The Global Power Electronics Market 2026-2036

0

cover

cover

  • Published: January 2026
  • Pages: 430
  • Tables: 352
  • Figures: 29

 

Power electronics is no longer confined to specialist applications. Its influence now spans electric vehicles, renewable energy systems, industrial automation, data-centre infrastructure and advanced consumer equipment. What links these sectors is the need to move energy more efficiently and at higher power densities. The global power electronics market is experiencing unprecedented growth and transformation, driven by the electrification of transportation, renewable energy expansion, and surging demand for data center infrastructure. This dynamic sector encompasses the critical components that convert and control electrical power across virtually every modern application, from electric vehicle powertrains to grid-scale energy storage systems. At the heart of this market evolution is a fundamental technology transition from traditional silicon-based devices to wide bandgap (WBG) semiconductors, specifically silicon carbide (SiC) and gallium nitride (GaN). This paradigm shift represents the most significant advancement in power electronics since the introduction of IGBTs in the 1980s. SiC MOSFETs offer compelling advantages over silicon IGBTs, including higher temperature operation, superior thermal conductivity, switching speeds up to five times faster, and the potential to increase electric vehicle range by approximately 7%. These characteristics enable more compact, efficient power conversion systems with smaller passive components and reduced cooling requirements.

The electric vehicle sector stands as the primary growth driver for power electronics demand. Key components include traction inverters, onboard chargers (OBCs), and DC-DC converters, with the market increasingly adopting 800V architectures to enable faster charging and improved efficiency. SiC MOSFETs are rapidly gaining market share in EV inverters, with projections indicating they will become the majority technology by 2035. Meanwhile, GaN devices are making significant inroads in lower-power applications such as onboard chargers and DC-DC converters, where their high-frequency switching capabilities enable dramatic reductions in size and weight.

The supply chain for power electronics is undergoing significant restructuring, with vertical integration emerging as a key strategic trend. Major automotive OEMs and semiconductor suppliers are securing supply through acquisitions, partnerships, and in-house development of SiC capabilities. The transition from 150mm to 200mm SiC wafers represents a critical milestone that will substantially increase production capacity and reduce costs, with multiple suppliers worldwide scaling up 200mm wafer production. Chinese manufacturers have entered the market aggressively, with four Chinese companies now ranking among the top 20 global power device suppliers.

Data centers represent another rapidly expanding application, driven by artificial intelligence workloads that demand unprecedented power levels. Power supply units are evolving to meet stringent efficiency standards, with the 80 PLUS Ruby certification requiring up to 96.5% efficiency. Wide bandgap adoption is accelerating in this sector, with hybrid designs combining silicon, SiC, and GaN emerging as the preferred approach for maximizing efficiency across different power conversion stages.

The industry is also witnessing a conceptual evolution from discrete converter design toward integrated system-level approaches. This "Power Electronics 2.0" paradigm emphasizes energy management over simple power conversion, incorporating smart grid integration, distributed control architectures, and mission-oriented efficiency metrics. Multi-cell converter architectures are gaining traction, offering advantages including switching frequency multiplication, improved redundancy, and standardization benefits.

Despite the rapid advancement of WBG technologies, silicon devices continue to hold significant market share due to their maturity, established supply chains, and cost advantages. The market is characterized by intense cost pressure, particularly in price-sensitive segments like solar inverters and battery energy storage systems. Looking forward, the global power electronics market is projected to grow with a compound annual growth rate exceeding 8%, adding more than $15 billion in market value by 2030, driven by the continued expansion of electric mobility, renewable energy deployment, and digital infrastructure requirements.

The Global Power Electronics Market 2026-2036 provides comprehensive analysis of the rapidly evolving power semiconductor industry, examining the transformative shift from silicon-based devices to wide bandgap (WBG) technologies including silicon carbide (SiC) MOSFETs and gallium nitride (GaN) HEMTs. This in-depth market intelligence report delivers granular 10-year forecasts covering market size in US dollars and gigawatts across key segments including electric vehicle inverters, onboard chargers, DC-DC converters, data center power supply units, renewable energy systems, and industrial applications.

The report analyzes critical technology trends driving market growth, including the transition from 400V to 800V EV architectures, the evolution from 150mm to 200mm SiC wafer production, and the emergence of integrated power electronics modules. Detailed supply chain analysis covers the complete value chain from raw materials and wafer production through device manufacturing, packaging, and system integration, with particular focus on vertical integration strategies and the rising influence of Chinese manufacturers in the global market.

Regional market analysis examines growth dynamics across China, Europe, North America, Japan, South Korea, and emerging markets, while competitive landscape assessment provides market share rankings, M&A activity tracking, and strategic partnership analysis. The report includes over 90 detailed company profiles spanning semiconductor device manufacturers, GaN specialists, SiC wafer suppliers, tier-1 automotive suppliers, automotive OEMs, and system integrators.

Report Contents include: 

  • Market Analysis & Forecasts
    • Global power electronics market size and 10-year growth projections (2026-2036)
    • Device-level forecasts for Si IGBTs, SiC MOSFETs, and GaN devices by voltage class
    • Application-level forecasts for EV inverters, onboard chargers, and DC-DC converters in units, GW, and US$
    • Regional market forecasts for China, Europe, North America, and Asia-Pacific
    • Price trend analysis and cost reduction projections for WBG semiconductors
  • Technology Analysis
    • Comprehensive comparison of Si, SiC, and GaN semiconductor properties and performance
    • Technology S-curve analysis and paradigm shift to Power Electronics 2.0
    • Multi-cell converter architectures including parallel and series interleaving
    • Packaging evolution including single-sided and double-sided cooling technologies
    • 150mm to 200mm SiC wafer transition timeline and cost advantages
  • Application Markets
    • Electric vehicle power electronics including 400V vs 800V architecture analysis
    • Traction inverter, onboard charger, and DC-DC converter technology benchmarking
    • Data center PSU market including AI server power requirements
    • Renewable energy applications covering solar PV, wind, and battery energy storage
    • Grid infrastructure including smart grid, solid-state transformers, and HVDC systems
  • Supply Chain Analysis
    • Complete Si, SiC, and GaN supply chain mapping from raw materials to end applications
    • SiC wafer supplier market share and 200mm production roadmap
    • Vertical integration trends and OEM acquisition strategies
    • Packaging and assembly supply chain including die attach technologies
    • Passive component technology roadmap for capacitors and magnetics
  • Competitive Landscape
    • Top 20 power device supplier rankings and market share analysis
    • Recent mergers, acquisitions, and strategic partnerships
    • Manufacturing capacity expansion plans by region and technology
    • OEM-supplier relationship mapping for SiC MOSFETs and Si IGBTs
  • Future Technology Trends
    • Power Electronics 2.0 vision: from converters to systems
    • SiC and GaN technology roadmaps through 2035
    • Emerging WBG materials including Ga₂O₃ and diamond
    • Virtual prototyping and digital twin design methodologies

 

Companies Profiled include ABB, Advanced Energy Industries, Alpha & Omega Semiconductor, Bimotal, BMW, BorgWarner, Bosch, BYD, Cambridge GaN Devices, China Resources Microelectronics (CR Micro), CM Materials, Coherent, CRRC Corporation, Dana Incorporated, Delta Electronics, Denso, Diodes Incorporated, Dynex Semiconductor, Dynolt Technologies, Eaton, Efficient Power Conversion (EPC), Entuple E-Mobility, Fuji Electric, General Motors, GlobalWafers, HBN Technology, Heron Power, Hitachi Astemo, Hitachi Energy, Huawei, Hyundai Motor Group, Infineon Technologies, Innoscience, Inovance Technology, Lite-On Technology, Littelfuse, Lucid Motors, Magna International, Microchip Technology, Mitsubishi Electric, Navitas Semiconductor, Nexperia, NXP Semiconductors, onsemi and more......

