The Global Thermal Interface Materials Market 2026-2036

0

cover

cover

  • Published: August 2025
  • Pages: 372
  • Tables: 116
  • Figures: 89

 

The global thermal interface materials (TIMs) market represents a critical segment of the advanced materials industry, serving as the essential bridge between heat-generating components and thermal management systems across diverse technological applications. These specialized materials are designed to enhance thermal conductivity while filling microscopic air gaps between surfaces, ensuring optimal heat transfer in increasingly compact and powerful electronic devices. The market has experienced substantial growth driven by the relentless demand for miniaturization and increased power density in electronic systems. Key application sectors include consumer electronics, electric vehicles, data centers, advanced semiconductor packaging, ADAS sensors, 5G infrastructure, aerospace and defense, industrial electronics, renewable energy systems, and medical electronics. Each sector presents unique thermal management challenges that require tailored TIM solutions with specific performance characteristics.

Consumer electronics remain the largest market segment, with smartphones, tablets, and wearable devices requiring increasingly sophisticated thermal management solutions. The transition to 5G technology has intensified thermal challenges, necessitating advanced materials like liquid metals, phase change materials, and carbon-based TIMs. The proliferation of AI-enabled devices and edge computing has further amplified the demand for high-performance thermal interface materials. The electric vehicle revolution has emerged as a transformative market driver, with battery thermal management becoming critical for safety, performance, and longevity. EV applications require TIMs that can operate across wide temperature ranges while maintaining electrical isolation and mechanical stability. The shift toward cell-to-pack and cell-to-chassis battery architectures has created new opportunities for gap fillers, thermal pads, and specialized adhesive systems.

Data centers and AI servers represent another high-growth segment, where thermal management directly impacts computational performance and energy efficiency. The deployment of advanced processors, GPUs, and AI accelerators has created demand for next-generation TIMs capable of handling extreme heat fluxes. Liquid cooling systems and immersion cooling technologies are driving innovation in compatible thermal interface materials. Material innovation continues to shape the market landscape. Traditional silicone-based thermal greases and pads are being supplemented by advanced solutions including carbon nanotubes, graphene-enhanced materials, metal-based TIMs, phase change materials, and even metamaterials. Each material class offers distinct advantages in terms of thermal conductivity, electrical properties, mechanical characteristics, and application-specific performance.

Carbon-based TIMs, including graphene, carbon nanotubes, and graphite derivatives, are gaining significant traction due to their exceptional thermal properties and potential for multifunctional capabilities. Metal-based solutions, including liquid metals and sintered materials, are finding applications in high-performance computing and power electronics where maximum thermal performance is required.

The market is characterized by intense competition among established chemical companies, specialized materials providers, and emerging technology companies. Key players are investing heavily in R&D to develop next-generation materials while expanding manufacturing capabilities to meet growing demand. Strategic partnerships between TIM suppliers and OEMs are becoming increasingly common as thermal management becomes more integrated into product design. Regional dynamics show strong growth across Asia-Pacific markets, driven by electronics manufacturing concentration and EV adoption. North America leads in advanced applications including aerospace, defense, and high-performance computing. Europe shows particular strength in automotive applications and industrial electronics.

Sustainability considerations are becoming increasingly important, with manufacturers developing bio-based materials, improving recyclability, and reducing environmental impact throughout the product lifecycle. Regulatory compliance, particularly in automotive and aerospace applications, continues to drive material certification and testing requirements.

Looking forward, the market faces both opportunities and challenges. The continued evolution toward higher power densities, new packaging technologies, and emerging applications in quantum computing and advanced AI systems will drive demand for innovative TIM solutions. However, supply chain complexities, raw material price volatility, and the need for increasingly sophisticated performance characteristics present ongoing challenges for market participants.

The Global Thermal Interface Materials Market 2026-2036 provides an in-depth analysis of the global thermal interface materials market, delivering essential insights for manufacturers, suppliers, investors, and technology companies seeking to capitalize on emerging opportunities in this rapidly evolving sector. 

Report contents include: 

  • Market Analysis by Material Type:
    • Thermal Greases and Pastes - Market size, growth projections, application trends, and competitive landscape analysis
    • Thermal Gap Pads - Comprehensive coverage of silicone-based and advanced polymer pad solutions
    • Thermal Gap Fillers - Dispensable materials market analysis with focus on automated application systems
    • Phase Change Materials (PCMs) - Emerging technologies including organic, inorganic, and hybrid PCM solutions
    • Metal-based TIMs - Liquid metals, solders, sintered materials, and advanced alloy systems
    • Carbon-based TIMs - Graphene, carbon nanotubes, graphite, and diamond-enhanced thermal solutions
    • Potting Compounds and Encapsulants - Market analysis for protective thermal management materials
    • Thermal Adhesive Tapes - Structural bonding solutions with thermal conductivity properties
  • Advanced Technology Coverage:
    • Self-healing Thermal Interface Materials - Revolutionary materials with autonomous repair capabilities
    • Metamaterials for Thermal Management - Next-generation engineered materials with unique properties
    • Nanomaterial-Enhanced TIMs - Comprehensive analysis of nanotechnology integration
    • Multi-functional TIMs - Materials combining thermal, electrical, and mechanical properties
  • Market Segmentation by Application:
    • Consumer Electronics  - Smartphones, tablets, wearables, and emerging devices
    • Electric Vehicles  - Battery thermal management, power electronics, and charging infrastructure
    • Data Centers  - Server cooling, AI accelerators, and immersion cooling systems
    • Advanced Semiconductor Packaging  - TIM1, TIM2, and next-generation packaging solutions
    • ADAS Sensors  - Automotive sensor thermal management and autonomous vehicle applications
    • 5G Infrastructure  - Base stations, antennas, and telecommunications equipment
    • Aerospace & Defense  - Satellite systems, avionics, and military electronics
    • Industrial Electronics  - Automation systems, power supplies, and motor drives
    • Renewable Energy  - Solar inverters, wind power electronics, and energy storage
    • Medical Electronics  - Diagnostic equipment and patient monitoring systems
  • Technical Analysis and Performance Metrics:
    • Thermal conductivity benchmarking across material categories
    • Thermal resistance vs. thermal conductivity comparative analysis
    • System-level performance optimization strategies
    • Material dispensing technologies and automation trends
    • Supply chain analysis and raw material pricing dynamics
    • Environmental regulations and sustainability considerations
  • Market Forecasts and Projections:
    • Global market size projections from 2022-2036 by material type and application
    • Regional market analysis covering North America, Europe, Asia-Pacific, and emerging markets
    • Technology adoption timelines and market readiness assessments
    • Price trend analysis and cost optimization opportunities
    • Emerging application opportunities and disruptive technology impact
  • Competitive Landscape and Strategic Intelligence:
    • Comprehensive analysis of market dynamics, drivers, and challenges
    • Technology roadmaps for next-generation thermal interface materials
    • Patent landscape analysis and intellectual property trends
    • Strategic partnership opportunities and M&A activity
    • Investment trends and funding analysis for TIM innovations

