The Global Market for Porous Framework Materials 2026-2036

0

cover

cover

  • Published: December 2025
  • Pages: 505
  • Tables: 340
  • Figures: 109

 

Porous framework materials offer unprecedented control over porosity, surface chemistry, and molecular interactions at the nanoscale. This diverse class of crystalline and amorphous materials—encompassing Metal-Organic Frameworks (MOFs), Covalent Organic Frameworks (COFs), Hydrogen-Bonded Organic Frameworks (HOFs), Zeolitic Imidazolate Frameworks (ZIFs), Porous Aromatic Frameworks (PAFs), Covalent Triazine Frameworks (CTFs), Conjugated Microporous Polymers (CMPs), and several other emerging material types—is transitioning from academic curiosity to commercial reality across multiple high-value industries.

The defining characteristic of porous framework materials is their extraordinary porosity and surface area, with some materials exceeding 7,000 m²/g—equivalent to the surface area of a football field contained within a single gram of material. This exceptional porosity, combined with highly tunable pore sizes, shapes, and chemical functionalities, enables these materials to selectively capture, store, separate, and release specific molecules with remarkable efficiency. Unlike traditional porous materials such as zeolites and activated carbons, framework materials can be rationally designed at the molecular level to meet precise application requirements.

The market for porous framework materials is being driven by several converging global megatrends. Climate efforts are accelerating demand for carbon capture technologies, where MOFs and related materials offer significant advantages over conventional amine-based systems in terms of energy efficiency and regeneration requirements. The hydrogen economy is creating opportunities in gas storage, where framework materials can store hydrogen at lower pressures and ambient temperatures than compressed gas cylinders. Water scarcity is driving interest in atmospheric water harvesting systems that can extract potable water from desert air. Meanwhile, the pharmaceutical industry is exploring these materials for targeted drug delivery, and the electronics sector is investigating their potential in next-generation sensors and separation membranes.

Metal-Organic Frameworks currently dominate the market, accounting for the majority of commercial activity and research investment and achieving industrial-scale production. The emergence of artificial intelligence and machine learning tools for materials discovery is dramatically accelerating the pace of new framework material development and optimization.

Despite significant progress, challenges remain. Production costs, while declining, still limit adoption in price-sensitive applications. Long-term stability under real-world operating conditions requires further validation for many applications. Standardization of testing protocols and quality specifications is still evolving.

Key applications analyzed include carbon capture, utilization and storage (CCUS), direct air capture (DAC), hydrogen storage, natural gas storage, chemical separation and purification, atmospheric water harvesting, HVAC and dehumidification systems, water and air purification, heterogeneous catalysis, photocatalysis, lithium-ion batteries, fuel cells, drug delivery systems, chemical sensors, gas sensors, adsorption heat pumps, and protective coatings. Emerging applications in quantum computing, agriculture, food packaging, and space technologies are also examined.

The report provides extensive technology assessment covering synthesis methods, scale-up challenges, manufacturing economics, and downstream processing techniques. Critical analysis of artificial intelligence and machine learning applications in framework material discovery and optimization reflects the latest industry developments accelerating commercialization timelines.

Report Contents Include:

  • Comprehensive taxonomy and classification of all porous framework material types
  • Detailed property comparisons and benchmarking against traditional porous materials
  • Analysis of 13 major application markets with individual forecasts
  • Manufacturing process analysis including batch, continuous flow, and green chemistry approaches
  • Production cost analysis and pricing trends by material type
  • Technology readiness level assessment across material categories
  • Patent landscape analysis and intellectual property trends
  • Competitive landscape mapping and value chain analysis
  • 45 company profiles of leading manufacturers, technology developers, and distributors
  • Regional market analysis with country-level forecasts
  • Technology roadmap through 2036 with strategic recommendations
  • Over 340 data tables and 109 figures

 

Companies Profiled include:

This report features detailed profiles of 45 companies active in the porous framework materials industry: ACSYNAM, AirJoule, Alphane Labs, AspiraDAC, Atoco, Atomis, Avnos, BASF, Captivate Technology, Carbon Infinity, CSIRO/MOFWORX, Daikin, Disruptive Materials, EnergyX, ExxonMobil, Framergy, Green Science Alliance, H2MOF and more......

 

 

 

1             EXECUTIVE SUMMARY            30

  • 1.1        Material Classification and Taxonomy           32
  • 1.2        Markets and Applications Overview               34
  • 1.3        Industry Developments 2020-2025 35
  • 1.4        Current Technical Challenges and Limitations        37
  • 1.5        Cost and Pricing Analysis      38
  • 1.6        Role of Artificial Intelligence and Machine Learning in Commercialization          39
  • 1.7        Competitive Landscape Summary  40
  • 1.8        Market Prospects to 2036     41

 

2             INTRODUCTION TO POROUS FRAMEWORK MATERIALS  46

  • 2.1        Definition and Classification               46
    • 2.1.1    What are Porous Framework Materials?       48
    • 2.1.2    2.1.2 Historical Development and Timeline              48
    • 2.1.3    Classification by Bonding Type           49
    • 2.1.4    Classification by Crystallinity             50
    • 2.1.5    Classification by Composition (Hybrid vs. Organic)             51
    • 2.1.6    Reticular Chemistry Principles           53
  • 2.2        Fundamental Properties         54
    • 2.2.1    Porosity and Surface Area     55
    • 2.2.2    Pore Size Distribution (Micro-, Meso-, Macroporous)         56
    • 2.2.3    Thermal Stability         56
    • 2.2.4    Chemical Stability      57
    • 2.2.5    Mechanical Properties             58
    • 2.2.6    Adsorption and Selectivity     58
    • 2.2.7    Conductivity (Electrical, Ionic, Proton)         59
    • 2.2.8    Optical Properties 2.2.9 Biocompatibility and Biodegradability  60
  • 2.3        Comparison of Porous Framework Materials            61
    • 2.3.1    Comparative Property Analysis         62
    • 2.3.2    Benchmarking Against Traditional Porous Materials            63
      • 2.3.2.1 Zeolites              64
      • 2.3.2.2 Activated Carbon        65
      • 2.3.2.3 Mesoporous Silica      66
      • 2.3.2.4 Porous Polymers          67
      • 2.3.2.5 Selection Criteria for Different Applications             67
    • 2.3.3    Cost-Performance Trade-offs             69
  • 2.4        Regulatory Landscape             70
    • 2.4.1    Environmental Regulations  70
    • 2.4.2    Health and Safety Considerations   70
    • 2.4.3    Regional Regulatory Frameworks     71
    • 2.4.4    Sustainability and Lifecycle Assessment    72

 

