
cover
- Published: January 2026
- Pages: 430
- Tables: 352
- Figures: 29
Power electronics is no longer confined to specialist applications. Its influence now spans electric vehicles, renewable energy systems, industrial automation, data-centre infrastructure and advanced consumer equipment. What links these sectors is the need to move energy more efficiently and at higher power densities. The global power electronics market is experiencing unprecedented growth and transformation, driven by the electrification of transportation, renewable energy expansion, and surging demand for data center infrastructure. This dynamic sector encompasses the critical components that convert and control electrical power across virtually every modern application, from electric vehicle powertrains to grid-scale energy storage systems. At the heart of this market evolution is a fundamental technology transition from traditional silicon-based devices to wide bandgap (WBG) semiconductors, specifically silicon carbide (SiC) and gallium nitride (GaN). This paradigm shift represents the most significant advancement in power electronics since the introduction of IGBTs in the 1980s. SiC MOSFETs offer compelling advantages over silicon IGBTs, including higher temperature operation, superior thermal conductivity, switching speeds up to five times faster, and the potential to increase electric vehicle range by approximately 7%. These characteristics enable more compact, efficient power conversion systems with smaller passive components and reduced cooling requirements.
The electric vehicle sector stands as the primary growth driver for power electronics demand. Key components include traction inverters, onboard chargers (OBCs), and DC-DC converters, with the market increasingly adopting 800V architectures to enable faster charging and improved efficiency. SiC MOSFETs are rapidly gaining market share in EV inverters, with projections indicating they will become the majority technology by 2035. Meanwhile, GaN devices are making significant inroads in lower-power applications such as onboard chargers and DC-DC converters, where their high-frequency switching capabilities enable dramatic reductions in size and weight.
The supply chain for power electronics is undergoing significant restructuring, with vertical integration emerging as a key strategic trend. Major automotive OEMs and semiconductor suppliers are securing supply through acquisitions, partnerships, and in-house development of SiC capabilities. The transition from 150mm to 200mm SiC wafers represents a critical milestone that will substantially increase production capacity and reduce costs, with multiple suppliers worldwide scaling up 200mm wafer production. Chinese manufacturers have entered the market aggressively, with four Chinese companies now ranking among the top 20 global power device suppliers.
Data centers represent another rapidly expanding application, driven by artificial intelligence workloads that demand unprecedented power levels. Power supply units are evolving to meet stringent efficiency standards, with the 80 PLUS Ruby certification requiring up to 96.5% efficiency. Wide bandgap adoption is accelerating in this sector, with hybrid designs combining silicon, SiC, and GaN emerging as the preferred approach for maximizing efficiency across different power conversion stages.
The industry is also witnessing a conceptual evolution from discrete converter design toward integrated system-level approaches. This "Power Electronics 2.0" paradigm emphasizes energy management over simple power conversion, incorporating smart grid integration, distributed control architectures, and mission-oriented efficiency metrics. Multi-cell converter architectures are gaining traction, offering advantages including switching frequency multiplication, improved redundancy, and standardization benefits.
Despite the rapid advancement of WBG technologies, silicon devices continue to hold significant market share due to their maturity, established supply chains, and cost advantages. The market is characterized by intense cost pressure, particularly in price-sensitive segments like solar inverters and battery energy storage systems. Looking forward, the global power electronics market is projected to grow with a compound annual growth rate exceeding 8%, adding more than $15 billion in market value by 2030, driven by the continued expansion of electric mobility, renewable energy deployment, and digital infrastructure requirements.
The Global Power Electronics Market 2026-2036 provides comprehensive analysis of the rapidly evolving power semiconductor industry, examining the transformative shift from silicon-based devices to wide bandgap (WBG) technologies including silicon carbide (SiC) MOSFETs and gallium nitride (GaN) HEMTs. This in-depth market intelligence report delivers granular 10-year forecasts covering market size in US dollars and gigawatts across key segments including electric vehicle inverters, onboard chargers, DC-DC converters, data center power supply units, renewable energy systems, and industrial applications.
The report analyzes critical technology trends driving market growth, including the transition from 400V to 800V EV architectures, the evolution from 150mm to 200mm SiC wafer production, and the emergence of integrated power electronics modules. Detailed supply chain analysis covers the complete value chain from raw materials and wafer production through device manufacturing, packaging, and system integration, with particular focus on vertical integration strategies and the rising influence of Chinese manufacturers in the global market.
Regional market analysis examines growth dynamics across China, Europe, North America, Japan, South Korea, and emerging markets, while competitive landscape assessment provides market share rankings, M&A activity tracking, and strategic partnership analysis. The report includes over 90 detailed company profiles spanning semiconductor device manufacturers, GaN specialists, SiC wafer suppliers, tier-1 automotive suppliers, automotive OEMs, and system integrators.
Report Contents include:
- Market Analysis & Forecasts
- Global power electronics market size and 10-year growth projections (2026-2036)
- Device-level forecasts for Si IGBTs, SiC MOSFETs, and GaN devices by voltage class
- Application-level forecasts for EV inverters, onboard chargers, and DC-DC converters in units, GW, and US$
- Regional market forecasts for China, Europe, North America, and Asia-Pacific
- Price trend analysis and cost reduction projections for WBG semiconductors
- Technology Analysis
- Comprehensive comparison of Si, SiC, and GaN semiconductor properties and performance
- Technology S-curve analysis and paradigm shift to Power Electronics 2.0
- Multi-cell converter architectures including parallel and series interleaving
- Packaging evolution including single-sided and double-sided cooling technologies
- 150mm to 200mm SiC wafer transition timeline and cost advantages
- Application Markets
- Electric vehicle power electronics including 400V vs 800V architecture analysis
- Traction inverter, onboard charger, and DC-DC converter technology benchmarking
- Data center PSU market including AI server power requirements
- Renewable energy applications covering solar PV, wind, and battery energy storage
- Grid infrastructure including smart grid, solid-state transformers, and HVDC systems
- Supply Chain Analysis
- Complete Si, SiC, and GaN supply chain mapping from raw materials to end applications
- SiC wafer supplier market share and 200mm production roadmap
- Vertical integration trends and OEM acquisition strategies
- Packaging and assembly supply chain including die attach technologies
- Passive component technology roadmap for capacitors and magnetics
- Competitive Landscape
- Top 20 power device supplier rankings and market share analysis
- Recent mergers, acquisitions, and strategic partnerships
- Manufacturing capacity expansion plans by region and technology
- OEM-supplier relationship mapping for SiC MOSFETs and Si IGBTs
- Future Technology Trends
- Power Electronics 2.0 vision: from converters to systems
- SiC and GaN technology roadmaps through 2035
- Emerging WBG materials including Ga₂O₃ and diamond
- Virtual prototyping and digital twin design methodologies
Companies Profiled include ABB, Advanced Energy Industries, Alpha & Omega Semiconductor, Bimotal, BMW, BorgWarner, Bosch, BYD, Cambridge GaN Devices, China Resources Microelectronics (CR Micro), CM Materials, Coherent, CRRC Corporation, Dana Incorporated, Delta Electronics, Denso, Diodes Incorporated, Dynex Semiconductor, Dynolt Technologies, Eaton, Efficient Power Conversion (EPC), Entuple E-Mobility, Fuji Electric, General Motors, GlobalWafers, HBN Technology, Heron Power, Hitachi Astemo, Hitachi Energy, Huawei, Hyundai Motor Group, Infineon Technologies, Innoscience, Inovance Technology, Lite-On Technology, Littelfuse, Lucid Motors, Magna International, Microchip Technology, Mitsubishi Electric, Navitas Semiconductor, Nexperia, NXP Semiconductors, onsemi and more......