 

 

 

 

 

 

1             EXECUTIVE SUMMARY            32

  • 1.1        Report Introduction and Scope          32
  • 1.2        Scope of Analysis       32
  • 1.3        Methodology  32
  • 1.4        Key Findings and Market Highlights 32
  • 1.5        Global Power Electronics Market Overview 2026-2036     34
    • 1.5.1    Market Structure          34
  • 1.6        Technology Evolution: From Silicon to Wide Bandgap        36
    • 1.6.1    The Technology S-Curve         36
  • 1.7        Market Size and Growth Projections Summary       37
    • 1.7.1    Device-Level Projections       37
    • 1.7.2    Application-Level Projections             37
  • 1.8        Regional Market Analysis Overview 38
    • 1.8.1    China  38
    • 1.8.2    Europe                38
    • 1.8.3    United States 38
    • 1.8.4    Japan and South Korea            38
  • 1.9        Key Market Drivers and Challenges 39
    • 1.9.1    Primary Market Drivers            39
    • 1.9.2    Key Market Challenges            39

 

2             MARKET OVERVIEW AND DEFINITIONS       40

  • 2.1        Power Electronics Fundamentals    40
    • 2.1.1    What is Power Electronics?   40
    • 2.1.2    Value Chain Economics and Margin Structure         41
    • 2.1.3    Key Applications and End Markets   41
    • 2.1.4    Electric Vehicle Power Electronics   42
    • 2.1.5    Data Center Power Demand Transformation            43
    • 2.1.6    Power Conversion Technologies Overview 43
    • 2.1.7    ETH Zurich VIENNA Rectifier Development Generations  44
  • 2.2        Market Segmentation               45
    • 2.2.1    By Product Type (Inverters, Converters, Rectifiers)               45
      • 2.2.1.1 Inverter Market Dynamics     46
      • 2.2.1.2 DC-DC Converter Market Dynamics              46
      • 2.2.1.3 Rectifier/Charger Market Dynamics               47
    • 2.2.2    By Semiconductor Material (Si, SiC, GaN)  47
      • 2.2.2.1 Silicon Market Dynamics       48
      • 2.2.2.2 Silicon Carbide Market Dynamics    48
      • 2.2.2.3 Gallium Nitride Market Dynamics    50
    • 2.2.3    By Application Sector               51
      • 2.2.3.1 Automotive & EV Sector Deep Dive 52
    • 2.2.4    By Voltage Class          53
  • 2.3        Performance Indices and Metrics     54
    • 2.3.1    Power Density (kW/dm³)         54
    • 2.3.2    Efficiency and Loss Analysis               55
    • 2.3.3    Cost per kW Trends    56
    • 2.3.4    Reliability and Failure Rate Metrics 56

 

3             TECHNOLOGY ANALYSIS       58

  • 3.1        Evolution of Power Electronics Technology                58
    • 3.1.1    Historical Development: SCRs to WBG        58
    • 3.1.2    Technology S-Curve Analysis              59
      • 3.1.2.1 Semiconductor S-Curves      59
      • 3.1.2.2 Passive Component S-Curves            60
    • 3.1.3    Paradigm Shift to Power Electronics 2.0      61
      • 3.1.3.1 From Power to Energy Metrics            61
      • 3.1.3.2 Multi-Objective Optimization and Pareto Fronts    61
      • 3.1.3.3 System-Level Integration       62
  • 3.2        Silicon-Based Power Devices              62
    • 3.2.1    Silicon IGBT Technology and Performance 63
    • 3.2.2    IGBT Market Segmentation   63
    • 3.2.3    Silicon MOSFET Applications              63
    • 3.2.4    Super-Junction Technology Advances           64
    • 3.2.5    Si Device Roadmap and Limitations              64
      • 3.2.5.1 Fundamental Silicon Limitations     65
  • 3.3        Silicon Carbide (SiC) Technology      66
    • 3.3.1    SiC Material Properties and Advantages      66
    • 3.3.2    SiC Device Figure of Merit Analysis 66
    • 3.3.3    SiC MOSFET Technology Development         67
    • 3.3.4    SiC MOSFET Manufacturer Comparison     67
    • 3.3.5    SiC vs Si IGBT Performance Comparison    68
    • 3.3.6    Efficiency Across Load Range             68
    • 3.3.7    SiC Device Packaging Evolution        69
    • 3.3.8    150mm to 200mm Wafer Transition               69
    • 3.3.9    200mm SiC Wafer Production Status             70
    • 3.3.10 SiC Cost Reduction Roadmap           70
  • 3.4        Gallium Nitride (GaN) Technology    71
    • 3.4.1    GaN Material Properties and Potential         71
    • 3.4.2    GaN HEMT and FET Technologies     71
    • 3.4.3    GaN-on-Si vs Alternative Substrates              72
    • 3.4.4    GaN Voltage Limitations and Solutions        73
    • 3.4.5    GaN Device Roadmap for Automotive           73
  • 3.5        Converter Topology Analysis               74
    • 3.5.1    Multi-Cell Converter Architectures  74
    • 3.5.2    Parallel and Series Interleaving          74
    • 3.5.3    DC-Transformer Concepts    75
    • 3.5.4    Three-Level Inverter Designs               75
  • 3.6        Packaging and Thermal Management           76
    • 3.6.1    Power Module Packaging Evolution 76
    • 3.6.2    Single-Sided vs Double-Sided Cooling         76
    • 3.6.3    Thermal Interface Materials (TIM)    77
    • 3.6.4    Advanced Packaging Technologies (P4, p²pack)     78

 

