The Global Market for Per- and Polyfluoroalkyl Substances (PFAS), PFAS Restrictions, PFAS Alternatives and PFAS Remediation Technologies 2026-2036

0

cover

cover

  • Published: January 2026
  • Pages: 396
  • Tables: 144
  • Figures: 19

 

The global PFAS market is undergoing a fundamental transformation driven by intensifying regulatory pressure, mounting litigation, and accelerating corporate phase-out commitments. While the PFAS chemicals market continues to show modest growth in certain regions and applications, this trajectory masks significant shifts as restrictions reshape demand patterns across industries. The treatment and remediation sector represents one of the fastest-growing environmental markets globally, reflecting unprecedented regulatory and societal response to contamination concerns that have elevated PFAS to one of the defining environmental challenges of the decade.

The regulatory landscape has evolved from broad restriction proposals toward targeted, application-specific bans. The European Union, having initially considered an outright ban on thousands of PFAS compounds, has adopted a more focused approach confirming specific prohibitions: a ban on PFAS in food packaging effective April 2026, restrictions on PFAS in toys beginning with products for children aged three and under, and additional measures expected in early 2026. The United Kingdom is finalizing its post-Brexit REACH regulations, creating potential for divergence from EU requirements. The United States presents a fragmented regulatory environment, with the EPA defending its designation of certain PFAS as hazardous substances under CERCLA while simultaneously revisiting Safe Drinking Water Act regulations. State-level requirements vary significantly, with maximum contaminant levels differing substantially across jurisdictions including Michigan, New Jersey, Vermont, and California.

Corporate response has been substantial. The International Chemical Secretariat's assessment of major chemical companies found that one-third have publicly committed to exiting PFAS production entirely. Notable commitments include 3M's ongoing transition, BASF's five-year phase-out program, and EcoLab's recently disclosed exit timeline. These commitments are driven by both regulatory anticipation and litigation exposure—BASF alone faces thousands of PFAS-related lawsuits, while major industry settlements have established precedents that inform other companies' exit calculations. Investor pressure is reinforcing these trends, with major asset managers characterizing corporate PFAS exits as encouraging developments and urging other companies to follow suit.

The alternatives market is experiencing rapid growth as manufacturers seek PFAS-free solutions across critical applications. In water-repellent coatings, silicone-based DWR treatments, dendrimer and hyperbranched polymer systems, nano-structured surface technologies, and sol-gel coatings are advancing toward performance parity with fluorinated incumbents. Heat transfer fluid alternatives including engineered hydrocarbons, silicone oils, water-glycol systems, and advanced mineral oil formulations are addressing semiconductor manufacturing, data center cooling, and electric vehicle battery thermal management applications previously dominated by fluorinated fluids. Lubricant alternatives—synthetic esters, polyalkylene glycols, silicone-based formulations, bio-based products, and nano-engineered lubricants incorporating graphene and nanodiamonds—are replacing PTFE-based products across automotive, industrial, aerospace, and food processing applications. While performance gaps remain in certain demanding applications requiring extreme chemical resistance or temperature stability, the alternatives market is projected for significant expansion through 2036 as regulatory deadlines approach and supply chains adapt to new material requirements.

The remediation technology sector demonstrates the highest growth rates within the PFAS market, reflecting a paradigm shift from containment to elimination in regulatory approaches. Emerging technologies approaching commercial readiness include hydrothermal alkaline treatment (HALT), which uses high temperature, high pressure, and alkaline chemicals to destroy PFAS at lower operating conditions than supercritical water oxidation, with expected commercialization within two to three years. Plasma-based technologies—both thermal systems operating at extremely high temperatures and non-thermal systems generating reactive species at ambient conditions—offer pathways to molecular-level PFAS destruction and are progressing through pilot and demonstration stages.

The broader treatment market encompasses drinking water systems, groundwater remediation, industrial wastewater treatment, landfill leachate management, and residential point-of-use systems. Long-term market perspectives indicate that remediation will represent the largest and most durable segment, reflecting the extensive scale of existing contamination across military installations, airports, industrial facilities, and municipal systems requiring decades of sustained treatment, monitoring, and management efforts.

This comprehensive market report provides an in-depth analysis of the global per- and polyfluoroalkyl substances (PFAS) industry, covering the complete value chain from PFAS chemical production and applications through regulatory restrictions, emerging alternatives, and advanced remediation technologies. As "forever chemicals" face unprecedented regulatory scrutiny and mounting litigation worldwide, this report delivers critical intelligence for stakeholders navigating one of the most significant chemical market transformations in decades.

The PFAS market is undergoing fundamental restructuring driven by tightening regulations across North America, Europe, and Asia-Pacific, escalating corporate phase-out commitments, and breakthrough innovations in PFAS-free alternatives and destruction technologies. This report examines the market dynamics shaping the industry through 2036, providing strategic insights for chemical manufacturers, end-users across diverse industries, environmental service providers, investors, and policymakers.

The analysis encompasses the full spectrum of PFAS compounds—including long-chain and short-chain variants, fluoropolymers, perfluoropolyethers, and side-chain fluorinated polymers—across their established applications in semiconductors, textiles, food packaging, firefighting foams, automotive, electronics, medical devices, energy systems, cosmetics, and specialty coatings. Detailed examination of regulatory frameworks includes EPA federal and state-level requirements, European Union REACH restrictions including upcoming food packaging and toys bans, and emerging Asian regulations in Japan, China, South Korea, Taiwan, and Australia.

The report delivers extensive coverage of PFAS-free alternatives achieving commercial viability across critical applications: silicone-based and hydrocarbon-based water repellents, bio-based food packaging materials including polylactic acid, polyhydroxyalkanoates, and nanocellulose systems, fluorine-free firefighting foams, alternative ion exchange membranes for fuel cells and electrolyzers, and next-generation low-loss materials for 5G telecommunications. Technical performance comparisons, cost analyses, and commercialization timelines enable informed substitution planning.

