The Global Sustainable Biofuels & E-Fuels Market 2026-2036

0

cover

cover

  • Published: August 2025
  • Pages: 536
  • Tables: 158
  • Figures: 113
  • Companies profiled (Company description, funding, TRL, products/technology, full contact details): 233

 

The global sustainable biofuels and e-fuels market represents one of the most rapidly expanding sectors in the energy transition landscape, driven by urgent decarbonization imperatives and ambitious net-zero commitments worldwide.  The traditional biofuels segment continues to dominate the sustainable fuels landscape. Advanced biofuels are experiencing particularly strong growth, with renewable diesel and sustainable aviation fuel (SAF) leading the charge.  E-fuels represent the fastest-growing segment within sustainable fuels, albeit from a smaller base. 

Several critical factors are propelling market growth. Environmental regulations and carbon reduction mandates are primary drivers, with over 80 countries implementing liquid biofuel policies.  Policy support remains crucial, with initiatives like the EU's Renewable Energy Directive, the US Inflation Reduction Act providing USD 9.4 billion in biofuel support to 2031, and various SAF mandates driving adoption. Corporate sustainability commitments from airlines, shipping companies, and automotive manufacturers are creating substantial demand for sustainable fuel alternatives. The sector is witnessing rapid technological advancement across multiple production pathways. For biofuels, this includes second-generation technologies like pyrolysis, gasification, hydrothermal liquefaction, and Fischer-Tropsch synthesis, alongside innovative feedstock utilization from waste materials and algae. E-fuel production is advancing through improvements in electrolyzers, carbon capture technologies, and power-to-liquid synthesis processes.

Despite impressive growth, significant scaling is required to meet climate targets. While renewable fuel uptake would need to nearly double by 2030 to be on track with a net zero trajectory, it is set to expand only near 20% under existing market conditions. This gap presents both challenges and opportunities, suggesting the market's potential extends far beyond current projections as supportive policies, technology costs, and infrastructure development accelerate the transition to sustainable transportation fuels.

The Global Sustainable Biofuels and E-Fuels Market 2026-2036 provides an in-depth analysis, covering market dynamics, technological innovations, production pathways, regional developments, and strategic competitive intelligence across all major fuel categories. The report encompasses the full spectrum of sustainable fuel technologies, from conventional first-generation biofuels to advanced second and third-generation biofuels, synthetic e-fuels, and emerging fourth-generation biotechnologies. With detailed coverage of 230+ company profiles and extensive analysis of production technologies including pyrolysis, gasification, hydrothermal liquefaction, Fischer-Tropsch synthesis, and power-to-liquid processes, this report serves as the definitive guide for stakeholders navigating the complex sustainable fuels ecosystem.

Report contents include:

  • Comprehensive decarbonization analysis and comparison to fossil fuels
  • Government policies and regulatory frameworks driving market growth
  • Market drivers, challenges, and sustainability assessments
  • Liquid biofuels market forecasts 2026-2036 by type and production
  • Transport decarbonization strategies and industry developments 2022-2025
  • Regional market analysis covering USA, EU, China, India, and Brazil
  • Biofuels Market Analysis
    • Global biofuels market overview with diesel and gasoline substitutes analysis
    • SWOT analysis and comparative cost analysis by biofuel type
    • Comprehensive feedstock analysis: first, second, third, and fourth-generation
    • Energy crops, agricultural residues, forestry waste, and organic waste assessment
    • Advanced production technologies including pyrolysis, gasification, and HTL
    • Biocrude oil refining, upgrading technologies, and biomethanol production
    • Alcohol-to-jet (ATJ) and alcohol-to-gasoline (ATG) conversion processes
  • Hydrocarbon Biofuels
    • Biodiesel market analysis by generation with production technologies
    • Renewable diesel vs biodiesel comparison and market dynamics
    • Sustainable Aviation Fuel (SAF) market with production pathways and pricing
    • Bio-naphtha markets, applications, and production capacity analysis
    • Recent market developments 2023-2025 and company activity tracking
    • Global consumption forecasts and price trend analysis
  • Alcohol Fuels & Biomass-Based Gas
    • Biomethanol production pathways and market applications
    • Bioethanol technology including cellulosic ethanol production
    • Biobutanol production and market positioning
    • Biomethane, biosyngas, and biohydrogen market analysis
    • Bio-LNG applications in trucks and marine transport
    • Carbon capture from biogas and bio-DME development
  • Chemical Recycling & Advanced Technologies
    • Plastic pyrolysis and used tire conversion to biofuels
    • Co-pyrolysis of biomass and plastic waste technologies
    • Gasification technologies for syngas conversion to methanol
    • Hydrothermal cracking and chemical recycling SWOT analysis
  • Electrofuels (E-Fuels) Market
    • E-fuel production technologies and efficiency analysis
    • Green hydrogen production and electrolyzer technologies
    • CO2 capture systems and Direct Air Capture (DAC) technologies
    • Syngas production including RWGS and SOEC technologies
    • E-methane and e-methanol production pathways
    • Solar power integration in e-fuels production
    • Current and planned e-fuel production facilities analysis
  • Emerging Technologies & Alternative Fuels
    • Algae-derived biofuels including third and fourth-generation technologies
    • Microalgae cultivation systems and photobioreactor technologies
    • Green ammonia production and marine fuel applications
    • Biofuels from carbon capture and utilization
    • Bio-oils (pyrolysis oil) production and applications
    • Refuse-derived fuels (RDF) market analysis

 

