The Global Market for 3D Printing and Additive Manufacturing 2024-2035

0

  • Published: May 2024
  • Pages: 537
  • Tables: 173
  • Figures: 65
  • Companies profiled: 250+

 

Additive manufacturing (AM, also known as 3D printing) is an advanced manufacturing technique that has enabled progress in the design and fabrication of complex structures with tuneable properties. The Global Market for 3D Printing and Additive Manufacturing 2024-2035 examines the global market for 3D printing hardware, materials, and services - forecasting growth from 2018 to 2035. It assesses hardware unit sales and revenues by technology including vat photopolymerization, material jetting, binder jetting, material extrusion, powder bed fusion, and directed energy deposition.

Global demand is analyzed for polymers, metals, ceramics, and composite materials in both volume and revenue terms. Regional splits are provided for North America, Europe, Asia Pacific, and Rest of World. The report profiles over 250 companies involved in 3D printer manufacturing, materials production, software, and service provision.

Key end-user markets analyzed include aerospace, medical and dental devices, architecture, automotive, consumer products, industrial machinery, electronics, energy, oil and gas, marine sectors, and food printing. Dozens of product examples showcase applications across these industries.

Trends assessed in 3D printing hardware encompass throughput, multi-material printing, quality, large format, and desktop systems. The latest developments in polymers, metals, ceramics, nanocomposites, and smart materials are reviewed as well.

The report examines the role of additive manufacturing in prototyping, tooling production, and certified end-part manufacturing. Other aspects include design software, process simulation, automation, quality assurance, post-processing, and sustainability impacts.

Report contents include:

  • Global market forecasts for AM hardware, materials, and services from 2018-2035
  • Analysis of AM hardware by technology type - unit sales and revenues
  • Assessment of polymer, metal, ceramic, composite material demand
  • Profiles of 250+ leading and emerging companies across the AM value chain. Companies profiled include 3DCERAM, Additive Industries, Admatec Europe, Arris Composites, Bright Laser Technologies, Colibrium Additive, Desktop Metal, Eplus3D, Fabric8Labs, Freeform, GE Additive, Magnus Metal, MADDE,  Quantica, SLM Solutions, Seurat Technologies,  Stratasys Direct, Tethon3D, TRUMPF, UltiMaker, Velo3D, Xjet and Ziknes.
  • AM market growth drivers and latest industry trends
  • Role of AM in prototyping, tooling, and end-part production
  • AM applications in aerospace, medical, architecture, automotive, consumer, electronics and energy sectors
  • Impact of AM on manufacturing, supply chains, sustainability
  • Post-processing, quality assurance, simulation, automation in AM
  • Latest progress with polymers, metals, ceramics and nanocomposites for AM
  • Regional market demand analysis across North America, Europe, Asia Pacific, RoW

 

 

1             RESEARCH METHODOLOGY   30

 

2             EXECUTIVE SUMMARY 31

  • 2.1         Additive Manufacturing (AM) and 3D printing   31
    • 2.1.1     Processes and feedstock           31
    • 2.1.2     Comparison of AM and Conventional Manufacturing  32
    • 2.1.3     Benefits of additive manufacturing (AM)            33
  • 2.2         Market growth drivers  35
  • 2.3         Trends in additive manufacturing          36
    • 2.3.1     3D printing hardware    37
    • 2.3.2     3D printing materials   37
  • 2.4         Market players 38
    • 2.4.1     Market map       38
    • 2.4.2     Printer Manufacturers 40
    • 2.4.3     Materials Companies  42
    • 2.4.4     Software Firms 43
    • 2.4.5     Service Bureaus             44
  • 2.5         Market Outlook               46
    • 2.5.1     Printer Hardware Advancements          46
    • 2.5.2     Software and Design Advancements   47
    • 2.5.3     Manufacturing and Supply Chain Impact           47
    • 2.5.4     Sustainability Impact  48
  • 2.6         Challenges and Limitations      48
  • 2.7         Recent market news and investments 50
  • 2.8         Global market 2018-2035          52
    • 2.8.1     Hardware           52
      • 2.8.1.1 Units     52
      • 2.8.1.2 Revenues           54
    • 2.8.2     Materials            56
      • 2.8.2.1 Tonnes 56
      • 2.8.2.2 Revenues           60
    • 2.8.3     Services             64
      • 2.8.3.1 Revenues           64
    • 2.8.4     By region            66

 

3             INTRODUCTION             71

  • 3.1         Overview of Additive Manufacturing     71
    • 3.1.1     Prototyping       73
    • 3.1.2     Tooling 74
    • 3.1.3     Final part production    75
  • 3.2         History of Additive Manufacturing         76
  • 3.3         Markets               77
  • 3.4         Additive Manufacturing Processes       79
    • 3.4.1     Vat Photopolymerization           80
    • 3.4.2     Material Jetting 81
    • 3.4.3     Binder Jetting   82
    • 3.4.4     Material Extrusion         83
    • 3.4.5     Powder Bed Fusion       84
    • 3.4.6     Sheet Lamination          85
    • 3.4.7     Directed Energy Deposition      85
  • 3.5         Materials            87
    • 3.5.1     Polymers            87
    • 3.5.2     Metals 87
    • 3.5.3     Composites materials 89
    • 3.5.4     Ceramics and other materials 90
  • 3.6         Desktop 3D printers      90

 