1 EXECUTIVE SUMMARY 32
- 1.1 Report Introduction and Scope 32
- 1.2 Scope of Analysis 32
- 1.3 Methodology 32
- 1.4 Key Findings and Market Highlights 32
- 1.5 Global Power Electronics Market Overview 2026-2036 34
- 1.5.1 Market Structure 34
- 1.6 Technology Evolution: From Silicon to Wide Bandgap 36
- 1.6.1 The Technology S-Curve 36
- 1.7 Market Size and Growth Projections Summary 37
- 1.7.1 Device-Level Projections 37
- 1.7.2 Application-Level Projections 37
- 1.8 Regional Market Analysis Overview 38
- 1.8.1 China 38
- 1.8.2 Europe 38
- 1.8.3 United States 38
- 1.8.4 Japan and South Korea 38
- 1.9 Key Market Drivers and Challenges 39
- 1.9.1 Primary Market Drivers 39
- 1.9.2 Key Market Challenges 39
2 MARKET OVERVIEW AND DEFINITIONS 40
- 2.1 Power Electronics Fundamentals 40
- 2.1.1 What is Power Electronics? 40
- 2.1.2 Value Chain Economics and Margin Structure 41
- 2.1.3 Key Applications and End Markets 41
- 2.1.4 Electric Vehicle Power Electronics 42
- 2.1.5 Data Center Power Demand Transformation 43
- 2.1.6 Power Conversion Technologies Overview 43
- 2.1.7 ETH Zurich VIENNA Rectifier Development Generations 44
- 2.2 Market Segmentation 45
- 2.2.1 By Product Type (Inverters, Converters, Rectifiers) 45
- 2.2.1.1 Inverter Market Dynamics 46
- 2.2.1.2 DC-DC Converter Market Dynamics 46
- 2.2.1.3 Rectifier/Charger Market Dynamics 47
- 2.2.2 By Semiconductor Material (Si, SiC, GaN) 47
- 2.2.2.1 Silicon Market Dynamics 48
- 2.2.2.2 Silicon Carbide Market Dynamics 48
- 2.2.2.3 Gallium Nitride Market Dynamics 50
- 2.2.3 By Application Sector 51
- 2.2.3.1 Automotive & EV Sector Deep Dive 52
- 2.2.4 By Voltage Class 53
- 2.2.1 By Product Type (Inverters, Converters, Rectifiers) 45
- 2.3 Performance Indices and Metrics 54
- 2.3.1 Power Density (kW/dm³) 54
- 2.3.2 Efficiency and Loss Analysis 55
- 2.3.3 Cost per kW Trends 56
- 2.3.4 Reliability and Failure Rate Metrics 56
3 TECHNOLOGY ANALYSIS 58
- 3.1 Evolution of Power Electronics Technology 58
- 3.1.1 Historical Development: SCRs to WBG 58
- 3.1.2 Technology S-Curve Analysis 59
- 3.1.2.1 Semiconductor S-Curves 59
- 3.1.2.2 Passive Component S-Curves 60
- 3.1.3 Paradigm Shift to Power Electronics 2.0 61
- 3.1.3.1 From Power to Energy Metrics 61
- 3.1.3.2 Multi-Objective Optimization and Pareto Fronts 61
- 3.1.3.3 System-Level Integration 62
- 3.2 Silicon-Based Power Devices 62
- 3.2.1 Silicon IGBT Technology and Performance 63
- 3.2.2 IGBT Market Segmentation 63
- 3.2.3 Silicon MOSFET Applications 63
- 3.2.4 Super-Junction Technology Advances 64
- 3.2.5 Si Device Roadmap and Limitations 64
- 3.2.5.1 Fundamental Silicon Limitations 65
- 3.3 Silicon Carbide (SiC) Technology 66
- 3.3.1 SiC Material Properties and Advantages 66
- 3.3.2 SiC Device Figure of Merit Analysis 66
- 3.3.3 SiC MOSFET Technology Development 67
- 3.3.4 SiC MOSFET Manufacturer Comparison 67
- 3.3.5 SiC vs Si IGBT Performance Comparison 68
- 3.3.6 Efficiency Across Load Range 68
- 3.3.7 SiC Device Packaging Evolution 69
- 3.3.8 150mm to 200mm Wafer Transition 69
- 3.3.9 200mm SiC Wafer Production Status 70
- 3.3.10 SiC Cost Reduction Roadmap 70
- 3.4 Gallium Nitride (GaN) Technology 71
- 3.4.1 GaN Material Properties and Potential 71
- 3.4.2 GaN HEMT and FET Technologies 71
- 3.4.3 GaN-on-Si vs Alternative Substrates 72
- 3.4.4 GaN Voltage Limitations and Solutions 73
- 3.4.5 GaN Device Roadmap for Automotive 73
- 3.5 Converter Topology Analysis 74
- 3.5.1 Multi-Cell Converter Architectures 74
- 3.5.2 Parallel and Series Interleaving 74
- 3.5.3 DC-Transformer Concepts 75
- 3.5.4 Three-Level Inverter Designs 75
- 3.6 Packaging and Thermal Management 76
- 3.6.1 Power Module Packaging Evolution 76
- 3.6.2 Single-Sided vs Double-Sided Cooling 76
- 3.6.3 Thermal Interface Materials (TIM) 77
- 3.6.4 Advanced Packaging Technologies (P4, p²pack) 78
4 APPLICATION MARKETS ANALYSIS 80
- 4.1 Electric Vehicles (EVs) 80
- 4.1.1 EV Market Overview and Growth Trends 80
- 4.1.2 Powertrain Mix Evolution 81
- 4.1.3 EV Price Segment Distribution 82
- 4.1.4 Traction Inverter Technologies 83
- 4.1.4.1 Traction Inverter Market Size and Growth 84
- 4.1.4.2 Semiconductor Technology Transition 84
- 4.1.4.3 Inverter Topology Evolution 85
- 4.1.4.4 Traction Inverter Competitive Landscape 86
- 4.1.4.5 Inverter-Motor Integration Trends 87
- 4.1.5 Onboard Charger (OBC) Systems 88
- 4.1.5.1 OBC Market Size and Growth 88
- 4.1.5.2 OBC Power Level Distribution 88
- 4.1.5.3 OBC Semiconductor Technology Transition 89
- 4.1.5.4 Bidirectional OBC Functionality 90
- 4.1.5.5 OBC Competitive Landscape 90
- 4.1.6 DC-DC Converter Requirements 90
- 4.1.6.1 DC-DC Converter Market Size and Growth 91
- 4.1.6.2 Output Voltage Architecture Evolution 91
- 4.1.6.3 DC-DC Converter Semiconductor Transition 91
- 4.1.7 400V vs 800V Architecture Analysis 92
- 4.1.7.1 800V Architecture Benefits 92
- 4.1.7.2 800V Architecture Adoption Timeline 92
- 4.1.7.3 400V Charging Compatibility Solutions 93
- 4.1.8 Power Electronics Integration Trends 94
- 4.1.8.1 Integration Level Evolution 94
- 4.1.8.2 Integrated OBC with DC-DC Converter 95
- 4.1.8.3 Traction-Integrated Onboard Charger (TiOBC) 95
- 4.1.9 Heavy-Duty Vehicle Applications 95
- 4.1.9.1 Heavy-Duty EV Market Overview 95
- 4.1.9.2 Heavy-Duty Power Electronics Requirements 96
- 4.1.9.3 Heavy-Duty Power Electronics Market 96
- 4.2 Renewable Energy 98
- 4.2.1 Solar PV Inverter Market 98
- 4.2.1.1 Solar Inverter Market Size and Growth 98
- 4.2.1.2 Solar Inverter Market Segmentation 98
- 4.2.1.3 Solar Inverter Semiconductor Technology 99
- 4.2.1.4 Solar Inverter Competitive Landscape 99
- 4.2.2 Wind Power Converters 100
- 4.2.2.1 Wind Power Converter Market 100
- 4.2.3 Battery Energy Storage Systems (BESS) 101
- 4.2.3.1 BESS Market Size and Growth 101
- 4.2.1 Solar PV Inverter Market 98
- 4.3 Data Centers and Computing 102
- 4.3.1 Power Supply Unit (PSU) Market 102