4             APPLICATION MARKETS ANALYSIS  80

  • 4.1        Electric Vehicles (EVs)             80
    • 4.1.1    EV Market Overview and Growth Trends      80
    • 4.1.2    Powertrain Mix Evolution        81
    • 4.1.3    EV Price Segment Distribution           82
    • 4.1.4    Traction Inverter Technologies            83
      • 4.1.4.1 Traction Inverter Market Size and Growth    84
      • 4.1.4.2 Semiconductor Technology Transition         84
      • 4.1.4.3 Inverter Topology Evolution  85
      • 4.1.4.4 Traction Inverter Competitive Landscape   86
      • 4.1.4.5 Inverter-Motor Integration Trends     87
    • 4.1.5    Onboard Charger (OBC) Systems     88
      • 4.1.5.1 OBC Market Size and Growth              88
      • 4.1.5.2 OBC Power Level Distribution            88
      • 4.1.5.3 OBC Semiconductor Technology Transition             89
      • 4.1.5.4 Bidirectional OBC Functionality        90
      • 4.1.5.5 OBC Competitive Landscape             90
    • 4.1.6    DC-DC Converter Requirements      90
      • 4.1.6.1 DC-DC Converter Market Size and Growth 91
      • 4.1.6.2 Output Voltage Architecture Evolution         91
      • 4.1.6.3 DC-DC Converter Semiconductor Transition           91
    • 4.1.7    400V vs 800V Architecture Analysis               92
      • 4.1.7.1 800V Architecture Benefits   92
      • 4.1.7.2 800V Architecture Adoption Timeline            92
      • 4.1.7.3 400V Charging Compatibility Solutions        93
    • 4.1.8    Power Electronics Integration Trends             94
      • 4.1.8.1 Integration Level Evolution    94
      • 4.1.8.2 Integrated OBC with DC-DC Converter         95
      • 4.1.8.3 Traction-Integrated Onboard Charger (TiOBC)        95
    • 4.1.9    Heavy-Duty Vehicle Applications     95
      • 4.1.9.1 Heavy-Duty EV Market Overview       95
      • 4.1.9.2 Heavy-Duty Power Electronics Requirements         96
      • 4.1.9.3 Heavy-Duty Power Electronics Market          96
  • 4.2        Renewable Energy      98
    • 4.2.1    Solar PV Inverter Market         98
      • 4.2.1.1 Solar Inverter Market Size and Growth          98
      • 4.2.1.2 Solar Inverter Market Segmentation               98
      • 4.2.1.3 Solar Inverter Semiconductor Technology  99
      • 4.2.1.4 Solar Inverter Competitive Landscape         99
    • 4.2.2    Wind Power Converters           100
      • 4.2.2.1 Wind Power Converter Market            100
    • 4.2.3    Battery Energy Storage Systems (BESS)       101
      • 4.2.3.1 BESS Market Size and Growth            101
  • 4.3        Data Centers and Computing             102
    • 4.3.1    Power Supply Unit (PSU) Market        102
      • 4.3.1.1 Data Center Power Demand Transformation            102
      • 4.3.1.2 PSU Market Size and Growth               102
      • 4.3.1.3 PSU Efficiency Standards      102
      • 4.3.1.4 Data Center PSU Competitive Landscape 104
    • 4.3.2    AI Server Power Requirements           104
      • 4.3.2.1 AI Server Power Architecture               105
      • 4.3.2.2 Power Delivery Architecture Evolution          105
  • 4.4        Grid Infrastructure      106
    • 4.4.1    Smart Grid and Energy Management             106
      • 4.4.1.1 Smart Grid Power Electronics Market            106
      • 4.4.1.2 Hierarchical Grid Architecture            107
    • 4.4.2    Solid-State Transformers       108
      • 4.4.2.1 Solid-State Transformer Characteristics     108
    • 4.4.3    HVDC Transmission Systems             109
      • 4.4.3.1 HVDC Market Overview          109
  • 4.5        Industrial Applications            110
    • 4.5.1    Motor Drives and Variable Frequency Drives             110
      • 4.5.1.1 VFD Market Size and Growth               110
      • 4.5.1.2 VFD Market Segmentation    110
      • 4.5.1.3 VFD Competitive Landscape              110
    • 4.5.2    Industrial Power Supplies      111
  • 4.6        Consumer Electronics             112
    • 4.6.1    Fast Charging Technologies 112
      • 4.6.1.1 Consumer Fast Charger Market         112
      • 4.6.1.2 Consumer Charger Competitive Landscape            112

 

5             REGIONAL MARKET ANALYSIS            114

  • 5.1        China  114
    • 5.1.1    Market Size and Growth          114
    • 5.1.2    China EV Market Dynamics  115
    • 5.1.3    Domestic Manufacturing Expansion              116
      • 5.1.3.1 China Power Semiconductor Production    116
      • 5.1.3.2 Manufacturing Capacity Expansion 118
    • 5.1.4    SiC Wafer Production Scale-up          119
      • 5.1.4.1 China SiC Wafer Production Status 119
      • 5.1.4.2 SiC Wafer Quality Comparison          119
      • 5.1.4.3 Government Support for SiC Development                120
  • 5.2        Europe                121
    • 5.2.1    Market Overview and Regulations    121
    • 5.2.2    European EV Market Characteristics             122
    • 5.2.3    EU Emissions Targets Impact              122
    • 5.2.4    European Semiconductor Initiatives              123
  • 5.3        United States 124
    • 5.3.1    Market Trends and Policy Drivers      124
    • 5.3.2    US EV Market Dynamics         125
    • 5.3.3    CHIPS Act and Manufacturing Incentives   126
    • 5.3.4    US Power Semiconductor Manufacturing Expansion         126
    • 5.3.5    US-Based Supply Chain Analysis     127
  • 5.4        Japan and South Korea            127
    • 5.4.1    Technology Leadership Positions     127
    • 5.4.2    Japanese Power Semiconductor Leadership            128
    • 5.4.3    Automotive OEM Strategies  128
      • 5.4.3.1 Hyundai E-GMP Platform Analysis  129
    • 5.4.4    South Korea Power Electronics Market         129
  • 5.5        Rest of World 130
    • 5.5.1    India Market Potential              130
    • 5.5.2    India EV Market Development             130
    • 5.5.3    India Manufacturing Development  131
    • 5.5.4    Southeast Asia Manufacturing Hub 131

 

6             SUPPLY CHAIN ANALYSIS      133

  • 6.1        Value Chain Structure              133
    • 6.1.1    Power Electronics Value Chain Overview    133
    • 6.1.2    Value Chain Cost Buildup     133
    • 6.1.3    Vertical Integration Strategies             134
      • 6.1.3.1 Semiconductor Supplier Forward Integration          134
      • 6.1.3.2 OEM Backward Integration   135
      • 6.1.3.3 Integration Economics            136
    • 6.1.4    Supply Chain Vulnerabilities               136
      • 6.1.4.1 Geographic Concentration Risk        136
      • 6.1.4.2 Single-Source Dependencies              137
      • 6.1.4.3 Supply Chain Disruption History      137
  • 6.2        SiC Supply Chain        138
    • 6.2.1    SiC Wafer Suppliers   138
      • 6.2.1.1 Global SiC Wafer Market Overview  138
      • 6.2.1.2 SiC Wafer Supplier Competitive Landscape             139
      • 6.2.1.3 Wafer Supply Agreements     139
    • 6.2.2    SiC Device Manufacturers    140
      • 6.2.2.1 SiC Device Market Overview                140
      • 6.2.2.2 SiC Device Technology Comparison              141
    • 6.2.3    SiC Device Production Capacity       141
    • 6.2.4    SiC Module and System Integration                142
      • 6.2.4.1 SiC Power Module Market      142
  • 6.3        GaN Supply Chain      143
    • 6.3.1    GaN Device Ecosystem          143
      • 6.3.1.1 GaN Supply Chain Structure                143
      • 6.3.1.2 GaN Device Supplier Landscape      145
      • 6.3.1.3 GaN Manufacturing Capacity             146
    • 6.3.2    GaN Foundry Dynamics         146
      • 6.3.2.1 TSMC GaN Exit Impact            146
      • 6.3.2.2 Alternative GaN Foundry Options    147
  • 6.4        Silicon Supply Chain 147
    • 6.4.1    Si IGBT and MOSFET Suppliers           147
      • 6.4.1.1 Silicon Power Device Market Overview         147
      • 6.4.1.2 Silicon Device Technology Roadmap            148
    • 6.4.2    Silicon Wafer Supply 148
  • 6.5        Passive Component Supply 149
    • 6.5.1    Capacitor Suppliers  149
      • 6.5.1.1 Power Electronics Capacitor Market              149
    • 6.5.2    Magnetic Component Suppliers       150
  • 6.6        Packaging and Module Assembly     151
    • 6.6.1    Power Module Packaging Suppliers 151
      • 6.6.1.1 Power Module Packaging Market      151
      • 6.6.1.2 Packaging Technology Evolution       153
    • 6.6.2    Die Attach and Interconnect Materials         153
      • 6.6.2.1 Die Attach Material Suppliers             154
  • 6.7        Thermal Management Supply Chain              154
    • 6.7.1    Cooling System Suppliers     154
    • 6.7.2    Thermal Interface Materials 155
  • 6.8        Supply Chain Resilience and Strategic Considerations     157
    • 6.8.1    Supply Chain Risk Assessment         157
    • 6.8.2    Multi-sourcing Strategies       157
    • 6.8.3    Regional Supply Chain Development             158