4             POLYMERS       93

  • 4.1         Overview            93
    • 4.1.1     Plastics               96
      • 4.1.1.1 Sustainable materials 97
  • 4.2         Trends  100
  • 4.3         Hardware           100
    • 4.3.1     Material Jetting 101
      • 4.3.1.1 Material Extrusion         102
        • 4.3.1.1.1             Filament Extrusion        102
          • 4.3.1.1.1.1         Fused Deposition Modeling (FDM)         102
          • 4.3.1.1.1.2         Fused Filament Fabrication (FFF)          102
          • 4.3.1.1.1.3         Pellet Material Extrusion            103
        • 4.3.1.1.2             Large-Format Additive Manufacturing (LFAM) 103
          • 4.3.1.1.2.1         FGF (Fused Granular Fabrication)         103
          • 4.3.1.1.2.2         Robotic Extrusion           103
        • 4.3.1.1.3             Pneumatic Extrusion    104
          • 4.3.1.1.3.1         Silicone              104
          • 4.3.1.1.3.2         Polyurethane   104
      • 4.3.1.2 Vat Photopolymerization           105
        • 4.3.1.2.1             Laser Stereolithography (SLA) 105
        • 4.3.1.2.2             Digital Light Processing (DLP) Stereolithography           105
        • 4.3.1.2.3             LED/LCD-based DLP Stereolithography             105
        • 4.3.1.2.4             Continuous DLP Stereolithography      105
        • 4.3.1.2.5             2PP and other micro 3D printing processes      105
      • 4.3.1.3 Powder Bed Fusion       106
        • 4.3.1.3.1             Selective Laser Sintering (SLS) 106
        • 4.3.1.3.2             Multi Jet Fusion (MJF)   107
        • 4.3.1.3.3             Thermal Powder Bed Fusion Processes              108
      • 4.3.1.4 Material Jetting 109
        • 4.3.1.4.1             PolyJet Technology        109
        • 4.3.1.4.2             MultiJet Modeling (MJM)              109
  • 4.4         Materials            112
      • 4.4.1     Photopolymers               112
        • 4.4.1.1 Photosensitive Resins 112
        • 4.4.1.2 Photopolymer Resins   113
        • 4.4.1.3 Resin types        114
        • 4.4.1.4 Vat photopolymers        116
        • 4.4.1.5 High-speed vat photopolymerization materials              119
          • 4.4.1.5.1             Polyurethane-Based High-Speed Resins           119
          • 4.4.1.5.2             Epoxy-Based Rapid Vat Photopolymerization  120
          • 4.4.1.5.3             Silicone-Based High-Speed 3D Printing             120
    • 4.4.2     Thermoplastics               121
      • 4.4.2.1 General purpose filaments       122
      • 4.4.2.2 Engineering Filaments 122
      • 4.4.2.3 Flexible Filaments         123
      • 4.4.2.4 Reinforced Filaments  123
      • 4.4.2.5 High Temperature Filaments   124
      • 4.4.2.6 Support Filaments        125
      • 4.4.2.7 Fillers for Thermoplastic Filaments      125
      • 4.4.2.8 Thermoplastic Filament Suppliers        126
      • 4.4.2.9 Extrusion 3D printing (filaments and pellets)    127
        • 4.4.2.9.1             ABS       128
        • 4.4.2.9.2             PLA       129
        • 4.4.2.9.3             Nylon (Polyamides)       129
        • 4.4.2.9.4             PAEKs (PEEK and PEKK)              130
        • 4.4.2.9.5             PEI (ULTEM)       130
        • 4.4.2.9.6             Polyester and Co-polyester       130
        • 4.4.2.9.7             Polypropylene (PP)        131
        • 4.4.2.9.8             TPU/TPE and other elastomers               131
        • 4.4.2.9.9             Polycarbonate 132
        • 4.4.2.9.10           Polysulphones (PPS, PESU, PPSU)        132
        • 4.4.2.9.11           Other materials              132
          • 4.4.2.9.11.1       ABS       132
          • 4.4.2.9.11.2       PLA       133
          • 4.4.2.9.11.3       Nylon (Polyamides)       133
          • 4.4.2.9.11.4       PAEKs (PEEK and PEKK)              134
          • 4.4.2.9.11.5       PEI (ULTEM)       134
          • 4.4.2.9.11.6       Polyester and Co-polyesters    134
          • 4.4.2.9.11.7       Polypropylene (PP)        135
          • 4.4.2.9.11.8       TPU/TPE and Elastomers            135
          • 4.4.2.9.11.9       Polycarbonate 136
          • 4.4.2.9.11.10    Polysulfones (PPS, PESU, PPSU)            136
          • 4.4.2.9.11.11    ASA       136
          • 4.4.2.9.11.12    Polystyrene and HIPS  137
          • 4.4.2.9.11.13    PVDF    137
          • 4.4.2.9.11.14    PVA and Water-Soluble Materials         138
          • 4.4.2.9.11.15    Other Water-Soluble Options  138
      • 4.4.2.10               Powders             138
        • 4.4.2.10.1           Flexible Powders            139
        • 4.4.2.10.2           Composite Powders     139
        • 4.4.2.10.3           High Temperature Powders      140
        • 4.4.2.10.4           Engineering (Other) Powders    140
        • 4.4.2.10.5           Thermoplastic Powders: Post-Processing         141
        • 4.4.2.10.6           Nylon   141
        • 4.4.2.10.7           TPU/TPE              143
        • 4.4.2.10.8           Polypropylene 143
        • 4.4.2.10.9           PEEK and PEKK               143
    • 4.4.3     Thermosets       144
      • 4.4.3.1 Silicone              144
      • 4.4.3.2 Thermoset Polyurethane            144
    • 4.4.4     Hydrogels          145
    • 4.4.5     Functional Polymers    146
      • 4.4.5.1 Piezopolymers/Ferroelectrics 146
      • 4.4.5.2 Self-Healing Polymers 147
      • 4.4.5.3 Shape Memory Polymers           147
      • 4.4.5.4 Blends and Alloys          147
      • 4.4.5.5 Interpenetrating Networks        147
    • 4.4.6     Composites      148
    • 4.4.7     Biological Systems       148
      • 4.4.7.1 Polysaccharides            148
      • 4.4.7.2 Proteins              149
      • 4.4.7.3 Bioderived Polymers    149
    • 4.4.8     Smart polymers and 4D printing (shape-morphing system)      149
  • 4.5         Market players 150
  • 4.6         Historical and forecasted markets        151
    • 4.6.1     Hardware unit sales 2018-2035              151
    • 4.6.2     Hardware revenues 2018-2035               152
    • 4.6.3     Regional hardware revenues, 2018-2035           154
    • 4.6.4     Material volumes, 2018-2035  155
    • 4.6.5     Material revenues, 2018-2035 156
    • 4.6.6     Regional materials revenues, 2018-2035           158

 