- 4.3.1.1 Data Center Power Demand Transformation 102
- 4.3.1.2 PSU Market Size and Growth 102
- 4.3.1.3 PSU Efficiency Standards 102
- 4.3.1.4 Data Center PSU Competitive Landscape 104
- 4.3.2 AI Server Power Requirements 104
- 4.3.2.1 AI Server Power Architecture 105
- 4.3.2.2 Power Delivery Architecture Evolution 105
- 4.3.1 Power Supply Unit (PSU) Market 102
- 4.4 Grid Infrastructure 106
- 4.4.1 Smart Grid and Energy Management 106
- 4.4.1.1 Smart Grid Power Electronics Market 106
- 4.4.1.2 Hierarchical Grid Architecture 107
- 4.4.2 Solid-State Transformers 108
- 4.4.2.1 Solid-State Transformer Characteristics 108
- 4.4.3 HVDC Transmission Systems 109
- 4.4.3.1 HVDC Market Overview 109
- 4.4.1 Smart Grid and Energy Management 106
- 4.5 Industrial Applications 110
- 4.5.1 Motor Drives and Variable Frequency Drives 110
- 4.5.1.1 VFD Market Size and Growth 110
- 4.5.1.2 VFD Market Segmentation 110
- 4.5.1.3 VFD Competitive Landscape 110
- 4.5.2 Industrial Power Supplies 111
- 4.5.1 Motor Drives and Variable Frequency Drives 110
- 4.6 Consumer Electronics 112
- 4.6.1 Fast Charging Technologies 112
- 4.6.1.1 Consumer Fast Charger Market 112
- 4.6.1.2 Consumer Charger Competitive Landscape 112
- 4.6.1 Fast Charging Technologies 112
5 REGIONAL MARKET ANALYSIS 114
- 5.1 China 114
- 5.1.1 Market Size and Growth 114
- 5.1.2 China EV Market Dynamics 115
- 5.1.3 Domestic Manufacturing Expansion 116
- 5.1.3.1 China Power Semiconductor Production 116
- 5.1.3.2 Manufacturing Capacity Expansion 118
- 5.1.4 SiC Wafer Production Scale-up 119
- 5.1.4.1 China SiC Wafer Production Status 119
- 5.1.4.2 SiC Wafer Quality Comparison 119
- 5.1.4.3 Government Support for SiC Development 120
- 5.2 Europe 121
- 5.2.1 Market Overview and Regulations 121
- 5.2.2 European EV Market Characteristics 122
- 5.2.3 EU Emissions Targets Impact 122
- 5.2.4 European Semiconductor Initiatives 123
- 5.3 United States 124
- 5.3.1 Market Trends and Policy Drivers 124
- 5.3.2 US EV Market Dynamics 125
- 5.3.3 CHIPS Act and Manufacturing Incentives 126
- 5.3.4 US Power Semiconductor Manufacturing Expansion 126
- 5.3.5 US-Based Supply Chain Analysis 127
- 5.4 Japan and South Korea 127
- 5.4.1 Technology Leadership Positions 127
- 5.4.2 Japanese Power Semiconductor Leadership 128
- 5.4.3 Automotive OEM Strategies 128
- 5.4.3.1 Hyundai E-GMP Platform Analysis 129
- 5.4.4 South Korea Power Electronics Market 129
- 5.5 Rest of World 130
- 5.5.1 India Market Potential 130
- 5.5.2 India EV Market Development 130
- 5.5.3 India Manufacturing Development 131
- 5.5.4 Southeast Asia Manufacturing Hub 131
6 SUPPLY CHAIN ANALYSIS 133
- 6.1 Value Chain Structure 133
- 6.1.1 Power Electronics Value Chain Overview 133
- 6.1.2 Value Chain Cost Buildup 133
- 6.1.3 Vertical Integration Strategies 134
- 6.1.3.1 Semiconductor Supplier Forward Integration 134
- 6.1.3.2 OEM Backward Integration 135
- 6.1.3.3 Integration Economics 136
- 6.1.4 Supply Chain Vulnerabilities 136
- 6.1.4.1 Geographic Concentration Risk 136
- 6.1.4.2 Single-Source Dependencies 137
- 6.1.4.3 Supply Chain Disruption History 137
- 6.2 SiC Supply Chain 138
- 6.2.1 SiC Wafer Suppliers 138
- 6.2.1.1 Global SiC Wafer Market Overview 138
- 6.2.1.2 SiC Wafer Supplier Competitive Landscape 139
- 6.2.1.3 Wafer Supply Agreements 139
- 6.2.2 SiC Device Manufacturers 140
- 6.2.2.1 SiC Device Market Overview 140
- 6.2.2.2 SiC Device Technology Comparison 141
- 6.2.3 SiC Device Production Capacity 141
- 6.2.4 SiC Module and System Integration 142
- 6.2.4.1 SiC Power Module Market 142
- 6.2.1 SiC Wafer Suppliers 138
- 6.3 GaN Supply Chain 143
- 6.3.1 GaN Device Ecosystem 143
- 6.3.1.1 GaN Supply Chain Structure 143
- 6.3.1.2 GaN Device Supplier Landscape 145
- 6.3.1.3 GaN Manufacturing Capacity 146
- 6.3.2 GaN Foundry Dynamics 146
- 6.3.2.1 TSMC GaN Exit Impact 146
- 6.3.2.2 Alternative GaN Foundry Options 147
- 6.3.1 GaN Device Ecosystem 143
- 6.4 Silicon Supply Chain 147
- 6.4.1 Si IGBT and MOSFET Suppliers 147
- 6.4.1.1 Silicon Power Device Market Overview 147
- 6.4.1.2 Silicon Device Technology Roadmap 148
- 6.4.2 Silicon Wafer Supply 148
- 6.4.1 Si IGBT and MOSFET Suppliers 147
- 6.5 Passive Component Supply 149
- 6.5.1 Capacitor Suppliers 149
- 6.5.1.1 Power Electronics Capacitor Market 149
- 6.5.2 Magnetic Component Suppliers 150
- 6.5.1 Capacitor Suppliers 149
- 6.6 Packaging and Module Assembly 151
- 6.6.1 Power Module Packaging Suppliers 151
- 6.6.1.1 Power Module Packaging Market 151
- 6.6.1.2 Packaging Technology Evolution 153
- 6.6.2 Die Attach and Interconnect Materials 153
- 6.6.2.1 Die Attach Material Suppliers 154
- 6.6.1 Power Module Packaging Suppliers 151
- 6.7 Thermal Management Supply Chain 154
- 6.7.1 Cooling System Suppliers 154
- 6.7.2 Thermal Interface Materials 155
- 6.8 Supply Chain Resilience and Strategic Considerations 157
- 6.8.1 Supply Chain Risk Assessment 157
- 6.8.2 Multi-sourcing Strategies 157
- 6.8.3 Regional Supply Chain Development 158
7 MARKET FORECASTS 160
- 7.1 Key Forecast Assumptions 160
- 7.1.1 Scenario Framework 160
- 7.1.2 Market Definitions and Scope 160
- 7.1.3 Geographic Scope 161
- 7.2 Total Market Forecast 161
- 7.2.1 Global Power Electronics Market Overview 161
- 7.2.2 Market Growth Phase Analysis 161
- 7.2.3 Market Forecast by Application 162
- 7.2.4 Application Share Evolution 162
- 7.2.5 Market Forecast by Semiconductor Technology 162
- 7.2.6 Technology Share Evolution 163
- 7.2.7 Market Forecast by Region 163
- 7.2.8 Regional Share Evolution 164
- 7.3 Electric Vehicle Power Electronics Forecast 165
- 7.3.1 EV Unit Volume Projections 165
- 7.3.2 Regional EV Volume Distribution 165
- 7.3.3 Traction Inverter Forecast 165
- 7.3.4 Inverter Technology Mix Forecast 166
- 7.3.5 Inverter Value by Technology 166
- 7.3.6 Onboard Charger Forecast 166
- 7.3.6.1 OBC Power Level Distribution 167
- 7.3.6.2 OBC Semiconductor Technology Forecast 167
- 7.3.7 DC-DC Converter Forecast 167
