
cover
- Published: April 2025
- Pages: 735
- Tables: 212
- Figures: 195
The battery technology landscape is undergoing a profound transformation as the industry shifts from conventional lithium-ion solutions toward advanced chemistries and beyond-lithium alternatives. While lithium-ion (Li-ion) technology currently dominates the global battery market with over 99% market share, emerging technologies are poised to capture approximately >25% of the market by 2035. This report provides an in-depth analysis of both advanced Li-ion batteries and beyond-lithium technologies that will revolutionize energy storage across multiple applications from 2025 to 2035. Report contents include:
- Battery demand in GWh by technology type (2025-2035)
- Market valuation in billions of dollars
- Application-specific adoption curves
- Regional market development
- Material consumption trends for advanced anodes and cathodes
- Analysis of Next-Generation Lithium-Ion Technologies:
- Silicon and silicon-carbon composite anodes
- High and ultra-high nickel cathode materials
- Single crystal cathodes
- Lithium-manganese-rich (LMR-NMC) formulations
- Advanced electrolyte systems
- Lithium manganese iron phosphate (LMFP)
- Beyond-Lithium Solutions:
- Semi-solid-state and solid-state batteries
- Sodium-ion and sodium-sulfur systems
- Lithium-sulfur batteries
- Lithium-metal and anode-less designs
- Zinc-based technologies
- Redox flow batteries
- Aluminum-ion batteries
- Specialized Form Factors:
- Flexible batteries
- Transparent energy storage
- Degradable batteries
- Printed and 3D-printed solutions
- Application Market analysis:
- Electric Vehicle Ecosystem:
- Passenger electric vehicles (BEV/PHEV)
- Electric buses, trucks, and commercial vehicles
- Micro-mobility solutions
- Off-road applications including construction and marine
- Battery sizing requirements by vehicle type
- Grid Energy Storage:
- Large-scale installations
- Behind-the-meter commercial systems
- Residential storage solutions
- Consumer Electronics:
- Next-generation devices
- Wearable technology
- Portable power applications
- Electric Vehicle Ecosystem:
- Supply Chain and Manufacturing Analysis
- Advanced cathode production methods
- Silicon anode manufacturing processes
- Solid-state battery production techniques
- Recycling technologies for lithium-ion and beyond-lithium batteries
- Raw material requirements and supply chain considerations
- The integration of AI in battery development and production
- Technology readiness assessments and commercialization timelines
- Application-specific battery selection frameworks
- Regional competitive advantages in battery innovation
- Material intensity and sustainability considerations
- Emerging use cases for specialized battery technologies
- Competitive Landscape. The report profiles 380 companies across the battery value chain, from established manufacturers to innovative start-ups, with detailed analysis of their technology positioning, production capabilities, and strategic partnerships. Companies profiled include 2D Fab AB, 24M Technologies, Inc., 3DOM Inc., 6K Energy, Abound Energy, AC Biode, ACCURE Battery Intelligence, Addionics, Advano, Agora Energy Technologies, Aionics Inc., AirMembrane Corporation, Allegro Energy Pty. Ltd., Alsym Energy, Altairnano / Yinlong, Altris AB, Aluma Power, Altech Batteries Ltd., Ambri, Inc., AMO Greentech, Ampcera, Inc., Amprius, Inc., AMTE Power, Anaphite Limited, Anthro Energy, APB Corporation, Appear Inc., Ateios Systems, Atlas Materials, Australian Advanced Materials, Australian Vanadium Limited, Australia VRFB ESS Company (AVESS), Avanti Battery Company, AZUL Energy Co., Ltd, BAK Power Battery, BASF, BattGenie Inc., Basquevolt, Bedimensional S.p.A, Beijing WeLion New Energy Technology, Bemp Research Company, BenAn Energy Technology, BGT Materials Ltd., Big Pawer, Biwatt Power, Black Diamond Structures, LLC, Blackstone Resources, Blue Current, Inc., Blue Solutions, Blue Spark Technologies, Inc., Bodi, Inc., Brill Power, BrightVolt, Inc., Broadbit Batteries Oy, BTR New Energy Materials, Inc., BYD Company Limited, Cabot Corporation, California Lithium Battery, CAMX Power, CAPCHEM, CarbonScape Ltd., CBAK Energy Technology, Inc., CCL Design, CEC Science & Technology Co., Ltd, Contemporary Amperex Technology Co Ltd (CATL), CellCube, CellsX, Central Glass Co., Ltd., CENS Materials Ltd., CERQ, Ceylon Graphene Technologies (Pvt) Ltd, Cham Battery Technology, Chasm Advanced Materials, Inc., Chemix, Chengdu Baisige Technology Co., Ltd., China Sodium-ion Times, Citrine Informatics, Clarios, Clim8, CMBlu Energy AG, Connexx Systems Corp, Conovate, Coreshell, Customcells, Cymbet, Daejoo Electronic Materials, Dalian Rongke Power, DFD, Dotz Nano, Dreamweaver International, Eatron Technologies, Ecellix, Echion Technologies, EcoPro BM, ElecJet, Elestor, Elegus Technologies, E-Magy, Energy Storage Industries, Enerpoly AB, Enfucell Oy, Enevate, EnPower Greentech, Enovix, Ensurge Micropower ASA, E-Zinc, Eos Energy, Enzinc, Eonix Energy, ESS Tech, EthonAI, EVE Energy Co., Ltd, Exencell New Energy, Factorial Energy, Faradion Limited, Farasis Energy, FDK Corporation, Feon Energy, Inc., FinDreams Battery Co., Ltd., FlexEnergy LLC, Flint, Flow Aluminum, Inc., Flux XII, Forge Nano, Inc., Forsee Power, Fraunhofer Institute for Electronic Nano Systems (ENAS), Front Edge Technology, Fuelium, Fuji Pigment Co., Ltd., Fujitsu Laboratories Ltd., Corporation Guangzhou Automobile New Energy (GAC), Ganfeng Lithium, GDI, Gelion Technologies Pty Ltd., Geyser Batteries Oy, General Motors (GM), Global Graphene Group, Gnanomat S.L., Gotion High Tech, GQenergy srl, Grafentek, Grafoid, Graphene Batteries AS, Graphene Manufacturing Group Pty Ltd (GMG), Great Power Energy, Green Energy Storage S.r.l. (GES), GridFlow, GRST, Shenzhen Grepow Battery Co., Ltd. (Grepow), Group14 Technologies, Inc., Guoke Tanmei New Materials, GUS Technology, H2 Inc., Hansol Chemical, HE3DA Ltd., Hexalayer LLC, High Performance Battery Holding AG, HiNa Battery Technologies Limited, Hirose Paper Mfg Co., Ltd., HiT Nano, Hitachi Zosen Corporation, Horizontal Na Energy, HPQ Nano Silicon Powders Inc., Hua Na New Materials, Hybrid Kinetic Group, HydraRedox Iberia S.L., IBU-tec Advanced Materials AG, Idemitsu Kosan Co., Ltd., Ilika plc, Indi Energy, INEM Technologies, Inna New Energy, Innolith, InnovationLab, Inobat, Intecells, Intellegens, Invinity Energy Systems, Ionblox, Inc., Ionic Materials, Ionic Mineral Technologies, Ion Storage Systems LLC, Iontra, I-Ten SA, Janaenergy Technology, Jenax, Inc., Jiana Energy, JIOS Aerogel, JNC Corporation, Johnson Energy Storage, Inc., Johnson Matthey, Jolt Energy Storage, JR Energy Solution, Kemiwatt, Kite Rise Technologies GmbH, KoreaGraph, Korid Energy / AVESS, Koura, Kusumoto Chemicals, Largo, Inc., Le System Co., Ltd, Lepu Sodium Power, LeydenJar Technologies, LG Energy Solutions, LiBest, Inc., Libode New Material, LiCAP Technologies, Inc., Li-Fun Technology, Li-Metal Corp, LiNa Energy, LIND Limited, Lionrock Batteries, LionVolt BV, Li-S Energy, Lithium Werks BV, LIVA Power Management Systems GmbH, Lucky Sodium Storage, Lyten, Inc., Merck & Co., Inc., Microvast, Mitsubishi Chemical Corporation, Molyon, Monolith AI, Moonwat, mPhase Technologies, Murata Manufacturing Co., Ltd., NanoGraf Corporation, Nacoe Energy, nanoFlocell, Nanom, Nanomakers, Nano One Materials, NanoPow AS, Nanoramic Laboratories, Nanoresearch, Inc., Nanotech Energy Inc., Natrium Energy, Natron Energy, Nawa Techonologies, NDB, NEC Corporation, NEI Corporation, Neo Battery Materials Ltd., New Dominion Enterprises, Nexeon, NGK Insulators Ltd., NIO, Inc., Nippon Chemicon, Nippon Electric Glass, Noco-noco, Noon Energy, Nordische Technologies, Novonix, Nuriplan Co., Ltd., Nuvola Technology, Nuvvon, Nyobolt, OneD Battery Sciences, Our Next Energy (ONE), Paraclete Energy, Paragonage, PEAK Energy, Piersica, Pinflow Energy Storage, PJP Eye Ltd., Polarium, PolyJoule, PolyPlus Battery Company, Posco Chemical, PowerCo SE, prelonic technologies, Prieto Battery, Primearth EV Energy Co., Ltd., Prime Batteries Technology, Primus Power, Printed Energy Pty Ltd., ProfMOF AS and more.....