Remediation and treatment technologies receive comprehensive analysis, covering established separation methods (granular activated carbon, ion exchange resins, membrane filtration) and emerging destruction technologies demonstrating commercial-scale validation. Detailed examination of electrochemical oxidation, supercritical water oxidation (SCWO), hydrothermal alkaline treatment (HALT), thermal and non-thermal plasma systems, photocatalysis, and sonochemical oxidation includes technology readiness levels, destruction efficiencies, and commercialization pathways. Market forecasts span drinking water treatment, industrial wastewater, groundwater remediation, landfill leachate management, solids treatment, and residential systems across all global regions.

Report Contents Include:

  • Executive summary with strategic imperatives for corporate PFAS management and industry transition benchmarks
  • Complete PFAS classification covering non-polymeric and polymeric variants, chemical structures, properties, and applications
  • Environmental fate, bioaccumulation mechanisms, toxicity profiles, and health effects driving regulatory action
  • Comprehensive global regulatory landscape analysis including international agreements, EU regulations, US federal and state requirements, and Asian regulatory frameworks
  • Industry-specific PFAS usage analysis across 14 sectors: semiconductors, textiles, food packaging, paints and coatings, ion exchange membranes, energy, 5G materials, cosmetics, firefighting foam, automotive, electronics, medical devices, and green hydrogen
  • Detailed alternatives assessment covering PFAS-free release agents, non-fluorinated surfactants, water and oil-repellent materials, and fluorine-free liquid-repellent surfaces
  • PFAS degradation and elimination methods including phytoremediation, microbial degradation, enzyme-based systems, mycoremediation, and biochar adsorption
  • Water and solids treatment technology analysis with market forecasts by segment, application, and region through 2036
  • Regional market analysis for North America, Europe, Asia-Pacific, Latin America, and Middle East/Africa
  • Impact assessment of regulations on market dynamics, growth in alternatives markets, and regional shifts
  • Emerging trends in green chemistry, circular economy approaches, and digital technologies for PFAS management
  • Technical and economic barriers to PFAS substitution with performance gap analysis
  • Short-term, medium-term, and long-term market projections through 2036
  • 60 company profiles with technology portfolios and strategic positioning plus additional profiles for companies developing PFAS-free alternatives
  • 144 data tables and 18 figures providing quantitative market intelligence

 

Companies Profiled include 374Water, Aclarity, AquaBlok, Aquagga, Aqua Metrology Systems (AMS), AECOM, Aether Biomachines, Allonia, Axine Water Technologies, BioLargo, Cabot Corporation, Calgon Carbon, Chromafora, Clariant, Claros Technologies, CoreWater Technologies, Cornelsen Umwelttechnologie GmbH, Crystal Clean, Cyclopure, Desotec, Dmax Plasma, DuPont, ECT2 (Montrose Environmental Group), Element Six, Environmental Clean Technologies Limited, EPOC Enviro, Evoqua Water Technologies, Framergy, Freudenberg Sealing Technologies, General Atomics and more.....

 
 
 
 

 

 

 

 

1             EXECUTIVE SUMMARY            22

  • 1.1        Introduction to PFAS 22
    • 1.1.1    Strategic Imperatives for Corporate PFAS Management   22
    • 1.1.2    Industry Benchmarks for PFAS Transition   24
  • 1.2        Per- and Polyfluoroalkyl Substances (PFAS): Market Overview 2026-2036          24
    • 1.2.1    Market Landscape and Regulatory Transformation              24
    • 1.2.2    Regulatory Restrictions and Corporate Response 25
    • 1.2.3    PFAS Alternatives Market       26
    • 1.2.4    Remediation Technologies    26
  • 1.3        Definition and Overview of PFAS       27
    • 1.3.1    Chemical Structure and Properties 28
    • 1.3.2    Historical Development and Use      29
  • 1.4        Types of PFAS 30
    • 1.4.1    Non-polymeric PFAS 30
      • 1.4.1.1 Long-Chain PFAS        30
      • 1.4.1.2 Short-Chain PFAS       31
      • 1.4.1.3 Other non-polymeric PFAS   33
    • 1.4.2    Polymeric PFAS            34
      • 1.4.2.1 Fluoropolymers (FPs)               34
      • 1.4.2.2 Side-chain fluorinated polymers:     35
      • 1.4.2.3 Perfluoropolyethers   35
  • 1.5        Properties and Applications of PFAS              36
    • 1.5.1    Water and Oil Repellency       36
    • 1.5.2    Thermal and Chemical Stability        37
    • 1.5.3    Surfactant Properties               37
    • 1.5.4    Low Friction    38
    • 1.5.5    Electrical Insulation  38
    • 1.5.6    Film-Forming Abilities              38
    • 1.5.7    Atmospheric Stability               39
  • 1.6        Environmental and Health Concerns             39
    • 1.6.1    Persistence in the Environment         40
    • 1.6.2    Bioaccumulation        41
    • 1.6.3    Toxicity and Health Effects    42
    • 1.6.4    Environmental Contamination           42
  • 1.7        PFAS Alternatives        43
  • 1.8        Analytical techniques              45
  • 1.9        Manufacturing/handling/import/export       47
  • 1.10     Storage/disposal/treatment/purification     48
  • 1.11     Water quality management  50
  • 1.12     Alternative technologies and supply chains              52

 

2             GLOBAL REGULATORY LANDSCAPE               54

  • 2.1        Impact of growing PFAS regulation  54
  • 2.2        International Agreements      57
  • 2.3        European Union Regulations               57
  • 2.4        United States Regulations     58
    • 2.4.1    Federal regulations    58
      • 2.4.1.1 Current EPA Regulatory Actions and Policy Environment 60
        • 2.4.1.1.1           CERCLA Hazardous Substances Designation         60
        • 2.4.1.1.2           Wastewater Treatment and Biosolids            60
        • 2.4.1.1.3           Safe Drinking Water Act Developments        61
        • 2.4.1.1.4           State-Level Regulatory Fragmentation          61
    • 2.4.2    State-Level Regulations          61
      • 2.4.2.1 Drinking Water Standards     61
      • 2.4.2.2 Product Bans 61
  • 2.5        Asian Regulations       64
    • 2.5.1    Japan  64
      • 2.5.1.1 Chemical Substances Control Law (CSCL)               64
      • 2.5.1.2 Water Quality Standards        64
    • 2.5.2    China  65
      • 2.5.2.1 List of New Contaminants Under Priority Control  65
      • 2.5.2.2 Catalog of Toxic Chemicals Under Severe Restrictions     65
      • 2.5.2.3 New Pollutants Control Action Plan                66
    • 2.5.3    Taiwan 66
      • 2.5.3.1 Toxic and Chemical Substances of Concern Act    66
    • 2.5.4    Australia and New Zealand   66
    • 2.5.5    Canada             67
    • 2.5.6    South Korea    67
  • 2.6        Global Regulatory Trends and Outlook         68
    • 2.6.1    European Union Regulatory Evolution           68