5             METALS              160

  • 5.1         Overview            160
  • 5.2         Trends  161
  • 5.3         Hardware           161
    • 5.3.1     Powder Bed Fusion: Direct Metal Laser Sintering (DMLS)          162
    • 5.3.2     Powder Bed Fusion: Electron Beam Melting (EBM)        163
    • 5.3.3     Directed Energy Deposition      163
    • 5.3.4     Directed Energy Deposition: Wire          164
    • 5.3.5     Binder Jetting: Metal Binder Jetting        164
    • 5.3.6     Sand Binder Jetting       165
    • 5.3.7     Sheet Lamination: Ultrasonic Additive Manufacturing (UAM)  165
    • 5.3.8     Extrusion: Metal-Polymer Filament (MPFE)       165
    • 5.3.9     Extrusion: Metal-Polymer Pellet             166
    • 5.3.10   Extrusion: Metal Paste 166
    • 5.3.11   Vat Photopolymerization: Digital Light Processing (DLP)           166
    • 5.3.12   Material Jetting: Nanoparticle Jetting (NPJ)       167
    • 5.3.13   Material Jetting: Magnetohydrodynamic Deposition    167
    • 5.3.14   Material Jetting: Electrochemical Deposition  167
    • 5.3.15   Material Jetting: Cold Spray      168
    • 5.3.16   Slurry Feedstock Processes     169
    • 5.3.17   Metal PBF technologies              171
      • 5.3.17.1               Laser metal PBF (L-PBF or SLM)              171
    • 5.3.18   Metal DED technologies             172
      • 5.3.18.1               Powder metal laser DED (L-DED)            172
      • 5.3.18.2               Wire metal DED (WAAM, EBAM, RPD)  173
    • 5.3.19   Sinter-based technologies        173
      • 5.3.19.1               Metal binder jetting (MBJ)           173
      • 5.3.19.2               Metal Material Jetting (MMJ)     174
      • 5.3.19.3               Bound metal material extrusion (MEX – bound)               175
      • 5.3.19.4               Bound metal stereolithography (VPP – bound) 175
      • 5.3.19.5               Bound metal SLS (SLS – bound)              175
    • 5.3.20   Consolidation technologies      176
      • 5.3.20.1               Kinetic consolidation (cold spray)          176
      • 5.3.20.2               Friction consolidation (friction stir welding)     176
      • 5.3.20.3               Ultrasound consolidation          176
      • 5.3.20.4               EBM metal PBF (EB-PBF)            177
  • 5.4         Materials            178
    • 5.4.1     Metal + Polymer Filaments       178
    • 5.4.2     Metal + Photopolymer Resins  179
    • 5.4.3     High Entropy Alloys for AM         180
    • 5.4.4     Amorphous Alloys for AM           181
    • 5.4.5     Emerging Aluminum Alloys and MMCs 182
    • 5.4.6     Multi-Metal AM Solutions          182
    • 5.4.7     Materials Informatics for AM    183
    • 5.4.8     Metal powders 184
      • 5.4.8.1 Atomization processes               184
        • 5.4.8.1.1             Water Atomization        185
        • 5.4.8.1.2             Gas Atomization            185
        • 5.4.8.1.3             Plasma Atomization     185
        • 5.4.8.1.4             Electrochemical Atomization  185
      • 5.4.8.2 Steel powders  186
      • 5.4.8.3 Titanium and titanium alloy powders   188
      • 5.4.8.4 Aluminum Alloy Powders for AM             188
        • 5.4.8.4.1             Binder Jetting of Aluminum Alloys         189
        • 5.4.8.4.2             Kinetic Consolidation of Aluminum and Alloys                190
      • 5.4.8.5 Nickel alloy powders    190
      • 5.4.8.6 Cobalt-Chromium Alloy Powders          191
      • 5.4.8.7 Copper alloy powders  192
      • 5.4.8.8 Refractory metal alloy powders for AM                193
      • 5.4.8.9 Precious metal powders             194
      • 5.4.8.10               Amorphous metal powders for AM        195
    • 5.4.9     Metal wire          196
      • 5.4.9.1 Steel wires        198
      • 5.4.9.2 Titanium and titanium alloys wire          198
      • 5.4.9.3 Aluminum and aluminum alloys wire   199
      • 5.4.9.4 Nickel superalloys wire               199
      • 5.4.9.5 Other metal alloys wire               200
    • 5.4.10   Bound metal feedstock               200
      • 5.4.10.1               Metal/Polymer Pellets 201
      • 5.4.10.2               Metal/Polymer Filaments          201
      • 5.4.10.3               Bound Paste Metal        201
        • 5.4.10.3.1           Metal Pastes    201
        • 5.4.10.3.2           Metal Inks/Gels               202
      • 5.4.10.4               Bound Metal Slurries for Stereolithography      202
      • 5.4.10.5               Bound Metal AM Powders for Cold Fusion         202
      • 5.4.10.6               Other Bound Metal AM Feedstocks       203
  • 5.5         Market players 204
    • 5.6         Historical and forecasted markets        206
    • 5.6.1     Hardware unit sales, 2018-2035            206
    • 5.6.2     Hardware revenues, 2018-2035             207
    • 5.6.3     Regional hardware revenues, 2018-2035           209
    • 5.6.4     Materials volumes, 2018-2035 210
    • 5.6.5     Materials revenues, 2018-2035              211
    • 5.6.6     Regional materials revenues, 2018-2035           212

 