 

This report features detailed profiles of 119 leading companies in the thermal interface materials ecosystem, including established chemical manufacturers, specialized materials suppliers, emerging technology companies, and innovative start-ups. Companies profiled include 3M, ADA Technologies, Aismalibar S.A., AI Technology Inc., Alpha Assembly, AluChem, AOK Technologies, AOS Thermal Compounds LLC, Arkema, Arieca Inc., ATP Adhesive Systems AG, Aztrong Inc., Bando Chemical Industries Ltd., Bdtronic, BestGraphene, BNNano, BNNT LLC, Boyd Corporation, BYK, Cambridge Nanotherm, Carbice Corp., Carbon Waters, Carbodeon Ltd. Oy, CondAlign AS, Denka Company Limited, Detakta Isolier- und Messtechnik GmbH & Co. KG, Dexerials Corporation, Deyang Carbonene Technology, Dow Corning, Dowa Electronics Materials Co. Ltd., DuPont (Laird Performance Materials), Dymax Corporation, Dynex Semiconductor (CRRC), ELANTAS Europe GmbH, Elkem Silicones, Enerdyne Thermal Solutions Inc., Epoxies Etc., First Graphene Ltd., Fujipoly, Fujitsu Laboratories, GCS Thermal, GLPOLY, Global Graphene Group, Goodfellow Corporation, Graphmatech AB, GuangDong KingBali New Material Co. Ltd., HALA Contec GmbH & Co. KG, Hamamatsu Carbonics Corporation, H.B. Fuller Company, Henkel AG & Co. KGAA, Hitek Electronic Materials, Honeywell, Hongfucheng New Materials, Huber Martinswerk, HyMet Thermal Interfaces SIA, Indium Corporation, Inkron, KB Element, Kerafol Keramische Folien GmbH & Co. KG, Kitagawa, KULR Technology Group Inc., Kyocera, Laird, Leader Tech Inc., LiSAT, LiquidCool Solutions, Liquid Wire Inc., MacDermid Alpha, MG Chemicals Ltd., Minoru Co. Ltd. and more....

 

 

1             INTRODUCTION          21

  • 1.1        Thermal Management-active and passive  21
  • 1.2        What are Thermal Interface Materials (TIMs)?         21
    • 1.2.1    Types of TIMs 23
    • 1.2.2    Thermal conductivity                24
  • 1.3        Comparative properties of TIMs        25
  • 1.4        Thermal Pads and Thermal Grease  29
  • 1.5        Advantages and Disadvantages of TIMs, by type    30
  • 1.6        Performance  32
  • 1.7        Prices  35
  • 1.8        Emerging Technologies in TIMs          35
  • 1.9        Supply Chain for TIMs              36
  • 1.10     Raw Material Analysis and Pricing   37
  • 1.11     Environmental Regulations and Sustainability        37
  • 1.12     System Level Performance   38
  • 1.13     Thermal Conductivity vs Thermal Resistance          39
  • 1.14     TIM Chemistry               40

 

