The Global Market for Per- and Polyfluoroalkyl Substances (PFAS), PFAS Alternatives and PFAS Treatment 2025-2035

0

cover

cover

  • Published: April 2025
  • Pages: 352
  • Tables: 130
  • Figures: 17

 

Currently, PFAS materials remain crucial in various industries including semiconductors, textiles, food packaging, electronics, and automotive sectors, with applications ranging from water-repellent coatings to high-performance materials for critical technologies. Market dynamics are heavily influenced by regional regulatory frameworks, particularly in Europe and North America, where stringent regulations are accelerating the transition away from traditional PFAS. The semiconductor industry represents a critical use case, where PFAS remains essential for advanced manufacturing processes, though efforts are underway to develop alternatives. Similarly, the automotive and electronics sectors continue to rely on PFAS for specific applications while actively pursuing substitutes.

The PFAS alternatives market is experiencing rapid growth, with innovative solutions emerging across multiple sectors. These include silicon-based materials, hydrocarbon technologies, bio-based alternatives, and novel polymer systems. The textiles and food packaging industries are leading the transition to PFAS-free alternatives, driven by consumer awareness and regulatory requirements. However, technical performance gaps and cost considerations remain significant challenges in many applications. PFAS treatment and remediation technologies represent a growing market segment, driven by the need to address environmental contamination. Current technologies include advanced oxidation processes, membrane filtration, adsorption systems, and emerging destruction technologies. The water treatment sector, in particular, is seeing significant investment in PFAS removal technologies.

Looking toward 2035, the market is expected to undergo substantial changes. Traditional PFAS usage is projected to decline significantly in non-essential applications, while the alternatives market is forecast to experience robust growth. Critical industries like semiconductors and medical devices may retain specific PFAS applications where alternatives are not yet viable, but with enhanced controls and containment measures.

The treatment technologies market is expected to expand considerably, driven by stricter environmental regulations and growing remediation requirements. Innovation in treatment methods, particularly in destruction technologies and bio-friendly approaches, is likely to accelerate, leading to more cost-effective and efficient solutions. Key challenges for the industry include developing alternatives that match PFAS performance in critical applications, managing transition costs, and ensuring effective treatment solutions. The market outlook varies significantly by region and application, with developed markets leading the transition to alternatives while emerging markets may continue PFAS use in certain applications. Success in this evolving market will depend on technological innovation, regulatory compliance capabilities, and the ability to balance performance requirements with environmental considerations. Companies that can effectively navigate these challenges while developing sustainable solutions are likely to capture significant market opportunities in both alternatives and treatment technologies.

The industry's future will be shaped by continued regulatory evolution, technological advancement, and growing emphasis on sustainable solutions, leading to a transformed market landscape by 2035 characterized by reduced PFAS usage, widespread adoption of alternatives, and advanced treatment capabilities.

The Global Market for Per- and Polyfluoroalkyl Substances (PFAS), PFAS Alternatives and PFAS Treatment 2025-2035 provides an in-depth analysis of the global PFAS sector, including detailed examination of emerging PFAS alternatives and treatment technologies. The study offers strategic insights into market trends, regulatory impacts, and technological developments shaping the industry through 2035. Report contents include:

  • Comprehensive overview of PFAS chemical structures, properties, and historical development
  • Detailed classification of PFAS types, including long-chain, short-chain, polymeric and non-polymeric variants
  • Analysis of unique PFAS properties driving industrial applications
  • Examination of environmental persistence, bioaccumulation, and health concerns
  • Global Regulatory Landscape
    • Current and emerging regulations across major markets including the US, EU, and Asia
    • Impact assessment of regulatory changes on market dynamics
    • State-level regulatory developments in the United States
    • International agreements and collaborative frameworks
  • Industry-Specific PFAS Usage and Alternatives
    • Detailed analysis of PFAS applications and alternative solutions across 13 critical sectors:
      • Semiconductors and electronics
      • Textiles and clothing
      • Food packaging
      • Paints and coatings
      • Ion exchange membranes
      • Energy (excluding fuel cells)
      • Low-loss materials for 5G
      •  Cosmetics
      • Firefighting foam
      • Automotive (including electric vehicles)
      • Medical devices
      • Green hydrogen
      • Electronics
  • PFAS Alternatives Market
    • Technical assessment of non-fluorinated alternatives:
      • PFAS-free release agents
      • Non-fluorinated surfactants and dispersants
      • Water and oil-repellent materials
      • Fluorine-free liquid-repellent surfaces
      • PFAS-free colorless transparent polyimide
  • PFAS Degradation and Elimination
    • Current methodologies for PFAS degradation
    • Bio-friendly remediation approaches:
      • Phytoremediation and microbial degradation
      • Enzyme-based solutions
      •  Mycoremediation
      • Green oxidation methods
  • PFAS Treatment Market
    • Detailed market forecasts for PFAS treatment (2025-2035)
    • Analysis of contamination pathways and global regulatory standards
    • Comprehensive review of water treatment technologies:
      • Traditional removal technologies (GAC, ion exchange, membrane filtration)
      • Emerging removal technologies
      • Destruction technologies (electrochemical oxidation, SCWO, plasma treatment)
      • Solid treatment technologies and market projections
  • Market Analysis and Future Outlook
    • Current market size and segmentation across regions and industries
    • Impact of regulations on market dynamics
    • Emerging trends and opportunities in green chemistry and circular economy
    • Challenge assessment for PFAS substitution
    • Short-term (1-3 years), medium-term (3-5 years), and long-term (5-10 years) market projections
  • Company Profiles. Details of over 500 companies involved in the PFAS, PFAS Alternatives and PFAS Treatment supply chain plus in-depth profiles of 49 companies including 374Water, Aclarity, AquaBlok, Aquagga, Aqua Metrology Systems (AMS), AECOM, Aether Biomachines, Allonia, BioLargo, Cabot Corporation, Calgon Carbon, Claros Technologies, CoreWater Technologies, Cornelsen Umwelttechnologie GmbH, Cyclopure, Desotec, Dmax Plasma, DuPont, ECT2 (Montrose Environmental Group), Element Six, EPOC Enviro, Evoqua Water Technologies, Framergy, General Atomics, Gradiant, Greenlab, Haycarb, InEnTec, Inhance Technologies, Jacobi Group, Kuraray, Lanxess AG, Memsys Water Technologies GmbH, Myconaut, Onvector, OXbyEL Technologies, Ovivo, Oxyle AG and more...

