
cover
- Published: December 2025
- Pages: 505
- Tables: 340
- Figures: 109
Porous framework materials offer unprecedented control over porosity, surface chemistry, and molecular interactions at the nanoscale. This diverse class of crystalline and amorphous materials—encompassing Metal-Organic Frameworks (MOFs), Covalent Organic Frameworks (COFs), Hydrogen-Bonded Organic Frameworks (HOFs), Zeolitic Imidazolate Frameworks (ZIFs), Porous Aromatic Frameworks (PAFs), Covalent Triazine Frameworks (CTFs), Conjugated Microporous Polymers (CMPs), and several other emerging material types—is transitioning from academic curiosity to commercial reality across multiple high-value industries.
The defining characteristic of porous framework materials is their extraordinary porosity and surface area, with some materials exceeding 7,000 m²/g—equivalent to the surface area of a football field contained within a single gram of material. This exceptional porosity, combined with highly tunable pore sizes, shapes, and chemical functionalities, enables these materials to selectively capture, store, separate, and release specific molecules with remarkable efficiency. Unlike traditional porous materials such as zeolites and activated carbons, framework materials can be rationally designed at the molecular level to meet precise application requirements.
The market for porous framework materials is being driven by several converging global megatrends. Climate efforts are accelerating demand for carbon capture technologies, where MOFs and related materials offer significant advantages over conventional amine-based systems in terms of energy efficiency and regeneration requirements. The hydrogen economy is creating opportunities in gas storage, where framework materials can store hydrogen at lower pressures and ambient temperatures than compressed gas cylinders. Water scarcity is driving interest in atmospheric water harvesting systems that can extract potable water from desert air. Meanwhile, the pharmaceutical industry is exploring these materials for targeted drug delivery, and the electronics sector is investigating their potential in next-generation sensors and separation membranes.
Metal-Organic Frameworks currently dominate the market, accounting for the majority of commercial activity and research investment and achieving industrial-scale production. The emergence of artificial intelligence and machine learning tools for materials discovery is dramatically accelerating the pace of new framework material development and optimization.
Despite significant progress, challenges remain. Production costs, while declining, still limit adoption in price-sensitive applications. Long-term stability under real-world operating conditions requires further validation for many applications. Standardization of testing protocols and quality specifications is still evolving.
Key applications analyzed include carbon capture, utilization and storage (CCUS), direct air capture (DAC), hydrogen storage, natural gas storage, chemical separation and purification, atmospheric water harvesting, HVAC and dehumidification systems, water and air purification, heterogeneous catalysis, photocatalysis, lithium-ion batteries, fuel cells, drug delivery systems, chemical sensors, gas sensors, adsorption heat pumps, and protective coatings. Emerging applications in quantum computing, agriculture, food packaging, and space technologies are also examined.
The report provides extensive technology assessment covering synthesis methods, scale-up challenges, manufacturing economics, and downstream processing techniques. Critical analysis of artificial intelligence and machine learning applications in framework material discovery and optimization reflects the latest industry developments accelerating commercialization timelines.
Report Contents Include:
- Comprehensive taxonomy and classification of all porous framework material types
- Detailed property comparisons and benchmarking against traditional porous materials
- Analysis of 13 major application markets with individual forecasts
- Manufacturing process analysis including batch, continuous flow, and green chemistry approaches
- Production cost analysis and pricing trends by material type
- Technology readiness level assessment across material categories
- Patent landscape analysis and intellectual property trends
- Competitive landscape mapping and value chain analysis
- 45 company profiles of leading manufacturers, technology developers, and distributors
- Regional market analysis with country-level forecasts
- Technology roadmap through 2036 with strategic recommendations
- Over 340 data tables and 109 figures
Companies Profiled include:
This report features detailed profiles of 45 companies active in the porous framework materials industry: ACSYNAM, AirJoule, Alphane Labs, AspiraDAC, Atoco, Atomis, Avnos, BASF, Captivate Technology, Carbon Infinity, CSIRO/MOFWORX, Daikin, Disruptive Materials, EnergyX, ExxonMobil, Framergy, Green Science Alliance, H2MOF and more......
1 EXECUTIVE SUMMARY 30
- 1.1 Material Classification and Taxonomy 32
- 1.2 Markets and Applications Overview 34
- 1.3 Industry Developments 2020-2025 35
- 1.4 Current Technical Challenges and Limitations 37
- 1.5 Cost and Pricing Analysis 38
- 1.6 Role of Artificial Intelligence and Machine Learning in Commercialization 39
- 1.7 Competitive Landscape Summary 40
- 1.8 Market Prospects to 2036 41
2 INTRODUCTION TO POROUS FRAMEWORK MATERIALS 46
- 2.1 Definition and Classification 46
- 2.1.1 What are Porous Framework Materials? 48
- 2.1.2 2.1.2 Historical Development and Timeline 48
- 2.1.3 Classification by Bonding Type 49
- 2.1.4 Classification by Crystallinity 50
- 2.1.5 Classification by Composition (Hybrid vs. Organic) 51
- 2.1.6 Reticular Chemistry Principles 53