The report features detailed profiles of 230+ leading companies across the sustainable fuels value chain, including: Aduro Clean Technologies, Aemetis, Agilyx, Air Company, Agra Energy, Aircela, Algenol, Alpha Biofuels, AM Green, Andritz AG, APChemi, Apeiron Bioenergy, Aperam BioEnergia, Applied Research Associates, Arcadia eFuels, ASB Biodiesel, Atmonia, Avalon BioEnergy, Avantium, Avioxx, BASF, BBCA Biochemical & GALACTIC Lactic Acid, BDI-BioEnergy International, BEE Biofuel, Bio-Oils, Biofy, Biofine Technology, BiogasClean, Biojet, Bloom Biorenewables, BlueAlp Technology, Blue BioFuels, Braven Environmental, Brightmark Energy, bse Methanol, BTG Bioliquids, Byogy Renewables, C1 Green Chemicals, Caphenia, CarbonBridge, Carbon Collect, Carbon Engineering, Carbon Infinity, Carbon Recycling International, Carbon Sink, Carbyon, Cargill, Cassandra Oil, Casterra Ag, Celtic Renewables, Cereal Process Technologies, CERT Systems, CF Industries Holdings, Chitose Bio Evolution, Circla Nordic, CleanJoule, Climeworks, CNF Biofuel, Concord Blue Engineering, Cool Planet Energy Systems, Corsair Group International, Coval Energy, Crimson Renewable Energy, C-Zero, D-CRBN, Diamond Green Diesel, Dimensional Energy, Royal DSM, Dioxide Materials, Dioxycle, Domsjö Fabriker, DuPont, EcoCeres, Eco Environmental, Eco Fuel Technology, Electro-Active Technologies, Emerging Fuels Technology, Encina Development Group, Enerkem, Eneus Energy, Enexor BioEnergy, Eni Sustainable Mobility, Ensyn Corporation, Euglena, EnviTec Biogas, Firefly Green Fuels, Forge Hydrocarbons Corporation, FuelPositive, Fuenix Ecogy, Fulcrum BioEnergy, Galp Energia, GenCell Energy, Genecis Bioindustries, Gevo, GIDARA Energy, Graforce Hydro, Granbio Technologies, Greenergy, Green COP, Green Earth Institute, Green Fuel, Hago Energetics, Haldor Topsoe, Handerek Technologies, Hero BX, Honeywell, HutanBio, Hyundai Oilbank, Oy Hydrocell, Hy2Gen, Hydrogenious LOHC, HYCO1, HydGene Renewables, Ineratec, Infinitree, Infinium Electrofuels, Innoltek, Jet Zero Australia, Jilin COFCO Biomaterial Corporation, Jupiter Ionics, Kaidi, Kanteleen Voima, KEW Technology, Khepra, Klean Industries, Krajete, Kvasir Technologies, LanzaJet, Lanzatech, Lectrolyst, Licella, Liquid Wind, Lootah Biofuels, Lummus Technology, LXP Group, Mash Energy, Mercurius Biorefining, MOFWORX, Mote, Neogen, NeoZeo, Neste, New Hope Energy, NewEnergyBlue, NextChem, Nexus Fuels, Nordic ElectroFuel, Nordsol, Norsk e-Fuel, Nova Pangaea Technologies, Novozymes, Obeo Biogas, Oberon Fuels, Obrist Group, Oceania Biofuels, O.C.O, OMV, Opus 12, ORLEN Południe, OXCCU, OxEon Energy, Phillips 66, Phoenix BioPower, Photanol, Phycobloom, Phytonix Corporation, Plastic2Oil, Plastogaz, Polycycl, Praj Industries, Preem, Prometheus Fuels, Proton Power, Provectus Algae, ProPika, Pure Lignin Environmental Technology, Pyrochar and more....

This report provides essential strategic intelligence for energy companies, technology developers, investors, policymakers, and industry stakeholders seeking to understand market opportunities, competitive dynamics, and technology trends shaping the future of sustainable transportation fuels through 2036.

 

 

1             EXECUTIVE SUMMARY            27

  • 1.1        Decarbonization          27
  • 1.2        Comparison to fossil fuels    28
  • 1.3        Role in the circular economy               29
  • 1.4        Government policies 29
  • 1.5        Market drivers                31
  • 1.6        Market challenges      32
  • 1.7        Liquid biofuels market             33
    • 1.7.1    Liquid biofuel production and consumption (in thousands of m3), 2000-2024 33
    • 1.7.2    Liquid biofuels market 2020-2036, by type and production.          34
  • 1.8        Sustainability of biofuels       35
  • 1.9        Transport decarbonization    39
  • 1.10     Industry developments 2022-2025 41
  • 1.11     Biofuels markets by region    45
    • 1.11.1 USA      45
    • 1.11.2 EU         46
    • 1.11.3 China  47
    • 1.11.4 India    48
    • 1.11.5 Brazil   50
  • 1.12     Sustainability of biofuels       52

 

