing a critical inflection point as the technology transitions from research and development to commercial production, driven by insatiable demand for advanced packaging solutions in AI, high-performance computing, and next-generation communications. The glass substrate market addresses fundamental limitations of organic substrates while offering cost and scalability advantages over silicon interposers.

Glass substrates replace organic cores in advanced chip packages, providing superior dimensional stability, lower dielectric loss, and larger format capabilities essential for multi-chiplet architectures. The technology enables manufacturers to achieve sub-2μm redistribution layer geometries, supporting massive I/O counts (10,000-50,000 per package) while maintaining thermal and electrical performance across extreme temperature ranges (-40°C to 150°C). Key advantages include 40% performance improvements in signal integrity, 50% power consumption reduction, and exceptional flatness (<20μm warpage across 100mm packages) compared to organic alternatives that suffer dimensional instability beyond 55mm.

Through-glass via (TGV) technology represents the critical enabler, with multiple formation approaches competing: laser-induced deep etching (LIDE) combining laser modification with wet etching, direct laser ablation, and photosensitive glass methods. Recent demonstrations show 6μm diameter vias with aspect ratios exceeding 15:1, enabling high-density vertical interconnection supporting panel-scale processing from display industry heritage.

The market exhibits sophisticated segmentation across application domains. AI and high-performance computing represent the largest near-term opportunity, with glass substrates enabling 60-80mm packages integrating 8-16 chiplets with HBM memory stacks—architectures impossible with warped organic substrates. Data center switches requiring 51.2-102.4 Tbps aggregate bandwidth increasingly adopt co-packaged optics (CPO) architectures that leverage glass transparency for integrated optical waveguides alongside electrical interconnection.

Telecommunications infrastructure, particularly 5G massive MIMO and emerging 6G systems operating at 100-300 GHz frequencies, represents another compelling segment where organic substrates' electrical losses render them inadequate. Automotive applications, especially 77-81 GHz radar for ADAS and autonomous driving platforms, benefit from glass's phase stability maintaining beam coherence across temperature extremes. Consumer electronics adoption concentrates in premium segments—5G millimeter-wave smartphones, AR/VR headsets, and gaming systems—where performance differentiation justifies cost premiums during early commercialization. Major technology companies including Apple, Tesla, AMD, and Amazon AWS are conducting qualification testing, with Samsung Electronics planning glass substrate interposer adoption by 2028 and operating pilot lines at Sejong facilities.

Intel's strategic pivot from internal production to licensing its extensive patent portfolio (600+ glass substrate patents) could accelerate industry-wide commercialization by enabling latecomers to advance development more rapidly. Samsung Electro-Mechanics targets first prototypes by Q2 2025, while LG Innotek builds Gumi pilot lines aiming for year-end prototype production. Glass material suppliers including AGC, Corning, SCHOTT, and Nippon Electric Glass provide substrate-grade compositions optimized for CTE matching and low dielectric loss.

Despite compelling advantages, glass substrates face significant adoption barriers: current costs run 2-3x organic equivalents, manufacturing yields remain at 75-85% versus organic substrates' 90-95%, and supply chain concentration creates single-source dependencies. Brittleness requires specialized handling automation, while TGV formation and fine-pitch RDL processes demand continued optimization. Customer qualification cycles spanning 18-36 months delay market entry, particularly in conservative industries like automotive and telecommunications.

However, aggressive cost reduction roadmaps project 40-60% declines by 2030 through manufacturing scale, yield improvements, and competitive supply emergence. As processes mature and ecosystem infrastructure develops—design tools, standards, contract manufacturing services—glass substrates are positioned to capture 20-30% of advanced packaging market by 2036, with deployment timelines accelerating as major technology companies validate commercial viability through pilot programs transitioning to volume production in 2027-2030 timeframe.

The Global Market for Glass Substrates for Semiconductors 2026-2036 delivers comprehensive analysis of this transformative advanced packaging technology poised to revolutionize semiconductor manufacturing. As AI accelerators, 5G/6G infrastructure, and autonomous vehicles demand unprecedented integration density and electrical performance, glass substrates emerge as the critical enabling platform displacing conventional organic substrates and challenging silicon interposers across high-performance applications.