- 2.2 Fundamental Properties 54
- 2.2.1 Porosity and Surface Area 55
- 2.2.2 Pore Size Distribution (Micro-, Meso-, Macroporous) 56
- 2.2.3 Thermal Stability 56
- 2.2.4 Chemical Stability 57
- 2.2.5 Mechanical Properties 58
- 2.2.6 Adsorption and Selectivity 58
- 2.2.7 Conductivity (Electrical, Ionic, Proton) 59
- 2.2.8 Optical Properties 2.2.9 Biocompatibility and Biodegradability 60
- 2.3 Comparison of Porous Framework Materials 61
- 2.3.1 Comparative Property Analysis 62
- 2.3.2 Benchmarking Against Traditional Porous Materials 63
- 2.3.2.1 Zeolites 64
- 2.3.2.2 Activated Carbon 65
- 2.3.2.3 Mesoporous Silica 66
- 2.3.2.4 Porous Polymers 67
- 2.3.2.5 Selection Criteria for Different Applications 67
- 2.3.3 Cost-Performance Trade-offs 69
- 2.4 Regulatory Landscape 70
- 2.4.1 Environmental Regulations 70
- 2.4.2 Health and Safety Considerations 70
- 2.4.3 Regional Regulatory Frameworks 71
- 2.4.4 Sustainability and Lifecycle Assessment 72
3 METAL-ORGANIC FRAMEWORKS (MOFs) 72
- 3.1 Overview and Structure 72
- 3.1.1 Definition and Composition 73
- 3.1.2 Secondary Building Units (SBUs) 74
- 3.1.3 Organic Linkers 76
- 3.1.4 Topology and Design Principles 78
- 3.2 Types and Families of MOFs 80
- 3.3 Properties and Performance Characteristics 82
- 3.3.1 Surface Area and Porosity Metrics 83
- 3.3.2 Gas Adsorption Capabilities 84
- 3.3.3 Stability Profiles 85
- 3.3.4 Functionalization Options 86
- 3.4 Synthesis Methods 87
- 3.4.1 Solvothermal Synthesis 88
- 3.4.2 Hydrothermal Synthesis 89
- 3.4.3 Electrochemical Synthesis 90
- 3.4.4 Microwave-Assisted Synthesis 90
- 3.4.5 Mechanochemical Synthesis 90
- 3.4.6 Sonochemical Synthesis 90
- 3.4.7 Continuous Flow Synthesis 90
- 3.4.8 Room Temperature Synthesis 92
- 3.4.9 Spray Drying and Spray Pyrolysis 92
- 3.4.10 Layer-by-Layer Growth 94
- 3.4.11 Comparison of Synthesis Methods 94
- 3.5 Scale-Up and Industrial Manufacturing 96
- 3.5.1 Challenges in Translation from Lab to Industrial Scale 96
- 3.5.2 Current Production Capacities 98
- 3.5.3 Key Manufacturers and Production Volumes 99
- 3.5.4 Cost Structures and Economics 100
- 3.6 Downstream Processing and Formulation 101
- 3.6.1 Activation Methods 103
- 3.6.2 Shaping (Pellets, Monoliths, Membranes, Coatings) 104
- 3.6.3 Composite Formation 105
- 3.6.4 Quality Control and Characterization 107
- 3.7 Commercial Products and Pricing 108
- 3.7.1 Commercially Available MOFs 108
- 3.7.2 Pricing Trends 109
- 3.7.3 Supply Chain Considerations 110
- 3.8 SWOT Analysis for MOFs 111
4 ZEOLITIC IMIDAZOLATE FRAMEWORKS (ZIFs) 113
- 4.1 Overview and Structure 113
- 4.1.1 Definition and Relationship to MOFs 114
- 4.1.2 Zeolite-like Topology 116
- 4.1.3 Metal-Imidazolate Bonding 117
- 4.2 Types and Families of ZIFs 120
- 4.2.1 ZIF-8 120
- 4.2.2 ZIF-67 122
- 4.2.3 ZIF-90 124
- 4.2.4 ZIF-L 126
- 4.2.5 Other ZIF Variants 127
- 4.3 Properties and Performance Characteristics 128
- 4.3.1 Exceptional Thermal and Chemical Stability 128
- 4.3.2 Hydrophobicity 129
- 4.3.3 Gas Separation Performance 130
- 4.4 Synthesis Methods 132
- 4.4.1 Solvothermal Methods 133
- 4.4.2 Aqueous Synthesis 133
- 4.4.3 Room Temperature Methods 4.4.4 Continuous Flow Production 133
- 4.5 Commercial Status 134
- 4.6 SWOT Analysis for ZIFs 134
5 COVALENT ORGANIC FRAMEWORKS (COFs) 135
- 5.1 Overview and Structure 135
- 5.1.1 Definition and Composition 138
- 5.1.2 Light Element Construction (H, B, C, N, O) 139
- 5.1.3 2D vs. 3D COFs 140
- 5.1.4 Linkage Chemistry Types 142
- 5.2 Types of COFs by Linkage 144
- 5.2.1 Boronate Ester-Linked COFs 146
- 5.2.2 Imine-Linked COFs (Schiff Base) 147
- 5.2.3 Hydrazone-Linked COFs 148
- 5.2.4 Triazine-Based COFs 148
- 5.2.5 β-Ketoenamine-Linked COFs 149
- 5.2.6 Other Linkage Types 151
- 5.3 Properties and Performance Characteristics 152
- 5.3.1 Crystallinity and Long-Range Order 153
- 5.3.2 Electronic Properties and Conductivity 154
- 5.3.3 Chemical Stability 154
- 5.3.4 Photocatalytic Properties 155
- 5.4 Synthesis Methods 155
- 5.4.1 Solvothermal Synthesis 156
- 5.4.2 Mechanochemical Synthesis 157
- 5.4.3 Microwave-Assisted Synthesis 5.4.4 Room Temperature Synthesis 157
- 5.4.4 Interfacial Polymerization 158
- 5.4.5 Challenges in Crystallinity Control 159
- 5.5 Scale-Up Challenges and Commercial Status 160
- 5.5.1 Production Limitations 160
- 5.6 Commercial Status 162
- 5.7 SWOT Analysis for COFs 163
6 HYDROGEN-BONDED ORGANIC FRAMEWORKS (HOFs) 164
- 6.1 Overview and Structure 164
- 6.1.1 Definition and Bonding Principles 165
- 6.1.2 Hydrogen Bonding Motifs 166
- 6.1.3 Comparison with MOFs and COFs 168
- 6.2 Building Block Types 168
- 6.2.1 Carboxylic Acid-Based HOFs 169
- 6.2.2 Diaminotriazine (DAT)-Based HOFs 170
- 6.2.3 Amide-Based HOFs 172
- 6.2.4 Pyrazole-Based HOFs 173
- 6.2.5 Other Hydrogen Bonding Units 174
- 6.3 Properties and Performance Characteristics 176
- 6.3.1 Solution Processability 176
- 6.3.2 Regeneration and Self-Healing 178
- 6.3.3 Low Density and Metal-Free Nature 179
- 6.3.4 Water Stability Considerations 180
- 6.4 Synthesis Methods 181
- 6.4.1 Crystallization Techniques 182
- 6.4.2 Solvent Selection and Optimization 183
- 6.4.3 Post-Synthetic Modifications 185
- 6.5 Commercial Potential and Challenges 186
- 6.5.1 Advantages for Industrial Application 186
- 6.5.2 Stability Limitations 188
- 6.5.3 Emerging Applications 189
- 6.6 SWOT Analysis for HOFs 190
7 POROUS AROMATIC FRAMEWORKS (PAFs) 191
- 7.1 Overview and Structure 191
- 7.1.1 Definition and Composition 192
- 7.1.2 C-C Bond Linkages 192
- 7.1.3 Amorphous vs. Ordered Structures 194
- 7.2 Types and Notable PAFs 195
- 7.2.1 PAF-1 and Derivatives 196
- 7.2.2 Functionalized PAFs 198
- 7.2.3 Heteroatom-Doped PAFs 199
- 7.3 Properties and Performance Characteristics 199
- 7.3.1 Ultrahigh Surface Areas 199
- 7.3.2 Exceptional Chemical Stability 200
- 7.3.3 Thermal Stability (>400°C) 201