 

3             INDUSTRY-SPECIFIC PFAS USAGE  70

  • 3.1        Semiconductors          70
    • 3.1.1    Importance of PFAS   70
    • 3.1.2    Front-end processes 72
      • 3.1.2.1 Lithography     72
      • 3.1.2.2 Wet etching solutions              73
      • 3.1.2.3 Chiller coolants for dry etchers          73
      • 3.1.2.4 Piping and valves         74
    • 3.1.3    Back-end processes 74
      • 3.1.3.1 Interconnects and Packaging Materials       74
      • 3.1.3.2 Molding materials       75
      • 3.1.3.3 Die attach materials  75
      • 3.1.3.4 Interlayer film for package substrates           75
      • 3.1.3.5 Thermal management             76
    • 3.1.4    Product life cycle and impact of PFAS           76
      • 3.1.4.1 Manufacturing Stage (Raw Materials)            76
      • 3.1.4.2 Usage Stage (Semiconductor Factory)         77
      • 3.1.4.3 Disposal Stage              77
    • 3.1.5    Environmental and Human Health Impacts              77
    • 3.1.6    Regulatory Trends Related to Semiconductors       78
    • 3.1.7    Exemptions     78
    • 3.1.8    Future Regulatory Trends       78
    • 3.1.9    Alternatives to PFAS  79
      • 3.1.9.1 Alkyl Polyglucoside and Polyoxyethylene Surfactants        80
      • 3.1.9.2 Non-PFAS Etching Solutions               80
      • 3.1.9.3 PTFE-Free Sliding Materials  80
      • 3.1.9.4 Metal oxide-based materials               80
      • 3.1.9.5 Fluoropolymer Alternatives   80
      • 3.1.9.6 Silicone-based Materials       80
      • 3.1.9.7 Hydrocarbon-based Surfactants      81
      • 3.1.9.8 Carbon Nanotubes and Graphene   81
      • 3.1.9.9 Engineered Polymers                82
      • 3.1.9.10            Supercritical CO2 Technology            82
      • 3.1.9.11            Plasma Technologies                83
      • 3.1.9.12            Sol-Gel Materials        83
      • 3.1.9.13            Biodegradable Polymers        84
  • 3.2        Textiles and Clothing 85
    • 3.2.1    Overview           85
    • 3.2.2    PFAS in Water-Repellent Materials  85
    • 3.2.3    Stain-Resistant Treatments  86
    • 3.2.4    Regulatory Impact on Water-Repellent Clothing    87
    • 3.2.5    Industry Initiatives and Commitments         88
    • 3.2.6    Alternatives to PFAS  89
      • 3.2.6.1 Enhanced surface treatments            89
      • 3.2.6.2 Water-Repellent Coating Alternatives            90
      • 3.2.6.3 Non-fluorinated treatments 90
      • 3.2.6.4 Biomimetic approaches         91
      • 3.2.6.5 Nano-structured surfaces    92
      • 3.2.6.6 Wax-based additives 92
      • 3.2.6.7 Plasma treatments     93
      • 3.2.6.8 Sol-gel coatings            93
      • 3.2.6.9 Superhydrophobic coatings 94
      • 3.2.6.10            Biodegradable Polymer Coatings     95
      • 3.2.6.11            Graphene-based Coatings    95
      • 3.2.6.12            Enzyme-based Treatments   96
      • 3.2.6.13            Companies     96
  • 3.3        Food Packaging           99
    • 3.3.1    Sustainable packaging            99
      • 3.3.1.1 PFAS in Grease-Resistant Packaging             99
      • 3.3.1.2 Other applications     99
      • 3.3.1.3 Regulatory Trends in Food Contact Materials           100
    • 3.3.2    Alternatives to PFAS  101
      • 3.3.2.1 Biobased materials    101
        • 3.3.2.1.1           Polylactic Acid (PLA) 101
        • 3.3.2.1.2           Polyhydroxyalkanoates (PHAs)          102
        • 3.3.2.1.3           Cellulose-based materials   103
          • 3.3.2.1.3.1      Nano-fibrillated cellulose (NFC)       104
          • 3.3.2.1.3.2      Bacterial Nanocellulose (BNC)          105
        • 3.3.2.1.4           Silicon-based Alternatives     106
        • 3.3.2.1.5           Natural Waxes and Resins    107
        • 3.3.2.1.6           Engineered Paper and Board               107
        • 3.3.2.1.7           Nanocomposites        108
        • 3.3.2.1.8           Plasma Treatments    109
        • 3.3.2.1.9           Biodegradable Polymer Blends          110
        • 3.3.2.1.10        Chemically Modified Natural Polymers        111
        • 3.3.2.1.11        Molded Fiber  112
      • 3.3.2.2 PFAS-free coatings for food packaging         113
        • 3.3.2.2.1           Silicone-based Coatings:       113
        • 3.3.2.2.2           Bio-based Barrier Coatings   113
        • 3.3.2.2.3           Nanocellulose Coatings         115
        • 3.3.2.2.4           Superhydrophobic and Omniphobic Coatings         115
        • 3.3.2.2.5           Clay-based Nanocomposite Coatings          116
        • 3.3.2.2.6           Coated Papers              117
      • 3.3.2.3 Companies     118
  • 3.4        Paints and Coatings  121
    • 3.4.1    Overview           121
    • 3.4.2    Applications   121
    • 3.4.3    Alternatives to PFAS  122
      • 3.4.3.1 Silicon-Based Alternatives:   122
      • 3.4.3.2 Hydrocarbon-Based Alternatives:    123
      • 3.4.3.3 Nanomaterials              123
      • 3.4.3.4 Plasma-Based Surface Treatments 124
      • 3.4.3.5 Inorganic Alternatives               125
      • 3.4.3.6 Bio-based Polymers: 125
      • 3.4.3.7 Dendritic Polymers    126
      • 3.4.3.8 Zwitterionic Polymers               126
      • 3.4.3.9 Graphene-based Coatings    127
      • 3.4.3.10            Hybrid Organic-Inorganic Coatings 127
      • 3.4.3.11            Companies     127
  • 3.5        Ion Exchange membranes     131
    • 3.5.1    Overview           131
      • 3.5.1.1 PFAS in Ion Exchange Membranes   132
    • 3.5.2    Proton Exchange Membranes             132
      • 3.5.2.1 Overview           132
      • 3.5.2.2 Proton Exchange Membrane Electrolyzers (PEMELs)          135
      • 3.5.2.3 Membrane Degradation          136
      • 3.5.2.4 Nafion 137
      • 3.5.2.5 Membrane electrode assembly (MEA)          139
    • 3.5.3    Manufacturing PFSA Membranes     140
    • 3.5.4    Enhancing PFSA Membranes              142
    • 3.5.5    Commercial PFSA membranes         143
    • 3.5.6    Catalyst Coated Membranes              144
      • 3.5.6.1 Alternatives to PFAS  145
    • 3.5.7    Membranes in Redox Flow Batteries               146
      • 3.5.7.1 Alternative Materials for RFB Membranes   148
    • 3.5.8    Alternatives to PFAS  150
      • 3.5.8.1 Alternative Polymer Materials             150
      • 3.5.8.2 Anion Exchange Membrane Technology (AEM) fuel cells   151
      • 3.5.8.3 Nanocellulose               151
      • 3.5.8.4 Boron-containing membranes           152
      • 3.5.8.5 Hydrocarbon-based membranes     153