1 EXECUTIVE SUMMARY 46
- 1.1 The Li-ion Battery Market in 2025 46
- 1.2 Global Market Forecasts to 2035 47
- 1.2.1 Addressable markets 47
- 1.2.2 Li-ion battery pack demand for XEV (GWh) 47
- 1.2.3 Li-ion battery market value for XEV ($B) 48
- 1.2.4 Semi-solid-state battery market forecast (GWh) 49
- 1.2.5 Semi-solid-state battery market value ($B) 51
- 1.2.6 Solid-state battery market forecast (GWh) 52
- 1.2.7 Sodium-ion battery market forecast (GWh) 54
- 1.2.8 Sodium-ion battery market value ($B) 55
- 1.2.9 Li-ion battery demand versus beyond Li-ion batteries demand 56
- 1.2.10 BEV car cathode forecast (GWh) 57
- 1.2.11 BEV anode forecast (GWh) 58
- 1.2.12 BEV anode forecast ($B) 59
- 1.2.13 EV cathode forecast (GWh) 60
- 1.2.14 EV Anode forecast (GWh) 62
- 1.2.15 Advanced anode forecast (GWh) 63
- 1.2.16 Advanced anode forecast (S$B) 64
- 1.3 The global market for advanced Li-ion batteries 65
- 1.3.1 Electric vehicles 67
- 1.3.1.1 Market overview 67
- 1.3.1.2 Battery Electric Vehicles 67
- 1.3.1.3 Electric buses, vans and trucks 68
- 1.3.1.3.1 Electric medium and heavy duty trucks 68
- 1.3.1.3.2 Electric light commercial vehicles (LCVs) 69
- 1.3.1.3.3 Electric buses 69
- 1.3.1.3.4 Micro EVs 70
- 1.3.1.4 Electric off-road 71
- 1.3.1.4.1 Construction vehicles 71
- 1.3.1.4.2 Electric trains 73
- 1.3.1.4.3 Electric boats 73
- 1.3.1.5 Market demand and forecasts 75
- 1.3.2 Grid storage 79
- 1.3.2.1 Market overview 79
- 1.3.2.2 Technologies 80
- 1.3.2.3 Market demand and forecasts 81
- 1.3.3 Consumer electronics 82
- 1.3.3.1 Market overview 82
- 1.3.3.2 Technologies 82
- 1.3.3.3 Market demand and forecasts 83
- 1.3.4 Stationary batteries 84
- 1.3.4.1 Market overview 84
- 1.3.4.2 Technologies 85
- 1.3.4.3 Market demand and forecasts 85
- 1.3.5 Market Forecasts 85
- 1.3.1 Electric vehicles 67
- 1.4 Market drivers 91
- 1.5 Battery market megatrends 93
- 1.6 Advanced materials for batteries 95
- 1.7 Motivation for battery development beyond lithium 96
- 1.8 Battery chemistries 97
2 LI-ION BATTERIES 98
- 2.1 Types of Lithium Batteries 101
- 2.2 Anode materials 103
- 2.2.1 Graphite 105
- 2.2.2 Lithium Titanate 105
- 2.2.3 Lithium Metal 105
- 2.2.4 Silicon anodes 105
- 2.3 SWOT analysis 106
- 2.4 Trends in the Li-ion battery market 107
- 2.5 Li-ion technology roadmap 107
- 2.6 Silicon anodes 109
- 2.6.1 Benefits 110
- 2.6.2 Silicon anode performance 111
- 2.6.3 Development in li-ion batteries 113
- 2.6.3.1 Manufacturing silicon 114
- 2.6.3.2 Commercial production 115
- 2.6.3.3 Costs 117
- 2.6.3.4 Value chain 117
- 2.6.3.5 Markets and applications 118
- 2.6.3.5.1 EVs 119
- 2.6.3.5.2 Consumer electronics 120
- 2.6.3.5.3 Energy Storage 121
- 2.6.3.5.4 Portable Power Tools 121
- 2.6.3.5.5 Emergency Backup Power 122
- 2.6.3.6 Future outlook 122
- 2.6.4 Consumption 123
- 2.6.4.1 By anode material type 123
- 2.6.4.2 By end use market 124
- 2.6.5 Alloy anode materials 125
- 2.6.6 Silicon-carbon composites 126
- 2.6.7 Silicon oxides and coatings 127
- 2.6.8 Carbon nanotubes in Li-ion 127
- 2.6.9 Graphene coatings for Li-ion 127
- 2.6.10 Prices 128
- 2.6.11 Companies 128
- 2.7 Li-ion electrolytes 129
- 2.8 Cathodes 130
- 2.8.1 Materials 130
- 2.8.1.1 High and Ultra-High nickel cathode materials 131
- 2.8.1.1.1 Types 131
- 2.8.1.1.2 Benefits 131
- 2.8.1.1.3 Stability 132
- 2.8.1.1.4 Single Crystal Cathodes 134
- 2.8.1.1.5 Commercial activity 135
- 2.8.1.1.6 Manufacturing 135
- 2.8.1.1.7 High manganese content 136
- 2.8.1.2 Zero-cobalt NMx 136
- 2.8.1.2.1 Overview 136
- 2.8.1.2.2 Ultra-high nickel, zero-cobalt cathodes 137
- 2.8.1.2.3 Extending the operating voltage 137
- 2.8.1.2.4 Operating NMC cathodes at high voltages 137
- 2.8.1.3 Lithium-Manganese-Rich (Li-Mn-Rich, LMR-NMC) 138
- 2.8.1.3.1 Li-Mn-rich cathodes LMR-NMC 139
- 2.8.1.3.2 Stability 139
- 2.8.1.3.3 Energy density 140
- 2.8.1.3.4 Commercialization 141
- 2.8.1.3.5 Hybrid battery chemistry design for manganese-rich 143
- 2.8.1.4 Lithium Cobalt Oxide(LiCoO2) — LCO 144
- 2.8.1.5 Lithium Iron Phosphate(LiFePO4) — LFP 145
- 2.8.1.6 Lithium Manganese Oxide (LiMn2O4) — LMO 146
- 2.8.1.7 Lithium Nickel Manganese Cobalt Oxide (LiNiMnCoO2) — NMC 147
- 2.8.1.8 Lithium Nickel Cobalt Aluminum Oxide (LiNiCoAlO2) — NCA 148
- 2.8.1.9 Lithium manganese phosphate (LiMnP) 148
- 2.8.1.10 Lithium manganese iron phosphate (LiMnFePO4 or LMFP) 149
- 2.8.1.10.1 Key characteristics 149
- 2.8.1.10.2 LMFP energy density 151
- 2.8.1.10.3 Costs 152
- 2.8.1.10.4 Saft phosphate-based cathodes 152
- 2.8.1.10.5 Commercialization 153
- 2.8.1.10.6 Challenges 154
- 2.8.1.10.7 LMFP (lithium manganese iron phosphate) market 154
- 2.8.1.10.8 Companies 155
- 2.8.1.11 Lithium nickel manganese oxide (LNMO) 156
- 2.8.1.11.1 Overview 156
- 2.8.1.11.2 High-voltage spinel cathode LNMO 157
- 2.8.1.11.3 LNMO energy density 158
- 2.8.1.11.4 Cathode chemistry selection 159
- 2.8.1.11.5 LNMO (lithium nickel manganese oxide) high-voltage spinel cathodes cost 159
- 2.8.1.12 Graphite and LTO 160
- 2.8.1.13 Silicon 161
- 2.8.1.14 Lithium metal 161
- 2.8.1.1 High and Ultra-High nickel cathode materials 131
- 2.8.2 Alternative Cathode Production 162
- 2.8.2.1 Production/Synthesis 162
- 2.8.2.2 Commercial development 163
- 2.8.2.3 Recycling cathodes 165
- 2.8.3 Comparison of key lithium-ion cathode materials 166
- 2.8.4 Emerging cathode material synthesis methods 167
- 2.8.5 Cathode coatings 167
- 2.8.1 Materials 130
- 2.9 Binders and conductive additives 168
- 2.9.1 Materials 168
- 2.10 Separators 168
- 2.10.1 Materials 168
- 2.11 Platinum group metals 169
- 2.12 Li-ion battery market players 169
- 2.13 Li-ion recycling 170
- 2.13.1 Comparison of recycling techniques 172
- 2.13.2 Hydrometallurgy 173
- 2.13.2.1 Method overview 173
- 2.13.2.1.1 Solvent extraction 174
- 2.13.2.2 SWOT analysis 175
- 2.13.2.1 Method overview 173
- 2.13.3 Pyrometallurgy 176
- 2.13.3.1 Method overview 176
- 2.13.3.2 SWOT analysis 177
- 2.13.4 Direct recycling 178
- 2.13.4.1 Method overview 178
- 2.13.4.1.1 Electrolyte separation 179
- 2.13.4.1.2 Separating cathode and anode materials 179
- 2.13.4.1.3 Binder removal 180
- 2.13.4.1.4 Relithiation 180
- 2.13.4.1.5 Cathode recovery and rejuvenation 181
- 2.13.4.1.6 Hydrometallurgical-direct hybrid recycling 181
- 2.13.4.2 SWOT analysis 182
- 2.13.4.1 Method overview 178
- 2.13.5 Other methods 182