- 7.3.4 Metal-Free Composition 202
- 7.4 Synthesis Methods 203
- 7.4.1 Yamamoto Coupling 204
- 7.4.2 Suzuki Coupling 205
- 7.4.3 Sonogashira Coupling 205
- 7.4.4 Other Cross-Coupling Reactions 206
- 7.4.5 Scale-Up Considerations 207
- 7.5 Commercial Status and Applications 208
8 COVALENT TRIAZINE FRAMEWORKS (CTFs) 210
- 8.1 Overview and Structure 210
- 8.1.1 Definition and Composition 211
- 8.1.2 Triazine Ring Formation 212
- 8.1.3 Nitrogen-Rich Frameworks 213
- 8.2 Types and Variants 214
- 8.2.1 CTF-1 and Derivatives 214
- 8.2.2 Ionothermal vs. Polycondensation Routes 216
- 8.2.3 Functionalized CTFs 218
- 8.3 Properties and Performance Characteristics 218
- 8.3.1 High Nitrogen Content 218
- 8.3.2 CO₂ Capture Affinity 220
- 8.3.3 Catalytic Properties 221
- 8.3.4 Electronic Properties 222
- 8.4 Synthesis Methods 223
- 8.4.1 Ionothermal Synthesis 224
- 8.4.2 Acid-Catalyzed Polycondensation 226
- 8.4.3 Microwave-Assisted Methods 227
- 8.5 Commercial Potential and Challenges 227
- 8.6 SWOT Analysis for CTFs 228
9 CONJUGATED MICROPOROUS POLYMERS (CMPs) 230
- 9.1 Overview and Structure 230
- 9.1.1 Definition and Composition 231
- 9.1.2 π-Conjugated Backbones 232
- 9.1.3 Microporosity in Conjugated Systems 234
- 9.2 Types and Variants 234
- 9.2.1 Poly(aryleneethynylene) Networks 236
- 9.2.2 Poly(phenylene) Networks 237
- 9.2.3 Other Conjugated Systems 238
- 9.3 Properties and Performance Characteristics 239
- 9.3.1 Electrical Conductivity 239
- 9.3.2 Photocatalytic Properties 240
- 9.3.3 Sensing Capabilities 242
- 9.3.4 Light Harvesting 244
- 9.4 Synthesis Methods 245
- 9.4.1 Sonogashira-Hagihara Coupling 246
- 9.4.2 Suzuki Coupling 247
- 9.4.3 Oxidative Coupling 248
- 9.5 Commercial Status and Applications 249
- 9.6 SWOT Analysis for CMPs 250
10 OTHER POROUS FRAMEWORK MATERIALS 250
- 10.1 Hypercrosslinked Polymers (HCPs) 251
- 10.1.1 Overview and Structure 252
- 10.1.2 Friedel-Crafts Synthesis 252
- 10.1.3 Properties and Applications 253
- 10.1.4 Commercial Status 253
- 10.1.5 SWOT Analysis 253
- 10.2 Polymers of Intrinsic Microporosity (PIMs) 254
- 10.2.1 Overview and Structure 255
- 10.2.2 Contorted Polymer Backbones 256
- 10.2.3 Membrane Applications 258
- 10.2.4 Commercial Status 259
- 10.2.5 SWOT Analysis 259
- 10.3 Porous Organic Cages (POCs) 260
- 10.3.1 Overview and Structure 262
- 10.3.2 Discrete Molecular Cages 262
- 10.3.3 Solution Processability 264
- 10.3.4 Commercial Potential 266
- 10.3.5 SWOT Analysis 267
- 10.4 Supramolecular Organic Frameworks (SOFs) 268
- 10.4.1 Definition and Scope 270
- 10.4.2 Non-Covalent Assembly 270
- 10.4.3 Emerging Applications 271
- 10.5 Hybrid and Composite Framework Materials 272
- 10.5.1 MOF-COF Hybrids 273
- 10.5.2 MOF-Polymer Composites 274
- 10.5.3 Framework-Nanoparticle Composites 275
- 10.5.4 Mixed-Matrix Membranes 276
11 MANUFACTURING AND PROCESSING 277
- 11.1 Overview of Manufacturing Approaches 277
- 11.1.1 Batch vs. Continuous Processing 277
- 11.1.2 Solvent-Based vs. Solvent-Free Methods 278
- 11.1.3 Green Chemistry Approaches 279
- 11.2 Scale-Up Challenges 280
- 11.2.1 Reproducibility at Scale 282
- 11.2.2 Quality Control and Standardization 283
- 11.2.3 Cost Reduction Strategies 284
- 11.2.4 Equipment Requirements 285
- 11.3 Downstream Processing 286
- 11.3.1 Purification and Washing 287
- 11.3.2 Drying and Activation 288
- 11.3.3 Shaping and Formulation 289
- 11.3.3.1 Pelletization 290
- 11.3.3.2 Membrane Fabrication 291
- 11.3.3.3 Thin Film Deposition 292
- 11.3.3.4 Monolith Formation 293
- 11.3.3.5 Coating Technologies 294
- 11.3.4 Quality Assurance and Testing 296
- 11.4 Manufacturing Cost Analysis 296
- 11.4.1 Raw Material Costs 296
- 11.4.2 Energy Requirements 297
- 11.5 Economies of Scale 297
- 11.5.1 Cost Comparison by Material Type 298
12 MARKETS AND APPLICATIONS 299
- 12.1 Market Overview 299
- 12.1.1 Market Drivers 300
- 12.1.2 Market Restraints 301
- 12.1.3 Market Opportunities 302
- 12.1.4 Value Chain Analysis 303
- 12.2 Gas Storage and Transport 304
- 12.2.1 Hydrogen Storage 305
- 12.2.1.1 Properties and Requirements 306
- 12.2.1.2 Current Technologies and Limitations 307
- 12.2.1.3 Framework Material Solutions 308
- 12.2.1.4 Market Players 309
- 12.2.1.5 Market Forecast 2026-2036 310
- 12.2.2 Natural Gas/Methane Storage 311
- 12.2.3 Specialty Gas Storage and Delivery 313
- 12.2.4 SWOT Analysis 315
- 12.2.1 Hydrogen Storage 305
- 12.3 Carbon Capture, Utilization and Storage (CCUS) 316
- 12.3.1 Point Source Carbon Capture 317
- 12.3.1.1 Post-Combustion Capture 319
- 12.3.1.2 Pre-Combustion Capture 320
- 12.3.1.3 Industrial Process Emissions 321
- 12.3.2 Direct Air Capture (DAC) 322
- 12.3.2.1 Solid Sorbent DAC Technologies 323
- 12.3.2.2 Comparison with Liquid Sorbents 323
- 12.3.2.3 Key DAC Technology Developers 324
- 12.3.3 Carbon Utilization Applications 325
- 12.3.4 Comparison of Framework Materials for CCUS 326
- 12.3.5 Market Players 327
- 12.3.6 SWOT Analysis 328
- 12.3.7 Market Forecast 2026-2036 329
- 12.3.1 Point Source Carbon Capture 317
- 12.4 Chemical Separation and Purification 330
- 12.4.1 Olefin/Paraffin Separation 330
- 12.4.2 Xylene Isomer Separation 331
- 12.4.3 Natural Gas Purification 332
- 12.4.4 Air Separation 333
- 12.4.5 Rare Gas Separation 334
- 12.4.6 Refrigerant Separation and Reclamation 335
- 12.4.7 Framework-Based Membranes 337
- 12.4.8 Market Players 339
- 12.4.9 SWOT Analysis 340
- 12.4.10 Market Forecast 2026-2036 341
- 12.5 Water Harvesting and Dehumidification 342
- 12.5.1 Atmospheric Water Harvesting 344
- 12.5.2 HVAC and Dehumidification Systems 346
- 12.5.3 Comparison of Framework Materials 348
- 12.5.4 Market Players 349
- 12.5.5 SWOT Analysis 350
- 12.5.6 Market Forecast 2026-2036 351
- 12.6 Water and Air Purification 351
- 12.6.1 Heavy Metal Removal 352
- 12.6.2 Organic Pollutant Removal 353