      • 3.5.8.6 Metal-Organic Frameworks (MOFs) 154
        • 3.5.8.6.1           MOF Composite Membranes              154
      • 3.5.8.7 Graphene         155
      • 3.5.8.8 Companies     156
  • 3.6        Energy (excluding fuel cells) 157
    • 3.6.1    Overview           157
    • 3.6.2    Solar Panels   157
    • 3.6.3    Wind Turbines               158
      • 3.6.3.1 Blade Coatings             158
      • 3.6.3.2 Lubricants and Greases         159
      • 3.6.3.3 Electrical and Electronic Components         159
      • 3.6.3.4 Seals and Gaskets      159
    • 3.6.4    Lithium-Ion Batteries                160
      • 3.6.4.1 Electrode Binders       160
      • 3.6.4.2 Electrolyte Additives 160
      • 3.6.4.3 Separator Coatings    161
      • 3.6.4.4 Current Collector Coatings   161
      • 3.6.4.5 Gaskets and Seals      161
      • 3.6.4.6 Fluorinated Solvents in Electrode Manufacturing 161
      • 3.6.4.7 Surface Treatments   161
    • 3.6.5    Alternatives to PFAS  162
      • 3.6.5.1 Solar    163
        • 3.6.5.1.1           Ethylene Vinyl Acetate (EVA) Encapsulants               163
        • 3.6.5.1.2           Polyolefin Encapsulants        163
        • 3.6.5.1.3           Glass-Glass Module Design 164
        • 3.6.5.1.4           Bio-based Backsheets            164
      • 3.6.5.2 Wind Turbines               165
        • 3.6.5.2.1           Silicone-Based Coatings        165
        • 3.6.5.2.2           Nanocoatings 165
        • 3.6.5.2.3           Thermal De-icing Systems    165
        • 3.6.5.2.4           Polyurethane-Based Coatings            167
      • 3.6.5.3 Lithium-Ion Batteries                167
        • 3.6.5.3.1           Water-Soluble Binders             167
        • 3.6.5.3.2           Polyacrylic Acid (PAA) Based Binders            168
        • 3.6.5.3.3           Alginate-Based Binders          169
        • 3.6.5.3.4           Ionic Liquid Electrolytes          169
      • 3.6.5.4 Companies     170
  • 3.7        Lubricant Alternatives              172
  • 3.8        Low-loss materials for 5G      172
    • 3.8.1    Overview           172
      • 3.8.1.1 Organic PCB materials for 5G             174
    • 3.8.2    PTFE in 5G        175
      • 3.8.2.1 Properties         175
      • 3.8.2.2 PTFE-Based Laminates           176
      • 3.8.2.3 Regulations     177
      • 3.8.2.4 Commercial low-loss               177
    • 3.8.3    Alternatives to PFAS  178
      • 3.8.3.1 Liquid crystal polymers (LCP)             179
      • 3.8.3.2 Poly(p-phenylene ether) (PPE)            179
      • 3.8.3.3 Poly(p-phenylene oxide) (PPO)           180
      • 3.8.3.4 Hydrocarbon-based laminates          181
      • 3.8.3.5 Low Temperature Co-fired Ceramics (LTCC)             182
      • 3.8.3.6 Glass Substrates         183
  • 3.9        Cosmetics       187
    • 3.9.1    Overview           187
    • 3.9.2    Use in cosmetics         187
    • 3.9.3    Alternatives to PFAS  188
      • 3.9.3.1 Silicone-based Polymers       188
      • 3.9.3.2 Plant-based Waxes and Oils 188
      • 3.9.3.3 Naturally Derived Polymers  189
      • 3.9.3.4 Silica-based Materials             189
      • 3.9.3.5 Companies Developing PFAS Alternatives in Cosmetics  190
  • 3.10     Firefighting Foam        191
    • 3.10.1 Overview           191
    • 3.10.2 Aqueous Film-Forming Foam (AFFF)              191
    • 3.10.3 Environmental Contamination from AFFF Use        192
    • 3.10.4 Regulatory Pressures and Phase-Out Initiatives     192
    • 3.10.5 Alternatives to PFAS  193
      • 3.10.5.1            Fluorine-Free Foams (F3)      193
      • 3.10.5.2            Siloxane-Based Foams           194
      • 3.10.5.3            Protein-Based Foams              194
      • 3.10.5.4            Synthetic Detergent Foams (Syndet)              194
      • 3.10.5.5            Compressed Air Foam Systems (CAFS)        194
  • 3.11     Automotive      196
    • 3.11.1 Overview           196
    • 3.11.2 PFAS in Lubricants and Hydraulic Fluids     197
    • 3.11.3 Use in Fuel Systems and Engine Components        197
    • 3.11.4 Electric Vehicle             198
      • 3.11.4.1            PFAS in Electric Vehicles        198
      • 3.11.4.2            High-Voltage Cables 200
      • 3.11.4.3            Refrigerants    201
        • 3.11.4.3.1        Coolant Fluids in EVs               201
        • 3.11.4.3.2        Refrigerants for EVs   202
        • 3.11.4.3.3        Regulations     202
        • 3.11.4.3.4        PFAS-free Refrigerants            203
      • 3.11.4.4            Immersion Cooling for Li-ion Batteries          204
        • 3.11.4.4.1        Overview           204
        • 3.11.4.4.2        Single-phase Cooling               206
        • 3.11.4.4.3        Two-phase Cooling    206
        • 3.11.4.4.4        Companies     208
        • 3.11.4.4.5        PFAS-based Coolants in Immersion Cooling for EVs           209
    • 3.11.5 Alternatives to PFAS  210
      • 3.11.5.1            Lubricants and Greases         211
      • 3.11.5.2            Fuel System Components     212
      • 3.11.5.3            Surface Treatments and Coatings    213
      • 3.11.5.4            Gaskets and Seals      213
      • 3.11.5.5            Hydraulic Fluids           214
      • 3.11.5.6            Electrical and Electronic Components         215
      • 3.11.5.7            Paint and Coatings     216
      • 3.11.5.8            Windshield and Glass Treatments   217
  • 3.12     Electronics      218
    • 3.12.1 Overview           218
    • 3.12.2 PFAS in Printed Circuit Boards           218
    • 3.12.3 Cable and Wire Insulation     219
    • 3.12.4 Regulatory Challenges for Electronics Manufacturers       219
    • 3.12.5 Alternatives to PFAS  220
      • 3.12.5.1            Wires and Cables        220
      • 3.12.5.2            Coating              221
      • 3.12.5.3            Electronic Components         221
      • 3.12.5.4            Sealing and Lubricants           222
      • 3.12.5.5            Cleaning           223
      • 3.12.5.6            Companies     223
  • 3.13     Medical Devices           227
    • 3.13.1 Overview           227
    • 3.13.2 PFAS in Implantable Devices               228
    • 3.13.3 Diagnostic Equipment Applications               228
    • 3.13.4 Balancing Safety and Performance in Regulations               229
    • 3.13.5 Alternatives to PFAS  231
  • 3.14     Green hydrogen            232
    • 3.14.1 Electrolyzers   232
    • 3.14.2 Alternatives to PFAS  232
    • 3.14.3 Economic implications           233