 

Who Should Read This Report:

  • Chemical manufacturers and suppliers
  • Environmental engineering firms
  • Water and waste treatment companies
  • Regulatory compliance professionals
  • Sustainability executives
  • Product development specialists
  • Research and academic institutions
  • Environmental consultants
  • Investment and financial analysts
  • Industry associations and NGOs

 

 

1             EXECUTIVE SUMMARY            20

  • 1.1        Introduction to PFAS 20
  • 1.2        Definition and Overview of PFAS       21
    • 1.2.1    Chemical Structure and Properties 22
    • 1.2.2    Historical Development and Use      23
  • 1.3        Types of PFAS 24
    • 1.3.1    Non-polymeric PFAS 24
      • 1.3.1.1 Long-Chain PFAS        24
      • 1.3.1.2 Short-Chain PFAS       25
      • 1.3.1.3 Other non-polymeric PFAS   27
    • 1.3.2    Polymeric PFAS            28
      • 1.3.2.1 Fluoropolymers (FPs)               28
      • 1.3.2.2 Side-chain fluorinated polymers:     29
      • 1.3.2.3 Perfluoropolyethers   29
  • 1.4        Properties and Applications of PFAS              30
    • 1.4.1    Water and Oil Repellency       30
    • 1.4.2    Thermal and Chemical Stability        31
    • 1.4.3    Surfactant Properties               31
    • 1.4.4    Low Friction    32
    • 1.4.5    Electrical Insulation  32
    • 1.4.6    Film-Forming Abilities              32
    • 1.4.7    Atmospheric Stability               33
  • 1.5        Environmental and Health Concerns             33
    • 1.5.1    Persistence in the Environment         34
    • 1.5.2    Bioaccumulation        35
    • 1.5.3    Toxicity and Health Effects    36
    • 1.5.4    Environmental Contamination           36
  • 1.6        PFAS Alternatives        37
  • 1.7        Analytical techniques              39
  • 1.8        Manufacturing/handling/import/export       41
  • 1.9        Storage/disposal/treatment/purification     42
  • 1.10     Water quality management  44
  • 1.11     Alternative technologies and supply chains              46

 

2             GLOBAL REGULATORY LANDSCAPE               48

  • 2.1        Impact of growing PFAS regulation  48
  • 2.2        International Agreements      51
  • 2.3        European Union Regulations               51
  • 2.4        United States Regulations     52
    • 2.4.1    Federal regulations    52
    • 2.4.2    State-Level Regulations          54
  • 2.5        Asian Regulations       55
    • 2.5.1    Japan  55
      • 2.5.1.1 Chemical Substances Control Law (CSCL)               56
      • 2.5.1.2 Water Quality Standards        56
    • 2.5.2    China  57
      • 2.5.2.1 List of New Contaminants Under Priority Control  57
      • 2.5.2.2 Catalog of Toxic Chemicals Under Severe Restrictions     57
      • 2.5.2.3 New Pollutants Control Action Plan                57
    • 2.5.3    Taiwan 58
      • 2.5.3.1 Toxic and Chemical Substances of Concern Act    58
    • 2.5.4    Australia and New Zealand   58
    • 2.5.5    Canada             58
    • 2.5.6    South Korea    59
  • 2.6        Global Regulatory Trends and Outlook         60

 