 

7             MARKET FORECASTS                160

  • 7.1        Key Forecast Assumptions   160
    • 7.1.1    Scenario Framework 160
    • 7.1.2    Market Definitions and Scope             160
    • 7.1.3    Geographic Scope      161
  • 7.2        Total Market Forecast               161
    • 7.2.1    Global Power Electronics Market Overview               161
    • 7.2.2    Market Growth Phase Analysis          161
    • 7.2.3    Market Forecast by Application         162
    • 7.2.4    Application Share Evolution 162
    • 7.2.5    Market Forecast by Semiconductor Technology     162
    • 7.2.6    Technology Share Evolution 163
    • 7.2.7    Market Forecast by Region   163
    • 7.2.8    Regional Share Evolution       164
  • 7.3        Electric Vehicle Power Electronics Forecast             165
    • 7.3.1    EV Unit Volume Projections  165
    • 7.3.2    Regional EV Volume Distribution      165
    • 7.3.3    Traction Inverter Forecast      165
    • 7.3.4    Inverter Technology Mix Forecast     166
    • 7.3.5    Inverter Value by Technology               166
    • 7.3.6    Onboard Charger Forecast   166
      • 7.3.6.1 OBC Power Level Distribution            167
      • 7.3.6.2 OBC Semiconductor Technology Forecast 167
    • 7.3.7    DC-DC Converter Forecast   167
      • 7.3.7.1 DC-DC Technology Mix Forecast      168
    • 7.3.8    Architecture Adoption Forecast        168
      • 7.3.8.1 EV Power Electronics Summary Forecast   168
    • 7.3.9    EV Power Electronics Content per Vehicle 169
  • 7.4        Data Center Power Electronics Forecast     169
    • 7.4.1    Data Center Power Demand 169
    • 7.4.2    PSU and Power Infrastructure Forecast        170
    • 7.4.3    PSU Technology Transition   170
  • 7.5        Renewable Energy Forecast 170
    • 7.5.1    Solar Inverter Forecast            170
    • 7.5.2    Solar Inverter Semiconductor Technology  171
    • 7.5.3    Wind Power Converter Forecast        171
    • 7.5.4    Energy Storage Inverter Forecast      171
  • 7.6        Industrial and Other Applications Forecast               172
    • 7.6.1    Industrial Motor Drive Forecast         172
    • 7.6.2    Consumer Fast Charger Forecast    172
    • 7.6.3    EV Charging Infrastructure Forecast               172
  • 7.7        Semiconductor Technology Forecasts          173
    • 7.7.1    SiC Market Detailed Forecast             173
    • 7.7.2    SiC Wafer Demand Forecast               173
    • 7.7.3    GaN Market Detailed Forecast           173
    • 7.7.4    Silicon Power Device Forecast           174
    • 7.7.5    Si IGBT Application Mix Evolution     174
  • 7.8        Regional Market Forecasts   175
    • 7.8.1    China Detailed Forecast         175
    • 7.8.2    Europe Detailed Forecast      176
    • 7.8.3    North America Detailed Forecast     177
  • 7.9        Scenario Analysis       178
    • 7.9.1    Scenario Comparison             178
    • 7.9.2    Scenario Assumptions Detailed       178
    • 7.9.3    Risk Factors and Sensitivities             178
  • 7.10     Forecast Summary    179
    • 7.10.1 Key Forecast Highlights          179

 

8             COMPETITIVE LANDSCAPE  180

  • 8.1        Market Share Analysis             180
    • 8.1.1    Top 20 Power Device Suppliers Ranking      180
    • 8.1.2    Market Leadership Analysis 181
    • 8.1.3    Financial Profile Analysis      182
    • 8.1.4    Market Share Trend Analysis               183
    • 8.1.5    Market Share by Technology Segment           183
      • 8.1.5.1 Silicon IGBT Market Share     183
      • 8.1.5.2 Silicon Carbide MOSFET Market Share         184
    • 8.1.6    Gallium Nitride Market Share              186
    • 8.1.7    Regional Market Share Distribution 187
      • 8.1.7.1 China Market Share   187
      • 8.1.7.2 Europe Market Share 188
      • 8.1.7.3 North America Market Share               188
    • 8.1.8    Regional Market Share Summary     189
  • 8.2        Competitive Strategies            189
    • 8.2.1    Vertical Integration Approaches        189
      • 8.2.1.1 Integration Strategy Typology              190
      • 8.2.1.2 Semiconductor Supplier Integration Analysis          190
      • 8.2.1.3 STMicroelectronics Vertical Integration Strategy    190
      • 8.2.1.4 OEM Backward Integration Analysis               191
      • 8.2.1.5 Tesla Vertical Integration Economics             191
      • 8.2.1.6 BYD Semiconductor: Full Integration Case Study  192
    • 8.2.2    OEM Partnership Models       192
      • 8.2.2.1 Partnership Model Taxonomy              193
      • 8.2.2.2 Major OEM-Supplier Partnership Overview                193
      • 8.2.2.3 Tesla-STMicroelectronics Partnership Analysis      194
      • 8.2.2.4 GM-Wolfspeed Strategic Partnership            194
      • 8.2.2.5 Partnership Economics and Risk Allocation              195
  • 8.3        Capacity Expansion Plans    195
    • 8.3.1    Si Fab Expansion Projects     195
      • 8.3.1.1 Silicon Fab Capacity Overview           195
      • 8.3.1.2 Silicon Fab Expansion Projects Detail           196
    • 8.3.2    SiC Manufacturing Investments        196
      • 8.3.2.1 SiC Capacity Expansion Overview   196
      • 8.3.2.2 Major SiC Fab Expansion Projects   197
      • 8.3.2.3 Chinese SiC Capacity Expansion     197
    • 8.3.3    GaN Production Scale-up      198
      • 8.3.3.1 GaN Capacity Overview          198
      • 8.3.3.2 GaN Capacity Expansion Projects   199

 

9             FUTURE TECHNOLOGY TRENDS      200

  • 9.1        Power Electronics 2.0 Vision               200
    • 9.1.1    From Converters to Systems               200
    • 9.1.2    Energy Management Paradigm          204
    • 9.1.3    Smart Grid Integration             207
  • 9.2        Device Technology Roadmap             210
    • 9.2.1    SiC Technology Evolution      210
    • 9.2.2    GaN High-Voltage Development        214
    • 9.2.3    Emerging Materials (Ga₂O₃, Diamond)         216
  • 9.3        System-Level Innovations     220
    • 9.3.1    Integrated Power Electronics Modules         220
    • 9.3.2    Multi-Cell and Modular Architectures            224
    • 9.3.3    Virtual Prototyping and Digital Twins              226
  • 9.4        Passives and EMI Challenges              229
    • 9.4.1    Advanced Magnetic Materials            229
    • 9.4.2    Capacitor Technology Trends              231
    • 9.4.3    EMI Reduction Strategies       234
  • 9.5        Future Technology Summary              237
    • 9.5.1    Technology Roadmap Synthesis       237
    • 9.5.2    Research and Development Priorities           239