Report Contents include: 

  • Comprehensive market overview with global forecasts 2026-2036 (revenue and volume)
  • Glass materials fundamentals and applications across semiconductor packaging
  • Technology drivers: dimensional stability, low dielectric loss, panel-scale processing
  • Supply chain evolution from pilot production to mainstream adoption
  • Application segment analysis: advanced packaging, photonic integration, high-frequency RF
  • Competitive landscape assessment covering 37+ companies
  • Technical challenges and risk mitigation strategies
  • Investment outlook and adoption scenarios
  • Detailed unit shipment and market value forecasts by product category (carriers, core substrates, interposers)
  • Glass Substrates Technology Fundamentals
    • Material properties: borosilicate, quartz, specialty compositions with comparison matrices
    • Manufacturing processes: glass forming, TGV formation methods, metallization, panel-level processing
    • Design considerations: thermal management, mechanical stress analysis, electrical performance optimization
  • Glass in Advanced Packaging and IC Substrates
    • Advanced packaging evolution from 1D through 4D integration architectures
    • Intel's advanced packaging roadmap and heterogeneous integration solutions
    • Glass IC substrates evolution and organic-to-glass transition pathway
    • Through-glass via technology comprehensive analysis with vendor-specific approaches
    • TGV metallization processes and comparison matrices
    • Material properties and I/O density advantages
    • Traditional substrate limitations driving glass adoption
    • Glass substrate manufacturing processes including CHIMES innovations
    • Intel's glass production line capabilities
  • Glass in Photonics
    • Photonic integration overview and optical coupling strategies
    • Co-packaged optics (CPO) comprehensive analysis and architecture options
    • Glass waveguide technologies: ion exchange, fiber coupling, signal routing
    • Corning's 102.4 Tb/s platform and 3D integration demonstrations
  • Glass in High-Frequency Applications
    • High-frequency material requirements and transmission loss analysis
    • Material benchmarking: LTCC versus glass comparisons
    • Glass suppliers and products directory
    • RF applications: filters, IPD, antenna-in-package for 5G/6G
  • Technology Benchmarking and Comparison
    • Glass versus organic substrates: performance, cost, manufacturing, application suitability
    • Glass versus silicon interposers: technical metrics, economics, scalability
    • Hybrid substrates analysis and cost-performance trade-offs
    • Future technology roadmaps: materials, processes, integration complexity, performance projections
  • End-User Market Analysis
    • AI and high-performance computing: market sizing, requirements, key players, development trends
    • Data centers and cloud computing: infrastructure demands, adoption patterns, opportunity assessment
    • Telecommunications and 5G/6G: network evolution, RF requirements, integration challenges
    • Automotive electronics: ADAS, electric vehicles, autonomous platforms, reliability requirements
    • Consumer electronics: mobile devices, wearables, gaming systems
  • Challenges and Opportunities
    • Technical challenges: manufacturing maturity, yield issues, design complexity, standardization
    • Economic challenges: cost competitiveness, investment requirements, customer adoption barriers
    • Strategic opportunities: performance differentiation, new applications, technology convergence
  • Future Outlook
    • Technology evolution projections: next-generation materials, advanced manufacturing, integration advances
    • Performance enhancement roadmap through 2036
    • Market development scenarios: optimistic, conservative, and disruptive technology impacts
  • 37 detailed company profiles spanning entire value chain with technology positioning, products, capabilities, and strategy including Absolics (SKC subsidiary), Intel Corporation, Samsung Electro-Mechanics (Semco), LG Innotek, AGC Inc., Corning Incorporated, SCHOTT AG, Nippon Electric Glass (NEG), LPKF Laser & Electronics, Applied Materials, Onto Innovation, AMD, NVIDIA, TSMC, Ibiden, Shinko, Unimicron Technology Corporation, AT&S Austria Technologie & Systemtechnik AG, Toppan, Advanced Semiconductor Engineering (ASE), Plan Optik AG, JNTC Co. Ltd., KCC Corporation, RENA Technologies GmbH, Philoptics, Samtec Inc., BOE, Chengdu ECHINT, Guangdong Fozhixin Microelectronics, Sky Semiconductor, WG Tech, Ajinomoto Co. Inc., DNP (Dai Nippon Printing), Alliance Material, 3D CHIPS, 3D Glass Solutions (3DGS), and Sumitomo Electric Industries Ltd. Each profile examines corporate strategy, technology positioning, product offerings, manufacturing capabilities, and competitive advantages within the rapidly evolving glass substrate ecosystem.
 