- 12.6.3 Radioactive Waste Treatment 354
- 12.6.4 Air Filtration and Purification 355
- 12.6.5 Toxic Industrial Chemical (TIC) Capture 357
- 12.6.6 Chemical Warfare Agent Degradation 358
- 12.6.7 Market Players 359
- 12.6.8 SWOT Analysis 360
- 12.6.9 Market Forecast 2026-2036 361
- 12.7 Catalysis 362
- 12.7.1 Heterogeneous Catalysis 363
- 12.7.2 Photocatalysis 364
- 12.7.3 Electrocatalysis 366
- 12.7.4 Enzyme Immobilization and Biocatalysis 367
- 12.7.5 Industrial Process Catalysis 368
- 12.7.6 Market Players 369
- 12.7.7 SWOT Analysis 370
- 12.7.8 Market Forecast 2026-2036 371
- 12.8 Energy Storage and Conversion 372
- 12.8.1 Lithium-Ion Batteries 373
- 12.8.1.1 Anode Materials 374
- 12.8.1.2 Cathode Materials 375
- 12.8.1.3 Solid Electrolytes 376
- 12.8.1.4 Separator Coatings 376
- 12.8.2 Sodium-Ion and Other Metal-Ion Batteries 377
- 12.8.3 Supercapacitors 378
- 12.8.4 Fuel Cells 379
- 12.8.4.1 Proton Exchange Membranes 380
- 12.8.4.2 Catalyst Supports 381
- 12.8.5 Thermal Energy Storage 381
- 12.8.6 Solar Energy Applications 382
- 12.8.7 Market Players 383
- 12.8.8 SWOT Analysis 383
- 12.8.9 Market Forecast 2026-2036 384
- 12.8.1 Lithium-Ion Batteries 373
- 12.9 Biomedical Applications 385
- 12.9.1 Drug Delivery Systems 386
- 12.9.2 Bioimaging and Contrast Agents 388
- 12.9.3 Biosensing and Diagnostics 389
- 12.9.4 Antibacterial Applications 390
- 12.9.5 Tissue Engineering 391
- 12.9.6 Biocompatibility and Toxicity Considerations 392
- 12.9.7 Regulatory Pathway Considerations 393
- 12.9.8 Market Players 393
- 12.9.9 SWOT Analysis 394
- 12.9.10 Market Forecast 2026-2036 395
- 12.10 Sensors and Electronics 396
- 12.10.1 Chemical Sensors 397
- 12.10.2 Gas Sensors 397
- 12.10.3 Humidity Sensors 397
- 12.10.4 Biosensors 398
- 12.10.5 Electronic Devices 398
- 12.10.6 Optoelectronics 399
- 12.10.7 Market Players 400
- 12.10.8 SWOT Analysis 401
- 12.10.9 Market Forecast 2026-2036 402
- 12.11 Heat Exchangers and Thermal Management 403
- 12.11.1 Adsorption Heat Pumps 404
- 12.11.2 Adsorption Chillers 405
- 12.11.3 Heat Exchanger Coatings 406
- 12.11.4 Electronics Thermal Management 407
- 12.11.5 Market Players 408
- 12.11.6 SWOT Analysis 408
- 12.11.7 Market Forecast 2026-2036 408
- 12.12 Coatings and Surface Modification 409
- 12.12.1 Protective Coatings 410
- 12.12.2 Functional Coatings 411
- 12.12.3 Self-Healing Coatings 412
- 12.12.4 Antimicrobial Surfaces 413
- 12.12.5 SWOT Analysis 414
- 12.12.6 Market Forecast 2026-2036 415
- 12.13 Emerging and Niche Applications 415
- 12.13.1 Quantum Computing 416
- 12.13.2 Agriculture and Controlled Release 417
- 12.13.3 Food Packaging 418
- 12.13.4 Cosmetics and Personal Care 418
- 12.13.5 Textiles and Wearables 419
- 12.13.6 3D Printing and Additive Manufacturing 419
- 12.13.7 Space and Defense Applications 420
13 GLOBAL MARKET ANALYSIS AND FORECASTS 2026-2036 421
- 13.1 Total Global Market 421
- 13.1.1 Historical Market Size (2020-2025) 422
- 13.1.2 Market Size and Forecast (2026-2036) 423
- 13.1.3 Market Growth Drivers 424
- 13.1.4 Market Growth Inhibitors 424
- 13.2 Market by Material Type 425
- 13.3 Regional Market Analysis 425
- 13.3.1 North America 425
- 13.3.2 Europe 427
- 13.3.3 Asia-Pacific 429
14 TECHNOLOGY TRENDS AND DEVELOPMENTS 430
- 14.1 Artificial Intelligence and Machine Learning 431
- 14.1.1 AI in Framework Design and Discovery 432
- 14.1.2 High-Throughput Computational Screening 433
- 14.1.3 Machine Learning for Property Prediction 434
- 14.1.4 Automated Synthesis Optimization 434
- 14.2 Advanced Manufacturing Technologies 435
- 14.2.1 Continuous Flow Synthesis 435
- 14.2.2 Robotic High-Throughput Synthesis 437
- 14.2.3 3D Printing of Framework Materials 438
- 14.2.4 Roll-to-Roll Processing 439
- 14.3 New Material Developments 440
- 14.3.1 Novel Framework Chemistries 441
- 14.3.2 Multi-Component and Mixed-Linker Frameworks 441
- 14.3.3 Defect Engineering 442
- 14.3.4 Amorphous Framework Materials 443
- 14.3.5 2D Framework Materials 443
- 14.4 Integration and Device Development 444
- 14.4.1 Membrane Technologies 445
- 14.4.2 Monolithic Structures 446
- 14.4.3 Coatings and Thin Films 447
- 14.4.4 Device Integration Challenges 448
- 14.5 Sustainability and Green Chemistry 448
- 14.5.1 Solvent-Free Synthesis 449
- 14.5.2 Bio-Based Linkers 449
- 14.5.3 Recyclability and Circular Economy 450
- 14.5.4 Life Cycle Assessment 451
15 COMPANY PROFILES 452 (45 company profiles)
16 FORMER MARKET PARTICIPANTS 490
17 FUTURE OUTLOOK AND STRATEGIC RECOMMENDATIONS 492
- 17.1 Technology Roadmap 492
- 17.1.1 Short-Term Developments (2026-2028) 493
- 17.1.2 Medium-Term Developments (2029-2032) 494
- 17.1.3 Long-Term Developments (2033-2036) 494
- 17.2 Market Evolution Scenarios 496
18 APPENDICES 497
- 18.1 Appendix A: List of Abbreviations and Acronyms 497
- 18.2 Appendix B: Glossary of Technical Terms 498
19 REFERENCES 500
List of Tables
- Table 1. Classification of porous framework materials by type 32
- Table 2. Markets and applications of porous framework materials 34
- Table 3. Porous framework materials industry developments 2020-2025 35
- Table 4. Current technical challenges and limitations by material type 37
- Table 5. Production costs by material type 38
- Table 6. Porous framework materials pricing overview 38
- Table 7. Competitive landscape overview 40
- Table 8. Market prospects to 2036 by application 41
- Table 9. Market prospects to 2036 by material type 42
- Table 10. Classification of porous framework materials by bonding type 46
- Table 11. Classification of porous framework materials by crystallinity 46
- Table 12. Hybrid vs purely organic framework materials 51
- Table 13. Summary of porous framework material properties 54
- Table 14. Property comparison radar chart across material types 55
- Table 15. Surface area ranges by material type (BET values) 55