 

10          COMPANY PROFILES                241

  • 10.1     Semiconductor Device Manufacturers         241 (20 company profiles)
  • 10.2     GaN Specialists           296 (7 company profiles)
  • 10.3     SiC Wafer and Material Suppliers     310 (10 company profiles)
  • 10.4     Tier-1 Automotive Suppliers 330 (8 company profiles)
  • 10.5     Automotive OEMs with In-House Development      346 (9 company profiles)
  • 10.6     Chinese Power Electronics Companies       364 (9 company profiles)
  • 10.7     Module and System Integrators         383 (6 company profiles)
  • 10.8     Data Centre and Industrial Power    395 (7 company profiles)
  • 10.9     Other Companies       409 (8 company profiles)

 

11          REFERENCES 428

 

List of Tables

  • Table 1. Global Power Electronics Market Summary 2026-2036 (US$ Billion).  34
  • Table 2. Key Market Metrics by Segment      35
  • Table 3. Technology Comparison: Si vs SiC vs GaN              37
  • Table 4. Regional Market Share Distribution              38
  • Table 5. Power Electronics Market Size by Component Category 2024-2036 (US$ Billion)        40
  • Table 6. Power Electronics Value Chain Economics            41
  • Table 7. Power Electronics Demand by Application Sector 2024-2036   42
  • Table 8. EV Power Electronics Content by Vehicle Segment           42
  • Table 9. Data Center Power Architecture Evolution              43
  • Table 10. Converter Topology Selection by Application      44
  • Table 11. VIENNA Rectifier Performance Evolution (10kW, 3-phase, 400V input)             44
  • Table 12. Power Electronics Market by Product Category 2024-2036 (US$ Billion)         45
  • Table 13. EV Traction Inverter Competitive Landscape 2024         46
  • Table 14. Automotive DC-DC Converter Evolution 46
  • Table 15. Onboard Charger Market Segmentation by Power Level              47
  • Table 16. Power Semiconductor Market by Material 2024-2036 (US$ Billion)     47
  • Table 17. Silicon Device Application Outlook           48
  • Table 18. SiC MOSFET Market by Application 2024-2036 (US$ Billion)   48
  • Table 19. SiC vs Si IGBT Cost and Performance Comparison (Automotive Inverter)        49
  • Table 20. GaN Device Market by Application 2024-2036 (US$ Million)    50
  • Table 21. Power Electronics Market by Application Sector 2024-2036 (US$ Billion)       52
  • Table 22. Automotive Power Electronics Segmentation 2024-2036 (US$ Billion)             53
  • Table 23. Power Semiconductor Market by Voltage Class 2024-2036 (US$ Billion)        53
  • Table 24. 1200V Device Market Competition            54
  • Table 25. Power Density Benchmarks by Application          54
  • Table 26. Power Converter Efficiency Benchmarks               55
  • Table 27. Loss Breakdown Analysis - 150kW EV Traction Inverter                55
  • Table 28. Power Electronics Cost Structure by Application ($/kW)            56
  • Table 29. SiC Cost Reduction Roadmap      56
  • Table 30. Reliability Requirements by Application 56
  • Table 31. Power Cycling Capability Comparison    57
  • Table 32. Si vs SiC vs GaN Material Properties         57
  • Table 33. Power Electronics Technology Generations         58
  • Table 34. Technology Adoption Timeline Patterns  59
  • Table 35. Silicon IGBT Generational Improvements              59
  • Table 36. SiC MOSFET Performance Trajectory       60
  • Table 37. Passive Component Improvement Rates               60
  • Table 38. Power Electronics 1.0 vs 2.0 Paradigm Comparison     61
  • Table 39. Rated-Point vs Mission Efficiency Comparison 61
  • Table 40. Converter Performance Trade-offs            62
  • Table 41. EV Powertrain Integration Levels  62
  • Table 42. IGBT Technology Comparison by Manufacturer (1200V, 100A class)  63
  • Table 43. IGBT Market by Voltage Class 2024           63
  • Table 44. Silicon MOSFET Market by Voltage Class 2024  63
  • Table 45. Super-Junction MOSFET Performance Evolution              64
  • Table 46. Silicon Power Device Roadmap   64
  • Table 47. Silicon Material Limits vs Current Devices            65
  • Table 48. SiC vs Silicon Material Properties               66
  • Table 49. Device Figure of Merit Comparison (1200V class)           66
  • Table 50. SiC MOSFET Technology Generations      67
  • Table 51. SiC MOSFET Technology Comparison by Manufacturer (1200V, 75mΩ class)              67
  • Table 52. SiC MOSFET vs Si IGBT Performance Comparison (150kW EV Inverter)             68
  • Table 53. Efficiency vs. Switching Frequency Performance Comparison               68
  • Table 54. Inverter Efficiency vs Load Comparison 68
  • Table 55. Power Module Package Evolution               69
  • Table 56. Double-Sided Cooling Module Comparison       69
  • Table 57. 150mm vs 200mm SiC Wafer Economics             69
  • Table 58. 200mm SiC Wafer Production Timeline by Manufacturer           70
  • Table 59. SiC Cost Reduction Drivers 2024-2030  70
  • Table 60. SiC System Cost Parity Timeline by Application                70
  • Table 61. GaN Material Properties vs Si and SiC     71
  • Table 62. GaN Device Architecture Comparison    71
  • Table 63.  GaN Device Comparison by Manufacturer (650V class)             72
  • Table 64.  GaN Substrate Comparison          72
  • Table 65. GaN Voltage Rating Evolution        73
  • Table 66. GaN Automotive Application Roadmap 73
  • Table 67. GaN OBC Performance vs Alternatives    74
  • Table 68. Multi-Cell Converter Benefits and Challenges   74
  • Table 69. Parallel Interleaving Performance vs Cell Count               74
  • Table 70. Series Cell R_DS(on) Advantage vs Single High-Voltage Device              75
  • Table 71. DC-Transformer vs Regulated DC-DC Converter              75
  • Table 72. Inverter Topology Comparison     75
  • Table 73. Power Module Packaging Technology Generations         76
  • Table 74. Single-Sided vs Double-Sided Cooling Comparison      76
  • Table 75. Double-Sided Cooling Adoption by Application 77
  • Table 76. Thermal Interface Material Comparison 77
  • Table 77. Die Attach Technology Comparison         78
  • Table 78. P4 vs Conventional Module Comparison              78
  • Table 79. p²pack Demonstrator Specifications        79
  • Table 80. Global Electric Vehicle Sales by Region 2020-2036 (Million Units)      80
  • Table 81. Global EV Sales by Powertrain Type 2024-2036 (Million Units) 81
  • Table 82. Power Electronics Content by Powertrain Type  82
  • Table 83. Global BEV Sales by Price Segment 2024-2036 (Million Units)               83
  • Table 84. Global Traction Inverter Market 2024-2036         84
  • Table 85. Traction Inverter Semiconductor Technology Mix 2024-2036  84
  • Table 86. Traction Inverter Semiconductor Technology by Vehicle Segment 2024 vs 2030        84
  • Table 87. Traction Inverter Performance Benchmarking by OEM 85
  • Table 88. Traction Inverter Topology Comparison  85
  • Table 89. Traction Inverter Supplier Market Share 2024     86
  • Table 90. Traction Inverter Supplier Strategic Positioning 87
  • Table 91. Powertrain Integration Levels in Production Vehicles    87
  • Table 92. Global Onboard Charger Market 2024-2036       88
  • Table 93. OBC Market by Power Level 2024-2036 (Unit Share)      88
  • Table 94. OBC Semiconductor Technology Mix 2024-2036            89
  • Table 95. OBC Technology Comparison by Semiconductor            89
  • Table 96. Bidirectional OBC Adoption and Functionality  90
  • Table 97. Onboard Charger Supplier Market Share 2024  90
  • Table 98. Automotive DC-DC Converter Market 2024-2036           91
  • Table 99. Low-Voltage Architecture Evolution          91
  • Table 100. Automotive DC-DC Converter Semiconductor Technology Mix           91
  • Table 101. DC-DC Converter Performance by Semiconductor Technology           92
  • Table 102. 400V vs 800V Architecture Comparison              92
  • Table 103. 800V Architecture Adoption by Market Segment            92
  • Table 104. 800V Platform Vehicles in Production or Announced (as of 2024)     93
  • Table 105. 400V Charging Compatibility Approaches         93
  • Table 106. Power Electronics Integration Level Definitions and Adoption              94
  • Table 107. Integrated Power Electronics Examples              94
  • Table 108. Integrated OBC + DC-DC Converter Benefits   95
  • Table 109. Traction-Integrated OBC Approaches   95
  • Table 110. Heavy-Duty Electric Vehicle Market 2024-2036 (Thousand Units)     95
  • Table 111. Heavy-Duty vs Passenger Vehicle Power Electronics Requirements 96
  • Table 112. Heavy-Duty Power Electronics Market 2024-2036 (US$ Million)         96