2             MATERIALS      42

  • 2.1        Advanced and Multi-Functional TIMs            43
    • 2.1.1    Carbon-based TIMs   44
      • 2.1.1.1 Overview           44
    • 2.1.2    Thermal Conductivity By Filler Type 45
    • 2.1.3    Thermal Conductivity By Matrix         46
  • 2.2        TIM fillers          47
    • 2.2.1    Trends 48
    • 2.2.2    Pros and Cons              49
    • 2.2.3    Thermal Conductivity               50
    • 2.2.4    Spherical Alumina      51
    • 2.2.5    Alumina Fillers              51
    • 2.2.6    Boron nitride (BN)       52
      • 2.2.6.1 Overview           52
      • 2.2.6.2 Suppliers          53
      • 2.2.6.3 Nano Boron Nitride    55
    • 2.2.7    Filler and polymer TIMs           57
    • 2.2.8    Diamond          58
    • 2.2.9    Filler Sizes        60
  • 2.3        Thermal Greases and Pastes              61
    • 2.3.1    Overview and properties        61
    • 2.3.2    SWOT analysis              65
  • 2.4        Thermal Gap Pads      66
    • 2.4.1    Overview and properties        66
    • 2.4.2    Application in EV Batteries    67
    • 2.4.3    Transitioning to Gap fillers from Pads            67
    • 2.4.4    SWOT analysis              68
  • 2.5        Thermal Gap Fillers    70
    • 2.5.1    Overview and properties        70
    • 2.5.2    Products           70
    • 2.5.3    SWOT analysis              71
  • 2.6        Potting Compounds/Encapsulants 73
    • 2.6.1    Overview and properties        73
    • 2.6.2    SWOT analysis              75
  • 2.7        Adhesive Tapes             77
    • 2.7.1    Overview and properties        77
    • 2.7.2    Application in EV Batteries    78
    • 2.7.3    TCA Requirements     79
    • 2.7.4    SWOT analysis              79
  • 2.8        Phase Change Materials         81
    • 2.8.1    Overview           81
    • 2.8.2    Products           81
    • 2.8.3    Properties         82
    • 2.8.4    Types   83
      • 2.8.4.1 Organic/biobased phase change materials               84
        • 2.8.4.1.1           Advantages and disadvantages        85
        • 2.8.4.1.2           Paraffin wax    85
        • 2.8.4.1.3           Non-Paraffins/Bio-based      86
      • 2.8.4.2 Inorganic phase change materials   86
        • 2.8.4.2.1           Salt hydrates  86
          • 2.8.4.2.1.1      Advantages and disadvantages        87
        • 2.8.4.2.2           Metal and metal alloy PCMs (High-temperature)   87
      • 2.8.4.3 Eutectic mixtures        88
      • 2.8.4.4 Encapsulation of PCMs           88
        • 2.8.4.4.1           Macroencapsulation 89
        • 2.8.4.4.2           Micro/nanoencapsulation    89
      • 2.8.4.5 Nanomaterial phase change materials         89
    • 2.8.5    Thermal energy storage (TES)              89
      • 2.8.5.1 Sensible heat storage              90
      • 2.8.5.2 Latent heat storage    90
    • 2.8.6    Application in TIMs    91
      • 2.8.6.1 Thermal pads 92
      • 2.8.6.2 Low Melting Alloys (LMAs)    93
      • 2.8.6.3 Thermal storage units              93
      • 2.8.6.4 Thermal energy storage panels          93
      • 2.8.6.5 Space systems             94
    • 2.8.7    SWOT analysis              96
  • 2.9        Metal-based TIMs       97
    • 2.9.1    Overview           97
      • 2.9.1.1 Metal-Based TIM1 and TIM2 97
      • 2.9.1.2 Metal Filled Polymer TIMs      98
    • 2.9.2    Solders and low melting temperature alloy TIMs   98
      • 2.9.2.1 Solder TIM1     100
      • 2.9.2.2 Sintering            101
    • 2.9.3    Liquid metals 103
      • 2.9.3.1 Liquid metal for high-performance GPU      104
      • 2.9.3.2 Challenges      105
    • 2.9.4    Solid liquid hybrid (SLH) metals        105
      • 2.9.4.1 Hybrid liquid metal pastes    105
      • 2.9.4.2 SLH created during chip assembly (m2TIMs)           107
      • 2.9.4.3 Die-attach materials 107
        • 2.9.4.3.1           Solder Alloys and Conductive Adhesives    109
        • 2.9.4.3.2           Silver-Sintered Paste 111
        • 2.9.4.3.3           Copper (Cu) sintered TIMs    112
          • 2.9.4.3.3.1      TIM1 - Sintered Copper            112
          • 2.9.4.3.3.2      Cu Sinter Materials    113
          • 2.9.4.3.3.3      Copper Sintering Challenges              115
          • 2.9.4.3.3.4      Commercial Use         116
        • 2.9.4.3.4           Sintered Copper Die-Bonding Paste               116
          • 2.9.4.3.4.1      Commercial activity  117
        • 2.9.4.3.5           Graphene Enhanced Sintered Copper TIMs              117
      • 2.9.4.4 Laminar Metal Form With High Softness     117
    • 2.9.5    SWOT analysis              118
  • 2.10     Carbon-based TIMs   120
    • 2.10.1 Carbon nanotube (CNT) TIM Fabrication     120
    • 2.10.2 Challenges      121
    • 2.10.3 Market players               122