3             METAL-ORGANIC FRAMEWORKS (MOFs)   72

  • 3.1        Overview and Structure           72
    • 3.1.1    Definition and Composition 73
    • 3.1.2    Secondary Building Units (SBUs)     74
    • 3.1.3    Organic Linkers             76
    • 3.1.4    Topology and Design Principles         78
  • 3.2        Types and Families of MOFs 80
  • 3.3        Properties and Performance Characteristics           82
    • 3.3.1    Surface Area and Porosity Metrics   83
    • 3.3.2    Gas Adsorption Capabilities               84
    • 3.3.3    Stability Profiles           85
    • 3.3.4    Functionalization Options    86
  • 3.4        Synthesis Methods    87
    • 3.4.1    Solvothermal Synthesis          88
    • 3.4.2    Hydrothermal Synthesis         89
    • 3.4.3    Electrochemical Synthesis   90
    • 3.4.4    Microwave-Assisted Synthesis          90
    • 3.4.5    Mechanochemical Synthesis              90
    • 3.4.6    Sonochemical Synthesis       90
    • 3.4.7    Continuous Flow Synthesis  90
    • 3.4.8    Room Temperature Synthesis             92
    • 3.4.9    Spray Drying and Spray Pyrolysis      92
    • 3.4.10 Layer-by-Layer Growth            94
    • 3.4.11 Comparison of Synthesis Methods 94
  • 3.5        Scale-Up and Industrial Manufacturing       96
    • 3.5.1    Challenges in Translation from Lab to Industrial Scale       96
    • 3.5.2    Current Production Capacities          98
    • 3.5.3    Key Manufacturers and Production Volumes           99
    • 3.5.4    Cost Structures and Economics       100
  • 3.6        Downstream Processing and Formulation 101
    • 3.6.1    Activation Methods    103
    • 3.6.2    Shaping (Pellets, Monoliths, Membranes, Coatings)           104
    • 3.6.3    Composite Formation              105
    • 3.6.4    Quality Control and Characterization            107
  • 3.7        Commercial Products and Pricing   108
    • 3.7.1    Commercially Available MOFs           108
    • 3.7.2    Pricing Trends                109
    • 3.7.3    Supply Chain Considerations             110
  • 3.8        SWOT Analysis for MOFs        111

 

4             ZEOLITIC IMIDAZOLATE FRAMEWORKS (ZIFs)         113

  • 4.1        Overview and Structure           113
    • 4.1.1    Definition and Relationship to MOFs             114
    • 4.1.2    Zeolite-like Topology 116
    • 4.1.3    Metal-Imidazolate Bonding  117
  • 4.2        Types and Families of ZIFs    120
    • 4.2.1    ZIF-8     120
    • 4.2.2    ZIF-67  122
    • 4.2.3    ZIF-90  124
    • 4.2.4    ZIF-L     126
    • 4.2.5    Other ZIF Variants      127
  • 4.3        Properties and Performance Characteristics           128
    • 4.3.1    Exceptional Thermal and Chemical Stability            128
    • 4.3.2    Hydrophobicity             129
    • 4.3.3    Gas Separation Performance              130
  • 4.4        Synthesis Methods    132
    • 4.4.1    Solvothermal Methods            133
    • 4.4.2    Aqueous Synthesis    133
    • 4.4.3    Room Temperature Methods 4.4.4 Continuous Flow Production                133
  • 4.5        Commercial Status    134
  • 4.6        SWOT Analysis for ZIFs            134

 

5             COVALENT ORGANIC FRAMEWORKS (COFs)          135

  • 5.1        Overview and Structure           135
    • 5.1.1    Definition and Composition 138
    • 5.1.2    Light Element Construction (H, B, C, N, O) 139
    • 5.1.3    2D vs. 3D COFs            140
    • 5.1.4    Linkage Chemistry Types       142
  • 5.2        Types of COFs by Linkage      144
    • 5.2.1    Boronate Ester-Linked COFs               146
    • 5.2.2    Imine-Linked COFs (Schiff Base)      147
    • 5.2.3    Hydrazone-Linked COFs        148
    • 5.2.4    Triazine-Based COFs 148
    • 5.2.5    β-Ketoenamine-Linked COFs              149
    • 5.2.6    Other Linkage Types  151
  • 5.3        Properties and Performance Characteristics           152
    • 5.3.1    Crystallinity and Long-Range Order 153
    • 5.3.2    Electronic Properties and Conductivity        154
    • 5.3.3    Chemical Stability      154
    • 5.3.4    Photocatalytic Properties      155
  • 5.4        Synthesis Methods    155
    • 5.4.1    Solvothermal Synthesis          156
    • 5.4.2    Mechanochemical Synthesis              157
    • 5.4.3    Microwave-Assisted Synthesis 5.4.4 Room Temperature Synthesis          157
    • 5.4.4    Interfacial Polymerization      158
    • 5.4.5    Challenges in Crystallinity Control  159
  • 5.5        Scale-Up Challenges and Commercial Status         160
    • 5.5.1    Production Limitations            160
  • 5.6        Commercial Status    162
  • 5.7        SWOT Analysis for COFs        163

 

6             HYDROGEN-BONDED ORGANIC FRAMEWORKS (HOFs) 164

  • 6.1        Overview and Structure           164
    • 6.1.1    Definition and Bonding Principles    165
    • 6.1.2    Hydrogen Bonding Motifs      166
    • 6.1.3    Comparison with MOFs and COFs  168
  • 6.2        Building Block Types 168
    • 6.2.1    Carboxylic Acid-Based HOFs              169
    • 6.2.2    Diaminotriazine (DAT)-Based HOFs 170
    • 6.2.3    Amide-Based HOFs   172
    • 6.2.4    Pyrazole-Based HOFs              173
    • 6.2.5    Other Hydrogen Bonding Units          174
  • 6.3        Properties and Performance Characteristics           176
    • 6.3.1    Solution Processability           176
    • 6.3.2    Regeneration and Self-Healing           178
    • 6.3.3    Low Density and Metal-Free Nature                179
    • 6.3.4    Water Stability Considerations          180
  • 6.4        Synthesis Methods    181
    • 6.4.1    Crystallization Techniques    182
    • 6.4.2    Solvent Selection and Optimization               183
    • 6.4.3    Post-Synthetic Modifications              185
  • 6.5        Commercial Potential and Challenges         186
    • 6.5.1    Advantages for Industrial Application            186
    • 6.5.2    Stability Limitations  188
    • 6.5.3    Emerging Applications             189
  • 6.6        SWOT Analysis for HOFs        190

 