6             CERAMICS        214

  • 6.1         Overview            214
    • 6.1.1     Traditional ceramics in additive manufacturing             215
      • 6.1.1.1 Trends  215
    • 6.1.2     Technical ceramics in additive manufacturing 216
      • 6.1.2.1 Trends  216
  • 6.2         Hardware           217
    • 6.2.1 Extrusion            217
      • 6.2.1.1             Extrusion: Ceramic Paste          217
      • 6.2.1.2           Extrusion: Ceramic-Polymer Filament 218
      • 6.2.1.3             Extrusion: Ceramic-Polymer Pellet       218
    • 6.2.2 Vat photopolymerisation           218
      • 6.2.2.1             Vat photopolymerisation: stereolithography (SLA)        218
      • 6.2.2.2             Vat Photopolymerization: Digital Light Processing (DLP)           219
    • 6.2.3 Material jetting: nanoparticle jetting (NPJ)         219
    • 6.2.4 Binder jetting: ceramic binder jetting   219
    • 6.2.5 Ceramic Printers Benchmarking            220
    • 6.2.6    Traditional ceramics    222
      • 6.2.2.1 Binder jetting technology           222
      • 6.2.2.2 Paste deposition/extrusion technologies          223
    • 6.2.7     Technical ceramics      224
      • 6.2.7.1 Stereolithography          224
        • 6.2.7.1.1             SLA Stereolithography 224
        • 6.2.7.1.2             DLP Stereolithography 224
      • 6.2.7.2 Binder jetting    225
      • 6.2.7.3 Material extrusion         225
        • 6.2.7.3.1.1         Bound Filament Extrusion Technologies            225
        • 6.2.7.3.1.2             Paste Deposition/Extrusion Technologies         225
      • 6.2.3.4 Material jetting 226
  • 6.3         Materials            226
    • 6.3.1     Commercial Ceramic 3D Printing Materials     226
    • 6.3.2     Properties of 3D Printed Ceramic Materials     228
    • 6.3.3     Traditional ceramics    229
      • 6.3.3.1 Binder jetting    229
      • 6.3.3.2 Clays    230
      • 6.3.3.3 Concrete            230
      • 6.3.3.4 Glass    230
    • 6.3.4     Technical ceramics      231
      • 6.3.4.1 Technical ceramic slurries        231
      • 6.3.4.2 Technical ceramic powders     232
      • 6.3.4.3 Oxide ceramics              232
        • 6.3.4.3.1             Alumina              233
        • 6.3.4.3.2             Zirconia              233
        • 6.3.4.3.3             Silicates and technical silica   233
      • 6.3.4.4 Non-oxide ceramics     233
        • 6.3.4.4.1             Silicon carbide 233
        • 6.3.4.4.2             Silicon nitride  233
        • 6.3.4.4.3             Boron carbide and other ceramics        234
        • 6.3.4.4.4             Other Non-Oxide Ceramics      234
    • 6.3.4.5 Calcium-based bioceramics   234
      • 6.3.4.5.1             Tricalcium phosphate  234
      • 6.3.4.5.2             Hydroxyapatite 234
  • 6.4         Market players 235
  • 6.5         Historical and forecasted markets        236
    • 6.5.1     Hardware unit sales, 2018-2035            236
    • 6.5.2     Hardware revenues, 2018-2035             237
    • 6.5.3     Regional hardware revenues, 2018-2035           239
    • 6.5.4     Materials volumes, 2018-2035 240
    • 6.5.5     Materials revenues, 2018-2035              242
    • 6.5.6     Regional materials revenues, 2018-2035           243

 

7             COMPOSITES  245

  • 7.1         Overview            245
  • 7.2         Trends  245
  • 7.3         Hardware           246
    • 7.3.1     Chopped fiber 246
      • 7.3.1.1 Cartesian filament extrusion systems and OEMs           246
      • 7.3.1.2 Cartesian pellet extrusion (LFAM)          246
      • 7.3.1.3 Powder bed fusion (PBF)            246
    • 7.3.2     Continuous fiber AM technologies and markets             247
      • 7.3.2.1 Cartesian extrusion systems and OEMs             247
      • 7.3.2.2 Robotic extrusion           247
      • 7.3.2.3 Other hybrid technologies and processes         248
        • 7.3.2.3.1             3D composite tape laying          248
        • 7.3.2.3.2             Composite injection molding   248
        • 7.3.2.3.3             Composite 3D lamination         248
        • 7.3.2.3.4             3D printed composite tooling   249
  • 7.4         Materials            250
    • 7.4.1     Filament Extrusion 3D Printed Composite Parts             250
    • 7.4.2     Powder Bed Fusion 3D Printed Composite Parts            250
    • 7.4.3     Continuous Fiber 3D Printed Composite Parts                250
    • 7.4.4     Matrix Considerations 251
    • 7.4.5     Mechanical Properties 251
    • 7.4.6     Recycled Carbon Fiber as Feedstock Material 251
    • 7.4.7     Nanomaterials 251
    • 7.4.8     Composite filament materials 252
      • 7.4.8.1 Graphene           252
    • 7.4.9     Composite pellet materials      253
    • 7.4.10   Composite powder materials  254
    • 7.4.11   Continuous fiber materials       254
  • 7.5         Market players 256
  • 7.6         Historical and forecasted markets        258
    • 7.6.1     Hardware unit sales, 2018-2035            258
    • 7.6.2     Hardware revenues, 2018-2035             259
    • 7.6.3     Regional hardware revenues, 2018-2035           261
    • 7.6.4     Materials volumes, 2018-2035 262
    • 7.6.5     Materials revenues, 2018-2035              264
    • 7.6.6     Regional materials revenues, 2018-2035           265

 

8             POST-PROCESSING     267

  • 8.1         Process monitoring       267
    • 8.1.1     Introduction      267
      • 8.1.1.1 Material removal            268
      • 8.1.1.2 Process-Inherent Treatments  268
      • 8.1.1.3 Surface Finishing Techniques  268
      • 8.1.1.4 Other Post-Processing Treatments       269
    • 8.1.2     Process Monitoring of Metal Powder Bed Fusion            269
  • 8.2         Metal vs. Polymer in Post-processing  270
  • 8.3         Post-processing Approaches   271
    • 8.3.1     Metal vs. Polymer in Post-processing  272
      • 8.3.1.1 Metal AM Post-processing         272
      • 8.3.1.2 Polymer AM Post-processing   272
      • 8.3.1.3 Post-processing in the Context of 3D Printing Production         273
  • 8.4         Polymer post-processing           275
  • 8.5         Metal post-processing 275
  • 8.6         Sustainability in Post-processing          276
  • 8.7         Market players 276

 