    • 2.10.4 Multi-walled nanotubes (MWCNT)  122
      • 2.10.4.1            Properties         123
      • 2.10.4.2            Application as thermal interface materials                124
    • 2.10.5 Single-walled carbon nanotubes (SWCNTs)             125
      • 2.10.5.1            Properties         125
      • 2.10.5.2            Application as thermal interface materials                127
    • 2.10.6 Vertically aligned CNTs (VACNTs)     128
      • 2.10.6.1            Properties         128
      • 2.10.6.2            Applications   128
      • 2.10.6.3            Application as thermal interface materials                129
    • 2.10.7 BN nanotubes (BNNT) and nanosheets (BNNS)      129
      • 2.10.7.1            Properties         129
      • 2.10.7.2            Application as thermal interface materials                130
    • 2.10.8 Graphene         130
      • 2.10.8.1            Properties         132
      • 2.10.8.2            Application as thermal interface materials                133
        • 2.10.8.2.1        Graphene fillers            134
        • 2.10.8.2.2        Graphene foam            134
        • 2.10.8.2.3        Graphene aerogel       134
        • 2.10.8.2.4        Graphene Heat Spreaders     135
        • 2.10.8.2.5        Graphene in Thermal Interface Pads              136
      • 2.10.8.3            Advantages of Graphene        137
      • 2.10.8.4            Through-Plane Alignment      138
    • 2.10.9 Nanodiamonds            138
      • 2.10.9.1            Properties         138
      • 2.10.9.2            Application as thermal interface materials                140
    • 2.10.10              Graphite            140
      • 2.10.10.1         Properties         140
      • 2.10.10.2         Natural graphite           141
        • 2.10.10.2.1     Classification 142
        • 2.10.10.2.2     Processing       143
        • 2.10.10.2.3     Flake    143
          • 2.10.10.2.3.1 Grades               143
          • 2.10.10.2.3.2 Applications   144
      • 2.10.10.3         Synthetic graphite      146
        • 2.10.10.3.1     Classification 146
          • 2.10.10.3.1.1 Primary synthetic graphite    146
          • 2.10.10.3.1.2 Secondary synthetic graphite             147
          • 2.10.10.3.1.3 Processing       147
      • 2.10.10.4         Applications as thermal interface materials             147
        • 2.10.10.4.1     Graphite Sheets           148
        • 2.10.10.4.2     Vertical graphite          149
        • 2.10.10.4.3     Graphite pastes           150
      • 2.10.10.5         Challenges      150
        • 2.10.10.5.1     Through-plane thermal conductivity limitations    150
        • 2.10.10.5.2     Interfacing with Heat Source and Disrupting Alignment    151
    • 2.10.11              Hexagonal Boron Nitride        151
      • 2.10.11.1         Properties         152
      • 2.10.11.2         Application as thermal interface materials                153
    • 2.10.12              SWOT analysis              154
  • 2.11     Metamaterials               155
    • 2.11.1 Types and properties 155
      • 2.11.1.1            Electromagnetic metamaterials       156
        • 2.11.1.1.1        Double negative (DNG) metamaterials         156
        • 2.11.1.1.2        Single negative metamaterials           157
        • 2.11.1.1.3        Electromagnetic bandgap metamaterials (EBG)    157
        • 2.11.1.1.4        Bi-isotropic and bianisotropic metamaterials          157
        • 2.11.1.1.5        Chiral metamaterials                157
        • 2.11.1.1.6        Electromagnetic “Invisibility” cloak 158
      • 2.11.1.2            Terahertz metamaterials        158
      • 2.11.1.3            Photonic metamaterials         158
      • 2.11.1.4            Tunable metamaterials           159
      • 2.11.1.5            Frequency selective surface (FSS) based metamaterials 159
      • 2.11.1.6            Nonlinear metamaterials       159
      • 2.11.1.7            Acoustic metamaterials         160
    • 2.11.2 Application as thermal interface materials                160
  • 2.12     Self-healing thermal interface materials     160
    • 2.12.1 Extrinsic self-healing 162
    • 2.12.2 Capsule-based             162
    • 2.12.3 Vascular self-healing 162
    • 2.12.4 Intrinsic self-healing 162
    • 2.12.5 Healing volume            163
    • 2.12.6 Types of self-healing materials, polymers and coatings    164
    • 2.12.7 Applications in thermal interface materials              165
  • 2.13     TIM Dispensing             165
    • 2.13.1 Low-volume Dispensing Methods    165
    • 2.13.2 High-volume Dispensing Methods  166
    • 2.13.3 Meter, Mix, Dispense (MMD) Systems           166
    • 2.13.4 TIM Dispensing Equipment Suppliers            167