  • Table 113. Heavy-Duty Inverter Specifications by Application      97
  • Table 114. Global Solar PV Inverter Market 2024-2036      98
  • Table 115. Solar Inverter Market by Type 2024-2036 (US$ Billion)              98
  • Table 116. Solar Inverter Semiconductor Technology Mix 99
  • Table 117. Solar Inverter Efficiency Impact of SiC Adoption           99
  • Table 118. Solar Inverter Supplier Market Share 2024        99
  • Table 119. Global Wind Power Converter Market 2024-2036         100
  • Table 120. Wind Turbine Converter Specifications by Rating         100
  • Table 121. Global Battery Energy Storage Market 2024-2036        101
  • Table 122. BESS Converter Technology by Application       101
  • Table 123. Data Center Power Consumption Evolution     102
  • Table 124. Data Center PSU Market 2024-2036     102
  • Table 125. 80 PLUS Efficiency Standards    102
  • Table 126. PSU Semiconductor Technology Mix     103
  • Table 127. PSU Power Density Evolution by Technology    103
  • Table 128. Data Center PSU Supplier Market Share 2024 104
  • Table 129. AI Server Power Breakdown (8-GPU Configuration)     105
  • Table 130. AI Server Power Trends by GPU Generation       105
  • Table 131. Power Distribution Architecture Comparison  105
  • Table 132. Smart Grid Power Electronics Market 2024-2036 (US$ Billion)            106
  • Table 133. Hierarchical Grid Structure           107
  • Table 134. Solid-State Transformer vs Conventional Transformer              108
  • Table 135. Solid-State Transformer Market Outlook             108
  • Table 136. Global HVDC Market 2024-2036             109
  • Table 137. HVDC Technology Comparison 109
  • Table 138. Global Variable Frequency Drive Market 2024-2036   110
  • Table 139. VFD Market by Power Range 2024           110
  • Table 140. Variable Frequency Drive Supplier Market Share 2024              110
  • Table 141. Industrial Power Supply Market 2024-2036 (US$ Billion)         111
  • Table 142. Consumer Fast Charger Market 2024-2036     112
  • Table 143. Consumer Fast Charger Technology Comparison        112
  • Table 144. Consumer GaN Charger Supplier Market Share 2024 112
  • Table 145. China Power Electronics Market Size 2024-2036 (US$ Billion)             114
  • Table 146. China EV Market Characteristics vs Global       115
  • Table 147. China EV Sales by Price Segment 2024               116
  • Table 148. China Power Semiconductor Self-Sufficiency by Technology                116
  • Table 149. China Power Semiconductor Manufacturers by Technology  117
  • Table 150. Major China Power Semiconductor Capacity Expansion Projects      118
  • Table 151. China SiC Wafer Manufacturers Capacity and Roadmap        119
  • Table 152. SiC Wafer Quality Comparison by Origin            119
  • Table 153. China Government Support for SiC Industry    120
  • Table 154. Europe Power Electronics Market Size 2024-2036 (US$ Billion)          121
  • Table 155. European EV Market vs China Comparison      122
  • Table 156. EU CO2 Emissions Targets for Passenger Vehicles       123
  • Table 157. EU EV Sales Trajectory Required for Compliance          123
  • Table 158. European Chips Act Power Semiconductor Investments         123
  • Table 159. United States Power Electronics Market Size 2024-2036 (US$ Billion)           124
  • Table 160. US EV Market Characteristics    125
  • Table 161. US Policy Incentives for Power Electronics        126
  • Table 162. Major US Power Semiconductor Capacity Projects      126
  • Table 163. US-Headquartered Power Semiconductor Companies            127
  • Table 164. Japan Power Electronics Market Size 2024-2036 (US$ Billion)             127
  • Table 165. Major Japanese Power Semiconductor Companies    128
  • Table 166. Japan/Korea Automotive OEM Electrification Strategies           128
  • Table 167. Hyundai E-GMP Platform Specifications             129
  • Table 168. South Korea Power Electronics Market Size 2024-2036 (US$ Billion)              129
  • Table 169. India Power Electronics Market Size 2024-2036 (US$ Billion)               130
  • Table 170. India EV Market Projections         130
  • Table 171. India Power Electronics Manufacturing Initiatives        131
  • Table 172. Southeast Asia Power Electronics Manufacturing Presence  131
  • Table 173. Regional Power Electronics Market Summary 2024-2036      131
  • Table 174. Power Electronics Value Chain Stage Characteristics               133
  • Table 175. SiC Power Module Value Chain Cost Buildup (Representative 1200V/200A Module)            134
  • Table 176. Semiconductor Supplier Vertical Integration Strategies            134
  • Table 177. OEM Vertical Integration Strategies        135
  • Table 178. Vertical Integration Economic Impact Analysis              136
  • Table 179. Power Electronics Supply Chain Geographic Concentration 136
  • Table 180. Critical Single/Dual Source Dependencies        137
  • Table 181. Major Power Electronics Supply Chain Disruptions 2020-2024          137
  • Table 182. Global SiC Wafer Market 2024-2030     138
  • Table 183. SiC Wafer Supplier Market Share and Capacity 2024 139
  • Table 184. Major SiC Wafer Long-Term Supply Agreements            139
  • Table 185. SiC Device Market by Manufacturer 2024          140
  • Table 186. SiC MOSFET Technology Comparison by Manufacturer            141
  • Table 187. SiC Device Production Capacity by Manufacturer 2024-2028             141
  • Table 188. SiC Power Module Market 2024-2030  142
  • Table 189. SiC Power Module Supplier Market Share 2024             143
  • Table 190. GaN Power Device Supply Chain Models           143
  • Table 191. GaN Power Device Supplier Analysis 2024       145
  • Table 192. GaN Power Device Manufacturing Capacity 2024-2028          146
  • Table 193. TSMC GaN Foundry Exit Analysis             146
  • Table 194. GaN Foundry Alternative Assessment  147
  • Table 195. Silicon Power Device Market by Supplier 2024               147
  • Table 196. Silicon Power Device Technology Evolution      148
  • Table 197. Silicon Power Wafer Suppliers   148
  • Table 198. Power Electronics Capacitor Market by Type 2024      149
  • Table 199. DC Link Film Capacitor Supplier Market Share 2024  150
  • Table 200. Power Magnetics Market Overview 2024            150
  • Table 201. Power Magnetics Supplier Landscape  151
  • Table 202. Power Module Packaging Market 2024-2030   151
  • Table 203. Power Module Packaging Supplier Market Share 2024              152
  • Table 204. Power Module Packaging Technology Generations       153
  • Table 205. Die Attach Technology Comparison       153
  • Table 206. Silver Sintering Paste Supplier Analysis               154
  • Table 207. Power Electronics Cooling Market 2024-2030 154
  • Table 208. Power Electronics Cooling Supplier Analysis   155
  • Table 209. Thermal Interface Material Market 2024             155
  • Table 210. TIM Supplier Market Analysis     156
  • Table 211. Power Electronics Supply Chain Risk Matrix     157
  • Table 212. OEM Multisourcing Adoption by Component   157
  • Table 213. Multisourcing Cost-Benefit Analysis     158
  • Table 214. Regional Supply Chain Development Status    158
  • Table 215. Supply Chain Localization Requirements by Region   159
  • Table 216. Baseline Forecast Assumptions               160
  • Table 217. Forecast Scenario Definitions    160
  • Table 218. Market Scope Definitions              160
  • Table 219. Regional Market Definitions        161
  • Table 220. Global Power Electronics Market Forecast 2024-2036 (US$ Billion) 161
  • Table 221. Market Growth Phase Characteristics  161
  • Table 222. Power Electronics Market by Application 2024-2036 (US$ Billion)    162
  • Table 223. Power Electronics Market Share by Application 2024-2036   162
  • Table 224. Power Semiconductor Market by Technology 2024-2036 (US$ Billion)           162
  • Table 225. Power Semiconductor Market Share by Technology 2024-2036         163
  • Table 226. Power Electronics Market by Region 2024-2036 (US$ Billion)              163
  • Table 227. Power Electronics Market Share by Region 2024-2036             164
  • Table 228. Global EV Sales Forecast by Powertrain 2024-2036 (Million Units)   165
  • Table 229. EV Sales by Region 2024-2036 (Million Units) 165
  • Table 230. Global Traction Inverter Market Forecast 2024-2036 165
  • Table 231. Traction Inverter Semiconductor Technology Mix 2024-2036 (Unit Share)    166
  • Table 232. Traction Inverter Market Value by Technology 2024-2036 (US$ Billion)          166