- Table 16. Pore size classifications and typical ranges 56
- Table 17. Thermal stability comparison across material types 56
- Table 18. Chemical stability comparison (water, acid, base) 57
- Table 19. Mechanical properties comparison 58
- Table 20. Gas adsorption capacities by material type 58
- Table 21. Conductivity properties by material type 59
- Table 22. Biocompatibility assessment by material type 60
- Table 23. Comprehensive comparative analysis of all porous framework material types (MOFs, COFs, HOFs, ZIFs, PAFs, CTFs, CMPs, HCPs, PIMs, POCs) 61
- Table 24. Property benchmarking matrix 62
- Table 25. Comparison of porous framework materials vs traditional porous materials 63
- Table 26. MOFs vs zeolites comparison 65
- Table 27. Framework materials vs activated carbon comparison 65
- Table 28. Framework materials vs mesoporous silica comparison 66
- Table 29. Framework materials vs conventional porous polymers 67
- Table 30. Material selection guide by application 67
- Table 31. Cost-performance analysis by material type 69
- Table 32. Environmental regulations affecting porous framework materials by region 70
- Table 33. Health and safety considerations by material type 70
- Table 34. Regional regulatory framework summary 71
- Table 35. SBU types and their properties 75
- Table 36. Organic linkers and their characteristics 77
- Table 37. Common MOF topologies and their properties 79
- Table 38. Example MOFs and their applications 80
- Table 39. Properties of Metal-Organic Frameworks (MOFs) 82
- Table 40. Surface area and pore volume of selected MOFs 83
- Table 41. Gas adsorption capacities of selected MOFs 84
- Table 42. Thermal and chemical stability of major MOF types 85
- Table 43. MOF functionalization strategies 86
- Table 44. Solvothermal synthesis parameters for common MOFs 89
- Table 45. MOFs synthesized by electrochemical methods 90
- Table 46. Microwave synthesis conditions for selected MOFs 90
- Table 47. MOFs synthesized by mechanochemical methods 90
- Table 48. Sonochemical synthesis parameters 90
- Table 49. Continuous flow synthesis advantages and limitations 91
- Table 50. MOFs synthesized at room temperature 92
- Table 51. Comparison of different synthesis methods for Metal-Organic Frameworks (MOFs) 94
- Table 52. Scale-up challenges for MOF manufacturing 96
- Table 53. MOF producers and production capacities 98
- Table 54. MOF manufacturers by synthesis method 99
- Table 55. MOF production cost breakdown 100
- Table 56. MOF activation methods comparison 103
- Table 57. MOF shaping methods and applications 104
- Table 58. MOF composite types and properties 106
- Table 59. Characterization techniques for MOFs 107
- Table 60. Commercially available MOF products 108
- Table 61. MOF pricing by type and quantity 109
- Table 62. Summary of ZIF characteristics 114
- Table 63. ZIF topologies and their zeolite analogues 116
- Table 64. Metal ions used in ZIF synthesis 119
- Table 65. Major ZIF types and their properties 120
- Table 66. ZIF-8 properties and applications 121
- Table 67. ZIF-67 properties and applications 124
- Table 68. ZIF-90 properties and applications 124
- Table 69. ZIF-L properties and applications 127
- Table 70. Other notable ZIF variants 127
- Table 71. ZIF stability under various conditions 128
- Table 72. Water stability of ZIF types 129
- Table 73. ZIF gas separation performance metrics 130
- Table 74. Comparison of ZIF synthesis methods 132
- Table 75. Aqueous synthesis conditions for ZIFs 133
- Table 76. Summary of COF characteristics 137
- Table 77. Elements used in COF construction 139
- Table 78. Comparison of 2D vs 3D COFs 141
- Table 79. COF linkage types and bond strengths 144
- Table 80. COF types by linkage chemistry 144
- Table 81. Boronate ester-linked COFs: properties and applications 146
- Table 82. Imine-linked COFs: properties and applications 148
- Table 83. Hydrazone-linked COFs: properties and applications 148
- Table 84. Triazine-based COFs: properties and applications 148
- Table 85. β-Ketoenamine-linked COFs: properties and applications 150
- Table 86. Other COF linkage types 151
- Table 87. Crystallinity of selected COFs 154
- Table 88. Electronic properties of COFs 154
- Table 89. Chemical stability of COFs by linkage type 154
- Table 90. Photocatalytic COFs and their performance 155
- Table 91. Comparison of COF synthesis methods 155
- Table 92. Solvothermal conditions for COF synthesis 156
- Table 93. Room temperature COF synthesis conditions 157
- Table 94. Factors affecting COF crystallinity 159
- Table 95. COF scale-up challenges 160
- Table 96. Summary of HOF characteristics 165
- Table 97. Hydrogen bonding motifs and their strengths 167
- Table 98. HOFs vs MOFs vs COFs comparison 168
- Table 99. HOF building block types and properties 168
- Table 100. Carboxylic acid-based HOFs 169
- Table 101. Amide-based HOFs 172
- Table 102. Pyrazole-based HOFs 173
- Table 103. Other HOF building units 174
- Table 104. Solution processability of HOFs 177
- Table 105. HOF density comparison with other frameworks 179
- Table 106. HOF stability under various conditions 180
- Table 107. HOF synthesis methods 181
- Table 108. Solvent effects on HOF crystallization 183
- Table 109. HOF post-synthetic modification strategies 185
- Table 110. HOF advantages for commercialization 187
- Table 111. HOF stability challenges 188
- Table 112. Emerging HOF applications 189
- Table 113. Summary of PAF characteristics 192
- Table 114. C-C coupling reactions for PAF synthesis 194
- Table 115. Amorphous vs ordered PAF structures 194
- Table 116. Notable PAF types and properties 195
- Table 117. PAF surface area records 199
- Table 118. PAF thermal stability profiles 201
- Table 119. Advantages of metal-free PAF composition 202
- Table 120. PAF synthesis methods comparison 203