 

The report includes these components:

  • PDF report download/by email. Print edition also available. 
  • Comprehensive Excel spreadsheet of all data.
  • Mid-year Update

 

The Global Market for Glass Substrates for Semiconductors 2026-2036
The Global Market for Glass Substrates for Semiconductors 2026-2036
PDF download.

The Global Market for Glass Substrates for Semiconductors 2026-2036
The Global Market for Glass Substrates for Semiconductors 2026-2036
PDF and Print Edition (including tracked delivery).

Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer. To order by Bank Transfer (Invoice) select this option from the payment methods menu after adding to cart, or contact info@futuremarketsinc.com

 

1             EXECUTIVE SUMMARY           

  • 1.1        Glass Materials Overview      17
  • 1.2        Applications of Glass in Semiconductors   19
  • 1.3        Glass for Advanced Packaging          21
  • 1.4        Technological Drivers and Material Advantages     21
  • 1.5        Supply Chain Evolution and Manufacturing Readiness     22
  • 1.6        Application Segments and Market Dynamics          23
    • 1.6.1    Advanced Packaging and IC Substrates       23
    • 1.6.2    Photonic Integration  23
    • 1.6.3    High-Frequency Applications             24
  • 1.7        Competitive Landscape and Strategic Positioning               24
  • 1.8        Technical Challenges and Risk Factors        25
  • 1.9        Investment and Adoption Outlook   26
  • 1.10     Glass Used in Various Semiconductor Applications           26
  • 1.11     Opportunities with Glass Packaging              29
  • 1.12     Advantages of Glass Substrates        31
  • 1.13     Challenges in Adopting Glass Substrates   34
  • 1.14     Future Market Trends                37
    • 1.14.1 Advanced Processing Technologies                37
    • 1.14.2 Integrated Packaging Solutions & Sustainable Manufacturing Initiatives               39
  • 1.15     Value Chain of Glass Substrate         40
    • 1.15.1 Organic to Glass Core Substrate       42
  • 1.16     Future Outlook             43
  • 1.17     Material Innovations 45
  • 1.18     Global Market Forecasts 2025-2036             47
    • 1.18.1 Unit Shipment Forecast 2025-2036 47
      • 1.18.1.1            Glass Carrier Shipments        47
      • 1.18.1.2            Glass Core Substrate Shipments     48
      • 1.18.1.3            Glass Interposer Shipments 49
    • 1.18.2 Market Value Forecast 2025-2036  50
      • 1.18.2.1            Glass Carrier Market Value   50
      • 1.18.2.2            Glass Core Substrate Market Value 50
      • 1.18.2.3            Glass Interposer Market Value           51

 

2             GLASS SUBSTRATES TECHNOLOGY FUNDAMENTALS      

  • 2.1        Glass Materials Properties    53
    • 2.1.1    Borosilicate Glass Characteristics  54
    • 2.1.2    Quartz Glass Properties          55
    • 2.1.3    Specialty Glass Compositions          57
  • 2.2        Manufacturing Processes      60
    • 2.2.1    Glass Melting and Forming   60
    • 2.2.2    Through Glass Via (TGV) Formation 61
    • 2.2.3    Metallization and Build-up Processes           62
    • 2.2.4    Panel-Level Processing Technologies            67
  • 2.3        Design and Process Considerations              74
    • 2.3.1    Thermal Management             74
    • 2.3.2    Mechanical Stress Analysis 75
    • 2.3.3    Electrical Performance Optimization            76

 