- 2.13.5.1 Mechanochemical Pretreatment 182
- 2.13.5.2 Electrochemical Method 183
- 2.13.5.3 Ionic Liquids 183
- 2.13.6 Recycling of Specific Components 184
- 2.13.6.1 Anode (Graphite) 184
- 2.13.6.2 Cathode 184
- 2.13.6.3 Electrolyte 184
- 2.13.7 Recycling of Beyond Li-ion Batteries 185
- 2.13.7.1 Conventional vs Emerging Processes 185
- 2.14 Global revenues 186
3 LITHIUM-METAL BATTERIES 188
- 3.1 Technology description 188
- 3.2 Solid-state batteries and lithium metal anodes 189
- 3.3 Increasing energy density 189
- 3.4 Lithium-metal anodes 190
- 3.4.1 Overview 190
- 3.5 Challenges 191
- 3.6 Energy density 192
- 3.7 Anode-less Cells 192
- 3.7.1 Overview 192
- 3.7.2 Benefits 193
- 3.7.3 Key companies 193
- 3.8 Lithium-metal and solid-state batteries 195
- 3.9 Hybrid batteries 195
- 3.10 Applications 197
- 3.11 SWOT analysis 198
- 3.12 Product developers 199
4 LITHIUM-SULFUR BATTERIES 201
- 4.1 Technology description 201
- 4.2 Operating principle of lithium-sulfur (Li-S) batteries 202
- 4.2.1 Advantages 203
- 4.2.2 Challenges 203
- 4.2.3 Commercialization 207
- 4.3 Costs 209
- 4.4 Material composition 210
- 4.5 Lithium intensity 211
- 4.6 Value chain 212
- 4.7 Markets 213
- 4.8 SWOT analysis 214
- 4.9 Global revenues 215
- 4.10 Product developers 216
5 LITHIUM TITANATE OXIDE (LTO) AND NIOBATE BATTERIES 218
- 5.1 Technology description 218
- 5.1.1 Lithium titanate oxide (LTO) 218
- 5.1.2 Niobium titanium oxide (NTO) 218
- 5.1.2.1 Niobium tungsten oxide 219
- 5.1.2.2 Vanadium oxide anodes 220
- 5.2 Global revenues 220
- 5.3 Product developers 221
6 SODIUM-ION (NA-ION) BATTERIES 223
- 6.1 Technology description 223
- 6.1.1 Cathode materials 223
- 6.1.1.1 Layered transition metal oxides 223
- 6.1.1.1.1 Types 223
- 6.1.1.1.2 Cycling performance 224
- 6.1.1.1.3 Advantages and disadvantages 225
- 6.1.1.1.4 Market prospects for LO SIB 225
- 6.1.1.2 Polyanionic materials 225
- 6.1.1.2.1 Advantages and disadvantages 226
- 6.1.1.2.2 Types 226
- 6.1.1.2.3 Market prospects for Poly SIB 227
- 6.1.1.3 Prussian blue analogues (PBA) 227
- 6.1.1.3.1 Types 228
- 6.1.1.3.2 Advantages and disadvantages 229
- 6.1.1.3.3 Market prospects for PBA-SIB 229
- 6.1.1.1 Layered transition metal oxides 223
- 6.1.2 Anode materials 230
- 6.1.2.1 Hard carbons 230
- 6.1.2.2 Carbon black 232
- 6.1.2.3 Graphite 232
- 6.1.2.4 Carbon nanotubes 236
- 6.1.2.5 Graphene 237
- 6.1.2.6 Alloying materials 238
- 6.1.2.7 Sodium Titanates 239
- 6.1.2.8 Sodium Metal 239
- 6.1.3 Electrolytes 239
- 6.1.1 Cathode materials 223
- 6.2 Comparative analysis with other battery types 240
- 6.3 Cost comparison with Li-ion 241
- 6.4 Materials in sodium-ion battery cells 241
- 6.5 SWOT analysis 243
- 6.6 Global revenues 244
- 6.7 Product developers 245
- 6.7.1 Battery Manufacturers 245
- 6.7.2 Large Corporations 246
- 6.7.3 Automotive Companies 246
- 6.7.4 Chemicals and Materials Firms 246
7 SODIUM-SULFUR BATTERIES 247
- 7.1 Technology description 247
- 7.2 Applications 248
- 7.3 SWOT analysis 249
8 ALUMINIUM-ION BATTERIES 251
- 8.1 Technology description 251
- 8.2 SWOT analysis 252
- 8.3 Commercialization 253
- 8.4 Global revenues 254
- 8.5 Product developers 254
9 SOLID STATE BATTERIES 256
- 9.1 Technology description 256
- 9.1.1 Solid-state electrolytes 258
- 9.2 Features and advantages 259
- 9.3 Technical specifications 260
- 9.4 Types 262
- 9.5 Microbatteries 264
- 9.5.1 Introduction 264
- 9.5.2 Materials 265
- 9.5.3 Applications 265
- 9.5.4 3D designs 266
- 9.5.4.1 3D printed batteries 266
- 9.6 Bulk type solid-state batteries 266
- 9.7 SWOT analysis 267
- 9.8 Limitations 268
- 9.9 Global revenues 269
- 9.10 Product developers 271
10 FLEXIBLE BATTERIES 274
- 10.1 Technology description 274
- 10.2 Technical specifications 275
- 10.2.1 Approaches to flexibility 275
- 10.3 Flexible electronics 280
- 10.4 Flexible materials 281
- 10.5 Flexible and wearable Metal-sulfur batteries 282
- 10.6 Flexible and wearable Metal-air batteries 283
- 10.7 Flexible Lithium-ion Batteries 283
- 10.7.1 Types of Flexible/stretchable LIBs 287
- 10.7.1.1 Flexible planar LiBs 287
- 10.7.1.2 Flexible Fiber LiBs 287
- 10.7.1.3 Flexible micro-LiBs 288
- 10.7.1.4 Stretchable lithium-ion batteries 289
- 10.7.1.5 Origami and kirigami lithium-ion batteries 291
- 10.7.1 Types of Flexible/stretchable LIBs 287
- 10.8 Flexible Li/S batteries 291
- 10.8.1 Components 292
- 10.8.2 Carbon nanomaterials 292
- 10.9 Flexible lithium-manganese dioxide (Li–MnO2) batteries 293
- 10.10 Flexible zinc-based batteries 293
- 10.10.1 Components 294
- 10.10.1.1 Anodes 294
- 10.10.1.2 Cathodes 294
- 10.10.2 Challenges 294
- 10.10.3 Flexible zinc-manganese dioxide (Zn–Mn) batteries 295
- 10.10.4 Flexible silver–zinc (Ag–Zn) batteries 296
- 10.10.5 Flexible Zn–Air batteries 297
- 10.10.6 Flexible zinc-vanadium batteries 298
- 10.10.1 Components 294
- 10.11 Fiber-shaped batteries 298
- 10.11.1 Carbon nanotubes 298
- 10.11.2 Types 299
- 10.11.3 Applications 300
- 10.11.4 Challenges 300
- 10.12 Energy harvesting combined with wearable energy storage devices 301
- 10.13 SWOT analysis 303
- 10.14 Global revenues 304
- 10.15 Product developers 305
11 TRANSPARENT BATTERIES 308
- 11.1 Technology description 308
- 11.2 Components 309
- 11.3 SWOT analysis 310
- 11.4 Market outlook 311
12 DEGRADABLE BATTERIES 312
- 12.1 Technology description 312
- 12.2 Components 313
- 12.3 SWOT analysis 314
- 12.4 Market outlook 315
- 12.5 Product developers 315
13 PRINTED BATTERIES 316
- 13.1 Technical specifications 316
- 13.2 Components 317
- 13.3 Design 318
- 13.4 Key features 319
- 13.5 Printable current collectors 319
- 13.6 Printable electrodes 320
- 13.7 Materials 320
- 13.8 Applications 321
- 13.9 Printing techniques 321
- 13.10 Lithium-ion (LIB) printed batteries 323
- 13.11 Zinc-based printed batteries 324
- 13.12 3D Printed batteries 327
- 13.12.1 3D Printing techniques for battery manufacturing 328
- 13.12.2 Materials for 3D printed batteries 329
- 13.12.2.1 Electrode materials 329
- 13.12.2.2 Electrolyte Materials 330
- 13.13 SWOT analysis 330
- 13.14 Global revenues 331
- 13.15 Product developers 333
14 REDOX FLOW BATTERIES 335
- 14.1 Technology description 335
- 14.2 Types 337
- 14.2.1 Vanadium redox flow batteries (VRFB) 338
- 14.2.1.1 Technology description 338
- 14.2.1.2 SWOT analysis 340
- 14.2.1.3 Market players 341
