The Global Power Electronics Market 2026-2036

0

cover

cover

  • Published: December 2025
  • Pages: 645
  • Tables: 63
  • Figures: 76

 

Power electronics is no longer confined to specialist applications. Its influence now spans electric vehicles, renewable energy systems, industrial automation, data-centre infrastructure and advanced consumer equipment. What links these sectors is the need to move energy more efficiently and at higher power densities.

The global power electronics market is experiencing unprecedented growth and transformation, driven by the electrification of transportation, renewable energy expansion, and surging demand for data center infrastructure. This dynamic sector encompasses the critical components that convert and control electrical power across virtually every modern application, from electric vehicle powertrains to grid-scale energy storage systems. At the heart of this market evolution is a fundamental technology transition from traditional silicon-based devices to wide bandgap (WBG) semiconductors, specifically silicon carbide (SiC) and gallium nitride (GaN). This paradigm shift represents the most significant advancement in power electronics since the introduction of IGBTs in the 1980s. SiC MOSFETs offer compelling advantages over silicon IGBTs, including higher temperature operation, superior thermal conductivity, switching speeds up to five times faster, and the potential to increase electric vehicle range by approximately 7%. These characteristics enable more compact, efficient power conversion systems with smaller passive components and reduced cooling requirements.

The electric vehicle sector stands as the primary growth driver for power electronics demand. Key components include traction inverters, onboard chargers (OBCs), and DC-DC converters, with the market increasingly adopting 800V architectures to enable faster charging and improved efficiency. SiC MOSFETs are rapidly gaining market share in EV inverters, with projections indicating they will become the majority technology by 2035. Meanwhile, GaN devices are making significant inroads in lower-power applications such as onboard chargers and DC-DC converters, where their high-frequency switching capabilities enable dramatic reductions in size and weight.

The supply chain for power electronics is undergoing significant restructuring, with vertical integration emerging as a key strategic trend. Major automotive OEMs and semiconductor suppliers are securing supply through acquisitions, partnerships, and in-house development of SiC capabilities. The transition from 150mm to 200mm SiC wafers represents a critical milestone that will substantially increase production capacity and reduce costs, with multiple suppliers worldwide scaling up 200mm wafer production. Chinese manufacturers have entered the market aggressively, with four Chinese companies now ranking among the top 20 global power device suppliers.

Data centers represent another rapidly expanding application, driven by artificial intelligence workloads that demand unprecedented power levels. Power supply units are evolving to meet stringent efficiency standards, with the 80 PLUS Ruby certification requiring up to 96.5% efficiency. Wide bandgap adoption is accelerating in this sector, with hybrid designs combining silicon, SiC, and GaN emerging as the preferred approach for maximizing efficiency across different power conversion stages.

The industry is also witnessing a conceptual evolution from discrete converter design toward integrated system-level approaches. This "Power Electronics 2.0" paradigm emphasizes energy management over simple power conversion, incorporating smart grid integration, distributed control architectures, and mission-oriented efficiency metrics. Multi-cell converter architectures are gaining traction, offering advantages including switching frequency multiplication, improved redundancy, and standardization benefits.

Despite the rapid advancement of WBG technologies, silicon devices continue to hold significant market share due to their maturity, established supply chains, and cost advantages. The market is characterized by intense cost pressure, particularly in price-sensitive segments like solar inverters and battery energy storage systems. Looking forward, the global power electronics market is projected to grow with a compound annual growth rate exceeding 8%, adding more than $15 billion in market value by 2030, driven by the continued expansion of electric mobility, renewable energy deployment, and digital infrastructure requirements.

The Global Power Electronics Market 2026-2036 provides comprehensive analysis of the rapidly evolving power semiconductor industry, examining the transformative shift from silicon-based devices to wide bandgap (WBG) technologies including silicon carbide (SiC) MOSFETs and gallium nitride (GaN) HEMTs. This in-depth market intelligence report delivers granular 10-year forecasts covering market size in US dollars and gigawatts across key segments including electric vehicle inverters, onboard chargers, DC-DC converters, data center power supply units, renewable energy systems, and industrial applications.