3             GLASS IN ADVANCED PACKAGING AND IC SUBSTRATES              

  • 3.1        Advanced Packaging Evolution          79
    • 3.1.1    Dimensionality of Advanced Packaging       79
    • 3.1.2    From 1D Semiconductor Packaging               81
    • 3.1.3    Advanced Packaging 2D & 2D+          82
    • 3.1.4    Advanced Packaging 2.5D & 3D        84
    • 3.1.5    Advanced Packaging 3.5D & 4D        87
    • 3.1.6    Technology Development Trend for 2.5D and 3D Packaging          89
  • 3.2        Packaging Architecture and Integration        90
    • 3.2.1    Intel's Advanced Packaging Roadmap         90
    • 3.2.2    Heterogeneous Integration Solutions            92
    • 3.2.3    Overview of System on Chip (SOC) 94
    • 3.2.4    Overview of Multi-Chip Module (MCM)         95
    • 3.2.5    System in Package (SiP)          96
  • 3.3        Glass IC Substrates Evolution            98
    • 3.3.1    Glass IC Substrates   98
    • 3.3.2    From Organic to Glass Core Substrate          99
    • 3.3.3    Evolution of Packaging Substrates in Semiconductors      100
    • 3.3.4    Organic Core Substrate vs. Glass Core Substrate  100
  • 3.4        Through Glass Via Technology            102
    • 3.4.1    TSV vs. TGV      103
    • 3.4.2    Through Glass Via Formation              105
    • 3.4.3    Comparison of Through Glass Via Formation Processes  105
    • 3.4.4    TGV Process and Via Formation Methods   107
    • 3.4.5    Mechanical and High-Power Laser Drilling 108
    • 3.4.6    Laser-Induced Deep Etching               108
    • 3.4.7    LMCE from BSP            109
    • 3.4.8    Philoptics' TGV Technology   109
    • 3.4.9    Laser-Induced Modification and Advanced Wet Etching  110
    • 3.4.10 Photosensitive Glass and Wet Etching         112
    • 3.4.11 Samtec's TGV Technology      112
    • 3.4.12 TGV of High Aspect Ratio       112
  • 3.5        TGV Metallization and Processing    114
    • 3.5.1    TGV Metallization        114
    • 3.5.2    Two-Step Process       117
    • 3.5.3    Seed Layer Deposition in TGV Metallization              117
  • 3.6        Material Properties and Performance            120
    • 3.6.1    Material Property Comparison for Advanced Packaging   120
    • 3.6.2    Key Mechanical and Reliability Benefits of Glass  121
    • 3.6.3    I/O Density       122
    • 3.6.4    Key Factors Enabling Fine Circuit Patterns on Glass Substrates  123
    • 3.6.5    Fine Circuit Patterning Reduces DoF              124
    • 3.6.6    FC-BGA Substrates Lead to Larger Distortions        124
  • 3.7        Traditional Substrate Limitations      125
    • 3.7.1    Limitations of Via Formation                125
    • 3.7.2    SAP Method Limitations         126
    • 3.7.3    PCB Stack-ups              128
    • 3.7.4    Traditional Multilayer vs. Build-up PCBs      128
    • 3.7.5    Build-up Material: ABF             131
    • 3.7.6    Flip Chip Ball Grid Array (FC-BGA) Substrate            132
  • 3.8        Glass Core Substrate Technologies 133
  • 3.9        Glass Substrate Manufacturing         138
    • 3.9.1    Glass Substrate Manufacturing         138
    • 3.9.2    Core Layer Fabrication            140
    • 3.9.3    Build-up Layer Fabrication    140
    • 3.9.4    Manufacturing Process of Glass Substrate (CHIMES)         141
    • 3.9.5    Achieving 2/2 μm L/S on Glass Substrate    143
  • 3.10     Advanced Manufacturing Processes              144
    • 3.10.1 Intel's Glass Line         146
  • 3.11     Industry Implementation and Innovation    147
    • 3.11.1 Features of Glass-based Advanced Packaging and IC Substrates              147
    • 3.11.2 Advanced Thermal Management for Glass Packages         148
    • 3.11.3 Glass Innovation         149

 

4             GLASS IN PHOTONICS             

  • 4.1        Photonic Integration  154
    • 4.1.1    Overview           154
    • 4.1.2    Optical Coupling - I/O              155
    • 4.1.3    EIC/PIC Integration    156
  • 4.2        Co-Packaged Optics 156
    • 4.2.1    Co-Packaged Optics 156
    • 4.2.2    Key Trend of Optical Transceiver       158
    • 4.2.3    Glass-Based CPO Integration             159
  • 4.3        Glass Waveguide Technologies          159
    • 4.3.1    Ion Exchange Waveguide Formation Technology    160
    • 4.3.2    Adiabatic Glass-to-Silicon Waveguide Coupling for CPO Integration       161
    • 4.3.3    Glass-Based Fiber Connector Assembly for CPO Applications    162
  • 4.4        Manufacturing and Integration Processes  163
    • 4.4.1    Glass Interposer Manufacturing Process and Laser Separation Technology        163
    • 4.4.2    Corning's High-Density 102.4 Tb/s Glass Integration Platform      164
    • 4.4.3    3D Integration of EIC/PIC with a Glass Interposer  164
    • 4.4.4    3D Integration of EIC, PIC, ASIC on a Co-Packaged Glass Substrate         164
    • 4.4.5    Fabrication Process of the 3D Integration of ASIC, EIC, PIC on a Co-Packaged Substrate          165
    • 4.4.6    Advancements in Glass Integration for Photonics 165