3             INDUSTRY-SPECIFIC PFAS USAGE  61

  • 3.1        Semiconductors          61
    • 3.1.1    Importance of PFAS   61
    • 3.1.2    Front-end processes 63
      • 3.1.2.1 Lithography     63
      • 3.1.2.2 Wet etching solutions              64
      • 3.1.2.3 Chiller coolants for dry etchers          65
      • 3.1.2.4 Piping and valves         65
    • 3.1.3    Back-end processes 65
      • 3.1.3.1 Interconnects and Packaging Materials       65
      • 3.1.3.2 Molding materials       66
      • 3.1.3.3 Die attach materials  66
      • 3.1.3.4 Interlayer film for package substrates           66
      • 3.1.3.5 Thermal management             67
    • 3.1.4    Product life cycle and impact of PFAS           67
      • 3.1.4.1 Manufacturing Stage (Raw Materials)            67
      • 3.1.4.2 Usage Stage (Semiconductor Factory)         68
      • 3.1.4.3 Disposal Stage              68
    • 3.1.5    Environmental and Human Health Impacts              68
    • 3.1.6    Regulatory Trends Related to Semiconductors       69
    • 3.1.7    Exemptions     69
    • 3.1.8    Future Regulatory Trends       69
    • 3.1.9    Alternatives to PFAS  70
      • 3.1.9.1 Alkyl Polyglucoside and Polyoxyethylene Surfactants        71
      • 3.1.9.2 Non-PFAS Etching Solutions               71
      • 3.1.9.3 PTFE-Free Sliding Materials  71
      • 3.1.9.4 Metal oxide-based materials               71
      • 3.1.9.5 Fluoropolymer Alternatives   71
      • 3.1.9.6 Silicone-based Materials       71
      • 3.1.9.7 Hydrocarbon-based Surfactants      72
      • 3.1.9.8 Carbon Nanotubes and Graphene   72
      • 3.1.9.9 Engineered Polymers                73
      • 3.1.9.10            Supercritical CO2 Technology            73
      • 3.1.9.11            Plasma Technologies                74
      • 3.1.9.12            Sol-Gel Materials        74
      • 3.1.9.13            Biodegradable Polymers        75
  • 3.2        Textiles and Clothing 76
    • 3.2.1    Overview           76
    • 3.2.2    PFAS in Water-Repellent Materials  76
    • 3.2.3    Stain-Resistant Treatments  77
    • 3.2.4    Regulatory Impact on Water-Repellent Clothing    78
    • 3.2.5    Industry Initiatives and Commitments         79
    • 3.2.6    Alternatives to PFAS  80
      • 3.2.6.1 Enhanced surface treatments            80
      • 3.2.6.2 Non-fluorinated treatments 81
      • 3.2.6.3 Biomimetic approaches         81
      • 3.2.6.4 Nano-structured surfaces    82
      • 3.2.6.5 Wax-based additives 83
      • 3.2.6.6 Plasma treatments     83
      • 3.2.6.7 Sol-gel coatings            84
      • 3.2.6.8 Superhydrophobic coatings 84
      • 3.2.6.9 Biodegradable Polymer Coatings     85
      • 3.2.6.10            Graphene-based Coatings    86
      • 3.2.6.11            Enzyme-based Treatments   86
      • 3.2.6.12            Companies     87
  • 3.3        Food Packaging           89
    • 3.3.1    Sustainable packaging            89
      • 3.3.1.1 PFAS in Grease-Resistant Packaging             89
      • 3.3.1.2 Other applications     89
      • 3.3.1.3 Regulatory Trends in Food Contact Materials           90
    • 3.3.2    Alternatives to PFAS  91
      • 3.3.2.1 Biobased materials    91
        • 3.3.2.1.1           Polylactic Acid (PLA) 91
        • 3.3.2.1.2           Polyhydroxyalkanoates (PHAs)          92
        • 3.3.2.1.3           Cellulose-based materials   93
          • 3.3.2.1.3.1      Nano-fibrillated cellulose (NFC)       94
          • 3.3.2.1.3.2      Bacterial Nanocellulose (BNC)          95
        • 3.3.2.1.4           Silicon-based Alternatives     96
        • 3.3.2.1.5           Natural Waxes and Resins    97
        • 3.3.2.1.6           Engineered Paper and Board               97
        • 3.3.2.1.7           Nanocomposites        98
        • 3.3.2.1.8           Plasma Treatments    99
        • 3.3.2.1.9           Biodegradable Polymer Blends          100
        • 3.3.2.1.10        Chemically Modified Natural Polymers        101
        • 3.3.2.1.11        Molded Fiber  102
      • 3.3.2.2 PFAS-free coatings for food packaging         103
        • 3.3.2.2.1           Silicone-based Coatings:       103
        • 3.3.2.2.2           Bio-based Barrier Coatings   104
        • 3.3.2.2.3           Nanocellulose Coatings         105
        • 3.3.2.2.4           Superhydrophobic and Omniphobic Coatings         106
        • 3.3.2.2.5           Clay-based Nanocomposite Coatings          106
        • 3.3.2.2.6           Coated Papers              107
      • 3.3.2.3 Companies     108
  • 3.4        Paints and Coatings  110
    • 3.4.1    Overview           110
    • 3.4.2    Applications   111
    • 3.4.3    Alternatives to PFAS  112
      • 3.4.3.1 Silicon-Based Alternatives:   112
      • 3.4.3.2 Hydrocarbon-Based Alternatives:    112
      • 3.4.3.3 Nanomaterials              113
      • 3.4.3.4 Plasma-Based Surface Treatments 114
      • 3.4.3.5 Inorganic Alternatives               114
      • 3.4.3.6 Bio-based Polymers: 115
      • 3.4.3.7 Dendritic Polymers    115
      • 3.4.3.8 Zwitterionic Polymers               116
      • 3.4.3.9 Graphene-based Coatings    116
      • 3.4.3.10            Hybrid Organic-Inorganic Coatings 117
      • 3.4.3.11            Companies     117
  • 3.5        Ion Exchange membranes     120
    • 3.5.1    Overview           120
      • 3.5.1.1 PFAS in Ion Exchange Membranes   121
    • 3.5.2    Proton Exchange Membranes             122
      • 3.5.2.1 Overview           122
      • 3.5.2.2 Proton Exchange Membrane Electrolyzers (PEMELs)          124
      • 3.5.2.3 Membrane Degradation          125
      • 3.5.2.4 Nafion 126
      • 3.5.2.5 Membrane electrode assembly (MEA)          129
    • 3.5.3    Manufacturing PFSA Membranes     130
    • 3.5.4    Enhancing PFSA Membranes              132
    • 3.5.5    Commercial PFSA membranes         133
    • 3.5.6    Catalyst Coated Membranes              134
      • 3.5.6.1 Alternatives to PFAS  135
    • 3.5.7    Membranes in Redox Flow Batteries               136
      • 3.5.7.1 Alternative Materials for RFB Membranes   138
    • 3.5.8    Alternatives to PFAS  140
      • 3.5.8.1 Alternative Polymer Materials             140
      • 3.5.8.2 Anion Exchange Membrane Technology (AEM) fuel cells   141
      • 3.5.8.3 Nanocellulose               141
      • 3.5.8.4 Boron-containing membranes           142
      • 3.5.8.5 Hydrocarbon-based membranes     143