7             POROUS AROMATIC FRAMEWORKS (PAFs)               191

  • 7.1        Overview and Structure           191
    • 7.1.1    Definition and Composition 192
    • 7.1.2    C-C Bond Linkages    192
    • 7.1.3    Amorphous vs. Ordered Structures 194
  • 7.2        Types and Notable PAFs         195
    • 7.2.1    PAF-1 and Derivatives               196
    • 7.2.2    Functionalized PAFs  198
    • 7.2.3    Heteroatom-Doped PAFs       199
  • 7.3        Properties and Performance Characteristics           199
    • 7.3.1    Ultrahigh Surface Areas          199
    • 7.3.2    Exceptional Chemical Stability          200
    • 7.3.3    Thermal Stability (>400°C)   201
    • 7.3.4    Metal-Free Composition        202
  • 7.4        Synthesis Methods    203
    • 7.4.1    Yamamoto Coupling 204
    • 7.4.2    Suzuki Coupling           205
    • 7.4.3    Sonogashira Coupling             205
    • 7.4.4    Other Cross-Coupling Reactions     206
    • 7.4.5    Scale-Up Considerations      207
  • 7.5        Commercial Status and Applications            208

 

8             COVALENT TRIAZINE FRAMEWORKS (CTFs)             210

  • 8.1        Overview and Structure           210
    • 8.1.1    Definition and Composition 211
    • 8.1.2    Triazine Ring Formation           212
    • 8.1.3    Nitrogen-Rich Frameworks   213
  • 8.2        Types and Variants     214
    • 8.2.1    CTF-1 and Derivatives               214
    • 8.2.2    Ionothermal vs. Polycondensation Routes 216
    • 8.2.3    Functionalized CTFs 218
  • 8.3        Properties and Performance Characteristics           218
    • 8.3.1    High Nitrogen Content             218
    • 8.3.2    CO₂ Capture Affinity  220
    • 8.3.3    Catalytic Properties   221
    • 8.3.4    Electronic Properties                222
  • 8.4        Synthesis Methods    223
    • 8.4.1    Ionothermal Synthesis            224
    • 8.4.2    Acid-Catalyzed Polycondensation   226
    • 8.4.3    Microwave-Assisted Methods            227
  • 8.5        Commercial Potential and Challenges         227
  • 8.6        SWOT Analysis for CTFs          228

 

9             CONJUGATED MICROPOROUS POLYMERS (CMPs)            230

  • 9.1        Overview and Structure           230
    • 9.1.1    Definition and Composition 231
    • 9.1.2    π-Conjugated Backbones     232
    • 9.1.3    Microporosity in Conjugated Systems           234
  • 9.2        Types and Variants     234
    • 9.2.1    Poly(aryleneethynylene) Networks  236
    • 9.2.2    Poly(phenylene) Networks     237
    • 9.2.3    Other Conjugated Systems  238
  • 9.3        Properties and Performance Characteristics           239
    • 9.3.1    Electrical Conductivity            239
    • 9.3.2    Photocatalytic Properties      240
    • 9.3.3    Sensing Capabilities 242
    • 9.3.4    Light Harvesting           244
  • 9.4        Synthesis Methods    245
    • 9.4.1    Sonogashira-Hagihara Coupling      246
    • 9.4.2    Suzuki Coupling           247
    • 9.4.3    Oxidative Coupling    248
  • 9.5        Commercial Status and Applications            249
  • 9.6        SWOT Analysis for CMPs        250

 

10          OTHER POROUS FRAMEWORK MATERIALS              250

  • 10.1     Hypercrosslinked Polymers (HCPs) 251
    • 10.1.1 Overview and Structure           252
    • 10.1.2 Friedel-Crafts Synthesis         252
    • 10.1.3 Properties and Applications 253
    • 10.1.4 Commercial Status    253
    • 10.1.5 SWOT Analysis             253
  • 10.2     Polymers of Intrinsic Microporosity (PIMs) 254
    • 10.2.1 Overview and Structure           255
    • 10.2.2 Contorted Polymer Backbones          256
    • 10.2.3 Membrane Applications         258
    • 10.2.4 Commercial Status    259
    • 10.2.5 SWOT Analysis             259
  • 10.3     Porous Organic Cages (POCs)            260
    • 10.3.1 Overview and Structure           262
    • 10.3.2 Discrete Molecular Cages     262
    • 10.3.3 Solution Processability           264
    • 10.3.4 Commercial Potential              266
    • 10.3.5 SWOT Analysis             267
  • 10.4     Supramolecular Organic Frameworks (SOFs)          268
    • 10.4.1 Definition and Scope                270
    • 10.4.2 Non-Covalent Assembly        270
    • 10.4.3 Emerging Applications             271
  • 10.5     Hybrid and Composite Framework Materials           272
    • 10.5.1 MOF-COF Hybrids      273
    • 10.5.2 MOF-Polymer Composites   274
    • 10.5.3 Framework-Nanoparticle Composites         275
    • 10.5.4 Mixed-Matrix Membranes      276

 

11          MANUFACTURING AND PROCESSING         277

  • 11.1     Overview of Manufacturing Approaches     277
    • 11.1.1 Batch vs. Continuous Processing     277
    • 11.1.2 Solvent-Based vs. Solvent-Free Methods   278
    • 11.1.3 Green Chemistry Approaches            279
  • 11.2     Scale-Up Challenges                280
    • 11.2.1 Reproducibility at Scale          282
    • 11.2.2 Quality Control and Standardization             283
    • 11.2.3 Cost Reduction Strategies     284
    • 11.2.4 Equipment Requirements     285
  • 11.3     Downstream Processing        286
    • 11.3.1 Purification and Washing      287
    • 11.3.2 Drying and Activation                288
    • 11.3.3 Shaping and Formulation      289
      • 11.3.3.1            Pelletization    290
      • 11.3.3.2            Membrane Fabrication            291
      • 11.3.3.3            Thin Film Deposition 292
      • 11.3.3.4            Monolith Formation   293
      • 11.3.3.5            Coating Technologies               294
    • 11.3.4 Quality Assurance and Testing           296
  • 11.4     Manufacturing Cost Analysis              296
    • 11.4.1 Raw Material Costs   296
    • 11.4.2 Energy Requirements               297
  • 11.5     Economies of Scale   297
    • 11.5.1 Cost Comparison by Material Type  298

 