- Table 121. Other cross-coupling reactions for PAF synthesis 206
- Table 122. PAF scale-up challenges and solutions 207
- Table 123. Summary of CTF characteristics 211
- Table 124. Nitrogen content in CTFs vs other frameworks 213
- Table 125. CTF types and variants 214
- Table 126. CTF-1 properties and applications 215
- Table 127. CTF synthesis route comparison 216
- Table 128. Functionalized CTF types 218
- Table 129. Nitrogen content and its effects on properties 218
- Table 130. CTF CO₂ capture performance 220
- Table 131. CTF catalytic applications 222
- Table 132. CTF electronic properties 222
- Table 133. CTF synthesis methods comparison 223
- Table 134. Ionothermal synthesis conditions 225
- Table 135. Microwave-assisted CTF synthesis 227
- Table 136. Summary of CMP characteristics 231
- Table 137. Conjugated building blocks used in CMPs 233
- Table 138. CMP types and variants 234
- Table 139. PAE-CMP properties 237
- Table 140. PP-CMP properties 238
- Table 141. Other CMP types 239
- Table 142. CMP conductivity values 240
- Table 143. CMP photocatalytic performance 240
- Table 144. CMP sensing applications 242
- Table 145. CMP light absorption characteristics 244
- Table 146. CMP synthesis methods comparison 245
- Table 147. CMP applications 249
- Table 148. Summary of HCP characteristics 251
- Table 149. HCP synthesis conditions 253
- Table 150. HCP properties and applications 253
- Table 151. Summary of PIM characteristics 255
- Table 152. PIM structural features 257
- Table 153. PIM membrane separation performance 259
- Table 154. Summary of POC characteristics 261
- Table 155. POC types and properties 263
- Table 156. POC solubility characteristics 265
- Table 157. Summary of SOF characteristics 269
- Table 158. SOF assembly methods 271
- Table 159. SOF applications 271
- Table 160. Hybrid framework material types 272
- Table 161. MOF-COF hybrid properties 273
- Table 162. MOF-polymer composite applications 274
- Table 163. Framework-nanoparticle composite types 275
- Table 164. Mixed-matrix membrane performance 276
- Table 165. Manufacturing approach comparison by material type 277
- Table 166. Batch vs continuous processing trade-offs 277
- Table 167. Solvent-based vs solvent-free synthesis comparison 278
- Table 168. Green synthesis approaches 279
- Table 169. Scale-up challenges by material type 280
- Table 170. Reproducibility challenges and solutions 282
- Table 171. Quality control methods for framework materials 283
- Table 172. Cost reduction strategies by production stage 284
- Table 173. Manufacturing equipment requirements 285
- Table 174. Purification methods and effectiveness 287
- Table 175. Activation methods comparison 288
- Table 176. Shaping methods overview 289
- Table 177. Pelletization parameters and effects 290
- Table 178. Membrane types and fabrication routes 291
- Table 179. Thin film deposition methods comparison 292
- Table 180. Monolithic framework materials 293
- Table 181. Coating technology comparison 294
- Table 182. Raw material costs for major framework materials 296
- Table 183. Energy requirements by synthesis method 297
- Table 184. Economies of scale factors 297
- Table 185. Production cost comparison across material types 298
- Table 186. Factors affecting demand for porous framework materials 299
- Table 187. Market drivers by application area 300
- Table 188. Market restraints and impact assessment 301
- Table 189. Market opportunities by sector 302
- Table 190. Value chain participants by stage 303
- Table 191. Framework materials for gas storage applications 304
- Table 192. Hydrogen storage performance by material type 306
- Table 193. DOE hydrogen storage targets 306
- Table 194. Current hydrogen storage technologies comparison 307
- Table 195. Framework materials for hydrogen storage 308
- Table 196. Market players in hydrogen storage 309
- Table 197. Hydrogen storage market forecast 310
- Table 198. Methane storage performance comparison 311
- Table 199. Methane storage market forecast 312
- Table 200. Specialty gas storage applications 314
- Table 201. Specialty gas storage market forecast 315
- Table 202. Comparison of carbon-capture materials 316
- Table 203. Point source capture technologies comparison 318
- Table 204. Post-combustion capture materials comparison 319
- Table 205. Pre-combustion capture materials 320
- Table 206. Industrial CO₂ sources and capture approaches 321
- Table 207. Solid sorbent types for DAC 323
- Table 208. Solid vs liquid sorbent DAC comparison 323
- Table 209. DAC technology developers and production 324
- Table 210. Carbon utilization pathways 325
- Table 211. Framework material comparison for CCUS 326
- Table 212. CCUS performance comparison by material type 327
- Table 213. Market players in CCUS 327
- Table 214. CCUS market forecast by segment 329
- Table 215. Applications of framework materials in chemical separation 330
- Table 216. Olefin/paraffin separation performance 330
- Table 217. Xylene separation performance 331
- Table 218. Natural gas purification applications 332
- Table 219. Air separation performance 333
- Table 220. Rare gas separation applications 334
- Table 221. Refrigerant separation technologies 335
- Table 222. Framework-based membrane performance 338
- Table 223. Market players in chemical separation 339
- Table 224. Chemical separation market forecast 341
- Table 225. Applications of framework materials in water harvesting 343
- Table 226. Water harvesting performance by material type 345
- Table 227. Applications of framework materials in HVAC 346
- Table 228. Water harvesting material comparison 348
- Table 229. Market players in water harvesting 349
- Table 230. Water harvesting market forecast 351
- Table 231. Conventional and emerging technologies for heavy metal removal 352
- Table 232. Heavy metal adsorption performance 352