      • 3.5.8.6 Metal-Organic Frameworks (MOFs) 144
        • 3.5.8.6.1           MOF Composite Membranes              144
      • 3.5.8.7 Graphene         145
      • 3.5.8.8 Companies     146
  • 3.6        Energy (excluding fuel cells) 146
    • 3.6.1    Overview           146
    • 3.6.2    Solar Panels   147
    • 3.6.3    Wind Turbines               148
      • 3.6.3.1 Blade Coatings             148
      • 3.6.3.2 Lubricants and Greases         148
      • 3.6.3.3 Electrical and Electronic Components         149
      • 3.6.3.4 Seals and Gaskets      149
    • 3.6.4    Lithium-Ion Batteries                149
      • 3.6.4.1 Electrode Binders       149
      • 3.6.4.2 Electrolyte Additives 150
      • 3.6.4.3 Separator Coatings    150
      • 3.6.4.4 Current Collector Coatings   150
      • 3.6.4.5 Gaskets and Seals      151
      • 3.6.4.6 Fluorinated Solvents in Electrode Manufacturing 151
      • 3.6.4.7 Surface Treatments   151
    • 3.6.5    Alternatives to PFAS  151
      • 3.6.5.1 Solar    153
        • 3.6.5.1.1           Ethylene Vinyl Acetate (EVA) Encapsulants               153
        • 3.6.5.1.2           Polyolefin Encapsulants        153
        • 3.6.5.1.3           Glass-Glass Module Design 154
        • 3.6.5.1.4           Bio-based Backsheets            154
      • 3.6.5.2 Wind Turbines               154
        • 3.6.5.2.1           Silicone-Based Coatings        154
        • 3.6.5.2.2           Nanocoatings 155
        • 3.6.5.2.3           Thermal De-icing Systems    155
        • 3.6.5.2.4           Polyurethane-Based Coatings            156
      • 3.6.5.3 Lithium-Ion Batteries                157
        • 3.6.5.3.1           Water-Soluble Binders             157
        • 3.6.5.3.2           Polyacrylic Acid (PAA) Based Binders            158
        • 3.6.5.3.3           Alginate-Based Binders          158
        • 3.6.5.3.4           Ionic Liquid Electrolytes          159
      • 3.6.5.4 Companies     160
  • 3.7        Low-loss materials for 5G      161
    • 3.7.1    Overview           161
      • 3.7.1.1 Organic PCB materials for 5G             163
    • 3.7.2    PTFE in 5G        163
      • 3.7.2.1 Properties         163
      • 3.7.2.2 PTFE-Based Laminates           164
      • 3.7.2.3 Regulations     165
      • 3.7.2.4 Commercial low-loss               166
    • 3.7.3    Alternatives to PFAS  167
      • 3.7.3.1 Liquid crystal polymers (LCP)             167
      • 3.7.3.2 Poly(p-phenylene ether) (PPE)            168
      • 3.7.3.3 Poly(p-phenylene oxide) (PPO)           168
      • 3.7.3.4 Hydrocarbon-based laminates          169
      • 3.7.3.5 Low Temperature Co-fired Ceramics (LTCC)             170
      • 3.7.3.6 Glass Substrates         172
  • 3.8        Cosmetics       174
    • 3.8.1    Overview           174
    • 3.8.2    Use in cosmetics         175
    • 3.8.3    Alternatives to PFAS  175
      • 3.8.3.1 Silicone-based Polymers       176
      • 3.8.3.2 Plant-based Waxes and Oils 176
      • 3.8.3.3 Naturally Derived Polymers  176
      • 3.8.3.4 Silica-based Materials             177
      • 3.8.3.5 Companies Developing PFAS Alternatives in Cosmetics  177
  • 3.9        Firefighting Foam        178
    • 3.9.1    Overview           178
    • 3.9.2    Aqueous Film-Forming Foam (AFFF)              179
    • 3.9.3    Environmental Contamination from AFFF Use        179
    • 3.9.4    Regulatory Pressures and Phase-Out Initiatives     180
    • 3.9.5    Alternatives to PFAS  181
      • 3.9.5.1 Fluorine-Free Foams (F3)      181
      • 3.9.5.2 Siloxane-Based Foams           181
      • 3.9.5.3 Protein-Based Foams              181
      • 3.9.5.4 Synthetic Detergent Foams (Syndet)              182
      • 3.9.5.5 Compressed Air Foam Systems (CAFS)        182
  • 3.10     Automotive      182
    • 3.10.1 Overview           182
    • 3.10.2 PFAS in Lubricants and Hydraulic Fluids     184
    • 3.10.3 Use in Fuel Systems and Engine Components        184
    • 3.10.4 Electric Vehicle             185
      • 3.10.4.1            PFAS in Electric Vehicles        185
      • 3.10.4.2            High-Voltage Cables 186
      • 3.10.4.3            Refrigerants    188
        • 3.10.4.3.1        Coolant Fluids in EVs               188
        • 3.10.4.3.2        Refrigerants for EVs   189
        • 3.10.4.3.3        Regulations     189
        • 3.10.4.3.4        PFAS-free Refrigerants            189
      • 3.10.4.4            Immersion Cooling for Li-ion Batteries          191
        • 3.10.4.4.1        Overview           191
        • 3.10.4.4.2        Single-phase Cooling               192
        • 3.10.4.4.3        Two-phase Cooling    193
        • 3.10.4.4.4        Companies     195
        • 3.10.4.4.5        PFAS-based Coolants in Immersion Cooling for EVs           195
    • 3.10.5 Alternatives to PFAS  197
      • 3.10.5.1            Lubricants and Greases         198
      • 3.10.5.2            Fuel System Components     199
      • 3.10.5.3            Surface Treatments and Coatings    199
      • 3.10.5.4            Gaskets and Seals      200
      • 3.10.5.5            Hydraulic Fluids           201
      • 3.10.5.6            Electrical and Electronic Components         202
      • 3.10.5.7            Paint and Coatings     203
      • 3.10.5.8            Windshield and Glass Treatments   203
  • 3.11     Electronics      204
    • 3.11.1 Overview           204
    • 3.11.2 PFAS in Printed Circuit Boards           205
    • 3.11.3 Cable and Wire Insulation     206
    • 3.11.4 Regulatory Challenges for Electronics Manufacturers       206
    • 3.11.5 Alternatives to PFAS  206
      • 3.11.5.1            Wires and Cables        206
      • 3.11.5.2            Coating              207
      • 3.11.5.3            Electronic Components         208
      • 3.11.5.4            Sealing and Lubricants           209
      • 3.11.5.5            Cleaning           209
      • 3.11.5.6            Companies     210
  • 3.12     Medical Devices           213
    • 3.12.1 Overview           213
    • 3.12.2 PFAS in Implantable Devices               214
    • 3.12.3 Diagnostic Equipment Applications               215
    • 3.12.4 Balancing Safety and Performance in Regulations               216
    • 3.12.5 Alternatives to PFAS  217
  • 3.13     Green hydrogen            218
    • 3.13.1 Electrolyzers   218
    • 3.13.2 Alternatives to PFAS  219
    • 3.13.3 Economic implications           219