 

5             GLASS IN HIGH-FREQUENCY APPLICATIONS         

  • 5.1        High-Frequency Material Requirements      167
    • 5.1.1    Applications of Low-Loss Materials in Semiconductor and Electronics Packaging        167
    • 5.1.2    Transmission Loss in High-Frequency PCB Design               168
    • 5.1.3    Glass as a Low-Loss Material              169
  • 5.2        Material Benchmarking and Performance  171
    • 5.2.1    Benchmark of LTCC and Glass Materials    171
    • 5.2.2    Dielectric Constant: Stability vs Frequency for Different Inorganic Substrates (LTCC, Glass)  173
    • 5.2.3    Benchmarking of Commercial Low-Loss Materials for 5G PCBs/Components 174
  • 5.3        Glass Suppliers and Products            177
  • 5.4        RF Applications and Implementations          182
    • 5.4.1    Glass as a Filter Substrate     182
    • 5.4.2    Glass Integrated Passive Devices (IPD) Filter for 5G by Advanced Semiconductor Engineering                182
    • 5.4.3    Glass Substrate AiP for 5G    182
    • 5.4.4    Glass for 6G    183
    • 5.4.5    Glass Interposers for 6G         183

 

6             TECHNOLOGY BENCHMARKING AND COMPARISON        

  • 6.1        Glass vs Organic Substrates                185
    • 6.1.1    Performance Comparison    185
    • 6.1.2    Cost Analysis 185
    • 6.1.3    Manufacturing Considerations          186
    • 6.1.4    Application Suitability              187
  • 6.2        Glass vs Silicon Interposers 188
    • 6.2.1    Technical Performance Metrics         188
    • 6.2.2    Economic Comparison           189
    • 6.2.3    Scalability Assessment          190
  • 6.3        Hybrid Substrates       192
    • 6.3.1    Glass-Organic Hybrid Designs           192
    • 6.3.2    Multi-Material Integration      192
    • 6.3.3    Performance Optimization   193
    • 6.3.4    Cost-Performance Trade-offs             194
  • 6.4        Future Technology Roadmaps           196
    • 6.4.1    Material Innovation Trends    196
    • 6.4.2    Process Technology Evolution            199
    • 6.4.3    Integration Complexity Growth          202
    • 6.4.4    Performance Projection Models        202

 

7             END-USER MARKET ANALYSIS           

  • 7.1        AI and High-Performance Computing           205
    • 7.1.1    Market Size and Growth Drivers         205
    • 7.1.2    Technology Requirements     205
    • 7.1.3    Key Players and Products       207
    • 7.1.4    Future Development Trends 208
  • 7.2        Data Centers and Cloud Computing              210
    • 7.2.1    Infrastructure Scaling Demands       210
    • 7.2.2    Performance and Efficiency Requirements                211
    • 7.2.3    Technology Adoption Patterns            212
    • 7.2.4    Market Opportunity Assessment      214
  • 7.3        Telecommunications and 5G/6G      215
    • 7.3.1    Network Infrastructure Evolution     215
    • 7.3.2    RF Component Requirements            217
    • 7.3.3    Technology Integration Challenges 218
  • 7.4        Automotive Electronics           220
    • 7.4.1    Advanced Driver Assistance Systems           220
    • 7.4.2    Electric Vehicle Electronics  221
    • 7.4.3    Autonomous Driving Platforms          223
    • 7.4.4    Reliability and Safety Requirements               225
  • 7.5        Consumer Electronics             227
    • 7.5.1    Mobile Device Applications 227
    • 7.5.2    Wearable Technology Integration     228
    • 7.5.3    Gaming and Entertainment Systems             230

 

8             CHALLENGES AND OPPORTUNITIES            

  • 8.1        Technical Challenges               232
    • 8.1.1    Manufacturing Process Maturity       232
    • 8.1.2    Yield and Reliability Issues   232
    • 8.1.3    Design and Integration Complexity 234
    • 8.1.4    Standardization Requirements          235
  • 8.2        Economic and Market Challenges   237
    • 8.2.1    Cost Competitiveness             237
    • 8.2.2    Investment Requirements     239
    • 8.2.3    Customer Adoption Barriers                239
  • 8.3        Strategic Opportunities           241
    • 8.3.1    Performance Differentiation 241
    • 8.3.2    New Application Development           244
    • 8.3.3    Technology Convergence Benefits   247