9             SOFTWARE AND SERVICES      278

  • 9.1         Software for 3D printing              278
    • 9.1.1     Hobbyist 3D printing software 279
    • 9.1.2     Professional 3D printing software          279
    • 9.1.3     3D scanning software  280
    • 9.1.4     Computer aided design (CAD) 280
    • 9.1.5     Market players 281
  • 9.2         3D scanning      281
    • 9.2.1     Types of 3D Scanning Technologies      282
      • 9.2.1.1 Laser Triangulation       282
      • 9.2.1.2 Structured Light              282
      • 9.2.1.3 3D Computed Tomography (CT)              282
      • 9.2.1.4 Price Segmentation of 3D Scanners     283
      • 9.2.1.5 Applications     284
  • 9.3         Production services      285
    • 9.3.1     Design for Additive Manufacturing (DfAM)         286
    • 9.3.2     Challenges        287
    • 9.3.3     Market outlook 288
    • 9.3.4     Market players 289
    • 9.3.5     Global revenues             290

 

10           MARKETS FOR ADDITIVE MANUFACTURING   294

  • 10.1       Prototypes         295
    • 10.1.1   Functional prototypes 295
    • 10.1.2   Multi-iteration prototyping        295
    • 10.1.3   Prototype to production              296
  • 10.2       Tools     296
    • 10.2.1   Molds for die casting    296
    • 10.2.2   Mechanical tools           297
    • 10.2.3   End of arm tools (EOAT)              297
  • 10.3       Final parts          297
  • 10.4       Aerospace         298
    • 10.4.1   Overview            298
    • 10.4.2   Materials and applications        299
    • 10.4.3   Market players 300
    • 10.4.4   Product examples         301
  • 10.5       Medical and Dental       302
    • 10.5.1   Overview            302
      • 10.5.1.1               Bio-Printing       303
    • 10.5.2   Materials and applications        304
      • 10.5.2.1               Polymers            304
      • 10.5.2.2               Metals 305
      • 10.5.2.3               Ceramics           306
      • 10.5.2.4               Composites      307
      • 10.5.2.5               Medical devices             307
        • 10.5.2.5.1           3D Printing as a Surgical Tool   307
        • 10.5.2.5.2           3D Printing Custom Plates, Implants, Valves, and Stents          308
        • 10.5.2.5.3           3D Printing External Medical Devices  308
        • 10.5.2.5.4           High-Temperature Thermoplastic Filaments and Powders       309
        • 10.5.2.5.5           Photosensitive Resins 309
        • 10.5.2.5.6           Titanium Alloy Powders              309
        • 10.5.2.5.7           Bioactive Ceramic Filaments and Resins           309
      • 10.5.2.6               Pharmaceuticals           309
        • 10.5.2.6.1           Novel Dissolution Profiles         309
        • 10.5.2.6.2           Personalized Medication           310
        • 10.5.2.6.3           Novel Drugs and Drug Testing  310
        • 10.5.2.6.4           Commercial Status and Regulatory Overview 310
      • 10.5.2.7               Dental  311
        • 10.5.2.7.1           Polymer Materials         313
        • 10.5.2.7.2           Metal Materials               313
        • 10.5.2.7.3           Ceramic Materials        313
        • 10.5.2.7.4           Composite Materials   314
        • 10.5.2.7.5           Digital Dentistry and 3D Printing             314
        • 10.5.2.7.6           Photopolymer Resins for Dentistry        314
        • 10.5.2.7.7           3D Printed Orthodontics            315
    • 10.5.3   Market players 315
    • 10.5.4   Product examples         316
  • 10.6       Architecture & Construction    317
    • 10.6.1   Overview            317
      • 10.6.1.1               Market Drivers 318
    • 10.6.2   Materials and applications        320
      • 10.6.2.1               Key materials   321
      • 10.6.2.2               Clay 3D Printing              322
      • 10.6.2.3               Thermoset 3D Printing 322
      • 10.6.2.4               Barriers to Adoption of Concrete 3D Printing   324
    • 10.6.3   Market players 326
    • 10.6.4   Product examples         328
  • 10.7       Automotive       329
    • 10.7.1   Overview            329
    • 10.7.2   Materials and applications        331
      • 10.7.2.1               Electric vehicles (EVs) 332
      • 10.7.2.1.1           Prototyping       332
      • 10.7.2.1.2           Tools, Jigs, and Fixtures              332
      • 10.7.2.1.3           Electric Motors 333
      • 10.7.2.1.4           Electric Motor Components      333
      • 10.7.2.1.5           3D Printed Sand Casting             334
      • 10.7.2.1.6           Lithium-Ion Batteries (LIBs)      335
      • 10.7.2.1.7           Solid-State Batteries (SSBs)     337
      • 10.7.2.1.8           Thermal Management 339
      • 10.7.2.1.9           Interior and Body Parts 341
      • 10.7.2.1.10        Luxury EVs         343
      • 10.7.2.1.11        Market opportunities in EVs      345
      • 10.7.2.1.12        Market barriers                346
    • 10.7.3   Market players 347
    • 10.7.4   Product examples         348
  • 10.8       Consumer Products     349
    • 10.8.1   Overview            349
    • 10.8.2   Materials and applications        350
    • 10.8.3   Challenges        352
    • 10.8.4   Market players 353
    • 10.8.5   Product examples         354
  • 10.9       Energy  354
    • 10.9.1   Overview            354
      • 10.9.1.1               Energy Generation        354
      • 10.9.1.2               Energy Storage 355
      • 10.9.1.3               Energy Distribution and Infrastructure 355
      • 10.9.1.4               Energy Efficiency and Sustainability    355
    • 10.9.2   Materials and applications        357
  • 10.10    Industrial machinery and tooling            357
    • 10.10.1 Overview            357
    • 10.10.2 Materials and applications        357
  • 10.11    Electronics        360
    • 10.11.1 Overview            360
    • 10.11.2 Materials and applications        362
    • 10.11.3 Market players 362
  • 10.12    Oil and Gas       365
    • 10.12.1 Overview            365
    • 10.12.2 Materials and applications        368
  • 10.13    Marine 369
    • 10.13.1 Overview            369
    • 10.13.2 Materials and applications        369
  • 10.14    3D-printed food               372
    • 10.14.1 Overview            372
    • 10.14.2 Materials and applications        373
    • 10.14.3 Market players 375