 

4             PFAS ALTERNATIVES 221

  • 4.1        PFAS-Free Release Agents    221
    • 4.1.1    Silicone-Based Alternatives  221
    • 4.1.2    Hydrocarbon-Based Solutions           222
    • 4.1.3    Performance Comparisons  223
  • 4.2        Non-Fluorinated Surfactants and Dispersants       224
    • 4.2.1    Bio-Based Surfactants            225
    • 4.2.2    Silicon-Based Surfactants    226
    • 4.2.3    Hydrocarbon-Based Surfactants      226
  • 4.3        PFAS-Free Water and Oil-Repellent Materials          227
    • 4.3.1    Dendrimers and Hyperbranched Polymers                227
    • 4.3.2    PFA-Free Durable Water Repellent (DWR) Coatings             228
    • 4.3.3    Silicone-Based Repellents    229
    • 4.3.4    Nano-Structured Surfaces    230
  • 4.4        Fluorine-Free Liquid-Repellent Surfaces     231
    • 4.4.1    Superhydrophobic Coatings 231
    • 4.4.2    Omniphobic Surfaces              232
    • 4.4.3    Slippery Liquid-Infused Porous Surfaces (SLIPS)   233
  • 4.5        PFAS-Free Colorless Transparent Polyimide             234
    • 4.5.1    Novel Polymer Structures      235
    • 4.5.2    Applications in Flexible Electronics 235

 

5             PFAS DEGRADATION AND ELIMINATION     237

  • 5.1        Current methods for PFAS degradation and elimination   237
  • 5.2        Bio-friendly methods                238
    • 5.2.1    Phytoremediation       238
    • 5.2.2    Microbial Degradation             239
    • 5.2.3    Enzyme-Based Degradation 239
    • 5.2.4    Mycoremediation        240
    • 5.2.5    Biochar Adsorption    240
    • 5.2.6    Green Oxidation Methods     241
    • 5.2.7    Bio-based Adsorbents             243
    • 5.2.8    Algae-Based Systems              243
  • 5.3        Companies     244

 