 

9             FUTURE OUTLOOK   

  • 9.1        Technology Evolution Projections    249
    • 9.1.1    Next-Generation Material Developments    249
    • 9.1.2    Advanced Manufacturing Processes              252
    • 9.1.3    Integration Technology Advances     255
    • 9.1.4    Performance Enhancement Roadmap         258
  • 9.2        Market Development Scenarios        260
    • 9.2.1    Optimistic Growth Scenario 260
    • 9.2.2    Conservative Growth Scenario          261
    • 9.2.3    Disruptive Technology Impact            261

 

10          COMPANY PROFILES                263

  • 10.1     3D CHIPS          263
  • 10.2     3D Glass Solutions (3DGS)   265
  • 10.3     Absolics (SKC)               266
  • 10.4     Advanced Semiconductor Engineering (ASE)           269
  • 10.5     AGC Inc. (formerly Asahi Glass)        271
  • 10.6     Ajinomoto Co., Inc.    272
  • 10.7     Alliance Material          273
  • 10.8     AMD (Advanced Micro Devices)         274
  • 10.9     Applied Materials, Inc.             276
  • 10.10  AT&S Austria Technologie & Systemtechnik AG       277
  • 10.11  BOE      279
  • 10.12  Chengdu ECHINT (Echoing Electronics)       282
  • 10.13  Corning Incorporated               284
  • 10.14  DNP (Dai Nippon Printing Co., Ltd.) 285
  • 10.15  Guangdong Fozhixin Microelectronics          286
  • 10.16  Ibiden  288
  • 10.17  Intel Corporation         289
  • 10.18  JNTC Co., Ltd.                292
  • 10.19  KCC Corporation         294
  • 10.20  LG Innotek       295
  • 10.21  LPKF Laser & Electronics       297
  • 10.22  Nippon Electric Glass (NEG)                298
  • 10.23  NVIDIA Corporation   299
  • 10.24  Onto Innovation           301
  • 10.25  Philoptics         302
  • 10.26  Plan Optik AG 303
  • 10.27  RENA Technologies GmbH    304
  • 10.28  Samsung Electro-Mechanics (Semco)          305
  • 10.29  Samtec Inc.     306
  • 10.30  SCHOTT AG     308
  • 10.31  Shinko 309
  • 10.32  Sky Semiconductor    311
  • 10.33  Sumitomo Electric Industries, Ltd.  313
  • 10.34  Toppan               315
  • 10.35  TSMC (Taiwan Semiconductor Manufacturing Company)               317
  • 10.36  Unimicron Technology Corporation 320
  • 10.37  WG Tech (Wuxi Gaojing Technology)               322

 

11          APPENDICES  

  • 11.1     Technical Glossary and Definitions 324
  • 11.2     Technology Evolution Timeline           328
  • 11.3     Research Approach and Framework              332
  • 11.3.1 Research Objectives 332
  • 11.3.2 Research Methodology Overview     332
  • 11.3.2.1            Primary Research Methods  332
  • 11.3.2.2            Secondary Research Methods           332

12          REFERENCES 334

 