 

11           COMPANY PROFILES  377

 

12           ACRONYMS      526

 

13           REFERENCES   527

 

List of Tables

  • Table 1. Additive Manufacturing (AM) and 3D printing processes and feedstock.          32
  • Table 2. Comparison of AM and Conventional Manufacturing.               32
  • Table 3. AM techniques, useable materials, and pros and cons.            33
  • Table 4. Market growth drivers for 3D printing and additive manufacturing.     35
  • Table 5. Market Players-Printer Manufacturers.             41
  • Table 6. Market players-3D printing materials. 42
  • Table 7. Market Players-3D Printing Software and Services.    43
  • Table 8. Market Players-3D Printing Service Bureaus. 45
  • Table 9. Challenges and limitations in additive manufacturing.             48
  • Table 10. Recent market news and investments in 3D printing and additive manufacturing.   50
  • Table 11. Global market for 3D printing hardware, by technology, 2018-2035 (1,000 Units).    53
  • Table 12. Global market for 3D printing hardware, by technology, 2018-2035 (Millions USD). 54
  • Table 13. Global market for 3D printing, by material, 2018-2035 (1,000 tonnes).           56
  • Table 14. Polymer 3D Printing Materials Forecast by Feedstock (1,000 Tonnes), 2018-2035.  57
  • Table 15. Metal 3D Printing Materials Forecast by Feedstock (1,000 Tonnes), 2018-2035.        59
  • Table 16. Global market for 3D printing hardware, by material, 2018-2035 (millions USD).      60
  • Table 17. Polymer 3D Printing Materials Forecast by Feedstock (Millions USD), 2018-2035.   61
  • Table 18. Metal 3D Printing Materials Forecast by Feedstock (Millions USD), 2018-2035.         63
  • Table 19. Global market for 3D printing AM services, 2018-2035 (Millions USD).           64
  • Table 20. Global Market for 3D Printing Hardware by Region (1,000 Units), 2018-2035.             66
  • Table 21. Global Market for 3D Printing Hardware by Region (Millions USD), 2018-2035.          67
  • Table 22. Global Market for 3D Printing Materials by Region (1,000 Tonnes), 2018-2035.          68
  • Table 23. Global Market for 3D Printing Materials by Region (Millions USD), 2018-2035.            69
  • Table 24. Markets and applications in 3D printing.        77
  • Table 25. Types of 3D printing processes.          79
  • Table 26. Comparison of AM processes.            86
  • Table 27. Desktop 3D Printer Products                91
  • Table 28. Overview of polymer 3D printing technologies.           93
  • Table 29. Types of polymer materials for 3D printing.   95
  • Table 30. Trends in polymer additive manufacturing.  100
  • Table 31. 3D polymer printing technologies.    102
  • Table 32. Material Jetting Vendors/Systems.   111
  • Table 33. Polymer Printer Benchmarking.          111
  • Table 34. Photosensitive Resin Suppliers.         113
  • Table 35. Photosensitive Resin Advantages and Disadvantages.           114
  • Table 36. Resin types.  114
  • Table 37. Castable Resins properties. 116
  • Table 38. Tough and Rigid Digital Materials.     117
  • Table 39. High Temperature Resins properties.              117
  • Table 40. Transparent Resins properties.           118
  • Table 41. Flexible Elastomeric Resins. 118
  • Table 42. General Purpose Filaments. 122
  • Table 43. Engineering thermoplastic filaments.             122
  • Table 44. Reinforced Filaments.             124
  • Table 45. High Temperature Filaments.              124
  • Table 46. Fillers for Thermoplastic Filaments. 126
  • Table 47. Thermoplastic Filament Suppliers.   126
  • Table 48. Thermoplastic materials for extrusion 3D printing.   127
  • Table 49. Engineering (Nylon) Powders.              139
  • Table 50. Composite powder types and benefits.          139
  • Table 51. High temperature powders and properties.  140
  • Table 52. Thermoplastic Powder Suppliers.      141
  • Table 53. 4D printed hydrogels.               145
  • Table 54. Market players in polymer additive manufacturing.  150
  • Table 55. Polymer 3D Printing/Additive Manufacturing Hardware Unit Sales (1,000 Units), 2018-2035.             151
  • Table 56. Polymer 3D Printing/Additive Manufacturing Hardware Revenues (Millions USD), 2018-2035.          152
  • Table 57. Polymer 3D Printing/Additive Manufacturing Hardware Revenues, 2018-2035 (Millions USD), by Region.                154
  • Table 58. Polymer 3D Printing/Additive Manufacturing Material Volumes, 2018-2035 (Tonnes).            155
  • Table 59. Polymer AM material revenues, 2018-2035 (millions USD).  156
  • Table 60. Polymer AM material revenues, 2018-2035 (millions USD), by region.            158
  • Table 61. Overview of metal 3D printing technologies. 160
  • Table 62. Trends in metal additive manufacturing.       161
  • Table 63. 3D Metal Printing Technologies.         161
  • Table 64. Metal Printers: Benchmarking             170
  • Table 65. Metal AM feedstocks.              178
  • Table 66. Compatibility of metal alloys with AM technologies. 185
  • Table 67. Suppliers of metal powders for AM applications.       186
  • Table 68. Steel powder applications for AM.     187
  • Table 69. Aluminum alloy powder applications in AM. 190
  • Table 70. Nickel superalloy powder applications in AM.             191
  • Table 71. Cobalt-chromium alloy powder applications in AM. 192
  • Table 72.Copper alloy powder applications in AM in a table.    193
  • Table 73. Refractory metal alloy powder applications for AM. 194
  • Table 74. Precious metal powder applications in AM.  195
  • Table 75. Amorphous metal powder applications in AM.            196
  • Table 76. Metal wire vs metal AM powder costs.             197
  • Table 77. Steel Wires for AM.    198
  • Table 78. Other Metal Alloy Wires for AM.          200
  • Table 79. Bound Metal AM Feedstocks.              203
  • Table 80. Market players in metal AM manufacturing. 204
  • Table 81. Metal AM hardware unit sales 2018-2035.    206
  • Table 82. Metal AM hardware revenues 2018-2035 (Millions USD).       207
  • Table 83. Metal AM hardware revenues 2018-2035 (Millions USD), by region. 209
  • Table 84. Metal AM material volumes, 2018-2035 (tonnes).      210
  • Table 85. Metal AM material revenues, 2018-2035 (millions USD).       211
  • Table 86. Metal AM material revenues, 2018-2035 (millions USD), by region.  212
