The Global Glass Substrates for Semiconductors Market 2026-2036

0

cover

cover

  • Published: September 2025
  • Pages: 275
  • Tables: 42
  • Figures: 17

 

The glass substrate for semiconductors market represents one of the most significant material shifts in the packaging industry in decades, driven by the escalating demands of AI, high-performance computing (HPC), and advanced networking applications. This emerging market is transitioning glass from a background consumable to the core substrate material enabling next-generation chip architectures. The market is experiencing unexpected acceleration, with commercialization timelines moving ahead of initial projections. Recent industry events have highlighted the competitive intensity, particularly following speculation about potential partnerships between major players. SKC's stock price surged 44.4% in early 2025 after comments suggesting advanced negotiations with leading AI chip manufacturers, signaling investor confidence in near-term commercialization prospects. The momentum reflects growing recognition that glass substrates can deliver up to 40% speed improvements while reducing power consumption by half compared to conventional organic substrates. 

The surge in AI accelerators and HPC devices has created unprecedented demands for bandwidth density and power delivery that traditional organic substrates simply cannot support. Modern training accelerators require thousands of high-speed I/O bumps and power-delivery networks handling hundreds of amps with minimal noise. Glass substrates address these challenges through superior dimensional stability, ultra-low warpage, and the ability to support sub-2-micron interconnects with exceptional signal integrity. Glass substrates excel in heat and warpage resistance while enabling higher chip stacking densities on single substrates. The smoother surface allows ultra-fine circuit patterns, making them ideal for applications spanning carrier glass, IC substrates, interposers for multi-die packages, RF-MEMS applications, and photonic integration. Major semiconductor companies including Intel, AMD, and Broadcom have announced adoption plans for their next-generation chips.

Glass substrates offer compelling advantages over existing materials. Their coefficient of thermal expansion (CTE) matches silicon (3-7 ppm/°C), dramatically reducing thermomechanical stress in advanced packages. The dielectric constant is significantly lower than silicon (2.8 vs. 12), enabling superior high-frequency performance with orders of magnitude lower transmission losses. Manufacturing infrastructure is rapidly developing. Through-glass via (TGV) formation represents the core enabling technology, with multiple approaches including laser-induced deep etching (LIDE), direct laser drilling, and photosensitive glass processing. Leading equipment suppliers like LPKF, Canon, and Yield Engineering Systems are developing production-ready tools.

The glass substrate market emergence coincides with the industry's shift toward advanced packaging methodologies including chiplets, 2.5D/3D-IC integration, and heterogeneous system architectures. While organic substrates will continue serving mainstream applications, the accelerating timeline for glass commercialization suggests the high-performance segment transition may occur faster than initially anticipated. Success depends on continued yield improvements, cost reduction through scale, and ecosystem maturation. With AI/HPC growth driving performance requirements beyond organic substrate capabilities, glass substrates represent the critical enabler for continued semiconductor advancement, with commercial deployment potentially beginning as early as 2025-2026.

The Global Glass Substrate for Semiconductors Market 2026-2036 provides critical insights for semiconductor manufacturers, substrate suppliers, equipment providers, and technology investors navigating this revolutionary transition. The report delivers comprehensive coverage across seven critical application segments: carrier and support glass, blank drilled core panels, finished IC substrates for single-die usage, finished interposers for multi-die packages, glass integrated passive devices (IPD), RF-MEMS applications, and photonic integration tiles. Each segment analysis includes detailed market forecasts, technology requirements, competitive positioning, and growth drivers specific to AI accelerators, data center infrastructure, 5G/6G communications, automotive electronics, and consumer devices.

Report contents include: 