- 14.2.2 Zinc-bromine flow batteries (ZnBr) 342
- 14.2.2.1 Technology description 342
- 14.2.2.2 SWOT analysis 344
- 14.2.2.3 Market players 345
- 14.2.3 Polysulfide bromine flow batteries (PSB) 346
- 14.2.3.1 Technology description 346
- 14.2.3.2 SWOT analysis 347
- 14.2.4 Iron-chromium flow batteries (ICB) 348
- 14.2.4.1 Technology description 348
- 14.2.4.2 SWOT analysis 349
- 14.2.4.3 Market players 350
- 14.2.5 All-Iron flow batteries 350
- 14.2.5.1 Technology description 350
- 14.2.5.2 SWOT analysis 352
- 14.2.5.3 Market players 353
- 14.2.6 Zinc-iron (Zn-Fe) flow batteries 353
- 14.2.6.1 Technology description 353
- 14.2.6.2 SWOT analysis 355
- 14.2.6.3 Market players 356
- 14.2.7 Hydrogen-bromine (H-Br) flow batteries 356
- 14.2.7.1 Technology description 356
- 14.2.7.2 SWOT analysis 358
- 14.2.7.3 Market players 359
- 14.2.8 Hydrogen-Manganese (H-Mn) flow batteries 359
- 14.2.8.1 Technology description 359
- 14.2.8.2 SWOT analysis 360
- 14.2.8.3 Market players 362
- 14.2.9 Organic flow batteries 362
- 14.2.9.1 Technology description 362
- 14.2.9.2 SWOT analysis 364
- 14.2.9.3 Market players 365
- 14.2.10 Emerging Flow-Batteries 366
- 14.2.10.1 Semi-Solid Redox Flow Batteries 366
- 14.2.10.2 Solar Redox Flow Batteries 366
- 14.2.10.3 Air-Breathing Sulfur Flow Batteries 366
- 14.2.10.4 Metal–CO2 Batteries 367
- 14.2.11 Hybrid Flow Batteries 367
- 14.2.11.1 Zinc-Cerium Hybrid Flow Batteries 367
- 14.2.11.1.1 Technology description 367
- 14.2.11.2 Zinc-Polyiodide Flow Batteries 368
- 14.2.11.2.1 Technology description 368
- 14.2.11.3 Zinc-Nickel Hybrid Flow Batteries 370
- 14.2.11.3.1 Technology description 370
- 14.2.11.4 Zinc-Bromine Hybrid Flow Batteries 371
- 14.2.11.4.1 Technology description 371
- 14.2.11.5 Vanadium-Polyhalide Flow Batteries 372
- 14.2.11.5.1 Technology description 372
- 14.2.11.1 Zinc-Cerium Hybrid Flow Batteries 367
- 14.2.1 Vanadium redox flow batteries (VRFB) 338
- 14.3 Markets for redox flow batteries 373
- 14.4 Global revenues 376
15 ZN-BASED BATTERIES 378
- 15.1 Technology description 378
- 15.1.1 Zinc-Air batteries 378
- 15.1.2 Zinc-ion batteries 379
- 15.1.3 Zinc-bromide 380
- 15.2 Market outlook 380
- 15.3 Product developers 381
16 AI BATTERY TECHNOLOGY 382
- 16.1 Overview 382
- 16.2 Applications 382
- 16.2.1 Machine Learning 383
- 16.2.1.1 Overview 383
- 16.2.2 Material Informatics 384
- 16.2.2.1 Overview 384
- 16.2.2.2 Companies 386
- 16.2.3 Cell Testing 388
- 16.2.3.1 Overview 388
- 16.2.3.2 Companies 389
- 16.2.4 Cell Assembly and Manufacturing 391
- 16.2.4.1 Overview 391
- 16.2.4.2 Companies 393
- 16.2.5 Battery Analytics 394
- 16.2.5.1 Overview 394
- 16.2.5.2 Companies 396
- 16.2.6 Second Life Assessment 397
- 16.2.6.1 Overview 397
- 16.2.6.2 Companies 398
- 16.2.1 Machine Learning 383
17 PRINTED SUPERCAPACITORS 399
- 17.1 Overview 399
- 17.2 Printing methods 399
- 17.3 Electrode materials 400
- 17.4 Electrolytes 401
18 CELL AND BATTERY DESIGN 406
- 18.1 Cell Design 406
- 18.1.1 Overview 406
- 18.1.1.1 Larger cell formats 406
- 18.1.1.2 Bipolar battery architecture 406
- 18.1.1.3 Thick Format Electrodes 407
- 18.1.1.4 Dual Electrolyte Li-ion 407
- 18.1.2 Commercial examples 408
- 18.1.2.1 Tesla 4680 Tabless Cell 408
- 18.1.2.2 EnPower multi-layer electrode technology 408
- 18.1.2.3 Prieto Battery 409
- 18.1.2.4 Addionics 409
- 18.1.3 Electrolyte Additives 410
- 18.1.4 Enhancing battery performance 411
- 18.1.1 Overview 406
- 18.2 Cell Performance 412
- 18.2.1 Energy density 412
- 18.2.1.1 BEV cell energy 412
- 18.2.1.2 Cell energy density 413
- 18.2.1 Energy density 412
- 18.3 Battery Packs 415
- 18.3.1 Cell-to-pack 415
- 18.3.2 Cell-to-chassis/body 417
- 18.3.3 Bipolar batteries 420
- 18.3.4 Hybrid battery packs 421
- 18.3.4.1 CATL 421
- 18.3.4.2 Our Next Energy 421
- 18.3.4.3 Nio 422
- 18.3.5 Battery Management System (BMS) 423
- 18.3.5.1 Overview 423
- 18.3.5.2 Advantages 424
- 18.3.5.3 Innovation 424
- 18.3.5.4 Fast charging capabilities 425
- 18.3.5.5 Wireless Battery Management System technology 426
19 COMPANY PROFILES 428 (377 company profiles)
20 RESEARCH METHODOLOGY 709
- 20.1 Report scope 709
- 20.2 Research methodology 709
21 REFERENCES 710
List of Tables
- Table 1. Trends in the Li-ion market in 2025. 46
- Table 2. Total Addressable Market for Li-ion Batteries. 47
- Table 3. Li-ion battery pack demand for XEV (GWh) 2019-2035. 47
- Table 4. Li-ion battery market value for XEV (in $B) 2019-2035. 48
- Table 5. Semi-solid-state battery market forecast (GWh) 2019-2035. 49
- Table 6. Semi-solid-state battery market forecast, GWh, by electrolyte types 2019-2035. 51
- Table 7. Semi-solid-state battery market value ($B) 2019-2035. 51
- Table 8. Solid-state battery market forecast (GWh) 2019-2035. 53
- Table 9. Solid-state battery market forecast, GWh, by electrolyte types 2019-2035. 54
- Table 10. Sodium-ion battery market forecast (GWh) 2019-2035. 55
- Table 11. Sodium-ion battery market value ($B) 2019-2035. 55
- Table 12. Li-ion battery demand versus beyond Li-ion batteries demand 2019-2035. 56
- Table 13. BEV car cathode forecast (GWh) 2019-2035. 57
- Table 14. BEV anode forecast (GWh) 2019-2035. 58
- Table 15. BEV anode forecast ($B) 2019-2035. 59
- Table 16. EV cathode forecast (GWh) 2019-2035. 60
- Table 17. EV Anode forecast (GWh) 2019-2035. 62
- Table 18. Advanced anode forecast (GWh) 2019-2035. 63
- Table 19. Advanced anode forecast (S$B) 2019-2035. 64
- Table 20. Annual sales of battery electric vehicles and plug-in hybrid electric vehicles. 66
- Table 21. Battery chemistries used in electric buses. 70
- Table 22. Micro EV types 70
- Table 23. Battery Sizes for Different Vehicle Types. 72
- Table 24. Competing technologies for batteries in electric boats. 74
- Table 25. Electric car Li-ion demand forecast (GWh), 2018-2035. 75
- Table 26. EV Li-ion battery market (US$B), 2018-2035. 76
- Table 27. Electric bus, truck and van battery forecast (GWh), 2018-2035. 77
- Table 28. Micro EV Li-ion demand forecast (GWh). 78
- Table 29. Competing technologies for batteries in grid storage. 80
- Table 30. Lithium-ion battery grid storage demand forecast (GWh), 2018-2035. 81
- Table 31. Competing technologies for batteries in consumer electronics 83
- Table 32. Competing technologies for sodium-ion batteries in grid storage. 85
- Table 33. Total Addressable Markets (GWh) for Advanced Li-ion and Beyond Li-ion Batteries. 86