The report analyzes critical technology trends driving market growth, including the transition from 400V to 800V EV architectures, the evolution from 150mm to 200mm SiC wafer production, and the emergence of integrated power electronics modules. Detailed supply chain analysis covers the complete value chain from raw materials and wafer production through device manufacturing, packaging, and system integration, with particular focus on vertical integration strategies and the rising influence of Chinese manufacturers in the global market.

Regional market analysis examines growth dynamics across China, Europe, North America, Japan, South Korea, and emerging markets, while competitive landscape assessment provides market share rankings, M&A activity tracking, and strategic partnership analysis. The report includes over 90 detailed company profiles spanning semiconductor device manufacturers, GaN specialists, SiC wafer suppliers, tier-1 automotive suppliers, automotive OEMs, and system integrators.

Report Contents include: 

  • Market Analysis & Forecasts
    • Global power electronics market size and 10-year growth projections (2026-2036)
    • Device-level forecasts for Si IGBTs, SiC MOSFETs, and GaN devices by voltage class
    • Application-level forecasts for EV inverters, onboard chargers, and DC-DC converters in units, GW, and US$
    • Regional market forecasts for China, Europe, North America, and Asia-Pacific
    • Price trend analysis and cost reduction projections for WBG semiconductors
  • Technology Analysis
    • Comprehensive comparison of Si, SiC, and GaN semiconductor properties and performance
    • Technology S-curve analysis and paradigm shift to Power Electronics 2.0
    • Multi-cell converter architectures including parallel and series interleaving
    • Packaging evolution including single-sided and double-sided cooling technologies
    • 150mm to 200mm SiC wafer transition timeline and cost advantages
  • Application Markets
    • Electric vehicle power electronics including 400V vs 800V architecture analysis
    • Traction inverter, onboard charger, and DC-DC converter technology benchmarking
    • Data center PSU market including AI server power requirements
    • Renewable energy applications covering solar PV, wind, and battery energy storage
    • Grid infrastructure including smart grid, solid-state transformers, and HVDC systems
  • Supply Chain Analysis
    • Complete Si, SiC, and GaN supply chain mapping from raw materials to end applications
    • SiC wafer supplier market share and 200mm production roadmap
    • Vertical integration trends and OEM acquisition strategies
    • Packaging and assembly supply chain including die attach technologies
    • Passive component technology roadmap for capacitors and magnetics
  • Competitive Landscape
    • Top 20 power device supplier rankings and market share analysis
    • Recent mergers, acquisitions, and strategic partnerships
    • Manufacturing capacity expansion plans by region and technology
    • OEM-supplier relationship mapping for SiC MOSFETs and Si IGBTs
  • Future Technology Trends
    • Power Electronics 2.0 vision: from converters to systems
    • SiC and GaN technology roadmaps through 2035
    • Emerging WBG materials including Ga₂O₃ and diamond
    • Virtual prototyping and digital twin design methodologies

 

Companies Profiled include: 

ABB, Advanced Electric Machines, Advanced Energy Industries, AMETS Power Electronics. BMW, Bosch, BorgWarner, BYD, Cambridge GaN Devices, Coherent (II-VI), Continental, CR Micro, CRRC Corporation, Dana Incorporated, Delta Electronics, Denso, Diamond Foundry, Diodes Incorporated, Dynex Semiconductor, Eaton, Efficient Power Conversion (EPC), Equipmake, Fuji Electric, GaN Systems, General Motors, Helix Technologies, Hitachi Astemo, Hitachi Energy, Huawei, Hyundai Motor Group, Infineon Technologies and more....