- 7.3.7.1 DC-DC Technology Mix Forecast 168
- 7.3.8 Architecture Adoption Forecast 168
- 7.3.8.1 EV Power Electronics Summary Forecast 168
- 7.3.9 EV Power Electronics Content per Vehicle 169
- 7.4 Data Center Power Electronics Forecast 169
- 7.4.1 Data Center Power Demand 169
- 7.4.2 PSU and Power Infrastructure Forecast 170
- 7.4.3 PSU Technology Transition 170
- 7.5 Renewable Energy Forecast 170
- 7.5.1 Solar Inverter Forecast 170
- 7.5.2 Solar Inverter Semiconductor Technology 171
- 7.5.3 Wind Power Converter Forecast 171
- 7.5.4 Energy Storage Inverter Forecast 171
- 7.6 Industrial and Other Applications Forecast 172
- 7.6.1 Industrial Motor Drive Forecast 172
- 7.6.2 Consumer Fast Charger Forecast 172
- 7.6.3 EV Charging Infrastructure Forecast 172
- 7.7 Semiconductor Technology Forecasts 173
- 7.7.1 SiC Market Detailed Forecast 173
- 7.7.2 SiC Wafer Demand Forecast 173
- 7.7.3 GaN Market Detailed Forecast 173
- 7.7.4 Silicon Power Device Forecast 174
- 7.7.5 Si IGBT Application Mix Evolution 174
- 7.8 Regional Market Forecasts 175
- 7.8.1 China Detailed Forecast 175
- 7.8.2 Europe Detailed Forecast 176
- 7.8.3 North America Detailed Forecast 177
- 7.9 Scenario Analysis 178
- 7.9.1 Scenario Comparison 178
- 7.9.2 Scenario Assumptions Detailed 178
- 7.9.3 Risk Factors and Sensitivities 178
- 7.10 Forecast Summary 179
- 7.10.1 Key Forecast Highlights 179
8 COMPETITIVE LANDSCAPE 180
- 8.1 Market Share Analysis 180
- 8.1.1 Top 20 Power Device Suppliers Ranking 180
- 8.1.2 Market Leadership Analysis 181
- 8.1.3 Financial Profile Analysis 182
- 8.1.4 Market Share Trend Analysis 183
- 8.1.5 Market Share by Technology Segment 183
- 8.1.5.1 Silicon IGBT Market Share 183
- 8.1.5.2 Silicon Carbide MOSFET Market Share 184
- 8.1.6 Gallium Nitride Market Share 186
- 8.1.7 Regional Market Share Distribution 187
- 8.1.7.1 China Market Share 187
- 8.1.7.2 Europe Market Share 188
- 8.1.7.3 North America Market Share 188
- 8.1.8 Regional Market Share Summary 189
- 8.2 Competitive Strategies 189
- 8.2.1 Vertical Integration Approaches 189
- 8.2.1.1 Integration Strategy Typology 190
- 8.2.1.2 Semiconductor Supplier Integration Analysis 190
- 8.2.1.3 STMicroelectronics Vertical Integration Strategy 190
- 8.2.1.4 OEM Backward Integration Analysis 191
- 8.2.1.5 Tesla Vertical Integration Economics 191
- 8.2.1.6 BYD Semiconductor: Full Integration Case Study 192
- 8.2.2 OEM Partnership Models 192
- 8.2.2.1 Partnership Model Taxonomy 193
- 8.2.2.2 Major OEM-Supplier Partnership Overview 193
- 8.2.2.3 Tesla-STMicroelectronics Partnership Analysis 194
- 8.2.2.4 GM-Wolfspeed Strategic Partnership 194
- 8.2.2.5 Partnership Economics and Risk Allocation 195
- 8.2.1 Vertical Integration Approaches 189
- 8.3 Capacity Expansion Plans 195
- 8.3.1 Si Fab Expansion Projects 195
- 8.3.1.1 Silicon Fab Capacity Overview 195
- 8.3.1.2 Silicon Fab Expansion Projects Detail 196
- 8.3.2 SiC Manufacturing Investments 196
- 8.3.2.1 SiC Capacity Expansion Overview 196
- 8.3.2.2 Major SiC Fab Expansion Projects 197
- 8.3.2.3 Chinese SiC Capacity Expansion 197
- 8.3.3 GaN Production Scale-up 198
- 8.3.3.1 GaN Capacity Overview 198
- 8.3.3.2 GaN Capacity Expansion Projects 199
- 8.3.1 Si Fab Expansion Projects 195
9 FUTURE TECHNOLOGY TRENDS 200
- 9.1 Power Electronics 2.0 Vision 200
- 9.1.1 From Converters to Systems 200
- 9.1.2 Energy Management Paradigm 204
- 9.1.3 Smart Grid Integration 207
- 9.2 Device Technology Roadmap 210
- 9.2.1 SiC Technology Evolution 210
- 9.2.2 GaN High-Voltage Development 214
- 9.2.3 Emerging Materials (Ga₂O₃, Diamond) 216
- 9.3 System-Level Innovations 220
- 9.3.1 Integrated Power Electronics Modules 220
- 9.3.2 Multi-Cell and Modular Architectures 224
- 9.3.3 Virtual Prototyping and Digital Twins 226
- 9.4 Passives and EMI Challenges 229
- 9.4.1 Advanced Magnetic Materials 229
- 9.4.2 Capacitor Technology Trends 231
- 9.4.3 EMI Reduction Strategies 234
- 9.5 Future Technology Summary 237
- 9.5.1 Technology Roadmap Synthesis 237
- 9.5.2 Research and Development Priorities 239
10 COMPANY PROFILES 241
- 10.1 Semiconductor Device Manufacturers 241 (20 company profiles)
- 10.2 GaN Specialists 296 (7 company profiles)
- 10.3 SiC Wafer and Material Suppliers 310 (10 company profiles)
- 10.4 Tier-1 Automotive Suppliers 330 (8 company profiles)
- 10.5 Automotive OEMs with In-House Development 346 (9 company profiles)
- 10.6 Chinese Power Electronics Companies 364 (9 company profiles)
- 10.7 Module and System Integrators 383 (6 company profiles)
- 10.8 Data Centre and Industrial Power 395 (7 company profiles)
- 10.9 Other Companies 409 (8 company profiles)
11 REFERENCES 428
List of Tables
- Table 1. Global Power Electronics Market Summary 2026-2036 (US$ Billion). 34
- Table 2. Key Market Metrics by Segment 35
- Table 3. Technology Comparison: Si vs SiC vs GaN 37
- Table 4. Regional Market Share Distribution 38
- Table 5. Power Electronics Market Size by Component Category 2024-2036 (US$ Billion) 40
- Table 6. Power Electronics Value Chain Economics 41
- Table 7. Power Electronics Demand by Application Sector 2024-2036 42
- Table 8. EV Power Electronics Content by Vehicle Segment 42
- Table 9. Data Center Power Architecture Evolution 43
- Table 10. Converter Topology Selection by Application 44
- Table 11. VIENNA Rectifier Performance Evolution (10kW, 3-phase, 400V input) 44
- Table 12. Power Electronics Market by Product Category 2024-2036 (US$ Billion) 45
- Table 13. EV Traction Inverter Competitive Landscape 2024 46
- Table 14. Automotive DC-DC Converter Evolution 46
- Table 15. Onboard Charger Market Segmentation by Power Level 47
- Table 16. Power Semiconductor Market by Material 2024-2036 (US$ Billion) 47
- Table 17. Silicon Device Application Outlook 48
- Table 18. SiC MOSFET Market by Application 2024-2036 (US$ Billion) 48
- Table 19. SiC vs Si IGBT Cost and Performance Comparison (Automotive Inverter) 49