2             BIOFUELS        54

  • 2.1        Overview           54
  • 2.2        The global biofuels market    56
    • 2.2.1    Diesel substitutes and alternatives 56
    • 2.2.2    Gasoline substitutes and alternatives           57
  • 2.3        SWOT analysis: Biofuels market        58
  • 2.4        Comparison of biofuel costs 2024, by type                58
  • 2.5        Types   59
    • 2.5.1    Solid Biofuels 59
    • 2.5.2    Liquid Biofuels              60
    • 2.5.3    Gaseous Biofuels       60
    • 2.5.4    Conventional Biofuels             61
    • 2.5.5    Advanced Biofuels     62
  • 2.6        Refineries         62
  • 2.7        Feedstocks      64
    • 2.7.1    First-generation (1-G)               65
    • 2.7.2    Second-generation (2-G)       66
      • 2.7.2.1 Lignocellulosic wastes and residues             67
      • 2.7.2.2 Biorefinery lignin         68
    • 2.7.3    Third-generation (3-G)             71
      • 2.7.3.1 Algal biofuels 71
        • 2.7.3.1.1           Properties         72
        • 2.7.3.1.2           Advantages     72
    • 2.7.4    Fourth-generation (4-G)          73
    • 2.7.5    Advantages and disadvantages, by generation        74
    • 2.7.6    Energy crops  75
      • 2.7.6.1 Feedstocks      75
      • 2.7.6.2 SWOT analysis              75
    • 2.7.7    Agricultural residues 76
      • 2.7.7.1 Feedstocks      76
      • 2.7.7.2 SWOT analysis              77
    • 2.7.8    Manure, sewage sludge and organic waste                78
      • 2.7.8.1 Processing pathways                78
      • 2.7.8.2 SWOT analysis              78
    • 2.7.9    Forestry and wood waste       79
      • 2.7.9.1 Feedstocks      79
      • 2.7.9.2 SWOT analysis              80
    • 2.7.10 Feedstock costs          81
  • 2.8        Biofuel Government policy   82
    • 2.8.1    Transport emissions 83
    • 2.8.2    Decarbonization of transportation  84
    • 2.8.3    Sustainable fuel policy            85
    • 2.8.4    Biofuel incentives       86
  • 2.9        Advanced biofuels and production technologies  88
    • 2.9.1    Introduction    88
    • 2.9.2    Pyrolysis technologies             90
      • 2.9.2.1 Introduction    90
      • 2.9.2.2 Pyrolysis products & applications    91
      • 2.9.2.3 Decomposition methods       93
      • 2.9.2.4 Catalytic pyrolysis of plastic                94
      • 2.9.2.5 Composition of bio-oil & plastic pyrolysis oil           95
      • 2.9.2.6 Companies     97
    • 2.9.3    Gasification technologies     97
      • 2.9.3.1 Introduction    97
      • 2.9.3.2 Pre-treatment methods for gasification of biomass and plastics                99
      • 2.9.3.3 Gasifier types 100
      • 2.9.3.4 Challenges      101
      • 2.9.3.5 Companies     103
    • 2.9.4    Hydrothermal liquefaction (HTL) technologies        104
      • 2.9.4.1 Introduction    104
      • 2.9.4.2 Hydrothermal liquefaction feedstocks - biomass 104
      • 2.9.4.3 Hydrothermal liquefaction feedstocks - plastics   105
      • 2.9.4.4 HTL reactor designs  106
      • 2.9.4.5 HTL catalysts 107
      • 2.9.4.6 Companies     108
    • 2.9.5    Fischer-Tropsch (FT) synthesis           109
      • 2.9.5.1 Introduction    109
      • 2.9.5.2 Syngas from gasification or pyrolysis             110
      • 2.9.5.3 FT catalysts     110
      • 2.9.5.4 FT reactor designs      111
      • 2.9.5.5 Companies     113
    • 2.9.6    Biocrude oil refining & upgrading     114
      • 2.9.6.1 Introduction    114
      • 2.9.6.2 Refining & upgrading processes        115
      • 2.9.6.3 Hydrotreating processes        116
      • 2.9.6.4 Hydrocracking process           117
      • 2.9.6.5 Isomerization process             119
      • 2.9.6.6 Dewaxing process      120
      • 2.9.6.7 Fractional distillation process            121
      • 2.9.6.8 Companies     123
    • 2.9.7    Biomethanol production        124
      • 2.9.7.1 Introduction    124
      • 2.9.7.2 Traditional methanol production      125
      • 2.9.7.3 Biomethanol from biogas reforming               126
      • 2.9.7.4 Biomethanol from biomass gasification     127
      • 2.9.7.5 Biomethanol from hydrothermal gasification          129
      • 2.9.7.6 Companies     130
    • 2.9.8    Alcohol-to-jet (ATJ) & alcohol-to-gasoline (ATG): methanol & ethanol     132
      • 2.9.8.1 Introduction    132
      • 2.9.8.2 Ethanol feedstocks    132
      • 2.9.8.3 Methanol feedstocks                134
      • 2.9.8.4 Methanol-to-gasoline (MTG) process             135
      • 2.9.8.5 Companies     137

 

3             HYDROCARBON BIOFUELS 138

  • 3.1        Biodiesel           139
    • 3.1.1    Biodiesel by generation           142
    • 3.1.2    SWOT analysis              143
    • 3.1.3    Biodiesel production 144
      • 3.1.3.1 Pyrolysis of biomass 145
      • 3.1.3.2 Vegetable oil transesterification       147
      • 3.1.3.3 Vegetable oil hydrogenation (HVO)  148
        • 3.1.3.3.1           Production process   149
      • 3.1.3.4 Biodiesel from tall oil                150
      • 3.1.3.5 Fischer-Tropsch BioDiesel     150
      • 3.1.3.6 Hydrothermal liquefaction of biomass         151
      • 3.1.3.7 CO2 capture and Fischer-Tropsch (FT)          152
      • 3.1.3.8 Dymethyl ether (DME)              152
    • 3.1.4    Biodiesel Projects       154
    • 3.1.5    Recent market developments 2023-2025  155
    • 3.1.6    Prices  156
    • 3.1.7    Companies     157
    • 3.1.8    Global consumption 158
  • 3.2        Renewable diesel        162
    • 3.2.1    Production       164
    • 3.2.2    Biodiesel vs renewable diesel             166
    • 3.2.3    SWOT analysis              166
    • 3.2.4    Global consumption 167
    • 3.2.5    Prices  168
  • 3.3        Sustainable aviation fuel (SAF)           169
    • 3.3.1    Description     169
    • 3.3.2    Jet fuel composition & types                170
    • 3.3.3    SAF as a drop-in replacement for Jet A-1     171
    • 3.3.4    Recent market developments             171
    • 3.3.5    SWOT analysis              173
    • 3.3.6    Global production and consumption            174
    • 3.3.7    Production pathways                174
    • 3.3.8    Prices  176
    • 3.3.9    Sustainable aviation fuel production capacities    176
    • 3.3.10 Challenges      178
    • 3.3.11 Companies     178
    • 3.3.12 Global consumption 179
  • 3.4        Bio-naphtha   180
    • 3.4.1    Overview           180
    • 3.4.2    SWOT analysis              181
    • 3.4.3    Markets and applications      182
    • 3.4.4    Prices  183
    • 3.4.5    Production capacities, by producer, current and planned               184
    • 3.4.6    Production capacities, total (tonnes), historical, current and planned   185

 