 

 

 

Chapter 1: EXECUTIVE SUMMARY 1

  • 1.1 Report Introduction and Scope  1
  • 1.2 Key Findings and Market Highlights        3
  • 1.3 Global Power Electronics Market Overview 2026-2036            5
  • 1.4 Technology Evolution: From Silicon to Wide Bandgap               7
  • 1.5 Market Size and Growth Projections Summary               9
  • 1.6 Regional Market Analysis Overview        11
  • 1.7 Key Market Drivers and Challenges        13
  • 1.8 Strategic Recommendations      15

 

Chapter 2: MARKET OVERVIEW AND DEFINITIONS 17

  • 2.1 Power Electronics Fundamentals            17
    • 2.1.1 What is Power Electronics?      17
    • 2.1.2 Key Applications and End Markets      19
    • 2.1.3 Power Conversion Technologies Overview    21
  • 2.2 Market Segmentation Framework            23
    • 2.2.1 By Product Type (Inverters, Converters, Rectifiers)  23
    • 2.2.2 By Semiconductor Material (Si, SiC, GaN)     25
    • 2.2.3 By Application Sector   27
    • 2.2.4 By Voltage Class             29
  • 2.3 Performance Indices and Metrics            31
    • 2.3.1 Power Density (kW/dm³)            31
    • 2.3.2 Efficiency and Loss Analysis  33
    • 2.3.3 Cost per kW Trends       35
    • 2.3.4 Reliability and Failure Rate Metrics    37

 

Chapter 3: TECHNOLOGY ANALYSIS 39

  • 3.1 Evolution of Power Electronics Technology        39
    • 3.1.1 Historical Development: SCRs to WBG           39
    • 3.1.2 Technology S-Curve Analysis 41
    • 3.1.3 Paradigm Shift to Power Electronics 2.0         43
  • 3.2 Silicon-Based Power Devices      45
    • 3.2.1 Silicon IGBT Technology and Performance    45
    • 3.2.2 Silicon MOSFET Applications 47
    • 3.2.3 Super-Junction Technology Advances              49
    • 3.2.4 Si Device Roadmap and Limitations  51
  • 3.3 Silicon Carbide (SiC) Technology              53
    • 3.3.1 SiC Material Properties and Advantages         53
    • 3.3.2 SiC MOSFET Technology Development            55
    • 3.3.3 SiC vs Si IGBT Performance Comparison       57
    • 3.3.4 SiC Device Packaging Evolution           59
    • 3.3.5 150mm to 200mm Wafer Transition  61
    • 3.3.6 SiC Cost Reduction Roadmap               63
  • 3.4 Gallium Nitride (GaN) Technology            65
    • 3.4.1 GaN Material Properties and Potential             65
    • 3.4.2 GaN HEMT and FET Technologies        67
    • 3.4.3 GaN-on-Si vs Alternative Substrates  69
    • 3.4.4 GaN Voltage Limitations and Solutions           71
    • 3.4.5 GaN Device Roadmap for Automotive              73
  • 3.5 Converter Topology Analysis       75
    • 3.5.1 Multi-Cell Converter Architectures     75
    • 3.5.2 Parallel and Series Interleaving              77
    • 3.5.3 DC-Transformer Concepts       79
    • 3.5.4 Three-Level Inverter Designs  81
  • 3.6 Packaging and Thermal Management   83
    • 3.6.1 Power Module Packaging Evolution   83
    • 3.6.2 Single-Sided vs Double-Sided Cooling             85
    • 3.6.3 Thermal Interface Materials (TIM)        87
    • 3.6.4 Advanced Packaging Technologies (P4, p²pack)        89

 