 

3             MARKETS FOR THERMAL INTERFACE MATERIALS (TIMs)  169

  • 3.1        Consumer Electronics             169
    • 3.1.1    Market overview           169
      • 3.1.1.1 Market drivers                169
      • 3.1.1.2 Applications   170
        • 3.1.1.2.1           Smartphones and tablets      171
          • 3.1.1.2.1.1      Graphitic Heat Spreaders      174
          • 3.1.1.2.1.2      Liquid metals 175
        • 3.1.1.2.2           Wearable electronics                176
    • 3.1.2    Global market 2022-2036, by TIM type          177
  • 3.2        Electric Vehicles (EV)               179
    • 3.2.1    Market overview           179
      • 3.2.1.1 Market drivers                179
      • 3.2.1.2 Applications   179
        • 3.2.1.2.1           EV Battery Packs         180
          • 3.2.1.2.1.1      TIM Pack and Module               180
          • 3.2.1.2.1.2      TIM Application by Cell Format          180
          • 3.2.1.2.1.3      Thermal Interface Material Fillers for EV Batteries 182
          • 3.2.1.2.1.4      TIM Pricing       184
          • 3.2.1.2.1.5      Companies     184
        • 3.2.1.2.2           Lithium-ion batteries 185
          • 3.2.1.2.2.1      Cell-to-pack designs 186
          • 3.2.1.2.2.2      Cell-to-chassis/body                187
        • 3.2.1.2.3           Power electronics       189
          • 3.2.1.2.3.1      Types   190
          • 3.2.1.2.3.2      Trends 190
          • 3.2.1.2.3.3      Properties for TIM2 Properties  in EV power electronics     191
          • 3.2.1.2.3.4      TIM1s  194
          • 3.2.1.2.3.5      TIM2 in SiC MOSFET  196
      • 3.2.1.2.4           Charging stations        197
    • 3.2.2    Global market 2022-2036, by TIM type          197
  • 3.3        Data Centers  199
    • 3.3.1    Market overview           199
      • 3.3.1.1 Market drivers                199
      • 3.3.1.2 Applications   200
        • 3.3.1.2.1           Router, switches and line cards         201
          • 3.3.1.2.1.1      Transceivers   202
          • 3.3.1.2.1.2      Server Boards                202
          • 3.3.1.2.1.3      Switches and Routers              204
        • 3.3.1.2.2           AI Servers         205
          • 3.3.1.2.2.1      Overview           205
          • 3.3.1.2.2.2      Trends 205
          • 3.3.1.2.2.3      TRL       208
        • 3.3.1.2.3           Power supply converters        215
          • 3.3.1.2.3.1      Overview           215
          • 3.3.1.2.3.2      Laminar metal form TIMs       215
          • 3.3.1.2.3.3      TIM Consumption in Data Center Power Supplies 216
          • 3.3.1.2.3.4      Immersion cooling     217
    • 3.3.2    Global market 2022-2036, by TIM type          218
  • 3.4        Advanced Semiconductor Packaging           220
    • 3.4.1    Market Overview          220
    • 3.4.2    TIM1     221
      • 3.4.2.1 Indium foil TIM1           221
      • 3.4.2.2 Products           221
        • 3.4.2.2.1           Thermal Gel    222
        • 3.4.2.2.2           Thermal grease             222
        • 3.4.2.2.3           Graphene         223
        • 3.4.2.2.4           Liquid metal   224
        • 3.4.2.2.5           Diamond thermal interface materials in TIM0 applications            225
        • 3.4.2.2.6           Integrated silicon micro-cooler systems     225
        • 3.4.2.2.7           Copper nanowire (CuNWs)  226
    • 3.4.3    Global market 2022-2036, by TIM type          227
  • 3.5        ADAS Sensors               229
    • 3.5.1    Market overview           229
      • 3.5.1.1 Market drivers                229
        • 3.5.1.1.1           Sensor Suite for Autonomous Cars 229
        • 3.5.1.1.2           Thermal Management in ADAS Sensors       230
      • 3.5.1.2 Applications   231
        • 3.5.1.2.1           ADAS Cameras             232
          • 3.5.1.2.1.1      Commercial examples            232
        • 3.5.1.2.2           ADAS Radar    233
          • 3.5.1.2.2.1      Radar technology        233
          • 3.5.1.2.2.2      Radar boards 234
          • 3.5.1.2.2.3      Commercial examples            235
        • 3.5.1.2.3           ADAS LiDAR    236
          • 3.5.1.2.3.1      Role of TIMs    236
          • 3.5.1.2.3.2      Commercial examples            236
        • 3.5.1.2.4           Electronic control units (ECUs) and computers      237
          • 3.5.1.2.4.1      Overview           237
          • 3.5.1.2.4.2      Commercial examples            238
        • 3.5.1.2.5           Die attach materials  239
          • 3.5.1.2.5.1      Overview           239
          • 3.5.1.2.5.2      Commercial examples            240
      • 3.5.1.3 Companies     242
    • 3.5.2    Global market 2022-2036, by TIM type          243
  • 3.6        EMI shielding 244
    • 3.6.1    Market overview           244
    • 3.6.1.1 Market drivers                244
    • 3.6.1.2 Applications   244
      • 3.6.1.2.1           Dielectric Constant   245
      • 3.6.1.2.2           ADAS   246
        • 3.6.1.2.2.1      Radar  247
        • 3.6.1.2.2.2      5G         247
      • 3.6.1.2.3           Commercial examples            248
  • 3.7        5G         249
    • 3.7.1    Market overview           249
      • 3.7.1.1 Market drivers                249
      • 3.7.1.2 Applications   249
        • 3.7.1.2.1           EMI shielding and EMI gaskets           250
        • 3.7.1.2.2           Antenna            250
        • 3.7.1.2.3           Base Band Unit (BBU)              253
        • 3.7.1.2.4           Liquid TIMs      256
        • 3.7.1.2.5           Power supplies             256
          • 3.7.1.2.5.1      Increased power consumption in 5G             257
    • 3.7.2    Market players               258
    • 3.7.3    Global market 2022-2036, by TIM type          258
  • 3.8        Aerospace & Defense               260
    • 3.8.1    Market overview           260
      • 3.8.1.1 Market drivers                260
      • 3.8.1.2 Applications   260
        • 3.8.1.2.1           Satellite thermal management          260
          • 3.8.1.2.1.1      Temperature range     261
          • 3.8.1.2.1.2      Heat Spreaders            262
          • 3.8.1.2.1.3      Carbon fiber reinforced TIM 262
          • 3.8.1.2.1.4      Thermal pads 263
          • 3.8.1.2.1.5      Thermal straps             264
          • 3.8.1.2.1.6      Graphene         264
          • 3.8.1.2.1.7      Challenges      265
        • 3.8.1.2.2           Avionics cooling           267
        • 3.8.1.2.3           Military electronics     267
    • 3.8.1.3 Global market 2022-2036, by TIM type          267
  • 3.9        Industrial Electronics               268
    • 3.9.1    Market overview           268
      • 3.9.1.1 Market drivers                268
      • 3.9.1.2 Applications   268
        • 3.9.1.2.1           Industrial automation              269
        • 3.9.1.2.2           Power supplies             269
        • 3.9.1.2.3           Motor drives    269
        • 3.9.1.2.4           LED lighting     269
    • 3.9.2    Global market 2022-2036, by TIM type          270
  • 3.10     Renewable Energy      270
    • 3.10.1 Market overview           270
      • 3.10.1.1            Market drivers                270
      • 3.10.1.2            Applications   270
        • 3.10.1.2.1        Solar inverters               271
        • 3.10.1.2.2        Wind power electronics          271
        • 3.10.1.2.3        Energy storage systems          271
    • 3.10.2 Global market 2022-2036, by TIM type          271
  • 3.11     Medical Electronics   272
    • 3.11.1 Market overview           272
      • 3.11.1.1            Market drivers                272
      • 3.11.1.2            Applications   272
        • 3.11.1.2.1        Diagnostic equipment             273
        • 3.11.1.2.2        Medical imaging systems      273
        • 3.11.1.2.3        Patient monitoring devices   273
    • 3.11.2 Global market 2022-2036, by TIM type          273