4             ALCOHOL FUELS        186

  • 4.1        Biomethanol  186
    • 4.1.1    SWOT analysis              188
    • 4.1.2    Methanol-to gasoline technology     189
      • 4.1.2.1 Production processes              189
        • 4.1.2.1.1           Biomethanol from Biogas Reforming             190
        • 4.1.2.1.2           Biomethanol from Hydrothermal Gasification         191
        • 4.1.2.1.3           Anaerobic digestion  192
        • 4.1.2.1.4           Biomass gasification 192
        • 4.1.2.1.5           Power to Methane       193
    • 4.1.3    Methanol Synthesis Companies       193
  • 4.2        Bioethanol       194
    • 4.2.1    Technology description           194
    • 4.2.2    1G Bio-Ethanol             195
    • 4.2.3    SWOT analysis              196
    • 4.2.4    Alcohol-to-jet (ATJ) & alcohol-to-gasoline (ATG): methanol & ethanol     197
      • 4.2.4.1 ATJ and ATG processes            197
      • 4.2.4.2 Ethanol Feedstocks   198
      • 4.2.4.3 Methanol-to-Gasoline (MTG) and Methanol-to-Jet (MTJ) processes          199
      • 4.2.4.4 Companies     200
    • 4.2.5    Cellulosic Ethanol Production            201
      • 4.2.5.1 Feedstocks      202
      • 4.2.5.2 Companies     206
    • 4.2.6    Sulfite spent liquor fermentation      207
    • 4.2.7    Gasification    207
      • 4.2.7.1 Biomass gasification and syngas fermentation       207
      • 4.2.7.2 Biomass gasification and syngas thermochemical conversion    208
    • 4.2.8    CO2 capture and alcohol synthesis               208
    • 4.2.9    Biomass hydrolysis and fermentation           208
      • 4.2.9.1 Separate hydrolysis and fermentation           208
      • 4.2.9.2 Simultaneous saccharification and fermentation (SSF)    209
      • 4.2.9.3 Pre-hydrolysis and simultaneous saccharification and fermentation (PSSF)      209
      • 4.2.9.4 Simultaneous saccharification and co-fermentation (SSCF)         209
      • 4.2.9.5 Direct conversion (consolidated bioprocessing) (CBP)      209
    • 4.2.10 Global ethanol consumption              210
  • 4.3        Biobutanol      211
    • 4.3.1    Production       213
    • 4.3.2    Prices  213

 

5             BIOMASS-BASED GAS              213

  • 5.1        Feedstocks      214
    • 5.1.1    Biomethane    215
    • 5.1.2    Production pathways                216
      • 5.1.2.1 Landfill gas recovery 216
      • 5.1.2.2 Anaerobic digestion  216
      • 5.1.2.3 Thermal gasification 217
    • 5.1.3    SWOT analysis              218
    • 5.1.4    Global production      219
    • 5.1.5    Prices  220
      • 5.1.5.1 Raw Biogas     220
      • 5.1.5.2 Upgraded Biomethane            220
    • 5.1.6    Bio-LNG             221
      • 5.1.6.1 Markets              221
        • 5.1.6.1.1           Trucks 221
        • 5.1.6.1.2           Marine 221
      • 5.1.6.2 Production       221
      • 5.1.6.3 Plants 221
    • 5.1.7    bio-CNG (compressed natural gas derived from biogas)  222
    • 5.1.8    Carbon capture from biogas               223
  • 5.2        Biosyngas        223
    • 5.2.1    Production       223
    • 5.2.2    Prices  224
  • 5.3        Biohydrogen   225
    • 5.3.1    Description     225
    • 5.3.2    SWOT analysis              225
    • 5.3.3    Production of biohydrogen from biomass  226
      • 5.3.3.1 Biological Conversion Routes             227
        • 5.3.3.1.1           Bio-photochemical Reaction              227
        • 5.3.3.1.2           Fermentation and Anaerobic Digestion        227
      • 5.3.3.2 Thermochemical conversion routes               227
        • 5.3.3.2.1           Biomass Gasification               227
        • 5.3.3.2.2           Biomass Pyrolysis      228
        • 5.3.3.2.3           Biomethane Reforming           228
    • 5.3.4    Applications   228
    • 5.3.5    Prices  229
  • 5.4        Biochar in biogas production              229
  • 5.5        Bio-DME            230

 

6             CHEMICAL RECYCLING FOR BIOFUELS      230

  • 6.1        Plastic pyrolysis           230
  • 6.2        Used tires pyrolysis   231
    • 6.2.1    Conversion to biofuel               232
  • 6.3        Co-pyrolysis of biomass and plastic wastes             233
  • 6.4        Gasification    234
    • 6.4.1    Syngas conversion to methanol        235
    • 6.4.2    Biomass gasification and syngas fermentation       237
    • 6.4.3    Biomass gasification and syngas thermochemical conversion    238
  • 6.5        Hydrothermal cracking           238
  • 6.6        SWOT analysis              239

 

7             ELECTROFUELS (E-FUELS)   240

  • 7.1        Introduction    240
    • 7.1.1    E-Fuel Production Technologies        241
    • 7.1.2    E-fuel uses      242
    • 7.1.3    Comparison of e-fuels to fossil and biofuels            243
    • 7.1.4    E-fuel production efficiencies             245
    • 7.1.5    Costs  245
    • 7.1.6    Benefits of e-fuels       246
    • 7.1.7    Production pathways                247
  • 7.2        Green hydrogen            249
    • 7.2.1    Electrolyzer Technologies      250
    • 7.2.2    Companies     251
  • 7.3        CO2 capture   251
    • 7.3.1    Overview           251
    • 7.3.2    CO₂ Capture Systems              251
    • 7.3.3    Carbon capture technologies             255
    • 7.3.4    Direct Air Capture (DAC) technology for e-fuel production              256
  • 7.4        Syngas production     256
    • 7.4.1    Overview           256
    • 7.4.2    Syngas Production Technologies      257
      • 7.4.2.1 Reverse Water Gas Shift (RWGS)      257
      • 7.4.2.2 Direct Fischer-Tropsch Synthesis: CO₂ to Hydrocarbons  258
      • 7.4.2.3 Low-Temperature Electrochemical CO₂ Reduction              258
      • 7.4.2.4 Solid Oxide Electrolysis Cells (SOECs)         259
    • 7.4.3    Solar power in E-Fuels             260
      • 7.4.3.1 Overview           260
      • 7.4.3.2 Key advantages            260
      • 7.4.3.3 Projects             261
    • 7.4.4    Companies     261
  • 7.5        E-methane       264
    • 7.5.1    Overview           264
    • 7.5.2    Methanation   265
      • 7.5.2.1 Thermocatalytic methanation            265
      • 7.5.2.2 Biological methanation           266
      • 7.5.2.3 Companies     267
  • 7.6        E-methanol     268
    • 7.6.1    Overview           269
    • 7.6.2    E-Methanol Production           269
    • 7.6.3    Direct methanol synthesis    272
    • 7.6.4    Companies     273
  • 7.7        SWOT analysis              274
  • 7.8        Production       274
    • 7.8.1    eFuel production facilities, current and planned   277
  • 7.9        Electrolysers   278
  • 7.10     Prices  279
  • 7.11     Market challenges      281
  • 7.12     Companies     281