- Table 34. BEV Car Cathode Forecast (GWh). 86
- Table 35. BEV Anode Forecast (GWh) 2019-2035. 87
- Table 36. BEV Anode Forecast ($B) 2019-2035. 87
- Table 37. EV Cathode Forecast (GWh) 2019-2035 88
- Table 38. EV Anode Forecast (GWh) 2019-2035. 88
- Table 39. Advanced Anode Forecast (GWh) 2019-2035. 89
- Table 40. Advanced Anode Forecast ($B) 2019-2035 90
- Table 41. Market drivers for use of advanced materials and technologies in batteries. 91
- Table 42. Battery market megatrends. 93
- Table 43. Advanced materials for batteries. 96
- Table 44. Commercial Li-ion battery cell composition. 98
- Table 45. Lithium-ion (Li-ion) battery supply chain. 101
- Table 46. Types of lithium battery. 102
- Table 47. Comparison of Li-ion battery anode materials. 103
- Table 48. Trends in the Li-ion battery market. 107
- Table 49. Si-anode performance summary. 111
- Table 50. Manufacturing methods for nano-silicon anodes. 114
- Table 51. Market Players' Production Capacites. 115
- Table 52. Strategic Partnerships and Agreements. 116
- Table 53. Markets and applications for silicon anodes. 119
- Table 54. Anode material consumption by type (tonnes). 123
- Table 55. Anode material consumption by end use market (tonnes). 124
- Table 56. Anode materials prices, current and forecasted (USD/kg). 128
- Table 57. Silicon-anode companies. 128
- Table 58. Li-ion battery cathode materials. 130
- Table 59. Key technology trends shaping lithium-ion battery cathode development. 131
- Table 60. Benefits of High and Ultra-High Nickel NMC. 131
- Table 61. Routes to High Nickel Cathode Stabilisation 134
- Table 62. High-nickel Products Table. 135
- Table 63. Li-Mn-rich / lithium-manganese-rich / LMR-NMC costs. 141
- Table 64. Commercial lithium-manganese-rich cathode development. 141
- Table 65. Lithium-manganese-rich cathode developers 144
- Table 66. Properties of Lithium Cobalt Oxide) as a cathode material for lithium-ion batteries. 145
- Table 67. Properties of lithium iron phosphate (LiFePO4 or LFP) as a cathode material for lithium-ion batteries. 146
- Table 68. Properties of Lithium Manganese Oxide cathode material. 147
- Table 69. Properties of Lithium Nickel Manganese Cobalt Oxide (NMC). 147
- Table 70. Properties of Lithium Nickel Cobalt Aluminum Oxide 148
- Table 71. LMFP Cell Performance. 150
- Table 72. LMFP Energy Density Analysis 151
- Table 73. LMFP Cost Analysis 152
- Table 74. LMFP Cathode Developers. 155
- Table 75. LNMO Performance. 157
- Table 76. LNMO Energy Density Comparison 158
- Table 77. Alternative Cathode Production Routes. 162
- Table 78. Alternative cathode synthesis routes. 163
- Table 79. Alternative Cathode Production Companies. 164
- Table 80. Recycled cathode materials facilities and capactites. 166
- Table 81. Comparison table of key lithium-ion cathode materials 166
- Table 82. Li-ion battery Binder and conductive additive materials. 168
- Table 83. Li-ion battery Separator materials. 169
- Table 84. Li-ion battery market players. 170
- Table 85. Typical lithium-ion battery recycling process flow. 171
- Table 86. Main feedstock streams that can be recycled for lithium-ion batteries. 171
- Table 87. Comparison of LIB recycling methods. 172
- Table 88. Comparison of conventional and emerging processes for recycling beyond lithium-ion batteries. 185
- Table 89. Global revenues for Li-ion batteries, 2018-2035, by market (Billions USD). 186
- Table 90. Anode-less lithium-metal cell benefits. 193
- Table 91. Anode-less lithium-metal cell developers. 194
- Table 92. Hybrid Battery Technologies 196
- Table 93. Applications for Li-metal batteries. 198
- Table 94. Li-metal battery developers 199
- Table 95. Li-S performance characteristics. 201
- Table 96. Comparison of the theoretical energy densities of lithium-sulfur batteries versus other common battery types. 203
- Table 97. Challenges with lithium-sulfur. 204
- Table 98. Li-S advantages and use cases 208
- Table 99. Global revenues for Lithium-sulfur, 2018-2035, by market (Billions USD). 215
- Table 100. Lithium-sulphur battery product developers. 216
- Table 101. Global revenues for Lithium titanate and niobate batteries, 2018-2035, by market (Billions USD). 220
- Table 102. Product developers in Lithium titanate and niobate batteries. 221
- Table 103. Comparison of cathode materials. 223
- Table 104. Layered transition metal oxide cathode materials for sodium-ion batteries. 224
- Table 105. General cycling performance characteristics of common layered transition metal oxide cathode materials. 224
- Table 106. Polyanionic materials for sodium-ion battery cathodes. 225
- Table 107. Comparative analysis of different polyanionic materials. 226
- Table 108. Common types of Prussian Blue Analogue materials used as cathodes or anodes in sodium-ion batteries. 228
- Table 109. Comparison of Na-ion battery anode materials. 230
- Table 110. Hard Carbon producers for sodium-ion battery anodes. 231
- Table 111. Comparison of carbon materials in sodium-ion battery anodes. 231
- Table 112. Comparison between Natural and Synthetic Graphite. 233
- Table 113. Properties of graphene, properties of competing materials, applications thereof. 237
- Table 114. Comparison of carbon based anodes. 238
- Table 115. Alloying materials used in sodium-ion batteries. 238
- Table 116. Na-ion electrolyte formulations. 239
- Table 117. Pros and cons compared to other battery types. 240
- Table 118. Cost comparison with Li-ion batteries. 241
- Table 119. Key materials in sodium-ion battery cells. 241
- Table 120. Global revenues for sodium-ion batteries, 2018-2035, by market (Billions USD). 244
- Table 121. Product developers in aluminium-ion batteries. 254
- Table 122. Types of solid-state electrolytes. 258
- Table 123. Market segmentation and status for solid-state batteries. 258
- Table 124. Solid Electrolyte Material Comparison. 259
- Table 125. Typical process chains for manufacturing key components and assembly of solid-state batteries. 260
- Table 126. Comparison between liquid and solid-state batteries. 264
- Table 127. Limitations of solid-state thin film batteries. 268
- Table 128. Solid-state battery market forecast (GWh) 2019-2035. 270
- Table 129. Solid-state battery market forecast, GWh, by electrolyte types 2019-2035. 271