  • Glass materials overview and semiconductor applications analysis
  • Market opportunities and value chain transformation from organic to glass substrates
  • Global market forecasts with unit shipment and revenue projections 2025-2036
  • Key advantages, adoption challenges, and future market trends
  • Advanced processing technologies and sustainable manufacturing initiatives
  • Investment priority areas and representative player activity assessment
  • Technology Fundamentals & Manufacturing
    • Glass materials properties: borosilicate, quartz, and specialty compositions
    • Manufacturing processes: glass melting, forming, and panel-level processing
    • Through Glass Via (TGV) formation technologies and metallization processes
    • Design considerations: thermal management, stress analysis, electrical optimization
    • Build-up layer fabrication and advanced manufacturing process development
  • Advanced Packaging & IC Substrates Analysis
    • Evolution from 1D to 4D advanced packaging architectures
    • Intel's roadmap, heterogeneous integration, and system-level packaging solutions
    • Glass IC substrate evolution and organic-to-glass core transition analysis
    • Comprehensive TGV technology coverage: formation, processing, metallization
    • Material property comparisons and performance benchmarking
    • Traditional substrate limitations and glass core substrate technologies
    • Industry implementation case studies and innovation analysis
  • Photonic Integration Applications
    • Photonic integrated circuits and co-packaged optics architecture
    • Glass waveguide technologies and ion exchange formation processes
    • EIC/PIC integration and optical coupling solutions
    • Manufacturing processes and laser separation technology
    • 3D integration capabilities and fabrication process optimization
    • Corning's high-density platform and advancement analysis
  • High-Frequency Applications Market
    • Low-loss material requirements for 5G/6G semiconductor packaging
    • Material benchmarking: LTCC vs glass performance characteristics
    • RF applications enabled by glass substrate technology
    • Commercial product analysis and supplier ecosystem
    • Filter substrates, IPD implementations, and antenna-in-package solutions
    • 6G technology enablement and glass interposer applications
  • Technology Benchmarking & Competitive Analysis
    • Glass vs organic substrates: performance, cost, manufacturing comparison
    • Glass vs silicon interposers: technical metrics and economic analysis
    • Hybrid substrate solutions and multi-material integration strategies
    • Future technology roadmaps and performance projection modeling
    • Innovation trends and process technology evolution analysis
  • End-User Market Analysis
    • AI and high-performance computing market requirements and growth drivers
    • Data center infrastructure scaling and performance efficiency demands
    • Telecommunications 5G/6G evolution and RF component specifications
    • Automotive electronics: ADAS, EV, autonomous driving applications
    • Consumer electronics: mobile, wearable, gaming system integration
  • Market Challenges & Strategic Opportunities
    • Technical challenges: manufacturing maturity, yield optimization, standardization
    • Economic barriers: cost competitiveness, investment requirements, adoption timelines
    • Strategic opportunities: performance differentiation and new application development
    • Technology convergence benefits and market expansion potential
  • Future Outlook & Market Scenarios
    • Technology evolution projections and material development roadmaps
    • Advanced manufacturing process development and integration advances
    • Performance enhancement projections and capability scaling
    • Market development scenarios: optimistic, conservative, disruptive impact analysis
  • Comprehensive Company Profiles. Profiles of 35 companies including Absolics, BOE, Corning, Intel, JNTC Co., Ltd., KCC, LG Innotek, LPKF, Nippon Electric Glass (NEG), Plan Optik AG, Samsung Electro-Mechanics (Semco), Toppan and more......

 

 

The report includes these components:

  • PDF report download/by email. Print edition also available. 
  • Comprehensive Excel spreadsheet of all data.
  • Mid-year Update

 

The Global Glass Substrates for Semiconductors Market 2026-2036
The Global Glass Substrates for Semiconductors Market 2026-2036
PDF download.

The Global Glass Substrates for Semiconductors Market 2026-2036
The Global Glass Substrates for Semiconductors Market 2026-2036
PDF and Print Edition (including tracked delivery).

Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer. To order by Bank Transfer (Invoice) select this option from the payment methods menu after adding to cart, or contact info@futuremarketsinc.com

1             EXECUTIVE SUMMARY            205

  • 1.1        Glass Materials Overview      205
  • 1.2        Applications of Glass in Semiconductors   207
  • 1.3        Glass for Advanced Packaging          208
  • 1.4        Glass Used in Various Semiconductor Applications           209
  • 1.5        Opportunities with Glass Packaging              210
  • 1.6        Advantages of Glass Substrates        211
  • 1.7        Challenges in Adopting Glass Substrates   212
  • 1.8        Future Market Trends                213
    • 1.8.1    Advanced Processing Technologies                213
    • 1.8.2    Integrated Packaging Solutions & Sustainable Manufacturing Initiatives               214
  • 1.9        Value Chain of Glass Substrate         215
    • 1.9.1    Organic to Glass Core Substrate       216
  • 1.10     Future Outlook             217
  • 1.11     Material Innovations 218
  • 1.12     Global Market Forecasts 2025-2036             219
    • 1.12.1 Unit Shipment Forecast 2025-2036 219
    • 1.12.2 Market Value Forecast 2025-2036  220

 