 

8             ALGAE-DERIVED BIOFUELS 283

  • 8.1        Third & Fourth Generation Biofuel Technologies     283
  • 8.2        Technology description           284
  • 8.3        CO₂ capture and utilization  285
  • 8.4        Conversion pathways               285
    • 8.4.1    Macroalgae     286
    • 8.4.2    Microalgae / Cyanobacteria 287
      • 8.4.2.1 Microalgae cultivation for biofuel production           288
      • 8.4.2.2 Open cultivation systems      289
      • 8.4.2.3 Closed photobioreactors (PBRs)      290
    • 8.4.3    Companies     291
    • 8.4.4    Projects             292
  • 8.5        SWOT analysis              294
  • 8.6        Production       294
    • 8.6.1    Algal Biofuel Production         295
  • 8.7        Market challenges      296
  • 8.8        Prices  297
  • 8.9        Producers         298

 

9             GREEN AMMONIA       299

  • 9.1        Production       299
    • 9.1.1    Decarbonisation of ammonia production  301
    • 9.1.2    Green ammonia projects       301
  • 9.2        Green ammonia synthesis methods              301
    • 9.2.1    Haber-Bosch process              301
    • 9.2.2    Biological nitrogen fixation   302
    • 9.2.3    Electrochemical production                302
    • 9.2.4    Chemical looping processes               303
  • 9.3        SWOT analysis              303
  • 9.4        Blue ammonia              304
    • 9.4.1    Blue ammonia projects           304
  • 9.5        Markets and applications      304
    • 9.5.1    Chemical energy storage       304
      • 9.5.1.1 Ammonia fuel cells    304
    • 9.5.2    Marine fuel      305
  • 9.6        Prices  307
  • 9.7        Estimated market demand   308
  • 9.8        Companies and projects        309

 

10          BIOFUELS FROM CARBON CAPTURE            310

  • 10.1     Overview           311
  • 10.2     CO2 capture from point sources      313
  • 10.3     Production routes       313
  • 10.4     SWOT analysis              314
  • 10.5     Direct air capture (DAC)         315
    • 10.5.1 Description     315
    • 10.5.2 Deployment    316
    • 10.5.3 Point source carbon capture versus Direct Air Capture     317
    • 10.5.4 Technologies  317
      • 10.5.4.1            Solid sorbents               319
      • 10.5.4.2            Liquid sorbents            320
      • 10.5.4.3            Liquid solvents             321
      • 10.5.4.4            Airflow equipment integration            321
      • 10.5.4.5            Passive Direct Air Capture (PDAC)   321
      • 10.5.4.6            Direct conversion        322
      • 10.5.4.7            Co-product generation            322
      • 10.5.4.8            Low Temperature DAC             322
      • 10.5.4.9            Regeneration methods            322
    • 10.5.5 Commercialization and plants           323
    • 10.5.6 Metal-organic frameworks (MOFs) in DAC  324
    • 10.5.7 DAC plants and projects-current and planned        324
    • 10.5.8 Markets for DAC           329
    • 10.5.9 Costs  330
    • 10.5.10              Challenges      334
    • 10.5.11              Players and production           335
  • 10.6     Carbon utilization for biofuels            335
    • 10.6.1 Production routes       339
      • 10.6.1.1            Electrolyzers   340
      • 10.6.1.2            Low-carbon hydrogen              340
    • 10.6.2 Products & applications         341
      • 10.6.2.1            Vehicles             341
      • 10.6.2.2            Shipping            342
      • 10.6.2.3            Aviation              342
      • 10.6.2.4            Costs  343
      • 10.6.2.5            Ethanol              343
      • 10.6.2.6            Methanol          344
      • 10.6.2.7            Sustainable Aviation Fuel      347
      • 10.6.2.8            Methane            347
      • 10.6.2.9            Algae based biofuels 348
      • 10.6.2.10         CO₂-fuels from solar 349
    • 10.6.3 Challenges      351
    • 10.6.4 SWOT analysis              352
    • 10.6.5 Companies     352

 

11          BIO-OILS (PYROLYSIS OIL)    355

  • 11.1     Description     355
    • 11.1.1 Advantages of bio-oils             355
  • 11.2     Production       356
    • 11.2.1 Biomass Pyrolysis      357
    • 11.2.2 Plastic Waste Pyrolysis            358
    • 11.2.3 Catalytic Pyrolysis of Plastic                360
    • 11.2.4 Costs of production  360
    • 11.2.5 Upgrading        360
  • 11.3     Pyrolysis reactors        362
  • 11.4     SWOT analysis              363
  • 11.5     Applications   364
  • 11.6     Bio-oil producers         364
  • 11.7     Prices  365

 

12          REFUSE-DERIVED FUELS (RDF)        366

  • 12.1     Overview           366
  • 12.2     Production       366
    • 12.2.1 Production process   366
    • 12.2.2 Mechanical biological treatment      367
  • 12.3     Markets              367

 

13          COMPANY PROFILES                369 (233 company profiles)

 

14          RESEARCH METHODOLOGY              525

 

15          REFERENCES 525

 