- Table 233. Organic pollutant removal performance 353
- Table 234. Radioactive ion capture performance 354
- Table 235. Applications of framework materials in air filtration 355
- Table 236. TIC capture performance 357
- Table 237. CWA degradation performance 358
- Table 238. Market players in purification 359
- Table 239. Purification market forecast 361
- Table 240. Catalytic applications of framework materials 362
- Table 241. Heterogeneous catalysis applications 363
- Table 242. Photocatalysis performance by material type 364
- Table 243. Electrocatalysis applications 366
- Table 244. Enzyme immobilization applications 367
- Table 245. Industrial catalysis applications 368
- Table 246. Market players in catalysis 369
- Table 247. Catalysis market forecast 371
- Table 248. Applications of framework materials in energy storage 372
- Table 249. Framework material applications in LIBs 373
- Table 250. Framework-derived anode materials 374
- Table 251. Framework-derived cathode materials 375
- Table 252. Framework-based solid electrolytes 376
- Table 253. Framework separator coatings 376
- Table 254. Framework materials for next-gen batteries 377
- Table 255. Framework materials for supercapacitors 378
- Table 256. Membranes for PEM Fuel Cells 379
- Table 257. Applications of framework materials in fuel cells 380
- Table 258. Framework-based PEM performance 380
- Table 259. Framework catalyst supports 381
- Table 260. Thermal energy storage applications 381
- Table 261. Solar energy applications 382
- Table 262. Market players in energy storage 383
- Table 263. Energy storage market forecast 384
- Table 264. Biomedical applications of framework materials 385
- Table 265. Drug delivery performance 387
- Table 266. Bioimaging applications 388
- Table 267. Biosensing applications 389
- Table 268. Antibacterial framework materials 390
- Table 269. Tissue engineering applications 391
- Table 270. Biocompatibility assessment 392
- Table 271. Regulatory pathways for biomedical frameworks 393
- Table 272. Market players in biomedical applications 393
- Table 273. Biomedical market forecast 395
- Table 274. Sensor applications of framework materials 396
- Table 275. Chemical sensor performance 397
- Table 276. Gas sensor types and performance 397
- Table 277. Humidity sensor applications 397
- Table 278. Biosensor applications 398
- Table 279. Electronic device applications 398
- Table 280. Optoelectronic applications 399
- Table 281. Market players in sensors 400
- Table 282. Sensors market forecast 402
- Table 283. Applications of framework materials in heat exchangers 404
- Table 284. Heat pump performance by material 405
- Table 285. Adsorption chiller applications 405
- Table 286. Heat exchanger coating performance 406
- Table 287. Electronics thermal management applications 407
- Table 288. Market players in thermal management 408
- Table 289. Heat exchanger market forecast 408
- Table 290. Applications of framework materials in coatings 409
- Table 291. Protective coating applications 410
- Table 292. Functional coating types 411
- Table 293. Self-healing coating mechanisms 412
- Table 294. Antimicrobial coating applications 413
- Table 295. Coatings market forecast 415
- Table 296. Emerging applications overview 415
- Table 297. Quantum computing applications 416
- Table 298. Agricultural applications 417
- Table 299. Food packaging applications 418
- Table 300. Cosmetics applications 418
- Table 301. Textile applications 419
- Table 302. 3D printing applications 419
- Table 303. 118 Space and defense applications 420
- Table 304. Historical market size 2020-2025 422
- Table 305. Global market revenues 2020-2036 (low, medium, high estimates) 423
- Table 306. Market growth drivers analysis 424
- Table 307. 7 Market growth inhibitors analysis 424
- Table 308. Market share by material type 2026 vs 2036 425
- Table 309. North America market overview 425
- Table 310. North America market forecast 2026-2036 426
- Table 311. Europe market overview 427
- Table 312. Europe market forecast 2026-2036 428
- Table 313. Asia-Pacific market overview 429
- Table 314. Asia-Pacific market forecast 429
- Table 315. AI/ML applications in framework science 431
- Table 316. AI platforms for framework design 432
- Table 317. ML models for property prediction 434
- Table 318. Automated synthesis platforms 434
- Table 319. Advanced manufacturing technologies overview 435
- Table 320. Continuous flow synthesis advantages 436
- Table 321. High-throughput synthesis capabilities 437
- Table 322. 3D printed framework applications 438
- Table 323. Roll-to-roll processing parameters 439
- Table 324. Emerging framework material developments 440
- Table 325. Novel framework types 441
- Table 326. Multi-component frameworks 441
- Table 327. Defect engineering strategies 442
- Table 328. Amorphous framework characteristics 443
- Table 329. 2D framework materials 444
- Table 330. Device integration approaches 444
- Table 331. Membrane device developments 445
- Table 332. Monolithic structure applications 446
- Table 333. Coating integration methods 447
- Table 334. Device integration challenges and solutions 448
- Table 335. Solvent-free synthesis methods 449
- Table 336. Bio-based framework materials 449
- Table 337. Recyclability considerations 450
- Table 338. LCA results for framework materials 451
- Table 339. Abbreviations and acronyms 497
- Table 340. Glossary 498
List of Figures
- Figure 1. Schematic classification of porous framework material types 36
- Figure 2. Market map: Porous framework materials 38
- Figure 3. Bonding types in porous framework materials (coordination, covalent, hydrogen bonding) 51
- Figure 4. Key milestones in porous framework material development 52
- Figure 5. Reticular chemistry design principles 56