2             GLASS SUBSTRATES TECHNOLOGY FUNDAMENTALS       224

  • 2.1        Glass Materials Properties    224
    • 2.1.1    Borosilicate Glass Characteristics  224
    • 2.1.2    Quartz Glass Properties          225
    • 2.1.3    Specialty Glass Compositions          226
  • 2.2        Manufacturing Processes      227
    • 2.2.1    Glass Melting and Forming   227
    • 2.2.2    Through Glass Via (TGV) Formation 228
    • 2.2.3    Metallization and Build-up Processes           229
    • 2.2.4    Panel-Level Processing Technologies            230
  • 2.3        Design and Process Considerations              231
    • 2.3.1    Thermal Management             231
    • 2.3.2    Mechanical Stress Analysis 232
    • 2.3.3    Electrical Performance Optimization            233

 

3             GLASS IN ADVANCED PACKAGING AND IC SUBSTRATES               242

  • 3.1        Advanced Packaging Evolution          242
    • 3.1.1    Dimensionality of Advanced Packaging       243
    • 3.1.2    From 1D Semiconductor Packaging               243
    • 3.1.3    Advanced Packaging 2D & 2D+          244
    • 3.1.4    Advanced Packaging 2.5D & 3D        245
    • 3.1.5    Advanced Packaging 3.5D & 4D        246
    • 3.1.6    Technology Development Trend for 2.5D and 3D Packaging          247
  • 3.2        Packaging Architecture and Integration        247
    • 3.2.1    Intel's Advanced Packaging Roadmap         248
    • 3.2.2    Heterogeneous Integration Solutions            249
    • 3.2.3    Overview of System on Chip (SOC) 250
    • 3.2.4    Overview of Multi-Chip Module (MCM)         251
    • 3.2.5    System in Package (SiP)          252
    • 3.2.6    Analysis of System in Package (SiP)                253
  • 3.3        Glass IC Substrates Evolution            254
    • 3.3.1    Glass IC Substrates   255
    • 3.3.2    From Organic to Glass Core Substrate          256
    • 3.3.3    Evolution of Packaging Substrates in Semiconductors      257
    • 3.3.4    From Organic to Glass Core 258
    • 3.3.5    Organic Core Substrate vs. Glass Core Substrate  259
  • 3.4        Through Glass Via Technology            260
    • 3.4.1    TSV vs. TGV      260
    • 3.4.2    Through Glass Via Formation              261
    • 3.4.3    Through Glass Via Formation Process           262
    • 3.4.4    Comparison of Through Glass Via Formation Processes  263
    • 3.4.5    TGV Process and Via Formation Methods   263
    • 3.4.6    Mechanical and High-Power Laser Drilling 264
    • 3.4.7    Laser-Induced Deep Etching               265
    • 3.4.8    LMCE from BSP            266
    • 3.4.9    Philoptics' TGV Technology   267
    • 3.4.10 Laser-Induced Modification and Advanced Wet Etching  268
    • 3.4.11 Comparison Among the TGV Processes       269
    • 3.4.12 Photosensitive Glass and Wet Etching         270
    • 3.4.13 Samtec's TGV Technology      271
    • 3.4.14 TGV of High Aspect Ratio       272
  • 3.5        TGV Metallization and Processing    273
    • 3.5.1    TGV Metallization        273
    • 3.5.2    TGV Metallization Processes               274
    • 3.5.3    Two-Step Process       275
    • 3.5.4    Seed Layer Deposition in TGV Metallization              276
    • 3.5.5    Factors for Alternative TGV Metallization Process 277
    • 3.5.6    Comparison of TGV Metallization Processes            278
  • 3.6        Material Properties and Performance            279
    • 3.6.1    Material Property Comparison for Advanced Packaging   279
    • 3.6.2    Key Mechanical and Reliability Benefits of Glass  280
    • 3.6.3    I/O Density       281
    • 3.6.4    Key Factors Enabling Fine Circuit Patterns on Glass Substrates  283
    • 3.6.5    Fine Circuit Patterning Reduces DoF              284
    • 3.6.6    FC-BGA Substrates Lead to Larger Distortions        285
  • 3.7        Traditional Substrate Limitations      286
    • 3.7.1    Limitations of Via Formation                286
    • 3.7.2    SAP Method Limitations         287
    • 3.7.3    PCB Stack-ups              288
    • 3.7.4    Traditional Multilayer vs. Build-up PCBs      289
    • 3.7.5    Build-up Material: ABF             290
    • 3.7.6    ABF Substrate Manufacturing Process          291
    • 3.7.7    Flip Chip Ball Grid Array (FC-BGA) Substrate            292
  • 3.8        Glass Core Substrate Technologies 293
    • 3.8.1    Glass Core Substrate                293
    • 3.8.2    Glass Core Substrate Technologies 294
    • 3.8.3    Glass Interposer vs. Silicon Interposer          296
  • 3.9        Glass Substrate Manufacturing         297
    • 3.9.1    Glass Substrate Manufacturing         297
    • 3.9.2    Organic Core Substrate vs. Glass Core Substrate  298
    • 3.9.3    Core Layer Fabrication            299
    • 3.9.4    Build-up Layer Fabrication    300
    • 3.9.5    Manufacturing Process of Glass Substrate (CHIMES)         301
    • 3.9.6    Achieving 2/2 μm L/S on Glass Substrate    302
  • 3.10     Advanced Manufacturing Processes              303
    • 3.10.1 Glass Fabrication Process    304
    • 3.10.2 Glass Core 3D Integration     304
    • 3.10.3 Chip-First Non-TSV 3D Glass Panel Embedding     305
    • 3.10.4 Intel's Glass Line         306
  • 3.11     Industry Implementation and Innovation    307
    • 3.11.1 Features of Glass-based Advanced Packaging and IC Substrates              308
    • 3.11.2 Advanced Thermal Management for Glass Packages         309
    • 3.11.3 Glass Innovation         309