  • Table 233. Global Onboard Charger Market Forecast 2024-2036               166
  • Table 234. OBC Market by Power Level 2024-2036 (Unit Share)   167
  • Table 235. OBC Semiconductor Technology Mix 2024-2036 (Unit Share)              167
  • Table 236. Automotive DC-DC Converter Market Forecast 2024-2036   167
  • Table 237. Automotive DC-DC Converter Technology Mix 2024-2036 (Unit Share)         168
  • Table 238. 800V Architecture Adoption by Segment 2024-2036 (Unit Share)      168
  • Table 239. Total EV Power Electronics Market Forecast 2024-2036 (US$ Billion)             168
  • Table 240. Average Power Electronics Content per EV 2024-2036             169
  • Table 241. Global Data Center Power Demand Forecast 2024-2036        169
  • Table 242. Data Center Power Electronics Market Forecast 2024-2036 (US$ Billion)    170
  • Table 243. Data Center PSU Technology Mix 2024-2036 (Value Share)   170
  • Table 244. Global Solar PV Inverter Market Forecast 2024-2036 170
  • Table 245. Solar Inverter Semiconductor Technology Mix 2024-2036 (Value Share)       171
  • Table 246. Global Wind Power Converter Market Forecast 2024-2036   171
  • Table 247. Global Battery Energy Storage Inverter Market Forecast 2024-2036 171
  • Table 248. Global Variable Frequency Drive Market Forecast 2024-2036             172
  • Table 249. Consumer Fast Charger Market Forecast 2024-2036 172
  • Table 250. EV Charging Infrastructure Market Forecast 2024-2036           172
  • Table 251. SiC Power Semiconductor Market Forecast 2024-2036 (US$ Billion)              173
  • Table 252. SiC Wafer Demand Forecast 2024-2036 (Thousand Wafers) 173
  • Table 253. GaN Power Semiconductor Market Forecast 2024-2036 (US$ Billion)           173
  • Table 254. Silicon Power Device Market Forecast 2024-2036 (US$ Billion)          174
  • Table 255. Si IGBT Market by Application 2024-2036 (Value Share)           174
  • Table 256. China Power Electronics Market Detailed Forecast 2024-2036 (US$ Billion)             175
  • Table 257. Europe Power Electronics Market Detailed Forecast 2024-2036 (US$ Billion)           176
  • Table 258. North America Power Electronics Market Detailed Forecast 2024-2036 (US$ Billion)          177
  • Table 259. Total Market Forecast by Scenario 2024-2036 (US$ Billion)   178
  • Table 260. Key Scenario Assumptions          178
  • Table 261. Forecast Sensitivity Analysis      178
  • Table 262. Power Electronics Market Forecast Summary 179
  • Table 263. Technology Transition Milestones            179
  • Table 264. Top 20 Global Power Device Suppliers Ranking 2024 180
  • Table 265. Top 20 Power Device Supplier Financial Metrics 2024               182
  • Table 266. Market Share Evolution 2020-2024-2028E        183
  • Table 267. Si IGBT Market Share by Supplier 2024 184
  • Table 268. SiC MOSFET Market Share by Supplier 2024    184
  • Table 269. SiC MOSFET Technology Comparison by Supplier        185
  • Table 270. GaN Power Device Market Share by Supplier 2024      186
  • Table 271. China Power Semiconductor Market Share 2024          187
  • Table 272. Europe Power Semiconductor Market Share 2024       188
  • Table 273. North America Power Semiconductor Market Share 2024      188
  • Table 274. Regional Market Share by Supplier Headquarters 2024            189
  • Table 275. Vertical Integration Strategy Categories               190
  • Table 276. Semiconductor Supplier Vertical Integration Scope    190
  • Table 277. STMicroelectronics SiC Integration Economics              190
  • Table 278. Automotive OEM Power Electronics Integration Status             191
  • Table 279. Tesla Power Electronics Vertical Integration Analysis 191
  • Table 280. BYD Semiconductor Integration Roadmap        192
  • Table 281. OEM-Supplier Partnership Model Categories   193
  • Table 282. Significant Power Electronics Partnerships 2022-2024            193
  • Table 283. Tesla-STMicroelectronics Partnership Characteristics              194
  • Table 284. GM-Wolfspeed Partnership Structure   194
  • Table 285. Partnership Model Risk-Reward Analysis           195
  • Table 286. Major Silicon Power Semiconductor Fab Capacity 2024          195
  • Table 287. Announced Silicon Power Fab Expansion Projects 2024-2030            196
  • Table 288. Global SiC Manufacturing Capacity Expansion 2024-2030    196
  • Table 289. Significant SiC Manufacturing Investment Projects     197
  • Table 290. Major Chinese SiC Expansion Projects 198
  • Table 291. Global GaN Power Device Capacity 2024-2030            198
  • Table 292. Major GaN Capacity Expansion Projects             199
  • Table 293. Power Electronics 1.0 vs. 2.0 Paradigm Comparison 200
  • Table 294. Performance Metric Evolution   201
  • Table 295. Multi-Objective Pareto Optimization Parameters          202
  • Table 296. Power Electronics Technology S-Curve Assessment  202
  • Table 297. Research Priority Evolution          203
  • Table 298. Power vs. Energy Management Perspectives    204
  • Table 299. Mission Efficiency vs. Rated Efficiency Examples         205
  • Table 300. Energy Control Center Functional Requirements          206
  • Table 301. DER Integration Power Electronics Requirements        207
  • Table 302. Hierarchical Smart Grid Structure            207
  • Table 303. Solid-State Transformer vs. Conventional Transformer             208
  • Table 304. Solid-State Transformer Application Analysis 209
  • Table 305. Solid-State Transformer Market Forecast 2024-2036 209
  • Table 306. FREEDM System Key Elements  210
  • Table 307. SiC MOSFET Technology Roadmap 2024-2035              211
  • Table 308. SiC MOSFET Gate Structure Comparison and Roadmap         211
  • Table 309. SiC Wafer Technology Evolution 2024-2035     212
  • Table 310. Advanced SiC Manufacturing Technologies      213
  • Table 311. Cold Split Technology Benefits  213
  • Table 312. GaN Power Device Voltage Rating Roadmap   214
  • Table 313. High-Voltage GaN Technology Comparison      215
  • Table 314. Vertical GaN vs. Lateral GaN Comparison         215
  • Table 315. GaN HEMT Technology Roadmap 2024-2035 216
  • Table 316. Ultra-Wide Bandgap Material Properties             216
  • Table 317. Ga₂O₃ Technology Status and Roadmap             217
  • Table 318. Major Ga₂O₃ Technology Developers      218
  • Table 319. Diamond Power Semiconductor Status               219
  • Table 320. Emerging Material Commercialization Timeline             220
  • Table 321. Power Electronics Integration Levels     221
  • Table 322. Automotive Power Electronics Integration Evolution   222
  • Table 323. BYD 8-in-1 Powertrain Specifications    222
  • Table 324. Integrated OBC/DC-DC Market Analysis            223
  • Table 325. Traction-Integrated OBC Concept           223
  • Table 326. Multi-Cell Converter Architecture Advantages                224
  • Table 327. Parallel Interleaving Performance Scaling          224
  • Table 328. Series Interleaving R_DS(on) Advantage              225
  • Table 329. ETH Zurich 99.36% PFC Rectifier Specifications            225
  • Table 330. Modular Multilevel Converter (MMC) Applications       226
  • Table 331. Power Electronics Design Process Evolution   227
  • Table 332. Multi-Domain Simulation Integration    227
  • Table 333. Power Electronics Digital Twin Use Cases         228
  • Table 334. Digital Twin Technology Stack    228
  • Table 335. Power Electronics Loss Distribution Evolution                229
  • Table 336. Power Magnetic Core Material Comparison     230
  • Table 337. Emerging Magnetic Material Technologies         230
  • Table 338. Magnetic Component Design Evolution              231
  • Table 339. Power Electronics Capacitor Technology Comparison             232
  • Table 340. DC Link Capacitor Development Roadmap      232
  • Table 341. Emerging Capacitor Technologies for Power Electronics          233
  • Table 342. Passive Component Trade-offs at Increasing Frequency          233
  • Table 343. EMI Impact of WBG Semiconductor Adoption 234
  • Table 344. EMI Reduction Strategy Classification 235
  • Table 345. Active Gate Drive Technology      235
  • Table 346. ETH Zurich Closed-Loop Gate Drive Specifications     236
  • Table 347. EMI Filter Technology Roadmap               236
  • Table 348. Integrated EMI Mitigation Approaches  237
  • Table 349. Power Electronics Technology Roadmap Summary 2024-2035          237
  • Table 350. Power Electronics Performance Trajectory 2024-2035             238
  • Table 351. Power Electronics R&D Priority Matrix 2025-2035        239
  • Table 352. Technology Investment Recommendations by Company Type             240