- Table 20. GaN Device Market by Application 2024-2036 (US$ Million) 50
- Table 21. Power Electronics Market by Application Sector 2024-2036 (US$ Billion) 52
- Table 22. Automotive Power Electronics Segmentation 2024-2036 (US$ Billion) 53
- Table 23. Power Semiconductor Market by Voltage Class 2024-2036 (US$ Billion) 53
- Table 24. 1200V Device Market Competition 54
- Table 25. Power Density Benchmarks by Application 54
- Table 26. Power Converter Efficiency Benchmarks 55
- Table 27. Loss Breakdown Analysis - 150kW EV Traction Inverter 55
- Table 28. Power Electronics Cost Structure by Application ($/kW) 56
- Table 29. SiC Cost Reduction Roadmap 56
- Table 30. Reliability Requirements by Application 56
- Table 31. Power Cycling Capability Comparison 57
- Table 32. Si vs SiC vs GaN Material Properties 57
- Table 33. Power Electronics Technology Generations 58
- Table 34. Technology Adoption Timeline Patterns 59
- Table 35. Silicon IGBT Generational Improvements 59
- Table 36. SiC MOSFET Performance Trajectory 60
- Table 37. Passive Component Improvement Rates 60
- Table 38. Power Electronics 1.0 vs 2.0 Paradigm Comparison 61
- Table 39. Rated-Point vs Mission Efficiency Comparison 61
- Table 40. Converter Performance Trade-offs 62
- Table 41. EV Powertrain Integration Levels 62
- Table 42. IGBT Technology Comparison by Manufacturer (1200V, 100A class) 63
- Table 43. IGBT Market by Voltage Class 2024 63
- Table 44. Silicon MOSFET Market by Voltage Class 2024 63
- Table 45. Super-Junction MOSFET Performance Evolution 64
- Table 46. Silicon Power Device Roadmap 64
- Table 47. Silicon Material Limits vs Current Devices 65
- Table 48. SiC vs Silicon Material Properties 66
- Table 49. Device Figure of Merit Comparison (1200V class) 66
- Table 50. SiC MOSFET Technology Generations 67
- Table 51. SiC MOSFET Technology Comparison by Manufacturer (1200V, 75mΩ class) 67
- Table 52. SiC MOSFET vs Si IGBT Performance Comparison (150kW EV Inverter) 68
- Table 53. Efficiency vs. Switching Frequency Performance Comparison 68
- Table 54. Inverter Efficiency vs Load Comparison 68
- Table 55. Power Module Package Evolution 69
- Table 56. Double-Sided Cooling Module Comparison 69
- Table 57. 150mm vs 200mm SiC Wafer Economics 69
- Table 58. 200mm SiC Wafer Production Timeline by Manufacturer 70
- Table 59. SiC Cost Reduction Drivers 2024-2030 70
- Table 60. SiC System Cost Parity Timeline by Application 70
- Table 61. GaN Material Properties vs Si and SiC 71
- Table 62. GaN Device Architecture Comparison 71
- Table 63. GaN Device Comparison by Manufacturer (650V class) 72
- Table 64. GaN Substrate Comparison 72
- Table 65. GaN Voltage Rating Evolution 73
- Table 66. GaN Automotive Application Roadmap 73
- Table 67. GaN OBC Performance vs Alternatives 74
- Table 68. Multi-Cell Converter Benefits and Challenges 74
- Table 69. Parallel Interleaving Performance vs Cell Count 74
- Table 70. Series Cell R_DS(on) Advantage vs Single High-Voltage Device 75
- Table 71. DC-Transformer vs Regulated DC-DC Converter 75
- Table 72. Inverter Topology Comparison 75
- Table 73. Power Module Packaging Technology Generations 76
- Table 74. Single-Sided vs Double-Sided Cooling Comparison 76
- Table 75. Double-Sided Cooling Adoption by Application 77
- Table 76. Thermal Interface Material Comparison 77
- Table 77. Die Attach Technology Comparison 78
- Table 78. P4 vs Conventional Module Comparison 78
- Table 79. p²pack Demonstrator Specifications 79
- Table 80. Global Electric Vehicle Sales by Region 2020-2036 (Million Units) 80
- Table 81. Global EV Sales by Powertrain Type 2024-2036 (Million Units) 81
- Table 82. Power Electronics Content by Powertrain Type 82
- Table 83. Global BEV Sales by Price Segment 2024-2036 (Million Units) 83
- Table 84. Global Traction Inverter Market 2024-2036 84
- Table 85. Traction Inverter Semiconductor Technology Mix 2024-2036 84
- Table 86. Traction Inverter Semiconductor Technology by Vehicle Segment 2024 vs 2030 84
- Table 87. Traction Inverter Performance Benchmarking by OEM 85
- Table 88. Traction Inverter Topology Comparison 85
- Table 89. Traction Inverter Supplier Market Share 2024 86
- Table 90. Traction Inverter Supplier Strategic Positioning 87
- Table 91. Powertrain Integration Levels in Production Vehicles 87
- Table 92. Global Onboard Charger Market 2024-2036 88
- Table 93. OBC Market by Power Level 2024-2036 (Unit Share) 88
- Table 94. OBC Semiconductor Technology Mix 2024-2036 89
- Table 95. OBC Technology Comparison by Semiconductor 89
- Table 96. Bidirectional OBC Adoption and Functionality 90
- Table 97. Onboard Charger Supplier Market Share 2024 90
- Table 98. Automotive DC-DC Converter Market 2024-2036 91
- Table 99. Low-Voltage Architecture Evolution 91
- Table 100. Automotive DC-DC Converter Semiconductor Technology Mix 91
- Table 101. DC-DC Converter Performance by Semiconductor Technology 92
- Table 102. 400V vs 800V Architecture Comparison 92
- Table 103. 800V Architecture Adoption by Market Segment 92
- Table 104. 800V Platform Vehicles in Production or Announced (as of 2024) 93
- Table 105. 400V Charging Compatibility Approaches 93
- Table 106. Power Electronics Integration Level Definitions and Adoption 94
- Table 107. Integrated Power Electronics Examples 94
- Table 108. Integrated OBC + DC-DC Converter Benefits 95
- Table 109. Traction-Integrated OBC Approaches 95
- Table 110. Heavy-Duty Electric Vehicle Market 2024-2036 (Thousand Units) 95
- Table 111. Heavy-Duty vs Passenger Vehicle Power Electronics Requirements 96
- Table 112. Heavy-Duty Power Electronics Market 2024-2036 (US$ Million) 96
- Table 113. Heavy-Duty Inverter Specifications by Application 97
- Table 114. Global Solar PV Inverter Market 2024-2036 98
- Table 115. Solar Inverter Market by Type 2024-2036 (US$ Billion) 98
- Table 116. Solar Inverter Semiconductor Technology Mix 99