6             PFAS TREATMENT       247

  • 6.1        Introduction    247
  • 6.2        Pathways for PFAS environmental contamination 249
  • 6.3        Regulations     250
    • 6.3.1    USA      250
    • 6.3.2    EU         251
    • 6.3.3    Rest of the World         252
  • 6.4        PFAS water treatment               253
    • 6.4.1    Introduction    253
    • 6.4.2    Market Forecast 2025-2035 254
    • 6.4.3    Applications   255
      • 6.4.3.1 Drinking water                255
      • 6.4.3.2 Aqueous film forming foam (AFFF)   255
      • 6.4.3.3 Landfill leachate          256
      • 6.4.3.4 Municipal wastewater treatment      256
      • 6.4.3.5 Industrial process and wastewater  256
      • 6.4.3.6 Sites with heavy PFAS contamination           256
      • 6.4.3.7 Point-of-use (POU) and point-of-entry (POE) filters and systems                256
    • 6.4.4    PFAS treatment approaches                257
    • 6.4.5    Traditional removal technologies     259
      • 6.4.5.1 Adsorption: granular activated carbon (GAC)           260
        • 6.4.5.1.1           Sources             260
        • 6.4.5.1.2           Short-chain PFAS compounds           260
        • 6.4.5.1.3           Reactivation   261
        • 6.4.5.1.4           PAC systems  261
      • 6.4.5.2 Adsorption: ion exchange resins (IER)           262
        • 6.4.5.2.1           Pre-treatment                 262
        • 6.4.5.2.2           Resins 263
      • 6.4.5.3 Membrane filtration-reverse osmosis and nanofiltration 265
    • 6.4.6    Emerging removal technologies        266
      • 6.4.6.1 Foam fractionation and ozofractionation    267
        • 6.4.6.1.1           Polymeric sorbents    267
        • 6.4.6.1.2           Mineral-based sorbents          268
        • 6.4.6.1.3           Flocculation/coagulation       268
        • 6.4.6.1.4           Electrostatic coagulation/concentration     269
      • 6.4.6.2 Companies     269
    • 6.4.7    Destruction technologies      270
      • 6.4.7.1 PFAS waste management     272
      • 6.4.7.2 Landfilling of PFAS-containing waste             272
      • 6.4.7.3 Thermal treatment      272
      • 6.4.7.4 Liquid-phase PFAS destruction         273
      • 6.4.7.5 Electrochemical oxidation    275
      • 6.4.7.6 Supercritical water oxidation (SCWO)           275
      • 6.4.7.7 Hydrothermal alkaline treatment (HALT)     275
      • 6.4.7.8 Plasma treatment       276
      • 6.4.7.9 Photocatalysis              276
      • 6.4.7.10            Sonochemical oxidation        277
      • 6.4.7.11            Challenges      278
      • 6.4.7.12            Companies     278
  • 6.5        PFAS Solids Treatment             279
    • 6.5.1    Market Forecast 2025-2035 279
    • 6.5.2    PFAS migration             280
    • 6.5.3    Soil washing (or soil scrubbing)         281
    • 6.5.4    Soil flushing    281
    • 6.5.5    Thermal desorption   282
    • 6.5.6    Phytoremediation       282
    • 6.5.7    In-situ immobilization              282
    • 6.5.8    Pyrolysis and gasification      283
    • 6.5.9    Plasma              283
    • 6.5.10 Supercritical water oxidation (SCWO)           283
  • 6.6        Companies     284

 

7             GLOBAL MARKET ANALYSIS AND FUTURE OUTLOOK             287

  • 7.1        Current Market Size and Segmentation        287
    • 7.1.1    Global PFAS Market Overview            287
    • 7.1.2    Regional Market Analysis      288
      • 7.1.2.1 North America              288
      • 7.1.2.2 Europe                288
      • 7.1.2.3 Asia-Pacific    288
      • 7.1.2.4 Latin America 288
      • 7.1.2.5 Middle East and Africa             289
    • 7.1.3    Market Segmentation by Industry    289
      • 7.1.3.1 Textiles and Apparel  289
      • 7.1.3.2 Food Packaging           290
      • 7.1.3.3 Firefighting Foams      290
      • 7.1.3.4 Electronics & semiconductors           290
      • 7.1.3.5 Automotive      290
      • 7.1.3.6 Aerospace        291
      • 7.1.3.7 Construction  291
      • 7.1.3.8 Others 291
    • 7.1.4    Global PFAS Treatment Market Overview    292
      • 7.1.4.1 Regional PFAS Treatment Market Analysis 293
        • 7.1.4.1.1           North America              293
        • 7.1.4.1.2           Europe                294
        • 7.1.4.1.3           Asia-Pacific    295
        • 7.1.4.1.4           Latin America 295
        • 7.1.4.1.5           Middle East and Africa             296
  • 7.2        Impact of Regulations on Market Dynamics             297
    • 7.2.1    Shift from Long-Chain to Short-Chain PFAS              297
    • 7.2.2    Growth in PFAS-Free Alternatives Market    298
    • 7.2.3    Regional Market Shifts Due to Regulatory Differences       299
  • 7.3        Emerging Trends and Opportunities               301
    • 7.3.1    Green Chemistry Innovations             301
    • 7.3.2    Circular Economy Approaches          302
    • 7.3.3    Digital Technologies for PFAS Management              303
  • 7.4        Challenges and Barriers to PFAS Substitution         304
    • 7.4.1    Technical Performance Gaps              305
    • 7.4.2    Cost Considerations 306
    • 7.4.3    Regulatory Uncertainty            308
  • 7.5        Future Market Projections     309
    • 7.5.1    Short-Term Outlook (1-3 Years)          309
    • 7.5.2    Medium-Term Projections (3-5 Years)            310
    • 7.5.3    Long-Term Scenarios (5-10 Years)    312

 

8             COMPANY PROFILES                316 (49 company profiles)

 

9             RESEARCH METHODOLOGY              346

 

10          REFERENCES 347

 