 

4             GLASS IN PHOTONICS             317

  • 4.1        Photonic Integration  317
    • 4.1.1    Overview           317
    • 4.1.2    Optical Coupling - I/O              318
    • 4.1.3    EIC/PIC Integration    318
  • 4.2        Co-Packaged Optics 319
    • 4.2.1    Co-Packaged Optics 320
    • 4.2.2    Co-Packaged Optics Architecture    320
    • 4.2.3    Key Trend of Optical Transceiver       321
    • 4.2.4    Glass-Based CPO Integration             322
    • 4.2.5    Glass Interposer-Based CPO Architecture 323
  • 4.3        Glass Waveguide Technologies          324
    • 4.3.1    Ion Exchange Waveguide Formation Technology    325
    • 4.3.2    Dual-Mode Glass Waveguide Performance Characteristics           326
    • 4.3.3    Adiabatic Glass-to-Silicon Waveguide Coupling for CPO Integration       327
    • 4.3.4    Glass-Based Fiber Connector Assembly for CPO Applications    328
    • 4.3.5    Glass Interposer Optical Signal Path Architecture 329
  • 4.4        Manufacturing and Integration Processes  330
    • 4.4.1    Glass Interposer Manufacturing Process and Laser Separation Technology        331
    • 4.4.2    Corning's High-Density 102.4 Tb/s Glass Integration Platform      331
    • 4.4.3    3D Integration of EIC/PIC with a Glass Interposer  332
    • 4.4.4    3D Integration of EIC, PIC, ASIC on a Co-Packaged Glass Substrate         333
    • 4.4.5    Fabrication Process of the 3D Integration of ASIC, EIC, PIC on a Co-Packaged Substrate          334
    • 4.4.6    Advancements in Glass Integration for Photonics 335

 

5             GLASS IN HIGH-FREQUENCY APPLICATIONS         340

  • 5.1        High-Frequency Material Requirements      340
    • 5.1.1    Applications of Low-Loss Materials in Semiconductor and Electronics Packaging        340
    • 5.1.2    Transmission Loss in High-Frequency PCB Design               341
    • 5.1.3    Glass as a Low-Loss Material              342
    • 5.1.4    Categories of RF Applications Enabled by Glass in Semiconductor Technology               343
  • 5.2        Material Benchmarking and Performance  344
    • 5.2.1    Benchmark of LTCC and Glass Materials    345
    • 5.2.2    Dielectric Constant: Stability vs Frequency for Different Inorganic Substrates (LTCC, Glass)  346
    • 5.2.3    Benchmarking of Commercial Low-Loss Materials for 5G PCBs/Components 347
  • 5.3        Glass Suppliers and Products            348
  • 5.4        RF Applications and Implementations          349
    • 5.4.1    Glass as a Filter Substrate     349
    • 5.4.2    Glass Integrated Passive Devices (IPD) Filter for 5G by Advanced Semiconductor Engineering                350
    • 5.4.3    Glass Substrate AiP for 5G: Georgia Tech    351
    • 5.4.4    Glass for 6G: Georgia Tech    352
    • 5.4.5    Glass Interposers for 6G         353