Chapter 4: APPLICATION MARKETS ANALYSIS 91

  • 4.1 Electric Vehicles (EVs)     91
    • 4.1.1 EV Market Overview and Growth Trends          91
    • 4.1.2 Traction Inverter Technologies               93
    • 4.1.3 Onboard Charger (OBC) Systems        95
    • 4.1.4 DC-DC Converter Requirements          97
    • 4.1.5 400V vs 800V Architecture Analysis   99
    • 4.1.6 Power Electronics Integration Trends                101
    • 4.1.7 Heavy-Duty Vehicle Applications        103
  • 4.2 Renewable Energy              105
    • 4.2.1 Solar PV Inverter Market             105
    • 4.2.2 Wind Power Converters              107
    • 4.2.3 Battery Energy Storage Systems (BESS)          109
  • 4.3 Industrial Applications    111
    • 4.3.1 Motor Drives and Variable Frequency Drives                111
    • 4.3.2 Industrial Power Supplies         113
    • 4.3.3 Welding and Process Equipment         115
  • 4.4 Data Centers and Computing    117
    • 4.4.1 Power Supply Unit (PSU) Market           117
    • 4.4.2 AI Server Power Requirements              119
    • 4.4.3 48V to 400V Architecture Transition  121
    • 4.4.4 UPS and Backup Power Systems         123
  • 4.5 Grid Infrastructure             125
    • 4.5.1 Smart Grid and Energy Management 125
    • 4.5.2 Solid-State Transformers          127
    • 4.5.3 HVDC Transmission Systems 129
  • 4.6 Consumer Electronics and Telecommunications          131
    • 4.6.1 Fast Charging Technologies     131
    • 4.6.2 Telecom Power Systems            133

 

Chapter 5: REGIONAL MARKET ANALYSIS 135

  • 5.1 China          135
    • 5.1.1 Market Size and Growth             135
    • 5.1.2 Domestic Manufacturing Expansion 137
    • 5.1.3 SiC Wafer Production Scale-up             139
    • 5.1.4 Key Chinese Players Analysis 141
  • 5.2 Europe       143
    • 5.2.1 Market Overview and Regulations       143
    • 5.2.2 EU Emissions Targets Impact 145
    • 5.2.3 European Semiconductor Initiatives 147
  • 5.3 United States         149
    • 5.3.1 Market Trends and Policy Drivers         149
    • 5.3.2 CHIPS Act and Manufacturing Incentives       151
    • 5.3.3 US-Based Supply Chain Analysis        153
  • 5.4 Japan and South Korea   155
    • 5.4.1 Technology Leadership Positions        155
    • 5.4.2 Automotive OEM Strategies     157
  • 5.5 Rest of World         159
    • 5.5.1 India Market Potential 159
    • 5.5.2 Southeast Asia Manufacturing Hub   161

 

Chapter 6: SUPPLY CHAIN ANALYSIS 163

  • 6.1 Silicon Supply Chain        163
    • 6.1.1 Si Wafer Suppliers          163
    • 6.1.2 Si IGBT Production Flow             165
    • 6.1.3 Market Shares and Capacity   167
  • 6.2 SiC Supply Chain 169
    • 6.2.1 SiC Raw Materials to Wafers   169
    • 6.2.2 SiC Wafer Suppliers Global Analysis 171
    • 6.2.3 SiC MOSFET Manufacturing Process 173
    • 6.2.4 200mm SiC Wafer Production Roadmap        175
    • 6.2.5 Vertical Integration Trends        177
  • 6.3 GaN Supply Chain             179
    • 6.3.1 GaN Substrate Options and Suppliers              179
    • 6.3.2 GaN Device Manufacturing     181
    • 6.3.3 GaN vs Si Manufacturing Comparison             183
  • 6.4 Packaging and Assembly               185
    • 6.4.1 Power Module Packaging Supply Chain          185
    • 6.4.2 Die Attach Technologies            187
    • 6.4.3 OSAT Providers Analysis            189
  • 6.5 Passive Components       191
    • 6.5.1 Capacitor Supply Chain             191
    • 6.5.2 Magnetic Components               193
    • 6.5.3 Expected Technology Progress              195
  • 6.6 Supply Chain Challenges              197
    • 6.6.1 Chip Shortage Impact Analysis             197
    • 6.6.2 Geopolitical Considerations   199
    • 6.6.3 Multi-sourcing Strategies          201