- Table 130. Solid-state thin-film battery market players. 271
- Table 131. Flexible battery applications and technical requirements. 275
- Table 132. Comparison of Flexible and Traditional Lithium-Ion Batteries 276
- Table 133. Material Choices for Flexible Battery Components. 277
- Table 134. Flexible Li-ion battery prototypes. 284
- Table 135. Thin film vs bulk solid-state batteries. 286
- Table 136. Summary of fiber-shaped lithium-ion batteries. 288
- Table 137. Types of fiber-shaped batteries. 299
- Table 138. Global revenues for flexible batteries, 2018-2035, by market (Billions USD). 304
- Table 139. Product developers in flexible batteries. 305
- Table 140. Components of transparent batteries. 309
- Table 141. Components of degradable batteries. 313
- Table 142. Product developers in degradable batteries. 315
- Table 143. Main components and properties of different printed battery types. 317
- Table 144. Applications of printed batteries and their physical and electrochemical requirements. 321
- Table 145. 2D and 3D printing techniques. 322
- Table 146. Printing techniques applied to printed batteries. 323
- Table 147. Main components and corresponding electrochemical values of lithium-ion printed batteries. 323
- Table 148. Printing technique, main components and corresponding electrochemical values of printed batteries based on Zn–MnO2 and other battery types. 325
- Table 149. Main 3D Printing techniques for battery manufacturing. 328
- Table 150. Electrode Materials for 3D Printed Batteries. 329
- Table 151. Global revenues for printed batteries, 2018-2035, by market (Billions USD). 331
- Table 152. Product developers in printed batteries. 333
- Table 153. Advantages and disadvantages of redox flow batteries. 336
- Table 154. Comparison of different battery types. 337
- Table 155. Summary of main flow battery types. 337
- Table 156. Vanadium redox flow batteries (VRFB)-key features, advantages, limitations, performance, components and applications. 339
- Table 157. Market players in Vanadium redox flow batteries (VRFB). 341
- Table 158. Zinc-bromine (ZnBr) flow batteries-key features, advantages, limitations, performance, components and applications. 343
- Table 159. Market players in Zinc-Bromine Flow Batteries (ZnBr). 345
- Table 160. Polysulfide bromine flow batteries (PSB)-key features, advantages, limitations, performance, components and applications. 346
- Table 161. Iron-chromium (ICB) flow batteries-key features, advantages, limitations, performance, components and applications. 349
- Table 162. Market players in Iron-chromium (ICB) flow batteries. 350
- Table 163. All-Iron flow batteries-key features, advantages, limitations, performance, components and applications. 351
- Table 164. Market players in All-iron Flow Batteries. 353
- Table 165. Zinc-iron (Zn-Fe) flow batteries-key features, advantages, limitations, performance, components and applications. 354
- Table 166. Market players in Zinc-iron (Zn-Fe) Flow Batteries. 356
- Table 167. Hydrogen-bromine (H-Br) flow batteries-key features, advantages, limitations, performance, components and applications. 357
- Table 168. Market players in Hydrogen-bromine (H-Br) flow batteries. 359
- Table 169. Hydrogen-Manganese (H-Mn) flow batteries-key features, advantages, limitations, performance, components and applications. 360
- Table 170. Market players in Hydrogen-Manganese (H-Mn) Flow Batteries. 362
- Table 171. Materials in Organic Redox Flow Batteries (ORFB). 362
- Table 172. Key Active species for ORFBs 363
- Table 173. Organic flow batteries-key features, advantages, limitations, performance, components and applications. 363
- Table 174. Market players in Organic Redox Flow Batteries (ORFB). 365
- Table 175. Zinc-Cerium Hybrid flow batteries-key features, advantages, limitations, performance, components and applications. 368
- Table 176. Zinc-Polyiodide Hybrid Flow batteries-key features, advantages, limitations, performance, components and applications. 369
- Table 177. Zinc-Nickel Hybrid Flow batteries-key features, advantages, limitations, performance, components and applications. 370
- Table 178. Zinc-Bromine Hybrid Flow batteries-key features, advantages, limitations, performance, components and applications. 371
- Table 179. Vanadium-Polyhalide Hybrid Flow batteries-key features, advantages, limitations, performance, components and applications. 372
- Table 180. Redox flow battery value chain. 373
- Table 181. Global revenues for redox flow batteries, 2018-2035, by type (millions USD). 376
- Table 182. ZN-based battery product developers. 381
- Table 183. Application of Artificial Intelligence (AI) in battery technology. 382
- Table 184. Machine learning approaches. 383
- Table 185. Types of Neural Networks. 384
- Table 186. Companies in materials informatics for batteries. 387
- Table 187. Data Forms for Cell Modelling. 388
- Table 188. Algorithmic Approaches for Different Testing Modes. 389
- Table 189. Companies in AI for cell testing for batteries. 390
- Table 190.Algorithmic Approaches in Manufacturing and Cell Assembly: 391
- Table 191. AI-based battery manufacturing players. 394
- Table 192. Companies in AI for battery diagnostics and management. 397
- Table 193. Algorithmic Approaches and Data Inputs/Outputs. 398
- Table 194. Companies in AI for second-life battery assessment 398
- Table 195. Methods for printing supercapacitors. 399
- Table 196. Electrode Materials for printed supercapacitors. 400
- Table 197. Electrolytes for printed supercapacitors. 402
- Table 198. Main properties and components of printed supercapacitors. 402
- Table 199. Electrolyte Additives. 410
- Table 200. Cell performance specification. 413
- Table 201. Commercial cell chemistries 413
- Table 202. Drivers and Challenges for Cell-to-pack. 416
- Table 203. Cell-to-pack and cell-to-body designs. 418
- Table 204. 3DOM separator. 431
- Table 205. CATL sodium-ion battery characteristics. 478
- Table 206. CHAM sodium-ion battery characteristics. 483
- Table 207. Chasm SWCNT products. 483
- Table 208. Faradion sodium-ion battery characteristics. 517
- Table 209. HiNa Battery sodium-ion battery characteristics. 548
- Table 210. Battery performance test specifications of J. Flex batteries. 570
- Table 211. LiNa Energy battery characteristics. 588