 

4             PFAS ALTERNATIVES 234

  • 4.1        PFAS-Free Release Agents    234
    • 4.1.1    Silicone-Based Alternatives  234
    • 4.1.2    Hydrocarbon-Based Solutions           235
    • 4.1.3    Performance Comparisons  236
  • 4.2        Non-Fluorinated Surfactants and Dispersants       237
    • 4.2.1    Bio-Based Surfactants            238
    • 4.2.2    Silicon-Based Surfactants    239
    • 4.2.3    Hydrocarbon-Based Surfactants      239
  • 4.3        PFAS-Free Water and Oil-Repellent Materials          240
    • 4.3.1    Dendrimers and Hyperbranched Polymers                241
    • 4.3.2    PFA-Free Durable Water Repellent (DWR) Coatings             242
    • 4.3.3    Silicone-Based Repellents    242
    • 4.3.4    Nano-Structured Surfaces    243
  • 4.4        Fluorine-Free Liquid-Repellent Surfaces     245
    • 4.4.1    Superhydrophobic Coatings 245
    • 4.4.2    Omniphobic Surfaces              246
    • 4.4.3    Slippery Liquid-Infused Porous Surfaces (SLIPS)   247
  • 4.5        PFAS-Free Colorless Transparent Polyimide             249
    • 4.5.1    Novel Polymer Structures      249
    • 4.5.2    Applications in Flexible Electronics 250
  • 4.6        Heat Transfer Fluid Alternatives         251
  • 4.7        Lubricant Alternatives              251

 

5             PFAS DEGRADATION AND ELIMINATION     253

  • 5.1        Current methods for PFAS degradation and elimination   253
  • 5.2        Bio-friendly methods                254
    • 5.2.1    Phytoremediation       254
    • 5.2.2    Microbial Degradation             255
    • 5.2.3    Enzyme-Based Degradation 255
    • 5.2.4    Mycoremediation        256
    • 5.2.5    Biochar Adsorption    256
    • 5.2.6    Green Oxidation Methods     257
    • 5.2.7    Bio-based Adsorbents             259
    • 5.2.8    Algae-Based Systems              259
  • 5.3        Companies     260
  • 5.4        Emerging Remediation and Destruction Technologies       262
    • 5.4.1    Technology Validation and Commercial Readiness Overview       262
    • 5.4.2    High-Efficiency Thermal Destruction: Recent Validated Results 262
    • 5.4.3    Hydrothermal alkaline treatment (HALT)     262
    • 5.4.4    Plasma Treatment       263
      • 5.4.4.1 Thermal Plasma Systems      263
      • 5.4.4.2 Non-Thermal Plasma Systems           264

 