List of Tables

  • Table 1. Government policies on sustainable fuels.             30
  • Table 2. Market drivers for biofuels. 32
  • Table 3. Market challenges for biofuels.       32
  • Table 4. Liquid biofuels market 2020-2036, by type and production.        34
  • Table 5. Industry developments in sustainable biofuels & E-fuels 2022-2025.  41
  • Table 6. Comparison of biofuels.      55
  • Table 7. Comparison of biofuel costs (USD/liter) 2024, by type.   59
  • Table 8. Categories and examples of solid biofuel.               60
  • Table 9. Comparison of biofuels and e-fuels to fossil and electricity.       62
  • Table 10. Classification of biomass feedstock.       64
  • Table 11. Biorefinery feedstocks.     64
  • Table 12. Feedstock conversion pathways.                65
  • Table 13. First-Generation Feedstocks.        65
  • Table 14.  Lignocellulosic ethanol plants and capacities. 67
  • Table 15. Comparison of pulping and biorefinery lignins. 68
  • Table 16. Commercial and pre-commercial biorefinery lignin production facilities and  processes    69
  • Table 17. Operating and planned lignocellulosic biorefineries and industrial flue gas-to-ethanol.      70
  • Table 18. Properties of microalgae and macroalgae.          72
  • Table 19. Yield of algae and other biodiesel crops.               73
  • Table 20. Advantages and disadvantages of biofuels, by generation.       74
  • Table 21. Sustainable fuels in transport sectors.   83
  • Table 22. Biofuel incentives by country/region.       86
  • Table 23. Petroleum product ranges & sustainable fuel alternatives.       89
  • Table 24. Pyrolysis products & market applications.           91
  • Table 25. Decomposition methods in biomass & plastic pyrolysis.           93
  • Table 26. Comparison of pyrolysis technologies.   95
  • Table 27. Comparison of pyrolysis and gasification processes.   98
  • Table 28. Biodiesel by generation.    142
  • Table 29. Comparison of Fossil Diesel, Biodiesel & Renewable Diesel.  143
  • Table 30. Biodiesel production techniques.              145
  • Table 31. Summary of pyrolysis technique under different operating conditions.            145
  • Table 32. Biomass materials and their bio-oil yield.             146
  • Table 33. Biofuel production cost from the biomass pyrolysis process. 147
  • Table 34. Properties of vegetable oils in comparison to diesel.     148
  • Table 35. Main producers of HVO and capacities. 149
  • Table 36. Example commercial Development of BtL processes. 150
  • Table 37. Pilot or demo projects for biomass to liquid (BtL) processes.  151
  • Table 38. Comparison of Biodiesel vs Renewable Diesel: Properties & Engine Compatibility. 153
  • Table 39. Biodiesel Projects by Scale, Company and Location.   154
  • Table 40. Recent biodiesel market developments 2023-2025.     155
  • Table 41. Recent company activity in Biodiesel.     157
  • Table 42. Global biodiesel consumption, 2020-2036 (M litres/year).        158
  • Table 43. Biodiesel vs renewable diesel: properties & engine compatibility .      166
  • Table 44. Global renewable diesel consumption, 2020-2036 (M litres/year).      167
  • Table 45. Renewable diesel price ranges.   169
  • Table 46. Advantages and disadvantages of Sustainable aviation fuel.   170
  • Table 47. Jet fuel composition & types.         170
  • Table 48. Recent market developments in Sustainable Aviation Fuel (SAF).        171
  • Table 49. Production pathways for Sustainable aviation fuel.        174
  • Table 50. Sustainable Aviation Fuel (SAF) Projects by Scale, Company, Location, Technology Pathway, and Start Date.              176
  • Table 51. Recent company activity in SAF.  178
  • Table 52. Global Sustainable Aviation Fuel (SAF) Consumption 2019-2036 (Million litres/year).           180
  • Table 53. Bio-based naphtha markets and applications. 182
  • Table 54. Bio-naphtha market value chain.               183
  • Table 55. Bio-naphtha pricing against petroleum-derived naphtha and related fuel products.               184
  • Table 56. Bio-based Naphtha production capacities, by producer.           184
  • Table 57.Methanol Production & Colors      186
  • Table 58. Main Pathways to Biomethanol Production         187
  • Table 59. Comparison of biogas, biomethane and natural gas.   190
  • Table 60. 1st Generation Bioethanol Production Processes.          195
  • Table 61.Ethanol Feedstocks.            198
  • Table 62. Methanol Feedstocks.        198
  • Table 63. Methanol-to-Gasoline (MTG) Process Overview.              199
  • Table 64. Alcohol-to-Jet (ATJ) Process Steps.            199
  • Table 65. MTG vs MTJ Process Comparison.             200
  • Table 66. Methanol-to-Gasoline (MTG) Companies.           200
  • Table 67. Alcohol-to-Jet (ATJ) Technology Companies.      201
  • Table 68. Cellulosic Ethanol Production.    202
  • Table 69. Lignocellulosic Biomass Feedstocks.     202
  • Table 70. Challenges in Breaking Down Lignocellulosic Biomass.             202
  • Table 71. Cellulosic ethanol companies.    206
  • Table 72.  Processes in bioethanol production.     208
  • Table 73. Microorganisms used in CBP for ethanol production from biomass lignocellulosic.               210
  • Table 74. Ethanol consumption 2020-2036 (million litres).             210
  • Table 75. Properties of petrol and biobutanol.         212
  • Table 76. Biogas feedstocks.               214
  • Table 77. Existing and planned bio-LNG production plants.           221