 

Chapter 7: MARKET FORECASTS 2026-2036 203

  • 7.1 Global Market Overview 203
    • 7.1.1 Total Market Size (US$ Billion)               203
    • 7.1.2 Market Growth by Segment      205
    • 7.1.3 CAGR Analysis by Technology                207
  • 7.2 Device-Level Forecasts  209
    • 7.2.1 Si IGBT Market Forecast             209
    • 7.2.2 SiC MOSFET Market Forecast 211
    • 7.2.3 GaN Device Market Forecast  213
    • 7.2.4 Market Share Transitions: Si vs SiC vs GaN   215
  • 7.3 Application-Level Forecasts        217
    • 7.3.1 EV Inverter Forecast (Units, GW, US$)              217
    • 7.3.2 Onboard Charger Forecast       219
    • 7.3.3 DC-DC Converter Forecast      221
    • 7.3.4 Data Center PSU Forecast        223
    • 7.3.5 Renewable Energy Forecast    225
    • 7.3.6 Industrial Applications Forecast          227
  • 7.4 Wafer and Material Forecasts     229
    • 7.4.1 Si Wafer Market Forecast          229
    • 7.4.2 SiC Wafer Market Forecast       231
    • 7.4.3 GaN Substrate Market Forecast            233
  • 7.5 Regional Forecasts            235
    • 7.5.1 China Market Forecast                235
    • 7.5.2 Europe Market Forecast             237
    • 7.5.3 North America Market Forecast            239
    • 7.5.4 Asia-Pacific Market Forecast  241
  • 7.6 Price and Cost Forecasts              243
    • 7.6.1 Si IGBT vs SiC MOSFET Price Trends  243
    • 7.6.2 SiC Cost Reduction Projections            245
    • 7.6.3 GaN Device Pricing Outlook    247

 

Chapter 8: COMPETITIVE LANDSCAPE 249

  • 8.1 Market Share Analysis     249
    • 8.1.1 Top 20 Power Device Suppliers Ranking         249
    • 8.1.2 Market Share by Technology Segment              251
    • 8.1.3 Regional Market Share Distribution    253
  • 8.2 Competitive Strategies    255
    • 8.2.1 Vertical Integration Approaches           255
    • 8.2.2 OEM Partnership Models           257
    • 8.2.3 Technology Licensing Strategies           259
  • 8.3 Mergers, Acquisitions, and Partnerships             261
    • 8.3.1 Recent M&A Activity Analysis 261
    • 8.3.2 Strategic Partnerships Overview          263
    • 8.3.3 Joint Ventures and Collaborations      265
  • 8.4 Capacity Expansion Plans            267
    • 8.4.1 Si Fab Expansion Projects         267
    • 8.4.2 SiC Manufacturing Investments           269
    • 8.4.3 GaN Production Scale-up         271

 

Chapter 9: FUTURE TECHNOLOGY TRENDS 273

  • 9.1 Power Electronics 2.0 Vision       273
    • 9.1.1 From Converters to Systems   273
    • 9.1.2 Energy Management Paradigm             275
    • 9.1.3 Smart Grid Integration 277
  • 9.2 Device Technology Roadmap     279
    • 9.2.1 SiC Technology Evolution          279
    • 9.2.2 GaN High-Voltage Development           281
    • 9.2.3 Emerging Materials (Ga₂O₃, Diamond)             283
  • 9.3 System-Level Innovations             285
    • 9.3.1 Integrated Power Electronics Modules             285
    • 9.3.2 Multi-Cell and Modular Architectures               287
    • 9.3.3 Virtual Prototyping and Digital Twins 289
  • 9.4 Passives and EMI Challenges     291
    • 9.4.1 Advanced Magnetic Materials                291
    • 9.4.2 Capacitor Technology Trends 293
    • 9.4.3 EMI Reduction Strategies          295