 

4             COMPANY PROFILES                274 (116 company profiles)

 

5             RESEARCH METHODOLOGY              357

 

6             REFERENCES 358

 

List of tables

  • Table 1. Thermal conductivities (κ) of common metallic, carbon, and ceramic fillers employed in TIMs.                25
  • Table 2. Commercial TIMs and their properties.     27
  • Table 3. Advantages and disadvantages of TIMs, by type. 31
  • Table 4. Key Factors in System Level Performance for TIMs.          33
  • Table 5. TIM Materials by Thermal, Mechanical, and Application Properties        34
  • Table 6. Thermal interface materials prices.             36
  • Table 7. Comparisons of Price and Thermal Conductivity for TIMs.           36
  • Table 8. Price Comparison of TIM Fillers.     36
  • Table 9. Raw Material Analysis and Pricing.               38
  • Table 10. System Level Performance Comparison.              39
  • Table 11. Thermal Conductivity vs Thermal Resistance Comparison.     40
  • Table 12. TIM Chemistry Comparison           41
  • Table 13. Characteristics of some typical TIMs.     43
  • Table 14. Carbon-Based TIM Performance.               45
  • Table 15. Thermal Conductivity By Filler Type           47
  • Table 16. Thermal Conductivity By Matrix.  48
  • Table 17. Trends on TIM Fillers.          50
  • Table 18. Pros and Cons of TIM Fillers.          50
  • Table 19. Thermal Conductivity Comparison ATH and Al2O3.       53
  • Table 20. BNNT Companies and Prices.       56
  • Table 21.BNNT Property Variation.  57
  • Table 22. Diamond fillers with varied sizes for thermal interface materials.        60
  • Table 23. Commercial thermal paste products.     64
  • Table 24.Commercial thermal gap pads (thermal interface materials).  67
  • Table 25. Commercial thermal gap fillers products.            71
  • Table 26. Types of Potting Compounds/Encapsulants.     75
  • Table 27. TIM adhesives tapes.          78
  • Table 28. Commercial phase change materials (PCM) thermal interface materials (TIMs) products. 82
  • Table 29. Properties of PCMs.             83
  • Table 30.  PCM Types and properties.            85
  • Table 31. Advantages and disadvantages of organic PCMs.           86
  • Table 32. Advantages and disadvantages of organic PCM Fatty Acids.    87
  • Table 33. Advantages and disadvantages of salt hydrates               88
  • Table 34. Advantages and disadvantages of low melting point metals.   89
  • Table 35. Advantages and disadvantages of eutectics.      89
  • Table 36. Benefits and drawbacks of PCMs in TIMs.            92
  • Table 37. PCM Selection Criteria and Considerations for Space Systems.           95
  • Table 38. PCM selection criteria and considerations for space systems.              96
  • Table 39. Liquid Metal Challenges. 106
  • Table 40. Copper Sintering Technical Challenges. 116
  • Table 41. Technology Readiness Level (TRL) for Carbon Materials in Thermal Management     121
  • Table 42. Challenges with CNT-TIMs.             122
  • Table 43. Market players in CNT-TIMs.          123
  • Table 44. Properties of CNTs and comparable materials. 124
  • Table 45. Typical properties of SWCNT and MWCNT.          126
  • Table 46. Comparison of carbon-based additives in terms of the main parameters influencing their value proposition as a conductive additive.              127
  • Table 47. Thermal conductivity of CNT-based polymer composites.        130
  • Table 48. Comparative properties of BNNTs and CNTs.     131
  • Table 49. Properties of graphene, properties of competing materials, applications thereof.     133
  • Table 50. Graphene Heat Spreaders Performance.              136
  • Table 51. Comparison of Conventional and Graphene-Enhanced Thermal Pads.            138
  • Table 52. Advantages of Graphene in Thermal Interface Materials             138
  • Table 53. Properties of nanodiamonds.       140
  • Table 54. Comparison between Natural and Synthetic Graphite.               141
  • Table 55. Thermal Conductivity Comparison of Graphite TIMs.   142
  • Table 56. Classification of natural graphite with its characteristics.         143
  • Table 57. Characteristics of synthetic graphite.      147
  • Table 58. Thermal Conductivity Comparison of Graphite TIMs.   151
  • Table 59. Properties of hexagonal boron nitride (h-BN).    154