  • Table 78. Methods for capturing carbon dioxide from biogas.       223
  • Table 79. Comparison of different Bio-H2 production pathways.                226
  • Table 80. Markets and applications for biohydrogen.          229
  • Table 81. Summary of gasification technologies.  234
  • Table 82. Overview of hydrothermal cracking for advanced chemical recycling.              238
  • Table 83. Technology & Process Developers in E-Fuels by End-Product.                241
  • Table 84. E-Fuel Production Costs Breakdown.      245
  • Table 85. Applications of e-fuels, by type.   245
  • Table 86. Overview of e-fuels.             246
  • Table 87. Benefits of e-fuels.               246
  • Table 88. E-fuel production efficiencies.     247
  • Table 89. Production Pathways for E-Fuels.               247
  • Table 90. Electrolyzer Performance Metrics.             249
  • Table 91. Overview of Electrolyzer Technologies.   250
  • Table 92. Electrolyzer Technology Companies.       251
  • Table 93. Main CO₂ Capture Systems.          252
  • Table 94.Technologies for Carbon Capture 252
  • Table 95. Syngas Production Technologies for E-Fuels.     257
  • Table 96. Comparison of RWGS & SOEC Co-Electrolysis Routes.              259
  • Table 97.Companies using Reverse Water Gas Shift (RWGS) for E-Fuels               261
  • Table 98. SOEC & SOFC System Suppliers.               262
  • Table 99. Companies in CO₂ reduction technologies.        263
  • Table 100. Comparison of Thermocatalytic vs Biocatalytic Methanation              267
  • Table 101. Methanation Companies              267
  • Table 102. Power-to-Methane Projects,        268
  • Table 103. Methanol Production & Colors. 269
  • Table 104. E-methanol production methods.           269
  • Table 105. Main process steps, key equipment, and operating conditions.         270
  • Table 106.Companies in Methanol Synthesis           273
  • Table 107. eFuel production facilities, current and planned.         277
  • Table 108. Main characteristics of different electrolyzer technologies.  278
  • Table 109. Market challenges for e-fuels.    281
  • Table 110. E-fuels companies.           281
  • Table 111. 3rd Generation Biofuel Production Feedstocks              284
  • Table 112. Biofuel Production Process Using Macroalgae               286
  • Table 113. Biofuel Production Process Using Microalgae / Cyanobacteria.         287
  • Table 114. Open vs Closed Algae Cultivation Systems.     291
  • Table 115. Microalgae Cultivation System Suppliers: Photobioreactors (PBRs) & Ponds.          291
  • Table 116. Algal and Microbial Biofuel Processes & Projects.        292
  • Table 117. Algae-derived biofuel producers.             298
  • Table 118. Green ammonia projects (current and planned).          301
  • Table 119. Blue ammonia projects. 304
  • Table 120. Ammonia fuel cell technologies.              305
  • Table 121. Market overview of green ammonia in marine fuel.      306
  • Table 122. Summary of marine alternative fuels.   306
  • Table 123. Estimated costs for different types of ammonia.          307
  • Table 124. Main players in green ammonia.              309
  • Table 125. Market overview for CO2 derived fuels.               311
  • Table 126. Point source examples.  313
  • Table 127. Advantages and disadvantages of DAC.              316
  • Table 128. Companies developing airflow equipment integration with DAC.      321
  • Table 129. Companies developing Passive Direct Air Capture (PDAC) technologies.    321
  • Table 130. Companies developing regeneration methods for DAC technologies.            322
  • Table 131. DAC companies and technologies.        323
  • Table 132. DAC technology developers and production.  325
  • Table 133. DAC projects in development.   328
  • Table 134. Markets for DAC. 329
  • Table 135. Costs summary for DAC.               330
  • Table 136. Cost estimates of DAC.  332
  • Table 137. Challenges for DAC technology.               334
  • Table 138. DAC companies and technologies.        335
  • Table 139. Market overview for CO2 derived fuels.               337
  • Table 140. Main production routes and processes for manufacturing fuels from captured carbon dioxide.              339
  • Table 141. CO₂-derived fuels projects.         341
  • Table 142. Thermochemical methods to produce methanol from CO2. 345
  • Table 143. Pilot plants for CO2-to-methanol conversion. 347
  • Table 144. Microalgae products and prices.              349
  • Table 145. Main Solar-Driven CO2 Conversion Approaches.         350
  • Table 146. Market challenges for CO2 derived fuels.           351
  • Table 147. Companies in CO2-derived fuel products.        352
  • Table 148. Typical composition and physicochemical properties reported for bio-oils and heavy petroleum-derived oils.          355
  • Table 149. Properties and characteristics of pyrolysis liquids derived from biomass versus a fuel oil.                356
  • Table 150. Comparison of Pyrolysis Technologies.               356
  • Table 151. Pyrolysis Products & Market Applications.        358
  • Table 152. Main techniques used to upgrade bio-oil into higher-quality fuels.   361
  • Table 153. Pyrolysis reactor companies.     362
  • Table 154. Markets and applications for bio-oil.     364
  • Table 155. Bio-oil producers.              364
  • Table 156. Key resource recovery technologies       366
  • Table 157. Markets and end uses for refuse-derived fuels (RDF).                367
  • Table 158. Granbio Nanocellulose Processes.        433