 

Chapter 10: STRATEGIC OUTLOOK AND CONCLUSIONS 297

  • 10.1 Market Evolution Summary       297
  • 10.2 Technology Adoption Timelines             299
  • 10.3 Investment Opportunities          301
  • 10.4 Risk Factors and Mitigation       303
  • 10.5 Key Takeaways and Recommendations            305

 

Chapter 11: COMPANY PROFILES 307

  • 11.1 Semiconductor Device Manufacturers             307 (16 company profiles)
  • 11.2 GaN Specialists 371 (11 company profiles)
  • 11.3 SiC Wafer and Material Suppliers          411 (6 company profiles)
  • 11.4 Tier-1 Automotive Suppliers      435 (10 company profiles)
  • 11.5 Automotive OEMs with In-House Development           475 (10 company profiles)
  • 11.6 Chinese Power Electronics Companies            515 (9 company profiles)
  • 11.7 Module and System Integrators              551 (6 company profiles)
  • 11.8 Data Center and Industrial Power         575 (6 company profiles)
  • 11.9 Specialty and Emerging Companies   603 (8 company profiles)

 

APPENDICES 635

  • 12.1 Methodology       635
  • 12.2 Glossary of Terms            637
  • 12.3 Abbreviations     639
  • 12.4 Data Sources and References 641

 

LIST OF TABLES

  • Table 1: Global Power Electronics Market Summary 2026-2036 5
  • Table 2: Key Market Metrics by Segment      6
  • Table 3: Technology Comparison: Si vs SiC vs GaN              8
  • Table 4: Regional Market Share Distribution              12
  • Table 5: Material Properties Comparison: Si, SiC, GaN      54
  • Table 6: SiC MOSFET vs Si IGBT Performance Benchmarks            57
  • Table 7: SiC Device Packaging Technologies Comparison               60
  • Table 8: 150mm vs 200mm SiC Wafer Cost Advantages   62
  • Table 9: GaN HEMT Specifications by Manufacturer            68
  • Table 10: GaN Substrate Options and Trade-offs   70
  • Table 11: Multi-Cell Converter Advantages and Challenges           76
  • Table 12: Thermal Interface Material Properties      88
  • Table 13: Single vs Double-Sided Cooling Comparison     86
  • Table 14: EV Power Electronics Specifications by OEM     92
  • Table 15: Traction Inverter Benchmarking (Si, SiC, GaN)   94
  • Table 16: Onboard Charger Power Levels by Vehicle Segment      96
  • Table 17: 400V vs 800V Architecture Comparison 100
  • Table 18: 800V Platform Adoption by OEM (2022-2025)    102
  • Table 19: Heavy-Duty Vehicle Power Electronics Requirements  104
  • Table 20: Data Center PSU Efficiency Standards (80 PLUS)            118
  • Table 21: AI Server Power Requirements by Generation     120
  • Table 22: China Power Electronics Market Size 2026-2036             136
  • Table 23: Chinese SiC Wafer Manufacturers Capacity       140
  • Table 24: European Power Electronics Regulatory Framework      144
  • Table 25: US Semiconductor Manufacturing Incentives    152
  • Table 26: Top 10 Si Wafer Suppliers by Revenue      164
  • Table 27: SiC Wafer Supplier Market Share Analysis           172
  • Table 28: 200mm SiC Wafer Production Timeline by Supplier        176
  • Table 29: Vertical Integration: OEM Acquisitions and Partnerships            178
  • Table 30: GaN Device Manufacturers and Capacities        182
  • Table 31: Die Attach Technologies Comparison     188
  • Table 32: Passive Component Technology Roadmap         196
  • Table 33: Global Power Electronics Market Forecast (US$ Billion)             204
  • Table 34: Market Size by Technology Segment 2026-2036              206
  • Table 35: CAGR Comparison by Market Segment  208
  • Table 36: Si IGBT Market Forecast by Application  210
  • Table 37: SiC MOSFET Market Forecast by Voltage Class 212
  • Table 38: GaN Device Market Forecast by Application       214
  • Table 39: EV Inverter Forecast: Units, GW, Revenue             218
  • Table 40: OBC Market Forecast by Semiconductor Type   220
  • Table 41: DC-DC Converter Forecast by Technology            222
  • Table 42: Data Center PSU Market Forecast              224
  • Table 43: Si Wafer Market Forecast (Munits, US$) 230
  • Table 44: SiC Wafer Market Forecast by Diameter 232
  • Table 45: Regional Market Forecasts 2026-2036   236
  • Table 46: Si IGBT vs SiC MOSFET Price Comparison            244
  • Table 47: Cost Assumptions by Device Type (US$/kW)      246
  • Table 48: Top 20 Power Device Suppliers 2024 Ranking    250
  • Table 49: Market Share by Technology: Si, SiC, GaN            252
  • Table 50: SiC MOSFET Suppliers to Leading OEMs               258
  • Table 51: Si IGBT Suppliers to Automotive OEMs   260
  • Table 52: Recent M&A Transactions in Power Electronics 262
  • Table 53: Strategic Partnerships 2023-2025             264
  • Table 54: Manufacturing Capacity Expansion Plans            268
  • Table 55: Power Electronics 2.0 Key Characteristics           274
  • Table 56: SiC Technology Roadmap 2025-2035     280
  • Table 57: GaN Voltage Progression Timeline             282
  • Table 58: Emerging WBG Materials Comparison    284
  • Table 59: Company Profile Summary Matrix              307
  • Table 60: Infineon SiC and GaN Portfolio    309
  • Table 61: STMicroelectronics OEM Design Wins    313
  • Table 62: Tesla Power Electronics Evolution              477
  • Table 63: BYD Vertical Integration Structure               481