  • Table 87. Overview of 3D printing ceramics.    214
  • Table 88.  Trends in traditional ceramic additive manufacturing.          215
  • Table 89.  Trends in technical ceramic additive manufacturing.            216
  • Table 90. Build Volumes by Printer Manufacturer.        220
  • Table 91. Minimum Z Resolution by Printer Manufacturer.        220
  • Table 92. Minimum XY Resolution by Printer Manufacturer.     221
  • Table 93. Build Speed by Technology Type.       221
  • Table 94. Evaluation of Ceramic 3D Printing Technologies.      221
  • Table 95. Commercial Ceramic 3D Printing Materials. 226
  • Table 96. Classification by feedstock type.       227
  • Table 97. Classification by application.              227
  • Table 98. Classification by Chemistry 228
  • Table 99. Properties of 3D Printed Ceramic Materials. 228
  • Table 100. Concrete applications in AM             230
  • Table 101. Technical Ceramic Slurry Products and Suppliers. 231
  • Table 102. Technical Ceramic Powder Products and Suppliers.             232
  • Table 103. Technical Ceramic Bound Filament Products and Suppliers.           232
  • Table 104. Market players in ceramics additive manufacturing.            235
  • Table 105. Ceramic AM hardware unit sales 2018-2035.            236
  • Table 106. Ceramic AM hardware revenues 2018-2035 (Millions USD).              237
  • Table 107. Ceramic AM hardware revenues 2018-2035 (Millions USD), by region.        239
  • Table 108. Ceramic AM material volumes, 2018-2035 (tonnes).             240
  • Table 109. Ceramic AM material revenues, 2018-2035 (millions USD).              242
  • Table 110. Ceramic AM material revenues, 2018-2035 (millions USD), by region.         243
  • Table 111. Trends in composites additive manufacturing.        245
  • Table 112. Composite Material Feedstock.       250
  • Table 113.Types of composite materials used in AM    252
  • Table 114. Composite Filament Materials Types            252
  • Table 115. Composite Pellet Materials Types  253
  • Table 116. Composite Powder Materials Types.             254
  • Table 117. Continuous Fiber Materials Types. 254
  • Table 118. Continuous fiber 3D printing producers.      254
  • Table 119. Market players in composites additive manufacturing.       256
  • Table 120. Composites AM hardware unit sales 2018-2035.    258
  • Table 121. Composites AM hardware revenues 2018-2035 (Millions USD).      259
  • Table 122. Composites AM hardware revenues 2018-2035 (Millions USD), by region. 261
  • Table 123. Composites AM material volumes, 2018-2035 (tonnes).     262
  • Table 124. Composites AM material revenues, 2018-2035 (millions USD).       264
  • Table 125. Composites AM material revenues, 2018-2035 (millions USD), by region. 265
  • Table 126. Overview of Post-Processing Techniques for Metal Additive Manufacturing             267
  • Table 127. Overview of Post-Processing Techniques for Polymer Additive Manufacturing.      268
  • Table 128. Common post-processing techniques for various polymer materials.         269
  • Table 129. Post-processing Approaches.           273
  • Table 130.          AM post-processing companies             276
  • Table 131. Market players in AM software.        281
  • Table 132. Price segmentation for different types of 3D scanners:        283
  • Table 133. Key industries for 3D scanning and their applications.         284
  • Table 134. 3D Printing Service Bureaus              289
  • Table 135. Global AM Software Revenues by Tool Type, (Millions USD), 2018-2035.    290
  • Table 136. Global AM Software Revenues by Market, (Millions USD), 2018-2035.         291
  • Table 137. Global AM Service Revenues, (Millions USD), 2018-2035.  292
  • Table 138. Markets and applications for additive manufacturing.         294
  • Table 139. 3D printing applications in aerospace.         300
  • Table 140. Market players in 3D printing for aerospace.             300
  • Table 141. 3D printed product examples in Aerospace.              301
  • Table 142. 3D printing technologies in medical and dental.      302
  • Table 143. Applications of polymer 3D printing in medical and dental.               304
  • Table 144. Polymers used in medical 3D printing.         305
  • Table 145. Metals Used in Medical 3D Printing.              305
  • Table 146. Ceramics Used in Medical 3D Printing.        306
  • Table 147. Composites Used in Medical 3D Printing.   307
  • Table 148. Applications of 3D printing in medical devices.       307
  • Table 149. Applications of 3D Printing in Pharmaceuticals.     310
  • Table 150. Applications of 3D printing in dentistry.       312
  • Table 151. Market players in 3D printing in Medical and Dental.             315
  • Table 152. 3D printed product examples in Medical and Dental.            316
  • Table 153. Main categories of concrete AM technology.             319
  • Table 154. Key materials used in concrete 3D printing.               321
  • Table 155. Concrete 3D Printing Projects.         323
  • Table 156. 3D printing construction companies.            326
  • Table 157. 3D printed product examples in Architecture and Construction.    328
  • Table 158. 3D printed cars.       329
  • Table 159. 3D printing applications in automotive.       331
  • Table 160. Market players in automotive additive manufacturing.        347
  • Table 161. 3D printed product examples in Automotive.            348
  • Table 162. 3D printing applications in consumer goods.             350
  • Table 163. Market players in 3D printed consumer products.  353
  • Table 164. 3D printed product examples in Consumer Products.          354
  • Table 165. 3D printing applications in energy. 357
  • Table 166. 3D printing applications in industrial machinery and tooling.            357
  • Table 167. 3D printing applications in electronics.       362
  • Table 168. Market Players in 3D Printing for Electronics.            362
  • Table 169. 3D printing applications in oil and gas.         368
  • Table 170. 3D printing applications in the marine industry.       369
  • Table 171. 3D printing applications in 3d printed food.                373
  • Table 172. Companies developing 3D printed food.      375
  • Table 173. Additive manufacturing acronyms. 526