- Figure 6. Schematic of zeolite structure 67
- Figure 7. Decision tree for porous framework material selection 72
- Figure 8. Examples of typical metal-organic frameworks 76
- Figure 9. Schematic drawing of a metal-organic framework (MOF) structure 77
- Figure 10. Common secondary building units (SBUs) in MOFs 78
- Figure 11. Common organic linkers used in MOF synthesis 80
- Figure 12. MOF topology examples 81
- Figure 13. Representative MOFs 84
- Figure 14. MOF synthesis methods overview 90
- Figure 15. Solvothermal synthesis of MOFs 91
- Figure 16. Hydrothermal synthesis of metal-organic frameworks 92
- Figure 17. Continuous flow synthesis schematic 94
- Figure 18. Spray drying process for MOF production 96
- Figure 19. Layer-by-layer MOF thin film growth 97
- Figure 20. Technology readiness levels for MOF synthesis methods 100
- Figure 21. MOF downstream processing flowchart 105
- Figure 22. MOF supply chain schematic 113
- Figure 23. SWOT analysis: Metal-Organic Frameworks 115
- Figure 24. ZIF structure showing zeolite-like topology 117
- Figure 25. ZIF classification within MOF family 118
- Figure 26. Metal-imidazolate bonding geometry 121
- Figure 27. ZIF-8 crystal structure 123
- Figure 28. ZIF-67 crystal structure 126
- Figure 29. ZIF-L 2D structure 129
- Figure 30. Continuous flow ZIF production schematic 137
- Figure 31. Covalent organic frameworks (COFs) schematic representation 139
- Figure 32. 2D COF layer stacking structures 143
- Figure 33. COF linkage formation reactions 146
- Figure 34. Boronate ester linkage formation 149
- Figure 35. Imine linkage formation (Schiff base condensation) 150
- Figure 36. β-Ketoenamine linkage formation and stability 152
- Figure 37. COF crystallinity characterization (PXRD patterns) 156
- Figure 38. Mechanochemical COF synthesis 160
- Figure 39. Interfacial COF membrane synthesis 162
- Figure 40. SWOT analysis: Covalent Organic Frameworks 166
- Figure 41. HOF structure schematic 168
- Figure 42. Hydrogen bonding in HOFs 169
- Figure 43. Common hydrogen bonding motifs in HOFs 170
- Figure 44. HOF building block examples 173
- Figure 45. DAT-based HOFs 174
- Figure 46. HOF solution processing and recrystallization 179
- Figure 47. HOF regeneration process 181
- Figure 48. SWOT analysis: Hydrogen-Bonded Organic Frameworks 193
- Figure 49. PAF structure schematic 194
- Figure 50. C-C bond formation reactions in PAFs 196
- Figure 51. PAF-1 structure and properties 200
- Figure 52. PAF functionalization strategies 201
- Figure 53. CTF structure schematic 214
- Figure 54. Triazine ring formation mechanism 216
- Figure 55. CTF-1 structure 218
- Figure 56. CTF synthesis routes 220
- Figure 57. CTF CO₂ adsorption isotherms 224
- Figure 58. Ionothermal CTF synthesis 228
- Figure 59. Acid-catalyzed CTF synthesis 230
- Figure 60. SWOT analysis: Covalent Triazine Frameworks 232
- Figure 61. CMP structure schematic 233
- Figure 62. π-Conjugated backbone structures in CMPs 235
- Figure 63. Origin of microporosity in CMPs 237
- Figure 64. Poly(aryleneethynylene) CMP structure 239
- Figure 65. Poly(phenylene) CMP structure 241
- Figure 66. CMP photocatalysis mechanism 244
- Figure 67. CMP synthesis via Sonogashira-Hagihara coupling 249
- Figure 68. CMP synthesis via Suzuki coupling 250
- Figure 69. HCP structure schematic 254
- Figure 70. SWOT analysis: Hypercrosslinked Polymers 257
- Figure 71. PIM structure schematic 258
- Figure 72. PIM contorted backbone structure 259
- Figure 73. PIM membrane structure 261
- Figure 74. SWOT analysis: Polymers of Intrinsic Microporosity 263
- Figure 75. POC structure examples 264
- Figure 76. POC cage formation 265
- Figure 77. POC solution processing 267
- Figure 78. SWOT analysis: Porous Organic Cages 270
- Figure 79. SOF structure schematic 271
- Figure 80. SOF non-covalent interactions 274
- Figure 81. MOF-COF hybrid structure 276
- Figure 82. Hydrogen storage schematic 308
- Figure 83. NuMat's ION-X cylinders 316
- Figure 84. SWOT analysis: Framework materials in gas storage and transport 318
- Figure 85. Point source capture schematic 320
- Figure 86. Schematic of Climeworks DAC system 325
- Figure 87. SWOT analysis: Framework materials in carbon capture and storage 331
- Figure 88. Refrigerant reclamation process 339
- Figure 89. Molecular sieving membrane 340
- Figure 90. SWOT analysis: Framework materials in chemical separation 343
- Figure 91. Schematic of framework-based device for water harvesting 345
- Figure 92. Atmospheric water harvesting process 347
- Figure 93. MOF-based cartridge for air conditioner 350
- Figure 94. SWOT analysis: Framework materials in water harvesting 353
- Figure 95. Air filtration mechanisms 359
- Figure 96. SWOT analysis: Framework materials in air and water filtration 362
- Figure 97. Photocatalysis mechanisms 368
- Figure 98. SWOT analysis: Framework materials in catalysis 373
- Figure 99. MOF composite membranes 382
- Figure 100. SWOT analysis: Framework materials in energy storage 386
- Figure 101. Drug delivery mechanisms 389
- Figure 102. SWOT analysis: Framework materials in biomedicine 396
- Figure 103. SWOT analysis: Framework materials in sensors 404
- Figure 104. Framework-coated heat exchanger 406
- Figure 105. Adsorption heat pump schematic 407
- Figure 106. SWOT analysis: Framework materials in heat exchangers 411
- Figure 107. SWOT analysis: Framework materials in coatings 417
- Figure 108. Continuous flow reactor designs 438
- Figure 109. Technology roadmap 2026-2036 495
Purchasers will receive the following:
- PDF report download/by email.
- Comprehensive Excel spreadsheet of all data.
- Mid-year Update
Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer. To order by Bank Transfer (Invoice) select this option from the payment methods menu after adding to cart, or contact info@futuremarketsinc.com