List of Tables

  • Table 1. Established applications of PFAS. 20
  • Table 2. PFAS chemicals segmented by non-polymers vs polymers.        20
  • Table 3. Non-polymeric PFAS.            21
  • Table 4. Chemical structure and physiochemical properties of various perfluorinated surfactants.  22
  • Table 5. Examples of long-chain PFAS-Applications, Regulatory Status and Environmental and Health Effects.              24
  • Table 6. Examples of short-chain PFAS.       25
  • Table 7. Other non-polymeric PFAS.               27
  • Table 8. Examples of fluoropolymers.           28
  • Table 9. Examples of side-chain fluorinated polymers.     29
  • Table 10. Applications of PFAs.          30
  • Table 11. PFAS surfactant properties.            32
  • Table 12. List of PFAS alternatives.  37
  • Table 13. Common PFAS and their regulation.         48
  • Table 14. International PFAS regulations.    51
  • Table 15. European Union Regulations.       52
  • Table 16. United States Regulations.             54
  • Table 17. PFAS Regulations in Asia-Pacific Countries.       59
  • Table 18. Identified uses of PFAS in semiconductors.        61
  • Table 19. Alternatives to PFAS in Semiconductors.               70
  • Table 20. Key properties of PFAS in water-repellent materials.     77
  • Table 21. Initiatives by outdoor clothing companies to phase out PFCs.                79
  • Table 22. Comparative analysis of Alternatives to PFAS for textiles.          80
  • Table 23. Companies developing PFAS alternatives for textiles.  87
  • Table 24. Applications of PFAS in Food Packaging.              89
  • Table 25. Regulation related to PFAS in food contact materials.  90
  • Table 26. Applications of cellulose nanofibers (CNF).        94
  • Table 27. Companies developing PFAS alternatives for food packaging.               108
  • Table 28. Applications and purpose of PFAS in paints and coatings.        111
  • Table 29. Companies developing PFAS alternatives for paints and coatings.      117
  • Table 30. Applications of Ion Exchange Membranes.          121
  • Table 31. Key aspects of PEMELs.    124
  • Table 32. Membrane Degradation Processes Overview.    125
  • Table 33. PFSA Membranes & Key Players. 126
  • Table 34. Competing Membrane Materials.               127
  • Table 35. Comparative analysis of membrane properties.               127
  • Table 36. Processes for manufacturing of  perfluorosulfonic acid (PFSA) membranes.               130
  • Table 37. PFSA Resin Suppliers.        133
  • Table 38. CCM Production Technologies.    134
  • Table 39. Comparison of Coating Processes.           135
  • Table 40. Alternatives to PFAS in catalyst coated membranes.    135
  • Table 41. Key Properties and Considerations for RFB Membranes.           137
  • Table 42. PFSA Membrane Manufacturers for RFBs.            137
  • Table 43. Alternative Materials for RFB Membranes             138
  • Table 44. Alternative Polymer Materials for Ion Exchange Membranes.  140
  • Table 45. Hydrocarbon Membranes for PEM Fuel Cells.    143
  • Table 46. Companies developing PFA alternatives for fuel cell membranes.      146
  • Table 47. Identified uses of PFASs in the energy sector.    147
  • Table 48. Alternatives to PFAS in Energy by Market (Excluding Fuel Cells).           151
  • Table 49: Anti-icing and de-icing nanocoatings product and application developers.   156
  • Table 50. Companies developing alternatives to PFAS in energy (excluding fuel cells).                160
  • Table 51. Commercial low-loss organic laminates-key properties at 10 GHz.    162
  • Table 52. Key Properties of PTFE to Consider for 5G Applications.             163
  • Table 53. Applications of PTFE in 5G in a table         163
  • Table 54. Challenges in PTFE-based laminates in 5G.        164
  • Table 55. Key regulations affecting PFAS use in low-loss materials.          165
  • Table 56. Commercial low-loss materials suitable for 5G applications. 166
  • Table 57. Key low-loss materials suppliers.               166
  • Table 58. Alternatives to PFAS for low-loss applications in 5G      167
  • Table 59. Benchmarking LTCC materials suitable for 5G applications.   171
  • Table 60. Benchmarking of various glass substrates suitable for 5G applications.         172
  • Table 61. Applications of PFAS in cosmetics.           175
  • Table 62. Alternatives to PFAS for various functions in cosmetics.            175
  • Table 63. Companies developing PFAS alternatives in cosmetics.             177
  • Table 64. Applications of PFAS in Automotive Industry.     183
  • Table 65. Application of PFAS in Electric Vehicles.                186
  • Table 66.Suppliers of PFAS-free Coolants and Refrigerants for EVs.         190
  • Table 67.Immersion Fluids for EVs   191
  • Table 68. Immersion Cooling Fluids Requirements.             192
  • Table 69. Single-phase vs two-phase cooling.         194
  • Table 70. Companies producing Immersion Fluids for EVs.            195
  • Table 71. Alternatives to PFAS in the automotive sector.   197
  • Table 72. Use of PFAS in the electronics sector.     204
  • Table 73. Companies developing alternatives to PFAS in electronics & semiconductors.          210
  • Table 74. Applications of PFAS in Medical Devices.              214
  • Table 75. Alternatives to PFAS in medical devices.               217
  • Table 76. Readiness level of PFAS alternatives.       221
  • Table 77. Comparing PFAS-free alternatives to traditional PFAS-containing release agents.   223
  • Table 78. Novel PFAS-free CTPI structures.                235
  • Table 79. Applications of PFAS-free CTPIs in flexible electronics.               236
  • Table 80. Current methods for PFAS elimination . 237
  • Table 81. Companies developing processes for PFA degradation and elimination.         244
  • Table 82. Total PFAS Treatment Market Forecast by Segment (2025-2035).         248
  • Table 83. PFAS Treatment Market Share Evolution.              248
  • Table 84. Pathways for PFAS environmental contamination.         249
  • Table 85.  Global PFAS Drinking Water Limits           250
  • Table 86. USA PFAS Regulations.      251
  • Table 87. EU PFAS Regulations          252
  • Table 88. Global PFAS Regulations. 252
  • Table 89. PFAS drinking water treatment market forecast 2025-2035     254
  • Table 90. Applications requiring PFAS water treatment.    255
  • Table 91. Point-of-Use (POU) and Point-of-Entry (POE) Systems.               257
  • Table 92. PFAS treatment approaches.        257
  • Table 93. Typical Flow Rates for Different Facilities.            258
  • Table 94. In-Situ vs Ex-Situ Treatment Comparison              259
  • Table 95. Technology Readiness Level (TRL) for PFAS Removal.  259
  • Table 96. Removal technologies for PFAS in water.               259
  • Table 97. Suppliers of GAC media for PFAS removal applications.             262
  • Table 98. Commercially Available PFAS-Selective Resins.              264
  • Table 99. Estimated Treatment Costs by Method. 265
  • Table 100. Comparison of technologies for PFAS removal.             266
  • Table 101. Emerging removal technologies for PFAS in water.        266
  • Table 102. Companies in emerging PFAS removal technologies. 269
  • Table 103. PFAS Destruction Technologies.               270
  • Table 104. Technology Readiness Level (TRL) for PFAS Destruction Technologies.          271
  • Table 105. Thermal Treatment Types.             273
  • Table 106. Liquid-Phase Technology Segmentation.            273
  • Table 107. PFAS Destruction Technologies Challenges.    278
  • Table 108. Companies developing PFAS Destruction Technologies.         278
  • Table 109. PFAS Solids Treatment Market Forecast 2025-2035.  279
  • Table 110. Treatment Methods for PFAS-Contaminated Solids.   280
  • Table 111. Companies developing processes for PFAS water and solid treatment.         284
  • Table 112. Global PFAS Market Projection (2023-2035), Billions USD.    287
  • Table 113. Regional PFAS Market Projection (2023-2035), Billions USD. 289
  • Table 114. PFAS Market Segmentation by Industry (2023-2035), Billions USD. 291
  • Table 115. PFAS treatment market by region, North America.       293
  • Table 116. PFAS treatment market by region, Europe.        294
  • Table 117. PFAS treatment market by region, Asia-Pacific.             295
  • Table 118. PFAS treatment market by region, Latin America          295
  • Table 119. PFAS treatment market by region Middle East and Africa         296
  • Table 120. Long-Chain PFAS andShort-Chain PFAS Market Share              298
  • Table 121.PFAS-Free Alternatives Market Size from 2020 to 2035, (Billions USD).          299
  • Table 122. Regional Market Data (2023) for PFAS and trends.       300
  • Table 123. Market Opportunities for PFAS alternatives.     301
  • Table 124. Circular Economy Initiatives and Potential Impact.     302
  • Table 125. Digital Technology Applications and Market Potential.              304
  • Table 126. Performance Comparison Table.              305
  • Table 127. Cost Comparison Table-PFAS and PFAS alternatives.                306
  • Table 128. Global market Size 2023-2026 (USD Billions). 310
  • Table 129. Market size 2026-2030 (USD Billions). 311
  • Table 130. Long-Term Market Projections (2035).  313