 

6             TECHNOLOGY BENCHMARKING AND COMPARISON        358

  • 6.1        Glass vs Organic Substrates                358
    • 6.1.1    Performance Comparison    359
    • 6.1.2    Cost Analysis 360
    • 6.1.3    Manufacturing Considerations          361
    • 6.1.4    Application Suitability              362
  • 6.2        Glass vs Silicon Interposers 363
    • 6.2.1    Technical Performance Metrics         363
    • 6.2.2    Economic Comparison           364
    • 6.2.3    Scalability Assessment          365
  • 6.3        Hybrid Substrates       366
    • 6.3.1    Glass-Organic Hybrid Designs           366
    • 6.3.2    Multi-Material Integration      367
    • 6.3.3    Performance Optimization   368
    • 6.3.4    Cost-Performance Trade-offs             369
  • 6.4        Future Technology Roadmaps           370
    • 6.4.1    6.4.1 Material Innovation Trends       370
    • 6.4.2    Process Technology Evolution            372
    • 6.4.3    Integration Complexity Growth          372
    • 6.4.4    Performance Projection Models        373

 

7             END-USER MARKET ANALYSIS            382

  • 7.1        AI and High-Performance Computing           382
    • 7.1.1    Market Size and Growth Drivers         382
    • 7.1.2    Technology Requirements     383
    • 7.1.3    Key Players and Products       384
    • 7.1.4    Future Development Trends 385
  • 7.2        Data Centers and Cloud Computing              386
    • 7.2.1    Infrastructure Scaling Demands       386
    • 7.2.2    Performance and Efficiency Requirements                387
    • 7.2.3    Technology Adoption Patterns            388
    • 7.2.4    Market Opportunity Assessment      389
  • 7.3        Telecommunications and 5G/6G      390
    • 7.3.1    Network Infrastructure Evolution     390
    • 7.3.2    RF Component Requirements            391
    • 7.3.3    Technology Integration Challenges 392
  • 7.4        Automotive Electronics           393
    • 7.4.1    Advanced Driver Assistance Systems           393
    • 7.4.2    Electric Vehicle Electronics  394
    • 7.4.3    Autonomous Driving Platforms          395
    • 7.4.4    Reliability and Safety Requirements               396
  • 7.5        Consumer Electronics             397
    • 7.5.1    Mobile Device Applications 397
    • 7.5.2    Wearable Technology Integration     399
    • 7.5.3    Gaming and Entertainment Systems             400

 

8             CHALLENGES AND OPPORTUNITIES             405

  • 8.1        Technical Challenges               405
    • 8.1.1    Manufacturing Process Maturity       405
    • 8.1.2    Yield and Reliability Issues   406
    • 8.1.3    Design and Integration Complexity 407
    • 8.1.4    Standardization Requirements          408
  • 8.2        Economic and Market Challenges   409
    • 8.2.1    Cost Competitiveness             409
    • 8.2.2    Investment Requirements     410
    • 8.2.3    Customer Adoption Barriers                411
  • 8.3        Strategic Opportunities           412
    • 8.3.1    Performance Differentiation 412
    • 8.3.2    New Application Development           413
    • 8.3.3    Technology Convergence Benefits   414

 

9             FUTURE OUTLOOK    417

  • 9.1        Technology Evolution Projections    417
    • 9.1.1    Next-Generation Material Developments    418
    • 9.1.2    Advanced Manufacturing Processes              419
    • 9.1.3    Integration Technology Advances     420
    • 9.1.4    Performance Enhancement Roadmap         421
  • 9.2        Market Development Scenarios        423
    • 9.2.1    Optimistic Growth Scenario 423
    • 9.2.2    Conservative Growth Scenario          424
    • 9.2.3    Disruptive Technology Impact            425

 

10          COMPANY PROFILES                426 (35 company profiles)

 

11          APPENDICES  459

  • 11.1     Technical Glossary and Definitions 459
  • 11.2     Technology Evolution Timeline           460
  • 11.3     Market Research Methodology Details         463

 

12          REFERENCES 464

 