12          MARKETS AND APPLICATIONS           299

  • 12.1     Market Overview          299
    • 12.1.1 Market Drivers               300
    • 12.1.2 Market Restraints       301
    • 12.1.3 Market Opportunities               302
    • 12.1.4 Value Chain Analysis 303
  • 12.2     Gas Storage and Transport   304
    • 12.2.1 Hydrogen Storage       305
      • 12.2.1.1            Properties and Requirements             306
      • 12.2.1.2            Current Technologies and Limitations          307
      • 12.2.1.3            Framework Material Solutions           308
      • 12.2.1.4            Market Players               309
      • 12.2.1.5            Market Forecast 2026-2036 310
    • 12.2.2 Natural Gas/Methane Storage            311
    • 12.2.3 Specialty Gas Storage and Delivery 313
    • 12.2.4 SWOT Analysis             315
  • 12.3     Carbon Capture, Utilization and Storage (CCUS)  316
    • 12.3.1 Point Source Carbon Capture             317
      • 12.3.1.1            Post-Combustion Capture   319
      • 12.3.1.2            Pre-Combustion Capture      320
      • 12.3.1.3            Industrial Process Emissions             321
    • 12.3.2 Direct Air Capture (DAC)        322
      • 12.3.2.1            Solid Sorbent DAC Technologies       323
      • 12.3.2.2            Comparison with Liquid Sorbents    323
      • 12.3.2.3            Key DAC Technology Developers       324
    • 12.3.3 Carbon Utilization Applications        325
    • 12.3.4 Comparison of Framework Materials for CCUS      326
    • 12.3.5 Market Players               327
    • 12.3.6 SWOT Analysis             328
    • 12.3.7 Market Forecast 2026-2036 329
  • 12.4     Chemical Separation and Purification          330
    • 12.4.1 Olefin/Paraffin Separation    330
    • 12.4.2 Xylene Isomer Separation      331
    • 12.4.3 Natural Gas Purification         332
    • 12.4.4 Air Separation                333
    • 12.4.5 Rare Gas Separation 334
    • 12.4.6 Refrigerant Separation and Reclamation     335
    • 12.4.7 Framework-Based Membranes         337
    • 12.4.8 Market Players               339
    • 12.4.9 SWOT Analysis             340
    • 12.4.10              Market Forecast 2026-2036 341
  • 12.5     Water Harvesting and Dehumidification      342
    • 12.5.1 Atmospheric Water Harvesting          344
    • 12.5.2 HVAC and Dehumidification Systems           346
    • 12.5.3 Comparison of Framework Materials             348
    • 12.5.4 Market Players               349
    • 12.5.5 SWOT Analysis             350
    • 12.5.6 Market Forecast 2026-2036 351
  • 12.6     Water and Air Purification      351
    • 12.6.1 Heavy Metal Removal              352
    • 12.6.2 Organic Pollutant Removal   353
    • 12.6.3 Radioactive Waste Treatment             354
    • 12.6.4 Air Filtration and Purification               355
    • 12.6.5 Toxic Industrial Chemical (TIC) Capture       357
    • 12.6.6 Chemical Warfare Agent Degradation           358
    • 12.6.7 Market Players               359
    • 12.6.8 SWOT Analysis             360
    • 12.6.9 Market Forecast 2026-2036 361
  • 12.7     Catalysis           362
    • 12.7.1 Heterogeneous Catalysis      363
    • 12.7.2 Photocatalysis              364
    • 12.7.3 Electrocatalysis            366
    • 12.7.4 Enzyme Immobilization and Biocatalysis    367
    • 12.7.5 Industrial Process Catalysis 368
    • 12.7.6 Market Players               369
    • 12.7.7 SWOT Analysis             370
    • 12.7.8 Market Forecast 2026-2036 371
  • 12.8     Energy Storage and Conversion         372
    • 12.8.1 Lithium-Ion Batteries                373
      • 12.8.1.1            Anode Materials           374
      • 12.8.1.2            Cathode Materials      375
      • 12.8.1.3            Solid Electrolytes         376
      • 12.8.1.4            Separator Coatings    376
    • 12.8.2 Sodium-Ion and Other Metal-Ion Batteries 377
    • 12.8.3 Supercapacitors          378
    • 12.8.4 Fuel Cells         379
      • 12.8.4.1            Proton Exchange Membranes             380
      • 12.8.4.2            Catalyst Supports       381
    • 12.8.5 Thermal Energy Storage          381
    • 12.8.6 Solar Energy Applications     382
    • 12.8.7 Market Players               383
    • 12.8.8 SWOT Analysis             383
    • 12.8.9 Market Forecast 2026-2036 384
  • 12.9     Biomedical Applications        385
    • 12.9.1 Drug Delivery Systems             386
    • 12.9.2 Bioimaging and Contrast Agents      388
    • 12.9.3 Biosensing and Diagnostics 389
    • 12.9.4 Antibacterial Applications    390
    • 12.9.5 Tissue Engineering     391
    • 12.9.6 Biocompatibility and Toxicity Considerations          392
    • 12.9.7 Regulatory Pathway Considerations              393
    • 12.9.8 Market Players               393
    • 12.9.9 SWOT Analysis             394
    • 12.9.10              Market Forecast 2026-2036 395
  • 12.10  Sensors and Electronics         396
    • 12.10.1              Chemical Sensors      397
    • 12.10.2              Gas Sensors   397
    • 12.10.3              Humidity Sensors       397
    • 12.10.4              Biosensors      398
    • 12.10.5              Electronic Devices      398
    • 12.10.6              Optoelectronics           399
    • 12.10.7              Market Players               400
    • 12.10.8              SWOT Analysis             401
    • 12.10.9              Market Forecast 2026-2036 402
  • 12.11  Heat Exchangers and Thermal Management            403
    • 12.11.1              Adsorption Heat Pumps         404
    • 12.11.2              Adsorption Chillers    405
    • 12.11.3              Heat Exchanger Coatings       406
    • 12.11.4              Electronics Thermal Management  407
    • 12.11.5              Market Players               408
    • 12.11.6              SWOT Analysis             408
    • 12.11.7              Market Forecast 2026-2036 408
  • 12.12  Coatings and Surface Modification 409
    • 12.12.1              Protective Coatings   410
    • 12.12.2              Functional Coatings  411
    • 12.12.3              Self-Healing Coatings              412
    • 12.12.4              Antimicrobial Surfaces            413
    • 12.12.5              SWOT Analysis             414
    • 12.12.6              Market Forecast 2026-2036 415
  • 12.13  Emerging and Niche Applications    415
    • 12.13.1              Quantum Computing               416
    • 12.13.2              Agriculture and Controlled Release                417
    • 12.13.3              Food Packaging           418
    • 12.13.4              Cosmetics and Personal Care            418
    • 12.13.5              Textiles and Wearables           419
    • 12.13.6              3D Printing and Additive Manufacturing      419
    • 12.13.7              Space and Defense Applications     420

 

13          GLOBAL MARKET ANALYSIS AND FORECASTS 2026-2036              421

  • 13.1     Total Global Market    421
    • 13.1.1 Historical Market Size (2020-2025) 422
    • 13.1.2 Market Size and Forecast (2026-2036)         423
    • 13.1.3 Market Growth Drivers             424
    • 13.1.4 Market Growth Inhibitors       424
  • 13.2     Market by Material Type          425
  • 13.3     Regional Market Analysis      425
    • 13.3.1 North America              425
    • 13.3.2 Europe                427
    • 13.3.3 Asia-Pacific    429

 