 

List of Figures

  • Figure 1. Global Power Electronics Market Summary 2026-2036 (US$ Billion). 35
  • Figure 2. Power Electronics Market Size by Component Category 2024-2036 (US$ Billion).     40
  • Figure 3. SiC MOSFET Market by Application 2024-2036 (US$ Billion).   49
  • Figure 4. GaN Device Market by Application 2024-2036 (US$ Million).   51
  • Figure 5. Power Electronics Market by Application Sector 2024-2036 (US$ Billion)        52
  • Figure 6. Automotive Power Electronics Segmentation 2024-2036 (US$ Billion)              53
  • Figure 7. Super-Junction Technology Cross-Section            55
  • Figure 8. GaN HEMT Structure Schematic. 65
  • Figure 9. Single vs Double-Sided Cooling Schematic          77
  • Figure 10. Frame-based power module uses a metal base plate, ceramic substrate, wire bonding and copper terminals. The cavity is filled with silicone gel for insulation.       79
  • Figure 11. Global Electric Vehicle Sales by Region 2020-2036 (Million Units)    81
  • Figure 12. Global EV Sales by Powertrain Type 2024-2036 (Million Units)             82
  • Figure 13. EV Power Electronics System Architecture         83
  • Figure 14. Inverter Benchmarking: Si, SiC, GaN      88
  • Figure 15. Heavy-Duty Power Electronics Market 2024-2036 (US$ Million)          97
  • Figure 16. Solid-State Transformer Architecture     104
  • Figure 17. Smart Grid Power Electronics Market 2024-2036 (US$ Billion)             107
  • Figure 18. China Power Electronics Market Size 2024-2036 (US$ Billion)              115
  • Figure 19. Europe Power Electronics Market Size 2024-2036 (US$ Billion)           122
  • Figure 20. United States Power Electronics Market Size 2024-2036 (US$ Billion)            125
  • Figure 21. SiC power module packaging structure.              142
  • Figure 22. GaN technology in various power sectors           144
  • Figure 23. Power Electronics Market by Region 2024-2036 (US$ Billion) 164
  • Figure 24. China Power Electronics Market Detailed Forecast 2024-2036 (US$ Billion)              175
  • Figure 25. Europe Power Electronics Market Detailed Forecast 2024-2036 (US$ Billion)            176
  • Figure 26. North America Power Electronics Market Detailed Forecast 2024-2036 (US$ Billion)          177
  • Figure 27. Schematic of configurations for normally on AlGaN/GaN HEMTs with (a) Schottky gate; and (b) and insulated gate               203
  • Figure 28. Comparison of diamond properties with other materials. Diamond has the largest bandgap, breakdown electric field, thermal conductivity, and hole mobility. Besides GaAs, diamond has the highest electron mobility.      219
  • Figure 29. Device schematic of different diamond diodes: (a) LSBDs; (b) pVSBDs; (c) VSBDs; (d) PNDs; (e) SPNDs; and (f) SPINDs.   220

 

 

Purchasers will receive the following:

  • PDF report download/by email. 
  • Comprehensive Excel spreadsheet of all data.
  • Mid-year Update

 

The Global Power Electronics Market 2026-2036
The Global Power Electronics Market 2026-2036
PDF download/by email.

The Global Power Electronics Market 2026-2036
The Global Power Electronics Market 2026-2036
PDF and Print Edition (including tracked delivery).

 

Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer. To order by Bank Transfer (Invoice) select this option from the payment methods menu after adding to cart, or contact info@futuremarketsinc.com