 

List of Figures

  • Figure 1. Types of PFAS.          24
  • Figure 2. Structure of PFAS-based polymer finishes.          27
  • Figure 3. Water and Oil Repellent Textile Coating. 31
  • Figure 4. Main PFAS exposure route.              33
  • Figure 5. Main sources of perfluorinated compounds (PFC) and general pathways that these compounds may take toward human exposure.    35
  • Figure 6.  Photolithography process in semiconductor manufacturing. 62
  • Figure 7. PFAS containing Chemicals by Technology Node.            63
  • Figure 8. The photoresist application process in photolithography.          64
  • Figure 9: Contact angle on superhydrophobic coated surface.    85
  • Figure 10. PEMFC Working Principle.             122
  • Figure 11. Schematic representation of a Membrane Electrode Assembly (MEA).          130
  • Figure 12. Slippery Liquid-Infused Porous Surfaces (SLIPS).          234
  • Figure 13. Aclarity’s Octa system.    242
  • Figure 14. Process for treatment of PFAS in water. 254
  • Figure 15. Octa™ system.       317
  • Figure 16. Gradiant Forever Gone.   331
  • Figure 17. PFAS Annihilator® unit.    343

 

The Global Market for Per- and Polyfluoroalkyl Substances (PFAS), PFAS Alternatives and PFAS Treatment 2025-2035
The Global Market for Per- and Polyfluoroalkyl Substances (PFAS), PFAS Alternatives and PFAS Treatment 2025-2035
PDF download.

The Global Market for Per- and Polyfluoroalkyl Substances (PFAS), PFAS Alternatives and PFAS Treatment 2025-2035
The Global Market for Per- and Polyfluoroalkyl Substances (PFAS), PFAS Alternatives and PFAS Treatment 2025-2035
PDF and Print Edition (including tracked delivery).

Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer. To order by Bank Transfer (Invoice) select this option from the payment methods menu after adding to cart, or contact info@futuremarketsinc.com