List of Tables

  • Table 1. Global Glass Substrates Market Size 2026-2036 (Revenue & Volume). 18
  • Table 2. Applications of Glass in Semiconductors.               19
  • Table 3. Technology readiness levels (TRLs) glass semiconductor applications.              27
  • Table 4. Opportunities with Glass Packaging.          29
  • Table 5. Key Advantages of Glass Substrates.          32
  • Table 6. Challenges in Adopting Glass Substrates.               35
  • Table 7. Future Market Trends.           37
  • Table 8. Advanced Processing Technologies.           38
  • Table 9. Material Innovations.             45
  • Table 10. Glass Carrier Unit Shipment Forecast 2025-2036.         47
  • Table 11. Glass Core Substrate Unit Shipment Forecast 2025-2036.      48
  • Table 12. Glass Interposer Unit Shipment Forecast 2025-2036. 49
  • Table 13. Glass Carrier Market Value Forecast 2025-2036.            50
  • Table 14. Glass Core Substrate Market Value Forecast 2025-2036.          51
  • Table 15. Glass Interposer Market Value Forecast 2025-2036.    52
  • Table 16. Glass Materials Properties.             53
  • Table 17. Borosilicate Glass Characteristics.           54
  • Table 18. Quartz Glass Properties.   56
  • Table 19. Specialty Glass Compositions.   57
  • Table 20. Glass Material Property Comparison Matrix.       59
  • Table 21. Metallization and Build-up Processes.    64
  • Table 22. Panel-Level Processing Technologies.     69
  • Table 23. Comparative Analysis: Panel vs Wafer-Level Processing.           72
  • Table 24. Organic Core Substrate vs. Glass Core Substrate            101
  • Table 25. TSV vs. TGV Comparison. 104
  • Table 26. Comparison of Through Glass Via Formation Processes.           106
  • Table 27. TGV Process and Via Formation Methods.            107
  • Table 28. Comparison Among the TGV Processes.               111
  • Table 29. TGV Metallization Processes.        116
  • Table 30. Factors for Alternative TGV Metallization Process            118
  • Table 31. Comparison of TGV Metallization Processes       119
  • Table 32. Material Property Comparison for Advanced Packaging             121
  • Table 33. Key Mechanical and Reliability Benefits of Glass.           122
  • Table 34. Key Factors Enabling Fine Circuit Patterns on Glass Substrates.           123
  • Table 35. SAP Method Limitations.  127
  • Table 36. Traditional Multilayer vs. Build-up PCBs.               130
  • Table 37. Glass Core Substrate Technologies.         135
  • Table 38. Glass Interposer vs. Silicon Interposer.   137
  • Table 39. Organic Core Substrate vs. Glass Core Substrate.          138
  • Table 40. Advanced Manufacturing Process Capabilities.               145
  • Table 41. Advanced Thermal Management for Glass Packages.  148
  • Table 42. Advanced Packaging Technology Comparison. 151
  • Table 43. Dual-Mode Glass Waveguide Performance Characteristics.    160
  • Table 44. Advancements in Glass Integration for Photonics.         166
  • Table 45. Applications of Low-Loss Materials in Semiconductor and Electronics Packaging. 167
  • Table 46. Categories of RF Applications Enabled by Glass in Semiconductor Technology.        170
  • Table 47. Benchmark of LTCC and Glass Materials.             171
  • Table 48. Dielectric Constant Stability vs Frequency for Different Inorganic Substrates.            173
  • Table 49. Benchmarking of Commercial Low-Loss Materials for 5G PCBs/Components.          174
  • Table 50. Glass Suppliers and Products.     179
  • Table 51. Technical Performance Metrics - Glass vs Silicon Interposers.               188
  • Table 52. Economic Comparison - Glass vs Silicon Interposers. 189
  • Table 53. Scalability Assessment - Glass vs Silicon Interposers. 191
  • Table 54. Performance Projection Models (2025-2036).   203
  • Table 55. Technology Requirements - AI/HPC Glass Substrate Packages.            206
  • Table 56. Key Players and Products - AI/HPC Glass Substrates    207
  • Table 57. Future Development Trends - AI/HPC Glass Substrates.             209
  • Table 58. Infrastructure Scaling Demands - Data Center Glass Substrates.        210
  • Table 59. Performance and Efficiency Requirements - Data Center Glass Substrates  211
  • Table 60. Technology Adoption Patterns - Data Center Glass Substrates.             213
  • Table 61. Market Opportunity Assessment - Data Center Glass Substrates.       214
  • Table 62. Network Infrastructure Evolution - Telecom Glass Substrates.               216
  • Table 63. RF Component Requirements - 5G/6G Glass Substrates.          217
  • Table 64. Technology Integration Challenges - Telecom Glass Substrates.           219
  • Table 65. Advanced Driver Assistance Systems - Glass Substrate Requirements.          220
  • Table 66. Electric Vehicle Electronics - Glass Substrate Applications.    222
  • Table 67. Performance Metrics.         223
  • Table 68. Autonomous Driving Platforms - Glass Substrate Requirements           223
  • Table 69. Autonomous Driving Platforms - Glass Substrate Requirements           225
  • Table 70. Reliability and Safety Requirements - Automotive Glass Substrates. 226
  • Table 71. Mobile Device Applications - Glass Substrate Opportunities. 227
  • Table 72. Wearable Technology Integration - Glass Substrate Applications.        228
  • Table 73. Development Status.          229
  • Table 74. Technology Requirements by Application.            229
  • Table 75. Gaming and Entertainment Systems - Glass Substrate Applications. 230
  • Table 76. Performance Metrics.         231
  • Table 77. Yield and Reliability Issues - Glass Substrates. 233
  • Table 78. Standardization Requirements - Glass Substrates.        235
  • Table 79. Cost Competitiveness - Glass vs Organic Substrates.  237
  • Table 80. Cost Trajectory by Substrate Size.              238
  • Table 81. Customer Adoption Barriers - Glass Substrates.              240
  • Table 82. Performance Differentiation Opportunities - Glass Substrates.             242
  • Table 83. Competitive Positioning by Market Segment:     243
  • Table 84. New Application Development - Glass Substrate Enabled Markets.   244
  • Table 85. Total Addressable Market Expansion.      246
  • Table 86. Technology Convergence Benefits - Glass Substrate Integration.         247
  • Table 87. Next-Generation Material Developments - Glass Substrates. 250
  • Table 88. Advanced Manufacturing Processes - Glass Substrates.            253
  • Table 89. Integration Technology Advances - Glass Substrates.   256
  • Table 90. Performance Enhancement Roadmap - Glass Substrates.       258
  • Table 91. Technical Glossary and Definitions.         324
  • Table 92. Technology Evolution Timeline - Glass Substrates for Semiconductors.          328
  • Table 93. Key Technology Readiness Level (TRL) Progression.      331