- Table 117. Solar Inverter Efficiency Impact of SiC Adoption 99
- Table 118. Solar Inverter Supplier Market Share 2024 99
- Table 119. Global Wind Power Converter Market 2024-2036 100
- Table 120. Wind Turbine Converter Specifications by Rating 100
- Table 121. Global Battery Energy Storage Market 2024-2036 101
- Table 122. BESS Converter Technology by Application 101
- Table 123. Data Center Power Consumption Evolution 102
- Table 124. Data Center PSU Market 2024-2036 102
- Table 125. 80 PLUS Efficiency Standards 102
- Table 126. PSU Semiconductor Technology Mix 103
- Table 127. PSU Power Density Evolution by Technology 103
- Table 128. Data Center PSU Supplier Market Share 2024 104
- Table 129. AI Server Power Breakdown (8-GPU Configuration) 105
- Table 130. AI Server Power Trends by GPU Generation 105
- Table 131. Power Distribution Architecture Comparison 105
- Table 132. Smart Grid Power Electronics Market 2024-2036 (US$ Billion) 106
- Table 133. Hierarchical Grid Structure 107
- Table 134. Solid-State Transformer vs Conventional Transformer 108
- Table 135. Solid-State Transformer Market Outlook 108
- Table 136. Global HVDC Market 2024-2036 109
- Table 137. HVDC Technology Comparison 109
- Table 138. Global Variable Frequency Drive Market 2024-2036 110
- Table 139. VFD Market by Power Range 2024 110
- Table 140. Variable Frequency Drive Supplier Market Share 2024 110
- Table 141. Industrial Power Supply Market 2024-2036 (US$ Billion) 111
- Table 142. Consumer Fast Charger Market 2024-2036 112
- Table 143. Consumer Fast Charger Technology Comparison 112
- Table 144. Consumer GaN Charger Supplier Market Share 2024 112
- Table 145. China Power Electronics Market Size 2024-2036 (US$ Billion) 114
- Table 146. China EV Market Characteristics vs Global 115
- Table 147. China EV Sales by Price Segment 2024 116
- Table 148. China Power Semiconductor Self-Sufficiency by Technology 116
- Table 149. China Power Semiconductor Manufacturers by Technology 117
- Table 150. Major China Power Semiconductor Capacity Expansion Projects 118
- Table 151. China SiC Wafer Manufacturers Capacity and Roadmap 119
- Table 152. SiC Wafer Quality Comparison by Origin 119
- Table 153. China Government Support for SiC Industry 120
- Table 154. Europe Power Electronics Market Size 2024-2036 (US$ Billion) 121
- Table 155. European EV Market vs China Comparison 122
- Table 156. EU CO2 Emissions Targets for Passenger Vehicles 123
- Table 157. EU EV Sales Trajectory Required for Compliance 123
- Table 158. European Chips Act Power Semiconductor Investments 123
- Table 159. United States Power Electronics Market Size 2024-2036 (US$ Billion) 124
- Table 160. US EV Market Characteristics 125
- Table 161. US Policy Incentives for Power Electronics 126
- Table 162. Major US Power Semiconductor Capacity Projects 126
- Table 163. US-Headquartered Power Semiconductor Companies 127
- Table 164. Japan Power Electronics Market Size 2024-2036 (US$ Billion) 127
- Table 165. Major Japanese Power Semiconductor Companies 128
- Table 166. Japan/Korea Automotive OEM Electrification Strategies 128
- Table 167. Hyundai E-GMP Platform Specifications 129
- Table 168. South Korea Power Electronics Market Size 2024-2036 (US$ Billion) 129
- Table 169. India Power Electronics Market Size 2024-2036 (US$ Billion) 130
- Table 170. India EV Market Projections 130
- Table 171. India Power Electronics Manufacturing Initiatives 131
- Table 172. Southeast Asia Power Electronics Manufacturing Presence 131
- Table 173. Regional Power Electronics Market Summary 2024-2036 131
- Table 174. Power Electronics Value Chain Stage Characteristics 133
- Table 175. SiC Power Module Value Chain Cost Buildup (Representative 1200V/200A Module) 134
- Table 176. Semiconductor Supplier Vertical Integration Strategies 134
- Table 177. OEM Vertical Integration Strategies 135
- Table 178. Vertical Integration Economic Impact Analysis 136
- Table 179. Power Electronics Supply Chain Geographic Concentration 136
- Table 180. Critical Single/Dual Source Dependencies 137
- Table 181. Major Power Electronics Supply Chain Disruptions 2020-2024 137
- Table 182. Global SiC Wafer Market 2024-2030 138
- Table 183. SiC Wafer Supplier Market Share and Capacity 2024 139
- Table 184. Major SiC Wafer Long-Term Supply Agreements 139
- Table 185. SiC Device Market by Manufacturer 2024 140
- Table 186. SiC MOSFET Technology Comparison by Manufacturer 141
- Table 187. SiC Device Production Capacity by Manufacturer 2024-2028 141
- Table 188. SiC Power Module Market 2024-2030 142
- Table 189. SiC Power Module Supplier Market Share 2024 143
- Table 190. GaN Power Device Supply Chain Models 143
- Table 191. GaN Power Device Supplier Analysis 2024 145
- Table 192. GaN Power Device Manufacturing Capacity 2024-2028 146
- Table 193. TSMC GaN Foundry Exit Analysis 146
- Table 194. GaN Foundry Alternative Assessment 147
- Table 195. Silicon Power Device Market by Supplier 2024 147
- Table 196. Silicon Power Device Technology Evolution 148
- Table 197. Silicon Power Wafer Suppliers 148
- Table 198. Power Electronics Capacitor Market by Type 2024 149
- Table 199. DC Link Film Capacitor Supplier Market Share 2024 150
- Table 200. Power Magnetics Market Overview 2024 150
- Table 201. Power Magnetics Supplier Landscape 151
- Table 202. Power Module Packaging Market 2024-2030 151
- Table 203. Power Module Packaging Supplier Market Share 2024 152
- Table 204. Power Module Packaging Technology Generations 153
- Table 205. Die Attach Technology Comparison 153
- Table 206. Silver Sintering Paste Supplier Analysis 154
- Table 207. Power Electronics Cooling Market 2024-2030 154
- Table 208. Power Electronics Cooling Supplier Analysis 155
- Table 209. Thermal Interface Material Market 2024 155
- Table 210. TIM Supplier Market Analysis 156
- Table 211. Power Electronics Supply Chain Risk Matrix 157
- Table 212. OEM Multisourcing Adoption by Component 157