- Table 212. Natrium Energy battery characteristics. 608
List of Figures
- Figure 1. Li-ion battery pack demand for XEV (in GWh) 2019-2035 48
- Figure 2. Li-ion battery market value for XEV (in $B) 2019-2035. 49
- Figure 3. Semi-solid-state battery market forecast (GWh) 2019-2035. 50
- Figure 4. Semi-solid-state battery market forecast, GWh, by electrolyte types 2019-2035. 51
- Figure 5. Semi-solid-state battery market value ($B) 2019-2035. 52
- Figure 6. Solid-state battery market forecast (GWh) 2019-2035. 53
- Figure 7. Solid-state battery market forecast, GWh, by electrolyte types 2019-2035. 54
- Figure 8. Sodium-ion battery market forecast (GWh) 2019-2035. 55
- Figure 9. Sodium-ion battery market value ($B) 2019-2035. 56
- Figure 10. BEV car cathode forecast (GWh) 2019-2035. 58
- Figure 11. BEV anode forecast (GWh) 2019-2035. 59
- Figure 12. BEV anode forecast ($B) 2019-2035. 60
- Figure 13. EV cathode forecast (GWh) 2019-2035. 61
- Figure 14. EV Anode forecast (GWh) 2019-2035. 63
- Figure 15. Advanced anode forecast (GWh) 2019-2035. 64
- Figure 16. Figure 17. Advanced anode forecast (S$B) 2019-2035. 65
- Figure 18. Electric bus, truck and van battery forecast (GWh), 2018-2035. 78
- Figure 19. Micro EV Li-ion demand forecast (GWh). 79
- Figure 20. Lithium-ion battery grid storage demand forecast (GWh), 2018-2035. 82
- Figure 21. Salt-E Dog mobile battery. 84
- Figure 22. I.Power Nest - Residential Energy Storage System Solution. 84
- Figure 23. Costs of batteries to 2030. 95
- Figure 24. Lithium Cell Design. 99
- Figure 25. Functioning of a lithium-ion battery. 99
- Figure 26. Li-ion battery cell pack. 100
- Figure 27. Li-ion electric vehicle (EV) battery. 103
- Figure 28. SWOT analysis: Li-ion batteries. 107
- Figure 29. Li-ion technology roadmap. 108
- Figure 30. Silicon anode value chain. 110
- Figure 31. Market development timeline. 116
- Figure 32. Silicon Anode Commercialization Timeline. 117
- Figure 33. Silicon anode value chain. 118
- Figure 34. Anode material consumption by type (tonnes). 124
- Figure 35. Anode material consumption by end user market (tonnes). 125
- Figure 36. Ultra-high Nickel Cathode Commercialization Timeline. 135
- Figure 37. Lithium-manganese-rich cathode SWOT analysis. 140
- Figure 38. Li-cobalt structure. 145
- Figure 39. Li-manganese structure. 146
- Figure 40. LNMO cathode SWOT. 160
- Figure 41. Typical direct, pyrometallurgical, and hydrometallurgical recycling methods for recovery of Li-ion battery active materials. 171
- Figure 42. Flow chart of recycling processes of lithium-ion batteries (LIBs). 173
- Figure 43. Hydrometallurgical recycling flow sheet. 174
- Figure 44. SWOT analysis for Hydrometallurgy Li-ion Battery Recycling. 175
- Figure 45. Umicore recycling flow diagram. 176
- Figure 46. SWOT analysis for Pyrometallurgy Li-ion Battery Recycling. 177
- Figure 47. Schematic of direct recycling process. 179
- Figure 48. SWOT analysis for Direct Li-ion Battery Recycling. 182
- Figure 49. Global revenues for Li-ion batteries, 2018-2035, by market (Billions USD). 187
- Figure 50. Schematic diagram of a Li-metal battery. 188
- Figure 51. SWOT analysis: Lithium-metal batteries. 199
- Figure 52. Schematic diagram of Lithium–sulfur battery. 201
- Figure 53. Lithium-sulfur market value chain. 213
- Figure 54. SWOT analysis: Lithium-sulfur batteries. 215
- Figure 55. Global revenues for Lithium-sulfur, 2018-2035, by market (Billions USD). 216
- Figure 56. Global revenues for Lithium titanate and niobate batteries, 2018-2035, by market (Billions USD). 221
- Figure 57. Schematic of Prussian blue analogues (PBA). 228
- Figure 58. Comparison of SEM micrographs of sphere-shaped natural graphite (NG; after several processing steps) and synthetic graphite (SG). 233
- Figure 59. Overview of graphite production, processing and applications. 235
- Figure 60. Schematic diagram of a multi-walled carbon nanotube (MWCNT). 236
- Figure 61. Schematic diagram of a Na-ion battery. 243
- Figure 62. SWOT analysis: Sodium-ion batteries. 244
- Figure 63. Global revenues for sodium-ion batteries, 2018-2035, by market (Billions USD). 245
- Figure 64. Schematic of a Na–S battery. 247
- Figure 65. SWOT analysis: Sodium-sulfur batteries. 250
- Figure 66. Saturnose battery chemistry. 251
- Figure 67. SWOT analysis: Aluminium-ion batteries. 253
- Figure 68. Global revenues for aluminium-ion batteries, 2018-2035, by market (Billions USD). 254
- Figure 69. Schematic illustration of all-solid-state lithium battery. 257
- Figure 70. ULTRALIFE thin film battery. 257
- Figure 71. Examples of applications of thin film batteries. 261
- Figure 72. Capacities and voltage windows of various cathode and anode materials. 262
- Figure 73. Traditional lithium-ion battery (left), solid state battery (right). 263
- Figure 74. Bulk type compared to thin film type SSB. 267
- Figure 75. SWOT analysis: All-solid state batteries. 268
- Figure 76. Solid-state battery market forecast (GWh) 2019-2035. 270
- Figure 77. Ragone plots of diverse batteries and the commonly used electronics powered by flexible batteries. 275
- Figure 78. Various architectures for flexible and stretchable electrochemical energy storage. 278
- Figure 79. Types of flexible batteries. 280
- Figure 80. Flexible batteries on the market. 280
- Figure 81. Materials and design structures in flexible lithium ion batteries. 284
- Figure 82. Flexible/stretchable LIBs with different structures. 286
- Figure 83. a–c) Schematic illustration of coaxial (a), twisted (b), and stretchable (c) LIBs. 289
- Figure 84. a) Schematic illustration of the fabrication of the superstretchy LIB based on an MWCNT/LMO composite fiber and an MWCNT/LTO composite fiber. b,c) Photograph (b) and the schematic illustration (c) of a stretchable fiber-shaped battery under stretching conditions. d) Schematic illustration of the spring-like stretchable LIB. e) SEM images of a fiberat different strains. f) Evolution of specific capacitance with strain. d–f) 290
- Figure 85. Origami disposable battery. 291
- Figure 86. Zn–MnO2 batteries produced by Brightvolt. 293
- Figure 87. Charge storage mechanism of alkaline Zn-based batteries and zinc-ion batteries. 295
- Figure 88. Zn–MnO2 batteries produced by Blue Spark. 296
- Figure 89. Ag–Zn batteries produced by Imprint Energy. 297
- Figure 90. Wearable self-powered devices. 302