 

List of Figures

  • Figure 1. Intel's semiconductor glass substrate.    17
  • Figure 2. SKC glass substrate prototype.     21
  • Figure 3. Example of RF IPD balun on Glass Substrate.     24
  • Figure 4. Value Chain of Glass Substrate for Semiconductors.     41
  • Figure 5. Comparison of organic and glass core substrates .         42
  • Figure 6. Cross-sectional diagram of glass substrate with through glass vias.   61
  • Figure 7. ASE’s fan-out chip on substrate module features tall copper pillars (10µm diameter, 120µm tall), tight die-die spacing, and clean underfill.       68
  • Figure 8. Manufacturing process for glass interposers.     80
  • Figure 9. 2D chip packaging.               83
  • Figure 10. Typical structure of 2.5D IC package utilizing interposer.          85
  • Figure 11. 3D Glass Panel Embedding (GPE) package.      86
  • Figure 12. The industry roadmap for the transition of substrates from organic (top) to glass (bottom) and the path to 1µm L/S.  91
  • Figure 13. System-in-Package (SiP) architecture.  97
  • Figure 14. X-ray image of TGV in the glass core substrate.               113
  • Figure 15. Silver printing on alumina & Copper coated on glass. 114
  • Figure 16. Stacked glass architecture uses uncured ABF dielectric as adhesive, laser via drilling, and copper electroless seed/electroplated fill. 129
  • Figure 17. Flip Chip Ball Grid Array (FCBGA).            132
  • Figure 18. High-End Performance Packaging vom Wafer bis zum System.            142
  • Figure 19. Photonic Integrated Circuit (PIC).             154
  • Figure 20. Co-Packaged Optics concept.    157
  • Figure 21. Process steps for co-packaged fabrication and assembly.      158
  • Figure 22. Simplified flow for N=2, N=3 and N=4 collective die-to-wafer transfer.           162
  • Figure 23. JNTC 510x515mm through silicon via (TGV) glass substrate.  163
  • Figure 24. Material Innovation Trends Roadmap.   198
  • Figure 25. Process Technology Evolution Roadmap.           201
  • Figure 26. Technology Roadmap in Automotive Electronics.          221
  • Figure 27. Absolics' glass substrate 266
  • Figure 28. Glass substrate test units at Intel’s Assembly and Test Technology Development factory. 289
  • Figure 29. JNTC Next-Generation Glass Substrate for Semiconductors. 292

 

 

 

 

 

The report includes these components:

  • PDF report download/by email. Print edition also available. 
  • Comprehensive Excel spreadsheet of all data.
  • Mid-year Update

 

The Global Market for Glass Substrates for Semiconductors 2026-2036
The Global Market for Glass Substrates for Semiconductors 2026-2036
PDF download.

The Global Market for Glass Substrates for Semiconductors 2026-2036
The Global Market for Glass Substrates for Semiconductors 2026-2036
PDF and Print Edition (including tracked delivery).

Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer. To order by Bank Transfer (Invoice) select this option from the payment methods menu after adding to cart, or contact info@futuremarketsinc.com