- Table 213. Multisourcing Cost-Benefit Analysis 158
- Table 214. Regional Supply Chain Development Status 158
- Table 215. Supply Chain Localization Requirements by Region 159
- Table 216. Baseline Forecast Assumptions 160
- Table 217. Forecast Scenario Definitions 160
- Table 218. Market Scope Definitions 160
- Table 219. Regional Market Definitions 161
- Table 220. Global Power Electronics Market Forecast 2024-2036 (US$ Billion) 161
- Table 221. Market Growth Phase Characteristics 161
- Table 222. Power Electronics Market by Application 2024-2036 (US$ Billion) 162
- Table 223. Power Electronics Market Share by Application 2024-2036 162
- Table 224. Power Semiconductor Market by Technology 2024-2036 (US$ Billion) 162
- Table 225. Power Semiconductor Market Share by Technology 2024-2036 163
- Table 226. Power Electronics Market by Region 2024-2036 (US$ Billion) 163
- Table 227. Power Electronics Market Share by Region 2024-2036 164
- Table 228. Global EV Sales Forecast by Powertrain 2024-2036 (Million Units) 165
- Table 229. EV Sales by Region 2024-2036 (Million Units) 165
- Table 230. Global Traction Inverter Market Forecast 2024-2036 165
- Table 231. Traction Inverter Semiconductor Technology Mix 2024-2036 (Unit Share) 166
- Table 232. Traction Inverter Market Value by Technology 2024-2036 (US$ Billion) 166
- Table 233. Global Onboard Charger Market Forecast 2024-2036 166
- Table 234. OBC Market by Power Level 2024-2036 (Unit Share) 167
- Table 235. OBC Semiconductor Technology Mix 2024-2036 (Unit Share) 167
- Table 236. Automotive DC-DC Converter Market Forecast 2024-2036 167
- Table 237. Automotive DC-DC Converter Technology Mix 2024-2036 (Unit Share) 168
- Table 238. 800V Architecture Adoption by Segment 2024-2036 (Unit Share) 168
- Table 239. Total EV Power Electronics Market Forecast 2024-2036 (US$ Billion) 168
- Table 240. Average Power Electronics Content per EV 2024-2036 169
- Table 241. Global Data Center Power Demand Forecast 2024-2036 169
- Table 242. Data Center Power Electronics Market Forecast 2024-2036 (US$ Billion) 170
- Table 243. Data Center PSU Technology Mix 2024-2036 (Value Share) 170
- Table 244. Global Solar PV Inverter Market Forecast 2024-2036 170
- Table 245. Solar Inverter Semiconductor Technology Mix 2024-2036 (Value Share) 171
- Table 246. Global Wind Power Converter Market Forecast 2024-2036 171
- Table 247. Global Battery Energy Storage Inverter Market Forecast 2024-2036 171
- Table 248. Global Variable Frequency Drive Market Forecast 2024-2036 172
- Table 249. Consumer Fast Charger Market Forecast 2024-2036 172
- Table 250. EV Charging Infrastructure Market Forecast 2024-2036 172
- Table 251. SiC Power Semiconductor Market Forecast 2024-2036 (US$ Billion) 173
- Table 252. SiC Wafer Demand Forecast 2024-2036 (Thousand Wafers) 173
- Table 253. GaN Power Semiconductor Market Forecast 2024-2036 (US$ Billion) 173
- Table 254. Silicon Power Device Market Forecast 2024-2036 (US$ Billion) 174
- Table 255. Si IGBT Market by Application 2024-2036 (Value Share) 174
- Table 256. China Power Electronics Market Detailed Forecast 2024-2036 (US$ Billion) 175
- Table 257. Europe Power Electronics Market Detailed Forecast 2024-2036 (US$ Billion) 176
- Table 258. North America Power Electronics Market Detailed Forecast 2024-2036 (US$ Billion) 177
- Table 259. Total Market Forecast by Scenario 2024-2036 (US$ Billion) 178
- Table 260. Key Scenario Assumptions 178
- Table 261. Forecast Sensitivity Analysis 178
- Table 262. Power Electronics Market Forecast Summary 179
- Table 263. Technology Transition Milestones 179
- Table 264. Top 20 Global Power Device Suppliers Ranking 2024 180
- Table 265. Top 20 Power Device Supplier Financial Metrics 2024 182
- Table 266. Market Share Evolution 2020-2024-2028E 183
- Table 267. Si IGBT Market Share by Supplier 2024 184
- Table 268. SiC MOSFET Market Share by Supplier 2024 184
- Table 269. SiC MOSFET Technology Comparison by Supplier 185
- Table 270. GaN Power Device Market Share by Supplier 2024 186
- Table 271. China Power Semiconductor Market Share 2024 187
- Table 272. Europe Power Semiconductor Market Share 2024 188
- Table 273. North America Power Semiconductor Market Share 2024 188
- Table 274. Regional Market Share by Supplier Headquarters 2024 189
- Table 275. Vertical Integration Strategy Categories 190
- Table 276. Semiconductor Supplier Vertical Integration Scope 190
- Table 277. STMicroelectronics SiC Integration Economics 190
- Table 278. Automotive OEM Power Electronics Integration Status 191
- Table 279. Tesla Power Electronics Vertical Integration Analysis 191
- Table 280. BYD Semiconductor Integration Roadmap 192
- Table 281. OEM-Supplier Partnership Model Categories 193
- Table 282. Significant Power Electronics Partnerships 2022-2024 193
- Table 283. Tesla-STMicroelectronics Partnership Characteristics 194
- Table 284. GM-Wolfspeed Partnership Structure 194
- Table 285. Partnership Model Risk-Reward Analysis 195
- Table 286. Major Silicon Power Semiconductor Fab Capacity 2024 195
- Table 287. Announced Silicon Power Fab Expansion Projects 2024-2030 196
- Table 288. Global SiC Manufacturing Capacity Expansion 2024-2030 196
- Table 289. Significant SiC Manufacturing Investment Projects 197
- Table 290. Major Chinese SiC Expansion Projects 198
- Table 291. Global GaN Power Device Capacity 2024-2030 198
- Table 292. Major GaN Capacity Expansion Projects 199
- Table 293. Power Electronics 1.0 vs. 2.0 Paradigm Comparison 200
- Table 294. Performance Metric Evolution 201
- Table 295. Multi-Objective Pareto Optimization Parameters 202
- Table 296. Power Electronics Technology S-Curve Assessment 202
- Table 297. Research Priority Evolution 203
- Table 298. Power vs. Energy Management Perspectives 204
- Table 299. Mission Efficiency vs. Rated Efficiency Examples 205
- Table 300. Energy Control Center Functional Requirements 206