  • Table 60. Comparison of self-healing systems.      164
  • Table 61. Types of self-healing coatings and materials.     165
  • Table 62. Comparative properties of self-healing materials.          166
  • Table 63. Challenges for Dispensing TIM.   166
  • Table 64. Thermal Management Application Areas in Consumer Electronics.    170
  • Table 65. Thermal Management Differences: 4G vs 5G Smartphones.    171
  • Table 66. Trends in Smartphone Thermal Materials.            172
  • Table 67. Thermal Management approaches in commercial Smartphones.        174
  • Table 68. Global market in consumer electronics 2022-2036, by TIM type (millions USD).        178
  • Table 69. Material Options and Market Comparison.          182
  • Table 70. TIM Filler Comparison and Adoption.       184
  • Table 71. Thermal Conductivity Comparison of Suppliers for EV Batteries.          184
  • Table 72. TIM Pricing by Supplier.      185
  • Table 73. Thermal Conductivity Comparison of TIM1s.     195
  • Table 74. Global market in electric vehicles 2022-2036, by TIM type (millions USD).     199
  • Table 75. Types of TIMs in Data Centers.      201
  • Table 76. Area of TIM per Switch.      204
  • Table 77. Leaf and Spine Switch TIM Areas.               205
  • Table 78. Novel TIM Technologies in Data Centers.               205
  • Table 79. Emerging Trends in TIM Materials for AI Servers.               207
  • Table 80. Applications of TIM Materials in AI Servers with Technology Readiness Levels (TRL).              210
  • Table 81. Companies Utilizing and Providing TIM Materials for AI Servers              213
  • Table 82. TIM Trends in Data Centers.            218
  • Table 83. TIM Area Forecast in Server Boards: 2022-2036 (m2).  219
  • Table 84. Global market in data centers 2022-2036, by TIM type (millions USD).             220
  • Table 85. Global market in advanced semiconductor packaging 2022-2036, by TIM type (millions USD).                229
  • Table 86. Autonomous Vehicle Sensor Suite TIM Requirements. 232
  • Table 87. TIM Players in ADAS.            233
  • Table 88. TIM Players in ADAS.            234
  • Table 89. Die Attach for ADAS Sensors.        242
  • Table 90. Die Attach Area Forecast for Key Components Within ADAS Sensors: 2022-2036 (m2).       243
  • Table 91. TIM Players in ADAS              244
  • Table 92. Global market in ADAS sensors 2022-2036, by TIM type (millions USD).          245
  • Table 93. Applications of TIMs in EMI Shielding for ADAS Radars.              249
  • Table 94. TIM Area Forecast for 5G Antennas by Station Size: 2022-2036 (m2). 255
  • Table 95. TIM Area Forecast for 5G Antennas by Station Frequency: 2022-2036 (m2). 255
  • Table 96. TIMS in BBU.             256
  • Table 97. 5G BBY models.      258
  • Table 98. TIM Area Forecast for 5G BBU: 2022-2036 (m2).              258
  • Table 99. Power Consumption Forecast for 5G: 2022-2036 (GW).             260
  • Table 100. TIM Area Forecast for Power Supplies: 2022-2036 (m2).          260
  • Table 101. TIM market players in 5G.              261
  • Table 102. Global market in 5G 2022-2036, by TIM type (millions USD). 262
  • Table 103. Market Drivers for TIMS in aerospace and defense.     263
  • Table 104. Applications for TIMS in aerospace and defense.          263
  • Table 105. Temperature range of space subsystems and passive cooling approaches.               264
  • Table 106. TIMs for space satellites - challenges and considerations.     268
  • Table 107. Global Market for TIMs in aerospace and defense 2022-2036, by TIM Type (Millions USD).                271
  • Table 108. Market Drivers for TIMs in industrial electronics.           272
  • Table 109. Applications for TIMs in industrial electronics.               272
  • Table 110. Global Market 2022-2036, by TIM Type in Industrial Electronics (Millions USD).      274
  • Table 111. Market Drivers for TIMs in renewable energy.   275
  • Table 112. Applications for TIMs in renewable energy.        275
  • Table 113. Global Market for TIMs in Renewable Energy 2022-2036 (Millions USD).      276
  • Table 114. Market Drivers for TIMs in medical electronics.              278
  • Table 115. Applications for TIMs in medical electronics.  278
  • Table 116. Global Market 2022-2036 for TIMs in Medical Electronics (Millions USD).   279