 

List of Figures

  • Figure 1. Market map for additive manufacturing.         39
  • Figure 2. Global market for 3D printing hardware, by technology, 2018-2035 (1,000 Units).     53
  • Figure 3. Global market for 3D printing hardware, by technology, 2018-2035 (Millions USD).  54
  • Figure 4. Global market for 3D printing, by material, 2018-2035 (1,000 tonnes).            56
  • Figure 5. Polymer 3D Printing Materials Forecast by Feedstock (1,000 Tonnes), 2018-2035.   57
  • Figure 6. Metal 3D Printing Materials Forecast by Feedstock (1,000 Tonnes), 2018-2035.         58
  • Figure 7. Global market for 3D printing hardware, by material, 2018-2035 (Millions US).           60
  • Figure 8. Polymer 3D Printing Materials Forecast by Feedstock (Millions USD), 2018-2035.     61
  • Figure 9. Metal 3D Printing Materials Forecast by Feedstock (Millions USD), 2018-2035.          62
  • Figure 10. Global market for 3D printing AM services, 2018-2035 (Millions USD).          64
  • Figure 11. Global Market for 3D Printing Hardware by Region (1,000 Units), 2018-2035.            66
  • Figure 12. Global Market for 3D Printing Hardware by Region (Millions USD), 2018-2035.         67
  • Figure 13. Global Market for 3D Printing Materials by Region (1,000 Tonnes), 2018-2035.         68
  • Figure 14. Global Market for 3D Printing Materials by Region (Millions USD), 2018-2035.          69
  • Figure 15. Schematics of 3D printing techniques.          70
  • Figure 16. Timeline of 3D printing development.            76
  • Figure 17. VAT Photopolymerisation Process. 80
  • Figure 18. Material Jetting Process.      81
  • Figure 19. Binder Jetting Process.          82
  • Figure 20. Material Extrusion Process. 83
  • Figure 21. Powder Bed Fusion. 84
  • Figure 22. Directed Energy Deposition Process.             85
  • Figure 23. Metal AM hardware unit sales 2018-2035.   206
  • Figure 24. Metal AM hardware revenues 2018-2035 (Millions USD).     207
  • Figure 25. Metal AM hardware revenues 2018-2035 (Millions USD), by region.                208
  • Figure 26. Metal AM material volumes, 2018-2035 (tonnes).    210
  • Figure 27. Metal AM material revenues, 2018-2035 (millions USD).      211
  • Figure 28. Metal AM material revenues, 2018-2035 (millions USD), by region. 212
  • Figure 29. AM produced ceramic functional parts from Lithoz GmbH. 228
  • Figure 30. Ceramic AM hardware unit sales 2018-2035.             236
  • Figure 31. Ceramic AM hardware revenues 2018-2035 (Millions USD).               237
  • Figure 32. Ceramic AM hardware revenues 2018-2035 (Millions USD), by region.         239
  • Figure 33. Ceramic AM material volumes, 2018-2035 (tonnes).              240
  • Figure 34. Ceramic AM material revenues, 2018-2035 (millions USD).               242
  • Figure 35. Ceramic AM material revenues, 2018-2035 (millions USD), by region.          243
  • Figure 36. Applications roadmap to 2035 for graphene in additive manufacturing.      252
  • Figure 37. Composites AM hardware unit sales 2018-2035.     258
  • Figure 38. Composites AM hardware revenues 2018-2035 (Millions USD).       259
  • Figure 39. Composites AM hardware revenues 2018-2035 (Millions USD), by region.  261
  • Figure 40. Composites AM material volumes, 2018-2035 (tonnes).      262
  • Figure 41. Composites AM material revenues, 2018-2035 (millions USD).        264
  • Figure 42. Composites AM material revenues, 2018-2035 (millions USD), by region.   265
  • Figure 43. Global AM Software Revenues by Tool Type, (Millions USD), 2018-2035.     290
  • Figure 44. Global AM Software Revenues by Market, (Millions USD), 2018-2035.          291
  • Figure 45. Global AM Service Revenues, (Millions USD), 2018-2035.   292
  • Figure 46. NASA logo printed in GRX-810 material.       298
  • Figure 47. Custom-Jet Oral Health System with 3D printed mouthpiece.          310
  • Figure 48. Czinger Vehicles’ 21c.           328
  • Figure 49. Cadillac Celestiq.    329
  • Figure 50. Massivit 3d Printing David Bowie Car.            329
  • Figure 51. Bugatti Bolide.           330
  • Figure 52. NERA e-motorcycle.               330
  • Figure 53. XEV Yoyo.     330
  • Figure 54. 3D printed footwear.               349
  • Figure 55. Brooks Running’s Hyperion Elite 4 which uses an ARRIS carbon fiber plate in the midsole. 350
  • Figure 56. A 3D printed titanium carrier tray.    363
  • Figure 57. byFlow 3D printed food.        374
  • Figure 58. Optical micrograph of Exaddon’s 128 probe array, 3D printed directly on contact pads.      425
  • Figure 59. The Continuous Kinetic Mixing system.        430
  • Figure 60. Foundry Lab Gen 2 3D printer.           432
  • Figure 61. A schematic representation of Cold Metal Fusion.  438
  • Figure 62. A 3D printed bicycle saddle designed in Hyperganic Core 2.              443
  • Figure 63. 3D printed aerospike rocket engine designed using Hyperganic Core.          444
  • Figure 64. RenAM 500. 490
  • Figure 65. Seurat Alpha Machine.          500

 

 

 

The Global Market for 3D Printing and Additive Manufacturing 2024-2035
The Global Market for 3D Printing and Additive Manufacturing 2024-2035
PDF.

The Global Market for 3D Printing and Additive Manufacturing 2024-2035
The Global Market for 3D Printing and Additive Manufacturing 2024-2035
PDF and Hard Copy (including tracked FEDEX delivery).

Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer. 

To purchase by invoice (bank transfer) contact info@futuremarketsinc.com or select Bank Transfer (Invoice) as a payment method at checkout.