- Table 301. DER Integration Power Electronics Requirements 207
- Table 302. Hierarchical Smart Grid Structure 207
- Table 303. Solid-State Transformer vs. Conventional Transformer 208
- Table 304. Solid-State Transformer Application Analysis 209
- Table 305. Solid-State Transformer Market Forecast 2024-2036 209
- Table 306. FREEDM System Key Elements 210
- Table 307. SiC MOSFET Technology Roadmap 2024-2035 211
- Table 308. SiC MOSFET Gate Structure Comparison and Roadmap 211
- Table 309. SiC Wafer Technology Evolution 2024-2035 212
- Table 310. Advanced SiC Manufacturing Technologies 213
- Table 311. Cold Split Technology Benefits 213
- Table 312. GaN Power Device Voltage Rating Roadmap 214
- Table 313. High-Voltage GaN Technology Comparison 215
- Table 314. Vertical GaN vs. Lateral GaN Comparison 215
- Table 315. GaN HEMT Technology Roadmap 2024-2035 216
- Table 316. Ultra-Wide Bandgap Material Properties 216
- Table 317. Ga₂O₃ Technology Status and Roadmap 217
- Table 318. Major Ga₂O₃ Technology Developers 218
- Table 319. Diamond Power Semiconductor Status 219
- Table 320. Emerging Material Commercialization Timeline 220
- Table 321. Power Electronics Integration Levels 221
- Table 322. Automotive Power Electronics Integration Evolution 222
- Table 323. BYD 8-in-1 Powertrain Specifications 222
- Table 324. Integrated OBC/DC-DC Market Analysis 223
- Table 325. Traction-Integrated OBC Concept 223
- Table 326. Multi-Cell Converter Architecture Advantages 224
- Table 327. Parallel Interleaving Performance Scaling 224
- Table 328. Series Interleaving R_DS(on) Advantage 225
- Table 329. ETH Zurich 99.36% PFC Rectifier Specifications 225
- Table 330. Modular Multilevel Converter (MMC) Applications 226
- Table 331. Power Electronics Design Process Evolution 227
- Table 332. Multi-Domain Simulation Integration 227
- Table 333. Power Electronics Digital Twin Use Cases 228
- Table 334. Digital Twin Technology Stack 228
- Table 335. Power Electronics Loss Distribution Evolution 229
- Table 336. Power Magnetic Core Material Comparison 230
- Table 337. Emerging Magnetic Material Technologies 230
- Table 338. Magnetic Component Design Evolution 231
- Table 339. Power Electronics Capacitor Technology Comparison 232
- Table 340. DC Link Capacitor Development Roadmap 232
- Table 341. Emerging Capacitor Technologies for Power Electronics 233
- Table 342. Passive Component Trade-offs at Increasing Frequency 233
- Table 343. EMI Impact of WBG Semiconductor Adoption 234
- Table 344. EMI Reduction Strategy Classification 235
- Table 345. Active Gate Drive Technology 235
- Table 346. ETH Zurich Closed-Loop Gate Drive Specifications 236
- Table 347. EMI Filter Technology Roadmap 236
- Table 348. Integrated EMI Mitigation Approaches 237
- Table 349. Power Electronics Technology Roadmap Summary 2024-2035 237
- Table 350. Power Electronics Performance Trajectory 2024-2035 238
- Table 351. Power Electronics R&D Priority Matrix 2025-2035 239
- Table 352. Technology Investment Recommendations by Company Type 240
List of Figures
- Figure 1. Global Power Electronics Market Summary 2026-2036 (US$ Billion). 35
- Figure 2. Power Electronics Market Size by Component Category 2024-2036 (US$ Billion). 40
- Figure 3. SiC MOSFET Market by Application 2024-2036 (US$ Billion). 49
- Figure 4. GaN Device Market by Application 2024-2036 (US$ Million). 51
- Figure 5. Power Electronics Market by Application Sector 2024-2036 (US$ Billion) 52
- Figure 6. Automotive Power Electronics Segmentation 2024-2036 (US$ Billion) 53
- Figure 7. Super-Junction Technology Cross-Section 55
- Figure 8. GaN HEMT Structure Schematic. 65
- Figure 9. Single vs Double-Sided Cooling Schematic 77
- Figure 10. Frame-based power module uses a metal base plate, ceramic substrate, wire bonding and copper terminals. The cavity is filled with silicone gel for insulation. 79
- Figure 11. Global Electric Vehicle Sales by Region 2020-2036 (Million Units) 81
- Figure 12. Global EV Sales by Powertrain Type 2024-2036 (Million Units) 82
- Figure 13. EV Power Electronics System Architecture 83
- Figure 14. Inverter Benchmarking: Si, SiC, GaN 88
- Figure 15. Heavy-Duty Power Electronics Market 2024-2036 (US$ Million) 97
- Figure 16. Solid-State Transformer Architecture 104
- Figure 17. Smart Grid Power Electronics Market 2024-2036 (US$ Billion) 107
- Figure 18. China Power Electronics Market Size 2024-2036 (US$ Billion) 115
- Figure 19. Europe Power Electronics Market Size 2024-2036 (US$ Billion) 122
- Figure 20. United States Power Electronics Market Size 2024-2036 (US$ Billion) 125
- Figure 21. SiC power module packaging structure. 142
- Figure 22. GaN technology in various power sectors 144
- Figure 23. Power Electronics Market by Region 2024-2036 (US$ Billion) 164
- Figure 24. China Power Electronics Market Detailed Forecast 2024-2036 (US$ Billion) 175
- Figure 25. Europe Power Electronics Market Detailed Forecast 2024-2036 (US$ Billion) 176
- Figure 26. North America Power Electronics Market Detailed Forecast 2024-2036 (US$ Billion) 177
- Figure 27. Schematic of configurations for normally on AlGaN/GaN HEMTs with (a) Schottky gate; and (b) and insulated gate 203
- Figure 28. Comparison of diamond properties with other materials. Diamond has the largest bandgap, breakdown electric field, thermal conductivity, and hole mobility. Besides GaAs, diamond has the highest electron mobility. 219
- Figure 29. Device schematic of different diamond diodes: (a) LSBDs; (b) pVSBDs; (c) VSBDs; (d) PNDs; (e) SPNDs; and (f) SPINDs. 220
Purchasers will receive the following:
- PDF report download/by email.
- Comprehensive Excel spreadsheet of all data.
- Mid-year Update
Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer. To order by Bank Transfer (Invoice) select this option from the payment methods menu after adding to cart, or contact info@futuremarketsinc.com