14          TECHNOLOGY TRENDS AND DEVELOPMENTS       430

  • 14.1     Artificial Intelligence and Machine Learning             431
    • 14.1.1 AI in Framework Design and Discovery         432
    • 14.1.2 High-Throughput Computational Screening              433
    • 14.1.3 Machine Learning for Property Prediction   434
    • 14.1.4 Automated Synthesis Optimization 434
  • 14.2     Advanced Manufacturing Technologies       435
    • 14.2.1 Continuous Flow Synthesis  435
    • 14.2.2 Robotic High-Throughput Synthesis               437
    • 14.2.3 3D Printing of Framework Materials 438
    • 14.2.4 Roll-to-Roll Processing            439
  • 14.3     New Material Developments               440
    • 14.3.1 Novel Framework Chemistries           441
    • 14.3.2 Multi-Component and Mixed-Linker Frameworks 441
    • 14.3.3 Defect Engineering     442
    • 14.3.4 Amorphous Framework Materials    443
    • 14.3.5 2D Framework Materials        443
  • 14.4     Integration and Device Development             444
    • 14.4.1 Membrane Technologies        445
    • 14.4.2 Monolithic Structures               446
    • 14.4.3 Coatings and Thin Films         447
    • 14.4.4 Device Integration Challenges           448
  • 14.5     Sustainability and Green Chemistry               448
    • 14.5.1 Solvent-Free Synthesis            449
    • 14.5.2 Bio-Based Linkers       449
    • 14.5.3 Recyclability and Circular Economy               450
    • 14.5.4 Life Cycle Assessment            451

 

15          COMPANY PROFILES                452 (45 company profiles)

 

 

16          FORMER MARKET PARTICIPANTS      490

 

17          FUTURE OUTLOOK AND STRATEGIC RECOMMENDATIONS          492

  • 17.1     Technology Roadmap              492
    • 17.1.1 Short-Term Developments (2026-2028)      493
    • 17.1.2 Medium-Term Developments (2029-2032) 494
    • 17.1.3 Long-Term Developments (2033-2036)        494
  • 17.2     Market Evolution Scenarios  496

 

18          APPENDICES  497

  • 18.1     Appendix A: List of Abbreviations and Acronyms   497
  • 18.2     Appendix B: Glossary of Technical Terms    498

 

19          REFERENCES 500

 