 

LIST OF FIGURES

  • Figure 1: Global Power Electronics Market Evolution 2026-2036 4
  • Figure 2: Technology S-Curve: Evolution of Power Electronics      7
  • Figure 3: Market Share Transition: Si to WBG Semiconductors     9
  • Figure 4: Regional Market Distribution 2026 vs 2036           11
  • Figure 5: Key Market Drivers Influence Diagram     13
  • Figure 6: Power Electronics Technology S-Curve Evolution             42
  • Figure 7: Paradigm Shift: Power Electronics 1.0 to 2.0        44
  • Figure 8: Si IGBT Performance Improvements 1990-2025 46
  • Figure 9: Super-Junction Technology Cross-Section            50
  • Figure 10: Pareto Front: Si Semiconductor Trade-offs        52
  • Figure 11: SiC vs Si Material Properties Comparison           54
  • Figure 12: SiC MOSFET Switching Loss Reduction 56
  • Figure 13: η-ρ-Pareto Front Analysis              58
  • Figure 14: 150mm to 200mm SiC Wafer Die Count Advantage     61
  • Figure 15: GaN HEMT Structure Schematic                66
  • Figure 16: GaN vs SiC Potential in Inverter Applications    72
  • Figure 17: Multi-Cell Converter Basic Concept        76
  • Figure 18: Parallel Interleaving Benefits Diagram   77
  • Figure 19: Series Interleaving Loss Reduction          78
  • Figure 20: R_DS(on) Scaling with Blocking Voltage               80
  • Figure 21: VIENNA Rectifier Generation Comparison         82
  • Figure 22: Single vs Double-Sided Cooling Schematic        86
  • Figure 23: P4 Planar Power Packaging Technology 90
  • Figure 24: EV Power Electronics System Architecture         92
  • Figure 25: Traction Inverter Power Density Benchmarking               94
  • Figure 26: IDTechEx Inverter Benchmarking: Si, SiC, GaN 95
  • Figure 27: Onboard Charger Block Diagram              96
  • Figure 28: 400V vs 800V Architecture Comparison              100
  • Figure 29: 800V Platform Charging Speed Advantages       101
  • Figure 30: Power Electronics Integration Levels      102
  • Figure 31: Integrated OBC with DC-DC Converter 103
  • Figure 32: Smart Grid Energy Control Center Concept       126
  • Figure 33: Solid-State Transformer Architecture     128
  • Figure 34: Data Center PSU Power Density Trends                118
  • Figure 35: AI Server Power Consumption Growth  120
  • Figure 36: China EV Market Growth and Power Electronics             136
  • Figure 37: Chinese SiC Wafer Production Roadmap           140
  • Figure 38: European EV Sales and Regulatory Impact        144
  • Figure 39: US Power Electronics Market by Application     150
  • Figure 40: Si IGBT Production Flow: Raw Material to EV     166
  • Figure 41: SiC MOSFET Production Flow Diagram 174
  • Figure 42: 200mm SiC Wafer Production Worldwide           176