6             PFAS TREATMENT       265

  • 6.1        Definitional Framework: Treatment Market vs. Remediation Market         265
  • 6.2        Introduction    266
  • 6.3        Pathways for PFAS environmental contamination 269
    • 6.3.1    Corporate PFAS Phase-Out Commitments               269
  • 6.4        Regulations     271
    • 6.4.1    USA      271
    • 6.4.2    EU         272
    • 6.4.3    Rest of the World         273
  • 6.5        PFAS water treatment               275
    • 6.5.1    Introduction    275
    • 6.5.2    Market Forecast 2025-2036 275
    • 6.5.3    Applications   276
      • 6.5.3.1 Drinking water                276
      • 6.5.3.2 Aqueous film forming foam (AFFF)   277
      • 6.5.3.3 Landfill leachate          277
      • 6.5.3.4 Municipal wastewater treatment      277
      • 6.5.3.5 Industrial process and wastewater  277
      • 6.5.3.6 Sites with heavy PFAS contamination           277
      • 6.5.3.7 Point-of-use (POU) and point-of-entry (POE) filters and systems                278
    • 6.5.4    PFAS treatment approaches                278
    • 6.5.5    Traditional removal technologies     280
      • 6.5.5.1 Adsorption: granular activated carbon (GAC)           281
        • 6.5.5.1.1           Sources             281
        • 6.5.5.1.2           Short-chain PFAS compounds           282
        • 6.5.5.1.3           Reactivation   282
        • 6.5.5.1.4           PAC systems  283
      • 6.5.5.2 Adsorption: ion exchange resins (IER)           283
        • 6.5.5.2.1           Pre-treatment                 283
        • 6.5.5.2.2           Resins 284
      • 6.5.5.3 Membrane filtration-reverse osmosis and nanofiltration 286
    • 6.5.6    Emerging removal technologies        287
      • 6.5.6.1 Foam fractionation and ozofractionation    288
        • 6.5.6.1.1           Polymeric sorbents    289
        • 6.5.6.1.2           Mineral-based sorbents          289
        • 6.5.6.1.3           Flocculation/coagulation       289
        • 6.5.6.1.4           Electrostatic coagulation/concentration     290
      • 6.5.6.2 Companies     290
    • 6.5.7    Destruction technologies      291
      • 6.5.7.1 PFAS waste management     293
      • 6.5.7.2 Landfilling of PFAS-containing waste             293
      • 6.5.7.3 Thermal treatment      293
      • 6.5.7.4 Liquid-phase PFAS destruction         294
      • 6.5.7.5 Electrochemical oxidation    296
      • 6.5.7.6 Supercritical water oxidation (SCWO)           296
      • 6.5.7.7 Hydrothermal alkaline treatment (HALT)     296
      • 6.5.7.8 Plasma treatment       297
      • 6.5.7.9 Photocatalysis              298
      • 6.5.7.10            Sonochemical oxidation        298
      • 6.5.7.11            Challenges      299
      • 6.5.7.12            Companies     300
  • 6.6        Destruction Technologies      301
    • 6.6.1    Technology Validation and Commercial Readiness Overview       301
    • 6.6.2    High-Efficiency Thermal Destruction: Recent Validated Results 301
  • 6.7        PFAS Solids Treatment             301
    • 6.7.1    Market Forecast 2025-2036 301
    • 6.7.2    PFAS migration             302
    • 6.7.3    Soil washing (or soil scrubbing)         303
    • 6.7.4    Soil flushing    304
    • 6.7.5    Thermal desorption   304
    • 6.7.6    Phytoremediation       304
    • 6.7.7    In-situ immobilization              304
    • 6.7.8    Pyrolysis and gasification      305
    • 6.7.9    Plasma              305
    • 6.7.10 Supercritical water oxidation (SCWO)           305
  • 6.8        Companies     306

 

7             MARKET ANALYSIS AND FUTURE OUTLOOK             309

  • 7.1        Current Market Size and Segmentation        309
    • 7.1.1    Long-Term Market Perspective            309
    • 7.1.2    Industry Capacity Expansion Investments 309
    • 7.1.3    Global PFAS Market Overview            311
    • 7.1.4    Regional Market Analysis      311
      • 7.1.4.1 North America              312
      • 7.1.4.2 Europe                312
      • 7.1.4.3 Asia-Pacific    312
      • 7.1.4.4 Latin America 313
      • 7.1.4.5 Middle East and Africa             313
    • 7.1.5    Market Segmentation by Industry    313
      • 7.1.5.1 Textiles and Apparel  313
      • 7.1.5.2 Food Packaging           313
      • 7.1.5.3 Firefighting Foams      314
      • 7.1.5.4 Electronics & semiconductors           314
      • 7.1.5.5 Automotive      314
      • 7.1.5.6 Aerospace        314
      • 7.1.5.7 Construction  315
      • 7.1.5.8 Others 315
    • 7.1.6    Global PFAS Treatment Market Overview    316
      • 7.1.6.1 Regional PFAS Treatment Market Analysis 317
        • 7.1.6.1.1           North America              317
        • 7.1.6.1.2           Europe                318
        • 7.1.6.1.3           Asia-Pacific    319
        • 7.1.6.1.4           Latin America 320
        • 7.1.6.1.5           Middle East and Africa             321
        • 7.1.6.1.6           Destruction technologies by waste source, by region         321
          • 7.1.6.1.6.1      Industrial Wastewater and Concentrated Waste Streams               322
          • 7.1.6.1.6.2      Landfill Leachate         322
          • 7.1.6.1.6.3      Concentrated Separation Process Waste   322
          • 7.1.6.1.6.4      Groundwater and Drinking Water     322
          • 7.1.6.1.6.5      Solid Waste and Biosolids    322
  • 7.2        Impact of Regulations on Market Dynamics             324
    • 7.2.1    Shift from Long-Chain to Short-Chain PFAS              324
    • 7.2.2    Corporate PFAS Phase-Out Commitments               325
    • 7.2.3    Growth in PFAS-Free Alternatives Market    326
    • 7.2.4    Regional Market Shifts Due to Regulatory Differences       327
  • 7.3        Emerging Trends and Opportunities               328
    • 7.3.1    Green Chemistry Innovations             328
    • 7.3.2    Circular Economy Approaches          330
    • 7.3.3    Digital Technologies for PFAS Management              331
  • 7.4        Challenges and Barriers to PFAS Substitution         332
    • 7.4.1    Technical Performance Gaps              332
    • 7.4.2    Cost Considerations 334
    • 7.4.3    Regulatory Uncertainty            335
  • 7.5        Future Market Projections     337
    • 7.5.1    Short-Term Outlook (1-3 Years)          337
    • 7.5.2    Medium-Term Projections (3-5 Years)            338
    • 7.5.3    Long-Term Scenarios (5-10 Years)    340

 

8             COMPANY PROFILES                344 (60 company profiles)

 

9             RESEARCH METHODOLOGY              390

 

10          REFERENCES 391

 