- Figure 91. SWOT analysis: Flexible batteries. 304
- Figure 92. Global revenues for flexible batteries, 2018-2035, by market (Billions USD). 305
- Figure 93. Transparent batteries. 308
- Figure 94. SWOT analysis: Transparent batteries. 311
- Figure 95. Degradable batteries. 312
- Figure 96. SWOT analysis: Degradable batteries. 315
- Figure 97. Various applications of printed paper batteries. 316
- Figure 98.Schematic representation of the main components of a battery. 317
- Figure 99. Schematic of a printed battery in a sandwich cell architecture, where the anode and cathode of the battery are stacked together. 319
- Figure 100. Manufacturing Processes for Conventional Batteries (I), 3D Microbatteries (II), and 3D-Printed Batteries (III). 327
- Figure 101. SWOT analysis: Printed batteries. 331
- Figure 102. Global revenues for printed batteries, 2018-2035, by market (Billions USD). 332
- Figure 103. Scheme of a redox flow battery. 336
- Figure 104. Vanadium Redox Flow Battery schematic. 339
- Figure 105. SWOT analysis: Vanadium redox flow batteries (VRFB) 341
- Figure 106. Schematic of zinc bromine flow battery energy storage system. 343
- Figure 107. SWOT analysis: Zinc-Bromine Flow Batteries (ZnBr). 345
- Figure 108. SWOT analysis: Iron-chromium (ICB) flow batteries. 348
- Figure 109. SWOT analysis: Iron-chromium (ICB) flow batteries. 350
- Figure 110. Schematic of All-Iron Redox Flow Batteries. 351
- Figure 111. SWOT analysis: All-iron Flow Batteries. 353
- Figure 112. SWOT analysis: Zinc-iron (Zn-Fe) flow batteries. 355
- Figure 113. Schematic of Hydrogen-bromine flow battery. 357
- Figure 114. SWOT analysis: Hydrogen-bromine (H-Br) flow batteries. 359
- Figure 115. SWOT analysis: Hydrogen-Manganese (H-Mn) flow batteries. 361
- Figure 116. SWOT analysis: Organic redox flow batteries (ORFBs) batteries. 365
- Figure 117. Schematic of zinc-polyiodide redox flow battery (ZIB). 369
- Figure 118. Redox flow batteries applications roadmap. 376
- Figure 119. Global revenues for redox flow batteries, 2018-2035, by type (millions USD). 377
- Figure 120. Main printing methods for supercapacitors. 399
- Figure 121. Types of integrated battery packs 415
- Figure 122. Battery pack with a cell-to-pack design and prismatic cells. 416
- Figure 123. 24M battery. 429
- Figure 124. 3DOM battery. 431
- Figure 125. AC biode prototype. 433
- Figure 126. Schematic diagram of liquid metal battery operation. 443
- Figure 127. Ampcera’s all-ceramic dense solid-state electrolyte separator sheets (25 um thickness, 50mm x 100mm size, flexible and defect free, room temperature ionic conductivity ~1 mA/cm). 445
- Figure 128. Amprius battery products. 446
- Figure 129. All-polymer battery schematic. 450
- Figure 130. All Polymer Battery Module. 450
- Figure 131. Resin current collector. 450
- Figure 132. Ateios thin-film, printed battery. 452
- Figure 133. The structure of aluminum-sulfur battery from Avanti Battery. 455
- Figure 134. Containerized NAS® batteries. 457
- Figure 135. 3D printed lithium-ion battery. 464
- Figure 136. Blue Solution module. 465
- Figure 137. TempTraq wearable patch. 467
- Figure 138. Schematic of a fluidized bed reactor which is able to scale up the generation of SWNTs using the CoMoCAT process. 484
- Figure 139. Carhartt X-1 Smart Heated Vest. 489
- Figure 140. Cymbet EnerChip™ 494
- Figure 141. Rongke Power 400 MWh VRFB. 495
- Figure 142. E-magy nano sponge structure. 503
- Figure 143. Enerpoly zinc-ion battery. 505
- Figure 144. SoftBattery®. 506
- Figure 145. ASSB All-Solid-State Battery by EGI 300 Wh/kg. 508
- Figure 146. Roll-to-roll equipment working with ultrathin steel substrate. 509
- Figure 147. 40 Ah battery cell. 516
- Figure 148. FDK Corp battery. 519
- Figure 149. 2D paper batteries. 527
- Figure 150. 3D Custom Format paper batteries. 527
- Figure 151. Fuji carbon nanotube products. 528
- Figure 152. Gelion Endure battery. 531
- Figure 153. Gelion GEN3 lithium sulfur batteries. 532
- Figure 154. Grepow flexible battery. 541
- Figure 155. HPB solid-state battery. 547
- Figure 156. HiNa Battery pack for EV. 548
- Figure 157. JAC demo EV powered by a HiNa Na-ion battery. 549
- Figure 158. Nanofiber Nonwoven Fabrics from Hirose. 550
- Figure 159. Hitachi Zosen solid-state battery. 552
- Figure 160. Ilika solid-state batteries. 557
- Figure 161. TAeTTOOz printable battery materials. 560
- Figure 162. Ionic Materials battery cell. 565
- Figure 163. Schematic of Ion Storage Systems solid-state battery structure. 567
- Figure 164. ITEN micro batteries. 569
- Figure 165. Kite Rise’s A-sample sodium-ion battery module. 576
- Figure 166. LiBEST flexible battery. 582
- Figure 167. Li-FUN sodium-ion battery cells. 585
- Figure 168. LiNa Energy battery. 587
- Figure 169. 3D solid-state thin-film battery technology. 590
- Figure 170. Lyten batteries. 593
- Figure 171. Cellulomix production process. 596
- Figure 172. Nanobase versus conventional products. 596
- Figure 173. Nanotech Energy battery. 607
- Figure 174. Hybrid battery powered electrical motorbike concept. 610
- Figure 175. NBD battery. 611
- Figure 176. Schematic illustration of three-chamber system for SWCNH production. 612
- Figure 177. TEM images of carbon nanobrush. 613
- Figure 178. EnerCerachip. 617
- Figure 179. Cambrian battery. 630
- Figure 180. Printed battery. 634
- Figure 181. Prieto Foam-Based 3D Battery. 635
- Figure 182. Printed Energy flexible battery. 638
- Figure 183. ProLogium solid-state battery. 640
- Figure 184. QingTao solid-state batteries. 641
- Figure 185. Schematic of the quinone flow battery. 644
- Figure 186. Sakuú Corporation 3Ah Lithium Metal Solid-state Battery. 649
- Figure 187. Salgenx S3000 seawater flow battery. 650
- Figure 188. Samsung SDI's sixth-generation prismatic batteries. 652
- Figure 189. SES Apollo batteries. 657
- Figure 190. Sionic Energy battery cell. 665
- Figure 191. Solid Power battery pouch cell. 668
- Figure 192. Stora Enso lignin battery materials. 670
- Figure 193.TeraWatt Technology solid-state battery 681
- Figure 194. Zeta Energy 20 Ah cell. 706
- Figure 195. Zoolnasm batteries. 707
Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer. To order by Bank Transfer (Invoice) select this option from the payment methods menu after adding to cart, or contact info@futuremarketsinc.com