  • Figure 43: Vertical Integration: Acquisitions Map   178
  • Figure 44: GaN vs Si: Die to Vehicle Level Comparison      184
  • Figure 45: Power Module Packaging Supply Chain                186
  • Figure 46: Silver Sintering vs Solder Reliability         188
  • Figure 47: Passive Component Technology S-Curve            194
  • Figure 48: Global Power Electronics Market 2026-2036 (US$B)   204
  • Figure 49: Power Device Market Split by Technology            206
  • Figure 50: Si IGBT Market Trend 2026-2036               210
  • Figure 51: SiC MOSFET Market Growth Projection 212
  • Figure 52: GaN Device Market Adoption Curve        214
  • Figure 53: Inverter Market Share: Si vs SiC vs GaN 2023-2036      216
  • Figure 54: EV Inverter Forecast (GW)              218
  • Figure 55: OBC Forecast by Semiconductor Type (GW)     220
  • Figure 56: DC-DC Converter Forecast (GW)              222
  • Figure 57: Inverter, OBC, DC-DC Combined Forecast (US$B)       223
  • Figure 58: Data Center PSU Market by Power Level               224
  • Figure 59: SiC Wafer Market Forecast by Diameter               232
  • Figure 60: Regional Market Comparison 2026 vs 2036       238
  • Figure 61: SiC vs Si IGBT Price Trend 2020-2036    244
  • Figure 62: Top 20 Power Device Suppliers Market Share   250
  • Figure 63: Market Share Evolution: 2020-2024        252
  • Figure 64: Chinese Companies Rising Market Presence    254
  • Figure 65: Manufacturing Capacity Expansion Map             270
  • Figure 66: Power Electronics 2.0 Vision Framework             274
  • Figure 67: From Converter to System Analysis        276
  • Figure 68: FREEDM Smart Grid Architecture              278
  • Figure 69: Virtual Prototyping Design Process Evolution   290
  • Figure 70: Research Topics: Components, Converters, Systems 292
  • Figure 71: Infineon CoolSiC Product Portfolio          308
  • Figure 72: STMicroelectronics ACEPACK Technology          312
  • Figure 73: Wolfspeed SiC Manufacturing Roadmap            320
  • Figure 74: Tesla Model 3/Y Inverter Architecture     476
  • Figure 75: Hyundai E-GMP 800V Platform Diagram              484
  • Figure 76: Nvidia Influence on Data Center Power Supply Chain 584

 

 

 

Purchasers will receive the following:

  • PDF report download/by email. 
  • Comprehensive Excel spreadsheet of all data.
  • Mid-year Update

 

The Global Power Electronics Market 2026-2036
The Global Power Electronics Market 2026-2036
PDF download/by email.

 

Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer. To order by Bank Transfer (Invoice) select this option from the payment methods menu after adding to cart, or contact info@futuremarketsinc.com