 

List of Figures

  • Figure 1. (L-R) Surface of a commercial heatsink surface at progressively higher magnifications, showing tool marks that create a rough surface and a need for a thermal interface material. 22
  • Figure 2. Schematic of thermal interface materials used in a flip chip package.              23
  • Figure 3. Thermal grease.      24
  • Figure 4. Dispensing a bead of silicone-based gap filler onto the heat sink of a power electronics module.             24
  • Figure 5. Supply Chain for TIMs.        37
  • Figure 6. Commercial thermal paste products.      62
  • Figure 7. Application of thermal silicone grease.   63
  • Figure 8. A range of thermal grease products.          63
  • Figure 9. SWOT analysis for thermal greases and pastes. 66
  • Figure 10. Thermal Pad.          67
  • Figure 11. SWOT analysis for thermal gap pads.    70
  • Figure 12. Dispensing a bead of silicone-based gap filler onto the heat sink of a power electronics module.             71
  • Figure 13. SWOT analysis for thermal gap fillers.   73
  • Figure 14. SWOT analysis for Potting compounds/encapsulants.              77
  • Figure 15. Thermal adhesive products.         78
  • Figure 16. SWOT analysis for TIM adhesives tapes.              81
  • Figure 17. Phase-change TIM products.       82
  • Figure 18. PCM mode of operation. 84
  • Figure 19. Classification of PCMs.   84
  • Figure 20. Phase-change materials in their original states.             85
  • Figure 21. Thermal energy storage materials.           91
  • Figure 22. Phase Change Material transient behaviour.     91
  • Figure 23. PCM TIMs. 93
  • Figure 24. Phase Change Material - die cut pads ready for assembly.      93
  • Figure 25. SWOT analysis for phase change materials.      97
  • Figure 26. Typical IC package construction identifying TIM1 and TIM2    100
  • Figure 27. Liquid metal TIM product.              105
  • Figure 28. Pre-mixed SLH.     107
  • Figure 29. HLM paste and Liquid Metal Before and After Thermal Cycling.           107
  • Figure 30.  SLH with Solid Solder Preform. 108
  • Figure 31. Automated process for SLH with solid solder preforms and liquid metal.     108
  • Figure 32. SWOT analysis for metal-based TIMs.   120
  • Figure 33. Schematic of single-walled carbon nanotube. 126
  • Figure 34. Types of single-walled carbon nanotubes.         127
  • Figure 35. Schematic of a vertically aligned carbon nanotube (VACNT) membrane used for water treatment.        129
  • Figure 36. Schematic of Boron Nitride nanotubes (BNNTs). Alternating B and N atoms are shown in blue and red.             131
  • Figure 37. Graphene layer structure schematic.     131
  • Figure 38. Illustrative procedure of the Scotch-tape based micromechanical cleavage of HOPG.       132
  • Figure 39. Graphene and its descendants: top right: graphene; top left: graphite = stacked graphene; bottom right: nanotube=rolled graphene; bottom left: fullerene=wrapped graphene. 134
  • Figure 40. Graphene Thermal Management Applications Roadmap.       135
  • Figure 41. Flake graphite.       144
  • Figure 42. Applications of flake graphite.    146
  • Figure 43. Graphite-based TIM products.    149
  • Figure 44. Structure of hexagonal boron nitride.     153
  • Figure 45. SWOT analysis for carbon-based TIMs. 155
  • Figure 46. Classification of metamaterials based on functionalities.      156
  • Figure 47. Electromagnetic metamaterial. 157
  • Figure 48. Schematic of Electromagnetic Band Gap (EBG) structure.      158
  • Figure 49. Schematic of chiral metamaterials.        159
  • Figure 50. Nonlinear metamaterials- 400-nm thick nonlinear mirror that reflects frequency-doubled output using input light intensity as small as that of a laser pointer.         161
  • Figure 51. Schematic of self-healing polymers. Capsule based (a), vascular (b), and intrinsic (c) schemes for self-healing materials.  Red and blue colours indicate chemical species which react (purple) to heal damage.       162
  • Figure 52. Stages of self-healing mechanism.         162
  • Figure 53. Self-healing mechanism in vascular self-healing systems.     163
  • Figure 54. Schematic of TIM operation in electronic devices.        171
  • Figure 55. Schematic of Thermal Management Materials in smartphone.            174
  • Figure 56. Wearable technology inventions.             177
  • Figure 57. Global market in consumer electronics 2022-2036, by TIM type (millions USD).      179
  • Figure 58. Application of thermal interface materials in automobiles.    180
  • Figure 59. EV battery components including TIMs.               187
  • Figure 60. Battery pack with a cell-to-pack design and prismatic cells.  188
  • Figure 61. Cell-to-chassis battery pack.      190
  • Figure 62. TIMS in EV charging station.         198
  • Figure 63. Global market in electric vehicles 2022-2036, by TIM type (millions USD).   200
  • Figure 64. Image of data center layout.         202
  • Figure 65. Application of TIMs in line card. 203
  • Figure 66. Global market in data centers 2022-2036, by TIM type (millions USD).           221
  • Figure 67. Global market in advanced semiconductor packaging 2022-2036, by TIM type (millions USD).                230
  • Figure 68. ADAS radar unit incorporating TIMs.       236
  • Figure 69. Global market in ADAS sensors 2022-2036, by TIM type (millions USD).        246
  • Figure 70. Coolzorb 5G.          248
  • Figure 71. TIMs in Base Band Unit (BBU).    257
  • Figure 72. Global market in 5G 2022-2036, by TIM type (millions USD). 262
  • Figure 73. Global Market for TIMs in aerospace and defense 2022-2036, by TIM Type (Millions USD).                271
  • Figure 74. Global Market 2022-2036, by TIM Type in Industrial Electronics (Millions USD).       274
  • Figure 75. Global Market for TIMs in Renewable Energy 2022-2036 (Millions USD).       277
  • Figure 76. Global Market 2022-2036 for TIMs in Medical Electronics (Millions USD).    280
  • Figure 77. Boron Nitride Nanotubes products.        291
  • Figure 78. Transtherm® PCMs.            292
  • Figure 79. Carbice carbon nanotubes.         295
  • Figure 80.  Internal structure of carbon nanotube adhesive sheet.            311
  • Figure 81. Carbon nanotube adhesive sheet.           311
  • Figure 82. HI-FLOW Phase Change Materials.         318
  • Figure 83. Thermoelectric foil, consists of a sequence of semiconductor elements connected with conductive metal. At the top (in red) is the thermal interface.       330
  • Figure 84. Parker Chomerics THERM-A-GAP GEL. 341
  • Figure 85. Metamaterial structure used to control thermal emission.     342
  • Figure 86. Shinko Carbon Nanotube TIM product. 351
  • Figure 87. The Sixth Element graphene products.  355
  • Figure 88. Thermal conductive graphene film.         356
  • Figure 89. VB Series of TIMS from Zeon.       362

 

 

 

 

The Global Thermal Interface Materials Market 2026-2036
The Global Thermal Interface Materials Market 2026-2036
Instant PDF download.

The Global Thermal Interface Materials Market 2026-2036
The Global Thermal Interface Materials Market 2026-2036
PDF download and Print Edition (Including tracked delivery).

Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer. To order by Bank Transfer (Invoice) select this option from the payment methods menu after adding to cart, or contact info@futuremarketsinc.com