 

List of Figures

  • Figure 1. Liquid biofuel production and consumption (in thousands of m3), 2000-2024.          34
  • Figure 2. Distribution of global liquid biofuel production in 2023.              34
  • Figure 3. Diesel and gasoline alternatives and blends.      57
  • Figure 4. SWOT analysis for biofuels.             58
  • Figure 5.  Schematic of a biorefinery for production of carriers and chemicals.                69
  • Figure 6. SWOT analysis for energy crops in biofuels.         76
  • Figure 7. SWOT analysis for agricultural residues in biofuels.       78
  • Figure 8. SWOT analysis for Manure, sewage sludge and organic waste in biofuels.      79
  • Figure 9. SWOT analysis for forestry and wood waste in biofuels.              81
  • Figure 10. Range of biomass cost by feedstock type.          81
  • Figure 11. Pyrolysis reactor designs .             92
  • Figure 12. Gasification & Fischer-Tropsch biomass-to-liquid (BtL) pathway.        99
  • Figure 13.Alcohol-to-jet (ATJ) process           136
  • Figure 14. Regional production of biodiesel (billion litres).              140
  • Figure 15. SWOT analysis for biodiesel.       144
  • Figure 16. Flow chart for biodiesel production.       148
  • Figure 17. Biodiesel (B20) average prices, current and historical, USD/litre, 2012-2024.           157
  • Figure 18. Global biodiesel consumption, 2020-2036 (M litres/year).      159
  • Figure 19. SWOT analysis for renewable diesel.      167
  • Figure 20. Global renewable diesel consumption, 2010-2036 (M litres/year).    168
  • Figure 21. SWOT analysis for Sustainable aviation fuel.    174
  • Figure 22. Global Sustainable Aviation Fuel (SAF) Production and Consumption 2019-2036 (Million litres/year).      180
  • Figure 23. SWOT analysis for bio-naphtha. 182
  • Figure 24. Bio-based naphtha production capacities, 2018-2033 (tonnes).        186
  • Figure 25. SWOT analysis biomethanol.      188
  • Figure 26. Renewable Methanol Production Processes from Different Feedstocks.       189
  • Figure 27. Production of biomethane through anaerobic digestion and upgrading.        192
  • Figure 28. Production of biomethane through biomass gasification and methanation.               193
  • Figure 29. Production of biomethane through the Power to methane process.  193
  • Figure 30. SWOT analysis for ethanol.           197
  • Figure 31. Ethanol consumption 2020-2036 (million litres).           211
  • Figure 32. Biobutanol production route.      212
  • Figure 33. Biogas and biomethane pathways.          214
  • Figure 34. Overview of biogas utilization.    215
  • Figure 35. Schematic overview of anaerobic digestion process for biomethane production.   217
  • Figure 36. Schematic overview of biomass gasification for biomethane production.    218
  • Figure 37. SWOT analysis for biogas.             219
  • Figure 38. Total syngas market by product in MM Nm³/h of Syngas, 2023.           224
  • Figure 39. SWOT analysis for biohydrogen. 226
  • Figure 40. Waste plastic production pathways to (A) diesel and (B) gasoline      231
  • Figure 41. Schematic for Pyrolysis of Scrap Tires. 232
  • Figure 42. Used tires conversion process.  233
  • Figure 43. Total syngas market by product in MM Nm³/h of Syngas, 2023.           235
  • Figure 44. Overview of biogas utilization.    236
  • Figure 45. Biogas and biomethane pathways.          237
  • Figure 46. SWOT analysis for chemical recycling of biofuels.        240
  • Figure 47. Process steps in the production of electrofuels.             240
  • Figure 48. Mapping storage technologies according to performance characteristics.  241
  • Figure 49. Production process for green hydrogen.              249
  • Figure 50. SWOT analysis for E-fuels.            274
  • Figure 51. E-liquids production routes.        275
  • Figure 52. Fischer-Tropsch liquid e-fuel products. 276
  • Figure 53. Resources required for liquid e-fuel production.            276
  • Figure 54. Levelized cost and fuel-switching CO2 prices of e-fuels.          280
  • Figure 55.  Pathways for algal biomass conversion to biofuels.    286
  • Figure 56. SWOT analysis for algae-derived biofuels.         294
  • Figure 57. Algal biomass conversion process for biofuel production.      295
  • Figure 58. Classification and process technology according to carbon emission in ammonia production.     299
  • Figure 59. Green ammonia production and use.    300
  • Figure 60. Schematic of the Haber Bosch ammonia synthesis reaction.               302
  • Figure 61. Schematic of hydrogen production via steam methane reformation.               302
  • Figure 62. SWOT analysis for green ammonia.        303
  • Figure 63. Estimated production cost of green ammonia.               308
  • Figure 64. Projected annual ammonia production, million tons to 2050.              309
  • Figure 65. CO2 capture and separation technology.            310
  • Figure 66. Conversion route for CO2-derived fuels and chemical intermediates.            312
  • Figure 67.  Conversion pathways for CO2-derived methane, methanol and diesel.        312
  • Figure 68. SWOT analysis for biofuels from carbon capture.          314
  • Figure 69. CO2 captured from air using liquid and solid sorbent DAC plants, storage, and reuse.        315
  • Figure 70. Global CO2 capture from biomass and DAC in the Net Zero Scenario.            316
  • Figure 71.  DAC technologies.             318
  • Figure 72. Schematic of Climeworks DAC system.               319
  • Figure 73. Climeworks’ first commercial direct air capture (DAC) plant, based in Hinwil, Switzerland.                319
  • Figure 74.  Flow diagram for solid sorbent DAC.     320
  • Figure 75. Direct air capture based on high temperature liquid sorbent by Carbon Engineering.           320
  • Figure 76. Global capacity of direct air capture facilities. 324
  • Figure 77. Global map of DAC and CCS plants.      329
  • Figure 78. Schematic of costs of DAC technologies.           331
  • Figure 79. DAC cost breakdown and comparison. 332
  • Figure 80. Operating costs of generic liquid and solid-based DAC systems.       334
  • Figure 81. Conversion route for CO2-derived fuels and chemical intermediates.            338
  • Figure 82.  Conversion pathways for CO2-derived methane, methanol and diesel.        339
  • Figure 83. CO2 feedstock for the production of e-methanol.         346
  • Figure 84. Schematic illustration of (a) biophotosynthetic, (b) photothermal, (c) microbial-photoelectrochemical, (d) photosynthetic and photocatalytic (PS/PC), (e) photoelectrochemical (PEC), and (f) photovoltaic plus electrochemical (PV+EC) approaches for CO2.             350
  • Figure 85. SWOT analysis: CO2 utilization in fuels.               352
  • Figure 86. Audi synthetic fuels.          353
  • Figure 87. Bio-oil upgrading/fractionation techniques.      361
  • Figure 88. SWOT analysis for bio-oils.           363
  • Figure 89. ANDRITZ Lignin Recovery process.          375
  • Figure 90. ChemCyclingTM prototypes.       382
  • Figure 91. ChemCycling circle by BASF.       382
  • Figure 92. FBPO process        392
  • Figure 93. Direct Air Capture Process.          396
  • Figure 94. CRI process.           398
  • Figure 95. Cassandra Oil  process.  401
  • Figure 96. Colyser process.  409
  • Figure 97. ECFORM electrolysis reactor schematic.            414
  • Figure 98. Dioxycle modular electrolyzer.    415
  • Figure 99. Domsjö process.  416
  • Figure 100. FuelPositive system.       427
  • Figure 101. INERATEC unit.   444
  • Figure 102. Infinitree swing method.              445
  • Figure 103. Audi/Krajete unit.              451
  • Figure 104. Enfinity cellulosic ethanol technology process.           478
  • Figure 105: Plantrose process.           487
  • Figure 106. Sunfire process for Blue Crude production.    503
  • Figure 107. Takavator.               506
  • Figure 108. O12 Reactor.        510
  • Figure 109. Sunglasses with lenses made from CO2-derived materials.               510
  • Figure 110. CO2 made car part.        511
  • Figure 111. The Velocys process.     514
  • Figure 112. Goldilocks process and applications. 517
  • Figure 113. The Proesa® Process.     518

 

 

 

The Global Sustainable Biofuels & E-Fuels Market 2026-2036
The Global Sustainable Biofuels & E-Fuels Market 2026-2036
Instant PDF download.

The Global Sustainable Biofuels & E-Fuels Market 2026-2036
The Global Sustainable Biofuels & E-Fuels Market 2026-2036
PDF download and Print Edition (including tracked delivery).

Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer. To order by Bank Transfer (Invoice) select this option from the payment methods menu after adding to cart, or contact info@futuremarketsinc.com