List of Tables

  • Table 1. Established applications of PFAS. 22
  • Table 2. PFAS chemicals segmented by non-polymers vs polymers.        22
  • Table 3. Quantified PFAS Liability Landscape (Current Estimates)            23
  • Table 4. EU PFAS Regulatory Evolution and Timeline           25
  • Table 5. Quantified Market Transformation Metrics              26
  • Table 6. Non-polymeric PFAS.            27
  • Table 7. Chemical structure and physiochemical properties of various perfluorinated surfactants.  28
  • Table 8. Examples of long-chain PFAS-Applications, Regulatory Status and Environmental and Health Effects.              30
  • Table 9. Examples of short-chain PFAS.       31
  • Table 10. Other non-polymeric PFAS.            33
  • Table 11. Examples of fluoropolymers.         34
  • Table 12. Examples of side-chain fluorinated polymers.   35
  • Table 13. Applications of PFAs.          36
  • Table 14. PFAS surfactant properties.            38
  • Table 15. List of PFAS alternatives.  43
  • Table 16. Common PFAS and their regulation.         54
  • Table 17. International PFAS regulations.    57
  • Table 18. European Union Regulations.       58
  • Table 19. United States Regulations.             62
  • Table 20. U.S. Multi-Layered PFAS Regulatory Framework               63
  • Table 21. Selected State PFAS Regulations Exceeding Federal Standards            63
  • Table 22. PFAS Regulations in Asia-Pacific Countries.       67
  • Table 23. Identified uses of PFAS in semiconductors.        70
  • Table 24. Alternatives to PFAS in Semiconductors.               79
  • Table 25. Key properties of PFAS in water-repellent materials.     86
  • Table 26. Initiatives by outdoor clothing companies to phase out PFCs.                88
  • Table 27. Comparative analysis of Alternatives to PFAS for textiles.          89
  • Table 28. Companies developing PFAS alternatives for textiles.  96
  • Table 29. Applications of PFAS in Food Packaging.              99
  • Table 30. Regulation related to PFAS in food contact materials.  100
  • Table 31. Applications of cellulose nanofibers (CNF).        104
  • Table 32. Companies developing PFAS alternatives for food packaging.               118
  • Table 33. Applications and purpose of PFAS in paints and coatings.        121
  • Table 34. Companies developing PFAS alternatives for paints and coatings.      127
  • Table 35. Applications of Ion Exchange Membranes.          131
  • Table 36. Key aspects of PEMELs.    135
  • Table 37. Membrane Degradation Processes Overview.    136
  • Table 38. PFSA Membranes & Key Players. 136
  • Table 39. Competing Membrane Materials.               137
  • Table 40. Comparative analysis of membrane properties.               137
  • Table 41. Processes for manufacturing of  perfluorosulfonic acid (PFSA) membranes.               141
  • Table 42. PFSA Resin Suppliers.        143
  • Table 43. CCM Production Technologies.    144
  • Table 44. Comparison of Coating Processes.           145
  • Table 45. Alternatives to PFAS in catalyst coated membranes.    145
  • Table 46. Key Properties and Considerations for RFB Membranes.           147
  • Table 47. PFSA Membrane Manufacturers for RFBs.            147
  • Table 48. Alternative Materials for RFB Membranes             148
  • Table 49. Alternative Polymer Materials for Ion Exchange Membranes.  150
  • Table 50. Hydrocarbon Membranes for PEM Fuel Cells.    153
  • Table 51. Companies developing PFA alternatives for fuel cell membranes.      156
  • Table 52. Identified uses of PFASs in the energy sector.    157
  • Table 53. Alternatives to PFAS in Energy by Market (Excluding Fuel Cells).           162
  • Table 54: Anti-icing and de-icing nanocoatings product and application developers.   166
  • Table 55. Companies developing alternatives to PFAS in energy (excluding fuel cells).                170
  • Table 56. Commercial low-loss organic laminates-key properties at 10 GHz.    174
  • Table 57. Key Properties of PTFE to Consider for 5G Applications.             175
  • Table 58. Applications of PTFE in 5G in a table         175
  • Table 59. Challenges in PTFE-based laminates in 5G.        176
  • Table 60. Key regulations affecting PFAS use in low-loss materials.          177
  • Table 61. Commercial low-loss materials suitable for 5G applications. 177
  • Table 62. Key low-loss materials suppliers.               178
  • Table 63. Alternatives to PFAS for low-loss applications in 5G      178
  • Table 64. Benchmarking LTCC materials suitable for 5G applications.   183
  • Table 65. Benchmarking of various glass substrates suitable for 5G applications.         184
  • Table 66. Applications of PFAS in cosmetics.           187
  • Table 67. Alternatives to PFAS for various functions in cosmetics.            188
  • Table 68. Companies developing PFAS alternatives in cosmetics.             190
  • Table 69. Applications of PFAS in Automotive Industry.     196
  • Table 70. Application of PFAS in Electric Vehicles.                199
  • Table 71.Suppliers of PFAS-free Coolants and Refrigerants for EVs.         203
  • Table 72. Immersion Fluids for EVs  204
  • Table 73. Immersion Cooling Fluids Requirements.             205
  • Table 74. Single-phase vs two-phase cooling.         207
  • Table 75. Companies producing Immersion Fluids for EVs.            208
  • Table 76. Alternatives to PFAS in the automotive sector.   210
  • Table 77. Use of PFAS in the electronics sector.     218
  • Table 78. Companies developing alternatives to PFAS in electronics & semiconductors.          223
  • Table 79. Applications of PFAS in Medical Devices.              227
  • Table 80. Alternatives to PFAS in medical devices.               231
  • Table 81. Readiness level of PFAS alternatives.       234
  • Table 82. Comparing PFAS-free alternatives to traditional PFAS-containing release agents.   236
  • Table 83. Novel PFAS-free CTPI structures.                249
  • Table 84. Applications of PFAS-free CTPIs in flexible electronics.               250
  • Table 85. Current methods for PFAS elimination . 253
  • Table 86. Companies developing processes for PFA degradation and elimination.         260
  • Table 87. PFAS Treatment Market Scope and Definitions 265
  • Table 88. Treatment Market Segment Share Evolution (2025-2035)          265
  • Table 89. Total PFAS Treatment Market Forecast by Segment (2025-2036).         267
  • Table 90. PFAS Treatment Market Share Evolution.              268
  • Table 91. PFAS Treatment Technology Generational Framework 268
  • Table 92. Destruction Technology Performance Benchmarks       268
  • Table 93. Pathways for PFAS environmental contamination.         269
  • Table 94.  Global PFAS Drinking Water Limits           271
  • Table 95. USA PFAS Regulations.      272
  • Table 96. EU PFAS Regulations          273
  • Table 97. Global PFAS Regulations. 273
  • Table 98. PFAS drinking water treatment market forecast 2025-2036     276
  • Table 99. Applications requiring PFAS water treatment.    276
  • Table 100. Point-of-Use (POU) and Point-of-Entry (POE) Systems.             278
  • Table 101. PFAS treatment approaches.     278
  • Table 102. Typical Flow Rates for Different Facilities.         279
  • Table 103. In-Situ vs Ex-Situ Treatment Comparison           280
  • Table 104. Technology Readiness Level (TRL) for PFAS Removal.                280
  • Table 105. Removal technologies for PFAS in water.            281
  • Table 106. Suppliers of GAC media for PFAS removal applications.          283
  • Table 107. Commercially Available PFAS-Selective Resins.           285
  • Table 108. Estimated Treatment Costs by Method.              286
  • Table 109. Comparison of technologies for PFAS removal.             287
  • Table 110. Emerging removal technologies for PFAS in water.        287
  • Table 111. Companies in emerging PFAS removal technologies. 291
  • Table 112. PFAS Destruction Technologies.               291
  • Table 113. Technology Readiness Level (TRL) for PFAS Destruction Technologies.          292
  • Table 114. Thermal Treatment Types.             294
  • Table 115. Liquid-Phase Technology Segmentation.            295
  • Table 116. PFAS Destruction Technologies Challenges.    299
  • Table 117. Companies developing PFAS Destruction Technologies.         300
  • Table 118. PFAS Solids Treatment Market Forecast 2025-2036.  302
  • Table 119. Treatment Methods for PFAS-Contaminated Solids.   303
  • Table 120. Companies developing processes for PFAS water and solid treatment.         306
  • Table 121. 30-year market estimate.              309
  • Table 122. Global PFAS Market Projection (2023-2036), Billions USD.    311
  • Table 123. Regional PFAS Chemicals Market Projection (2023-2036), Billions USD.      311
  • Table 124. PFAS Chemicals Market Segmentation by Industry (2023-2036), Billions USD.        315
  • Table 125. Regional PFAS Treatment Market (2025-2036), Billions USD. 317
  • Table 126. PFAS treatment market by region, North America.       317
  • Table 127. PFAS treatment market by region, Europe.        318
  • Table 128. PFAS treatment market by region, Asia-Pacific.             319
  • Table 129. PFAS treatment market by region, Latin America          320
  • Table 130. PFAS treatment market by region Middle East and Africa         321
  • Table 131. Breakdown by Waste Source and Region (2025-2036)              323
  • Table 132. Long-Chain PFAS and Short-Chain PFAS Market Share             324
  • Table 133. Corporate PFAS Transition Strategy Typology and Risk Assessment 325
  • Table 134.PFAS-Free Alternatives Market Size from 2020 to 2035, (Billions USD).          326
  • Table 135. Regional Market Data (2023) for PFAS and trends.       328
  • Table 136. Market Opportunities for PFAS alternatives.     329
  • Table 137. Circular Economy Initiatives and Potential Impact.     330
  • Table 138. Digital Technology Applications and Market Potential.              331
  • Table 139. Performance Comparison.          333
  • Table 140. Cost Comparison -PFAS and PFAS alternatives.            334
  • Table 141. PFAS Market Scenario Comparison: Quantified 2035 Projections (USD Billions)    336
  • Table 142. Global market Size 2023-2026 (USD Billions). 338
  • Table 143. Medium-Term Market Projections (2026-2030), Billions USD.              339
  • Table 144. Long-Term Market Projections (2036), Billions USD.   341