List of Tables

  • Table 1. Classification of porous framework materials by type     32
  • Table 2. Markets and applications of porous framework materials            34
  • Table 3. Porous framework materials industry developments 2020-2025            35
  • Table 4. Current technical challenges and limitations by material type  37
  • Table 5. Production costs by material type 38
  • Table 6. Porous framework materials pricing overview       38
  • Table 7. Competitive landscape overview  40
  • Table 8. Market prospects to 2036 by application 41
  • Table 9. Market prospects to 2036 by material type              42
  • Table 10. Classification of porous framework materials by bonding type               46
  • Table 11. Classification of porous framework materials by crystallinity 46
  • Table 12. Hybrid vs purely organic framework materials   51
  • Table 13. Summary of porous framework material properties       54
  • Table 14. Property comparison radar chart across material types              55
  • Table 15. Surface area ranges by material type (BET values)          55
  • Table 16. Pore size classifications and typical ranges         56
  • Table 17. Thermal stability comparison across material types      56
  • Table 18. Chemical stability comparison (water, acid, base)         57
  • Table 19. Mechanical properties comparison          58
  • Table 20. Gas adsorption capacities by material type         58
  • Table 21. Conductivity properties by material type               59
  • Table 22. Biocompatibility assessment by material type   60
  • Table 23. Comprehensive comparative analysis of all porous framework material types (MOFs, COFs, HOFs, ZIFs, PAFs, CTFs, CMPs, HCPs, PIMs, POCs)            61
  • Table 24. Property benchmarking matrix     62
  • Table 25. Comparison of porous framework materials vs traditional porous materials 63
  • Table 26. MOFs vs zeolites comparison       65
  • Table 27. Framework materials vs activated carbon comparison               65
  • Table 28. Framework materials vs mesoporous silica comparison            66
  • Table 29. Framework materials vs conventional porous polymers             67
  • Table 30. Material selection guide by application  67
  • Table 31. Cost-performance analysis by material type       69
  • Table 32. Environmental regulations affecting porous framework materials by region  70
  • Table 33. Health and safety considerations by material type          70
  • Table 34. Regional regulatory framework summary             71
  • Table 35. SBU types and their properties     75
  • Table 36. Organic linkers and their characteristics               77
  • Table 37. Common MOF topologies and their properties  79
  • Table 38. Example MOFs and their applications     80
  • Table 39. Properties of Metal-Organic Frameworks (MOFs)            82
  • Table 40. Surface area and pore volume of selected MOFs             83
  • Table 41. Gas adsorption capacities of selected MOFs     84
  • Table 42. Thermal and chemical stability of major MOF types      85
  • Table 43. MOF functionalization strategies 86
  • Table 44. Solvothermal synthesis parameters for common MOFs             89
  • Table 45. MOFs synthesized by electrochemical methods              90
  • Table 46. Microwave synthesis conditions for selected MOFs      90
  • Table 47. MOFs synthesized by mechanochemical methods        90
  • Table 48. Sonochemical synthesis parameters       90
  • Table 49. Continuous flow synthesis advantages and limitations               91
  • Table 50. MOFs synthesized at room temperature 92
  • Table 51. Comparison of different synthesis methods for Metal-Organic Frameworks (MOFs)               94
  • Table 52. Scale-up challenges for MOF manufacturing     96
  • Table 53. MOF producers and production capacities          98
  • Table 54. MOF manufacturers by synthesis method            99
  • Table 55. MOF production cost breakdown               100
  • Table 56. MOF activation methods comparison     103
  • Table 57. MOF shaping methods and applications               104
  • Table 58. MOF composite types and properties      106
  • Table 59. Characterization techniques for MOFs   107
  • Table 60. Commercially available MOF products   108
  • Table 61. MOF pricing by type and quantity               109
  • Table 62. Summary of ZIF characteristics   114
  • Table 63. ZIF topologies and their zeolite analogues           116
  • Table 64. Metal ions used in ZIF synthesis  119
  • Table 65. Major ZIF types and their properties          120
  • Table 66. ZIF-8 properties and applications               121
  • Table 67. ZIF-67 properties and applications            124
  • Table 68. ZIF-90 properties and applications            124
  • Table 69. ZIF-L properties and applications               127
  • Table 70. Other notable ZIF variants               127
  • Table 71. ZIF stability under various conditions      128
  • Table 72. Water stability of ZIF types               129
  • Table 73. ZIF gas separation performance metrics                130
  • Table 74. Comparison of ZIF synthesis methods    132
  • Table 75. Aqueous synthesis conditions for ZIFs    133
  • Table 76. Summary of COF characteristics                137
  • Table 77. Elements used in COF construction         139
  • Table 78. Comparison of 2D vs 3D COFs     141
  • Table 79. COF linkage types and bond strengths   144
  • Table 80. COF types by linkage chemistry   144
  • Table 81. Boronate ester-linked COFs: properties and applications         146
  • Table 82. Imine-linked COFs: properties and applications              148
  • Table 83. Hydrazone-linked COFs: properties and applications  148
  • Table 84. Triazine-based COFs: properties and applications         148
  • Table 85. β-Ketoenamine-linked COFs: properties and applications        150
  • Table 86. Other COF linkage types   151
  • Table 87. Crystallinity of selected COFs      154
  • Table 88. Electronic properties of COFs       154
  • Table 89. Chemical stability of COFs by linkage type           154
  • Table 90. Photocatalytic COFs and their performance       155
  • Table 91. Comparison of COF synthesis methods 155
  • Table 92. Solvothermal conditions for COF synthesis        156
  • Table 93. Room temperature COF synthesis conditions   157
  • Table 94. Factors affecting COF crystallinity             159
  • Table 95. COF scale-up challenges 160
  • Table 96. Summary of HOF characteristics                165
  • Table 97. Hydrogen bonding motifs and their strengths     167
  • Table 98. HOFs vs MOFs vs COFs comparison        168
  • Table 99. HOF building block types and properties               168
  • Table 100. Carboxylic acid-based HOFs      169
  • Table 101. Amide-based HOFs           172
  • Table 102. Pyrazole-based HOFs      173
  • Table 103. Other HOF building units               174
  • Table 104. Solution processability of HOFs               177
  • Table 105. HOF density comparison with other frameworks          179
  • Table 106. HOF stability under various conditions                180
  • Table 107. HOF synthesis methods 181
  • Table 108. Solvent effects on HOF crystallization 183
  • Table 109. HOF post-synthetic modification strategies     185
  • Table 110. HOF advantages for commercialization              187
  • Table 111. HOF stability challenges                188
  • Table 112. Emerging HOF applications         189
  • Table 113. Summary of PAF characteristics              192
  • Table 114. C-C coupling reactions for PAF synthesis          194
  • Table 115. Amorphous vs ordered PAF structures 194
  • Table 116. Notable PAF types and properties           195
  • Table 117. PAF surface area records               199
  • Table 118. PAF thermal stability profiles      201
  • Table 119. Advantages of metal-free PAF composition      202
  • Table 120. PAF synthesis methods comparison     203
  • Table 121. Other cross-coupling reactions for PAF synthesis        206
  • Table 122. PAF scale-up challenges and solutions               207
  • Table 123. Summary of CTF characteristics              211
  • Table 124. Nitrogen content in CTFs vs other frameworks               213
  • Table 125. CTF types and variants   214
  • Table 126. CTF-1 properties and applications          215
  • Table 127. CTF synthesis route comparison             216
  • Table 128. Functionalized CTF types              218
  • Table 129. Nitrogen content and its effects on properties                218
  • Table 130. CTF CO₂ capture performance  220
  • Table 131. CTF catalytic applications            222
  • Table 132. CTF electronic properties              222
  • Table 133. CTF synthesis methods comparison     223
  • Table 134. Ionothermal synthesis conditions           225
  • Table 135. Microwave-assisted CTF synthesis         227
  • Table 136. Summary of CMP characteristics            231
  • Table 137. Conjugated building blocks used in CMPs         233
  • Table 138. CMP types and variants 234
  • Table 139. PAE-CMP properties         237
  • Table 140. PP-CMP properties            238
  • Table 141. Other CMP types 239
  • Table 142. CMP conductivity values               240
  • Table 143. CMP photocatalytic performance            240
  • Table 144. CMP sensing applications            242
  • Table 145. CMP light absorption characteristics    244
  • Table 146. CMP synthesis methods comparison   245
  • Table 147. CMP applications               249
  • Table 148. Summary of HCP characteristics             251
  • Table 149. HCP synthesis conditions            253
  • Table 150. HCP properties and applications             253
  • Table 151. Summary of PIM characteristics              255
  • Table 152. PIM structural features    257
  • Table 153. PIM membrane separation performance            259
  • Table 154. Summary of POC characteristics             261
  • Table 155. POC types and properties             263
  • Table 156. POC solubility characteristics    265
  • Table 157. Summary of SOF characteristics             269
  • Table 158. SOF assembly methods 271
  • Table 159. SOF applications 271
  • Table 160. Hybrid framework material types             272
  • Table 161. MOF-COF hybrid properties         273
  • Table 162. MOF-polymer composite applications 274
  • Table 163. Framework-nanoparticle composite types        275
  • Table 164. Mixed-matrix membrane performance 276
  • Table 165. Manufacturing approach comparison by material type             277
  • Table 166. Batch vs continuous processing trade-offs       277