List of Tables

  • Table 1. Applications of Glass in Semiconductors.               207
  • Table 2. Key Advantages of Glass Substrates.          211
  • Table 3. Challenges in Adopting Glass Substrates.               212
  • Table 4. Unit Shipment Forecast 2025-2036.           220
  • Table 5. Market Value Forecast 2025-2036.              221
  • Table 6. Market Forecast by Application Segment.               222
  • Table 7. Material Property Comparison Matrix.        226
  • Table 8. Glass Material Properties Comparison.    234
  • Table 9. Coefficient of Thermal Expansion vs Temperature.            234
  • Table 10. Dielectric Properties by Glass Type.          235
  • Table 11. TGV Process Comparison Matrix.               237
  • Table 12. Metallization Process Options.    238
  • Table 13. Build-up Layer Material Options. 239
  • Table 14. Panel-Level vs Wafer-Level Processing Comparison.    240
  • Table 15. Advanced Packaging Technology Comparison. 309
  • Table 16. Glass vs Silicon Interposer Cost Analysis.           311
  • Table 17. Material Property Comparison Matrix.     312
  • Table 18. TGV Process Comparison Matrix.               313
  • Table 19. Panel-Level vs Wafer-Level Processing Comparison.    314
  • Table 20. Build-up Layer Material Options. 315
  • Table 21. Photonic Integration Market Growth Drivers.       336
  • Table 22. CPO vs Traditional Optical Module Comparison.            337
  • Table 23. Glass Waveguide Performance Characteristics.              338
  • Table 24. Glass Suppliers and Products.     348
  • Table 25. RF Application Frequency Requirements.             354
  • Table 26. High-Frequency Material Property Requirements.          355
  • Table 27. Dielectric Constant vs Frequency Performance.              356
  • Table 28. Commercial Low-Loss Materials Comparison. 357
  • Table 29. Comprehensive Material Property Comparison.              374
  • Table 30. Manufacturing Process Comparison.      376
  • Table 31. Application Suitability Matrix         377
  • Table 32. Silicon Interposer vs Glass Interposer Analysis 378
  • Table 33. Hybrid Substrate Configuration Options 379
  • Table 34. End-User Market Size Distribution.            401
  • Table 35. AI/HPC Market Requirements Matrix        401
  • Table 36. 5G/6G Component Specifications             402
  • Table 37. Automotive Electronics Growth Drivers  403
  • Table 38. Consumer Electronics Application Analysis       404
  • Table 39. Technical Challenge Assessment Matrix.              414
  • Table 40. Technology Maturity vs Market Readiness            415
  • Table 41. Economic Challenge Analysis      416
  • Table 42. Technical Glossary and Definitions.         459

 

List of Figures

  • Figure 1. Global Glass Substrates Market Size 2026-2036 (Revenue & Volume)                205
  • Figure 2. Market Share by Application Segment 2026 vs 2036.     206
  • Figure 3. Technology Readiness Level Assessment by Application.           209
  • Figure 4. Value Chain of Glass Substrate.   215
  • Figure 5. Unit Shipment Forecast 2025-2036.         220
  • Figure 6. Market Value Forecast 2025-2036.            221
  • Figure 7. Market Forecast by Application Segment.              223
  • Figure 8.TGV Formation Process Flow.          236
  • Figure 9. Stacked glass architecture uses uncured ABF dielectric as adhesive, laser via drilling, and copper electroless seed/electroplated fill. 289
  • Figure 10. TGV Formation Process Flow.      313
  • Figure 11. Photonic Integration Technology Roadmap.      339
  • Figure 12. Performance vs Cost Positioning Map   375
  • Figure 13. Technology Roadmap Timeline  380
  • Figure 14. Performance Enhancement Roadmap. 422
  • Figure 15. Absolics' glass substrate.              426
  • Figure 16. JNTC Next-Generation Glass Substrate for Semiconductors. 439
  • Figure 17. Technology Evolution Timeline.          461

 

 

 

The report includes these components:

  • PDF report download/by email. Print edition also available. 
  • Comprehensive Excel spreadsheet of all data.
  • Mid-year Update

 

The Global Glass Substrates for Semiconductors Market 2026-2036
The Global Glass Substrates for Semiconductors Market 2026-2036
PDF download.

The Global Glass Substrates for Semiconductors Market 2026-2036
The Global Glass Substrates for Semiconductors Market 2026-2036
PDF and Print Edition (including tracked delivery).

Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer. To order by Bank Transfer (Invoice) select this option from the payment methods menu after adding to cart, or contact info@futuremarketsinc.com