 

List of Figures

  • Figure 1. Types of PFAS.          30
  • Figure 2. Structure of PFAS-based polymer finishes.          33
  • Figure 3. Water and Oil Repellent Textile Coating. 37
  • Figure 4. Main PFAS exposure route.              39
  • Figure 5. Main sources of perfluorinated compounds (PFC) and general pathways that these compounds may take toward human exposure.    41
  • Figure 6.  Photolithography process in semiconductor manufacturing. 71
  • Figure 7. PFAS containing Chemicals by Technology Node.            72
  • Figure 8. The photoresist application process in photolithography.          73
  • Figure 9: Contact angle on superhydrophobic coated surface.    94
  • Figure 10. PEMFC Working Principle.             133
  • Figure 11. Schematic representation of a Membrane Electrode Assembly (MEA).          140
  • Figure 12. Slippery Liquid-Infused Porous Surfaces (SLIPS).          248
  • Figure 13. Aclarity’s Octa system.    258
  • Figure 14. Process for treatment of PFAS in water. 275
  • Figure 15. Octa™ system.       345
  • Figure 16. Axine Water Technologies system.           350
  • Figure 17. Gradiant Forever Gone.   368
  • Figure 18. PFAS Annihilator® unit.    385

 

 

Purchasers will receive the following:

  • PDF report download/by email. 
  • Comprehensive Excel spreadsheet of all data.
  • Mid-year Update

 

The Global Market for Per- and Polyfluoroalkyl Substances (PFAS), PFAS Restrictions, PFAS Alternatives Market and PFAS Remediation Technologies 2026-2036
The Global Market for Per- and Polyfluoroalkyl Substances (PFAS), PFAS Restrictions, PFAS Alternatives Market and PFAS Remediation Technologies 2026-2036
PDF download/by email.

The Global Market for Per- and Polyfluoroalkyl Substances (PFAS), PFAS Restrictions, PFAS Alternatives and PFAS Remediation Technologies 2026-2036
The Global Market for Per- and Polyfluoroalkyl Substances (PFAS), PFAS Restrictions, PFAS Alternatives and PFAS Remediation Technologies 2026-2036
PDF and Print Edition (including tracked delivery).

Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer. To order by Bank Transfer (Invoice) select this option from the payment methods menu after adding to cart, or contact info@futuremarketsinc.com