  • Table 167. Solvent-based vs solvent-free synthesis comparison 278
  • Table 168. Green synthesis approaches      279
  • Table 169. Scale-up challenges by material type    280
  • Table 170. Reproducibility challenges and solutions          282
  • Table 171. Quality control methods for framework materials        283
  • Table 172. Cost reduction strategies by production stage               284
  • Table 173. Manufacturing equipment requirements            285
  • Table 174. Purification methods and effectiveness              287
  • Table 175. Activation methods comparison              288
  • Table 176. Shaping methods overview          289
  • Table 177. Pelletization parameters and effects     290
  • Table 178. Membrane types and fabrication routes              291
  • Table 179. Thin film deposition methods comparison        292
  • Table 180. Monolithic framework materials               293
  • Table 181. Coating technology comparison              294
  • Table 182. Raw material costs for major framework materials      296
  • Table 183. Energy requirements by synthesis method        297
  • Table 184. Economies of scale factors         297
  • Table 185. Production cost comparison across material types    298
  • Table 186. Factors affecting demand for porous framework materials    299
  • Table 187. Market drivers by application area          300
  • Table 188. Market restraints and impact assessment        301
  • Table 189. Market opportunities by sector  302
  • Table 190. Value chain participants by stage            303
  • Table 191. Framework materials for gas storage applications       304
  • Table 192. Hydrogen storage performance by material type           306
  • Table 193. DOE hydrogen storage targets    306
  • Table 194. Current hydrogen storage technologies comparison  307
  • Table 195. Framework materials for hydrogen storage       308
  • Table 196. Market players in hydrogen storage        309
  • Table 197. Hydrogen storage market forecast          310
  • Table 198. Methane storage performance comparison     311
  • Table 199. Methane storage market forecast            312
  • Table 200. Specialty gas storage applications         314
  • Table 201. Specialty gas storage market forecast  315
  • Table 202. Comparison of carbon-capture materials          316
  • Table 203. Point source capture technologies comparison            318
  • Table 204. Post-combustion capture materials comparison         319
  • Table 205. Pre-combustion capture materials         320
  • Table 206. Industrial CO₂ sources and capture approaches          321
  • Table 207. Solid sorbent types for DAC         323
  • Table 208. Solid vs liquid sorbent DAC comparison             323
  • Table 209. DAC technology developers and production    324
  • Table 210. Carbon utilization pathways        325
  • Table 211. Framework material comparison for CCUS       326
  • Table 212. CCUS performance comparison by material type         327
  • Table 213. Market players in CCUS  327
  • Table 214. CCUS market forecast by segment         329
  • Table 215. Applications of framework materials in chemical separation               330
  • Table 216. Olefin/paraffin separation performance              330
  • Table 217. Xylene separation performance                331
  • Table 218. Natural gas purification applications    332
  • Table 219. Air separation performance         333
  • Table 220. Rare gas separation applications             334
  • Table 221. Refrigerant separation technologies      335
  • Table 222. Framework-based membrane performance     338
  • Table 223. Market players in chemical separation 339
  • Table 224. Chemical separation market forecast  341
  • Table 225. Applications of framework materials in water harvesting        343
  • Table 226. Water harvesting performance by material type             345
  • Table 227. Applications of framework materials in HVAC 346
  • Table 228. Water harvesting material comparison 348
  • Table 229. Market players in water harvesting         349
  • Table 230. Water harvesting market forecast            351
  • Table 231. Conventional and emerging technologies for heavy metal removal  352
  • Table 232. Heavy metal adsorption performance  352
  • Table 233. Organic pollutant removal performance             353
  • Table 234. Radioactive ion capture performance   354
  • Table 235. Applications of framework materials in air filtration    355
  • Table 236. TIC capture performance              357
  • Table 237. CWA degradation performance 358
  • Table 238. Market players in purification     359
  • Table 239. Purification market forecast        361
  • Table 240. Catalytic applications of framework materials               362
  • Table 241. Heterogeneous catalysis applications 363
  • Table 242. Photocatalysis performance by material type  364
  • Table 243. Electrocatalysis applications     366
  • Table 244. Enzyme immobilization applications     367
  • Table 245. Industrial catalysis applications               368
  • Table 246. Market players in catalysis           369
  • Table 247. Catalysis market forecast             371
  • Table 248. Applications of framework materials in energy storage             372
  • Table 249. Framework material applications in LIBs            373
  • Table 250. Framework-derived anode materials     374
  • Table 251. Framework-derived cathode materials 375
  • Table 252. Framework-based solid electrolytes      376
  • Table 253. Framework separator coatings  376
  • Table 254. Framework materials for next-gen batteries      377
  • Table 255. Framework materials for supercapacitors         378
  • Table 256. Membranes for PEM Fuel Cells  379
  • Table 257. Applications of framework materials in fuel cells          380
  • Table 258. Framework-based PEM performance    380
  • Table 259. Framework catalyst supports     381
  • Table 260. Thermal energy storage applications     381
  • Table 261. Solar energy applications             382
  • Table 262. Market players in energy storage              383
  • Table 263. Energy storage market forecast 384
  • Table 264. Biomedical applications of framework materials          385
  • Table 265. Drug delivery performance           387
  • Table 266. Bioimaging applications 388
  • Table 267. Biosensing applications 389
  • Table 268. Antibacterial framework materials          390
  • Table 269. Tissue engineering applications               391
  • Table 270. Biocompatibility assessment     392
  • Table 271. Regulatory pathways for biomedical frameworks         393
  • Table 272. Market players in biomedical applications        393
  • Table 273. Biomedical market forecast        395
  • Table 274. Sensor applications of framework materials    396
  • Table 275. Chemical sensor performance  397
  • Table 276. Gas sensor types and performance       397
  • Table 277. Humidity sensor applications    397
  • Table 278. Biosensor applications   398
  • Table 279. Electronic device applications  398
  • Table 280. Optoelectronic applications       399
  • Table 281. Market players in sensors             400
  • Table 282. Sensors market forecast                402
  • Table 283. Applications of framework materials in heat exchangers         404
  • Table 284. Heat pump performance by material     405
  • Table 285. Adsorption chiller applications 405
  • Table 286. Heat exchanger coating performance   406
  • Table 287. Electronics thermal management applications             407
  • Table 288. Market players in thermal management             408
  • Table 289. Heat exchanger market forecast              408
  • Table 290. Applications of framework materials in coatings           409
  • Table 291. Protective coating applications 410
  • Table 292. Functional coating types               411
  • Table 293. Self-healing coating mechanisms           412
  • Table 294. Antimicrobial coating applications         413
  • Table 295. Coatings market forecast              415
  • Table 296. Emerging applications overview               415
  • Table 297. Quantum computing applications          416
  • Table 298. Agricultural applications               417
  • Table 299. Food packaging applications      418
  • Table 300. Cosmetics applications 418
  • Table 301. Textile applications           419
  • Table 302. 3D printing applications 419
  • Table 303. 118 Space and defense applications    420
  • Table 304. Historical market size 2020-2025           422
  • Table 305. Global market revenues 2020-2036 (low, medium, high estimates) 423
  • Table 306. Market growth drivers analysis  424
  • Table 307. 7 Market growth inhibitors analysis        424
  • Table 308. Market share by material type 2026 vs 2036    425
  • Table 309. North America market overview               425
  • Table 310. North America market forecast 2026-2036      426
  • Table 311. Europe market overview 427
  • Table 312. Europe market forecast 2026-2036       428
  • Table 313. Asia-Pacific market overview      429
  • Table 314. Asia-Pacific market forecast       429
  • Table 315. AI/ML applications in framework science           431
  • Table 316. AI platforms for framework design          432
  • Table 317. ML models for property prediction          434
  • Table 318. Automated synthesis platforms                434
  • Table 319. Advanced manufacturing technologies overview          435
  • Table 320. Continuous flow synthesis advantages               436
  • Table 321. High-throughput synthesis capabilities               437
  • Table 322. 3D printed framework applications        438
  • Table 323. Roll-to-roll processing parameters         439
  • Table 324. Emerging framework material developments   440
  • Table 325. Novel framework types   441
  • Table 326. Multi-component frameworks   441
  • Table 327. Defect engineering strategies     442
  • Table 328. Amorphous framework characteristics                443
  • Table 329. 2D framework materials 444
  • Table 330. Device integration approaches 444
  • Table 331. Membrane device developments             445
  • Table 332. Monolithic structure applications           446
  • Table 333. Coating integration methods      447
  • Table 334. Device integration challenges and solutions    448
  • Table 335. Solvent-free synthesis methods               449
  • Table 336. Bio-based framework materials                449
  • Table 337. Recyclability considerations       450
  • Table 338. LCA results for framework materials      451
  • Table 339.  Abbreviations and acronyms     497
  • Table 340. Glossary   498

 

List of Figures

  • Figure 1. Schematic classification of porous framework material types 36
  • Figure 2. Market map: Porous framework materials             38
  • Figure 3. Bonding types in porous framework materials (coordination, covalent, hydrogen bonding) 51
  • Figure 4. Key milestones in porous framework material development     52
  • Figure 5. Reticular chemistry design principles       56
  • Figure 6. Schematic of zeolite structure       67
  • Figure 7. Decision tree for porous framework material selection 72
  • Figure 8. Examples of typical metal-organic frameworks 76
  • Figure 9. Schematic drawing of a metal-organic framework (MOF) structure      77
  • Figure 10. Common secondary building units (SBUs) in MOFs     78
  • Figure 11. Common organic linkers used in MOF synthesis            80
  • Figure 12. MOF topology examples 81
  • Figure 13. Representative MOFs       84
  • Figure 14. MOF synthesis methods overview            90
  • Figure 15. Solvothermal synthesis of MOFs               91
  • Figure 16. Hydrothermal synthesis of metal-organic frameworks              92
  • Figure 17. Continuous flow synthesis schematic   94
  • Figure 18. Spray drying process for MOF production           96
  • Figure 19. Layer-by-layer MOF thin film growth       97
  • Figure 20. Technology readiness levels for MOF synthesis methods         100
  • Figure 21. MOF downstream processing flowchart               105
  • Figure 22. MOF supply chain schematic      113
  • Figure 23. SWOT analysis: Metal-Organic Frameworks     115
  • Figure 24. ZIF structure showing zeolite-like topology        117
  • Figure 25. ZIF classification within MOF family       118
  • Figure 26. Metal-imidazolate bonding geometry     121
  • Figure 27. ZIF-8 crystal structure       123
  • Figure 28. ZIF-67 crystal structure    126
  • Figure 29. ZIF-L 2D structure                129
  • Figure 30. Continuous flow ZIF production schematic       137
  • Figure 31. Covalent organic frameworks (COFs) schematic representation         139
  • Figure 32. 2D COF layer stacking structures              143
  • Figure 33. COF linkage formation reactions               146
  • Figure 34. Boronate ester linkage formation              149
  • Figure 35. Imine linkage formation (Schiff base condensation)    150
  • Figure 36. β-Ketoenamine linkage formation and stability               152
  • Figure 37. COF crystallinity characterization (PXRD patterns)       156
  • Figure 38. Mechanochemical COF synthesis           160
  • Figure 39. Interfacial COF membrane synthesis     162
  • Figure 40. SWOT analysis: Covalent Organic Frameworks               166
  • Figure 41. HOF structure schematic               168
  • Figure 42. Hydrogen bonding in HOFs           169
  • Figure 43. Common hydrogen bonding motifs in HOFs      170
  • Figure 44. HOF building block examples     173
  • Figure 45. DAT-based HOFs  174
  • Figure 46. HOF solution processing and recrystallization 179
  • Figure 47. HOF regeneration process             181
  • Figure 48. SWOT analysis: Hydrogen-Bonded Organic Frameworks          193
  • Figure 49. PAF structure schematic 194
  • Figure 50. C-C bond formation reactions in PAFs   196
  • Figure 51. PAF-1 structure and properties   200
  • Figure 52. PAF functionalization strategies 201
  • Figure 53. CTF structure schematic 214
  • Figure 54. Triazine ring formation mechanism         216
  • Figure 55. CTF-1 structure      218
  • Figure 56. CTF synthesis routes         220
  • Figure 57. CTF CO₂ adsorption isotherms   224
  • Figure 58. Ionothermal CTF synthesis           228
  • Figure 59. Acid-catalyzed CTF synthesis     230
  • Figure 60. SWOT analysis: Covalent Triazine Frameworks               232
  • Figure 61. CMP structure schematic              233
  • Figure 62. π-Conjugated backbone structures in CMPs    235
  • Figure 63. Origin of microporosity in CMPs 237
  • Figure 64. Poly(aryleneethynylene) CMP structure                239
  • Figure 65. Poly(phenylene) CMP structure  241
  • Figure 66. CMP photocatalysis mechanism              244
  • Figure 67. CMP synthesis via Sonogashira-Hagihara coupling     249
  • Figure 68. CMP synthesis via Suzuki coupling          250
  • Figure 69. HCP structure schematic               254
  • Figure 70. SWOT analysis: Hypercrosslinked Polymers     257
  • Figure 71. PIM structure schematic 258
  • Figure 72. PIM contorted backbone structure           259
  • Figure 73. PIM membrane structure                261
  • Figure 74. SWOT analysis: Polymers of Intrinsic Microporosity     263
  • Figure 75. POC structure examples 264
  • Figure 76. POC cage formation          265
  • Figure 77. POC solution processing                267
  • Figure 78. SWOT analysis: Porous Organic Cages 270
  • Figure 79. SOF structure schematic                271
  • Figure 80. SOF non-covalent interactions  274
  • Figure 81. MOF-COF hybrid structure            276
  • Figure 82. Hydrogen storage schematic       308
  • Figure 83. NuMat's ION-X cylinders 316
  • Figure 84. SWOT analysis: Framework materials in gas storage and transport   318
  • Figure 85. Point source capture schematic                320
  • Figure 86. Schematic of Climeworks DAC system 325
  • Figure 87. SWOT analysis: Framework materials in carbon capture and storage              331
  • Figure 88. Refrigerant reclamation process               339
  • Figure 89. Molecular sieving membrane      340
  • Figure 90. SWOT analysis: Framework materials in chemical separation              343
  • Figure 91. Schematic of framework-based device for water harvesting  345
  • Figure 92. Atmospheric water harvesting process 347
  • Figure 93. MOF-based cartridge for air conditioner              350
  • Figure 94. SWOT analysis: Framework materials in water harvesting       353
  • Figure 95. Air filtration mechanisms               359
  • Figure 96. SWOT analysis: Framework materials in air and water filtration           362
  • Figure 97. Photocatalysis mechanisms       368
  • Figure 98. SWOT analysis: Framework materials in catalysis         373
  • Figure 99. MOF composite membranes       382
  • Figure 100. SWOT analysis: Framework materials in energy storage         386
  • Figure 101. Drug delivery mechanisms        389
  • Figure 102. SWOT analysis: Framework materials in biomedicine              396
  • Figure 103. SWOT analysis: Framework materials in sensors        404
  • Figure 104. Framework-coated heat exchanger      406
  • Figure 105. Adsorption heat pump schematic         407
  • Figure 106. SWOT analysis: Framework materials in heat exchangers     411
  • Figure 107. SWOT analysis: Framework materials in coatings       417
  • Figure 108. Continuous flow reactor designs           438
  • Figure 109. Technology roadmap 2026-2036           495
  •  

 

 

 

Purchasers will receive the following:

  • PDF report download/by email. 
  • Comprehensive Excel spreadsheet of all data.
  • Mid-year Update

 

The Global Market for Porous Framework Materials 2026-2036
The Global Market for Porous Framework Materials 2026-2036
PDF download.

The Global Market for Porous Framework Materials 2026-2036
The Global Market for Porous Framework Materials 2026-2036
PDF and Print Edition (including tracked delivery).

Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer. To order by Bank Transfer (Invoice) select this option from the payment methods menu after adding to cart, or contact info@futuremarketsinc.com