The Global Materials Informatics Market 2025-2035

0

cover

cover

  • Published: May 2025
  • Pages: 225
  • Tables: 16
  • Figures: 10

 

The materials informatics (MI) market represents a rapidly developing sector where data science, artificial intelligence, and materials science converge to accelerate discovery and optimization of new materials. The core value proposition driving this growth is the dramatic reduction in materials development timelines. Traditional approaches typically require 10-20 years from concept to commercialization, whereas MI-enabled methods can potentially compress this to 2-5 years. This acceleration delivers significant competitive advantages in industries where material innovation directly impacts product performance and market differentiation.

Several distinct business models have emerged within the MI ecosystem. Software-as-a-Service (SaaS) platforms from companies like Citrine Informatics, Kebotix, and Materials Design provide specialized tools for materials scientists with limited data science expertise. These platforms typically employ subscription models with tiered pricing based on functionality and user numbers. Meanwhile, MI consultancies like NobleAI offer project-based engagements focusing on specific material development challenges. Major corporations including BASF, Toyota, and Samsung have also established substantial in-house MI capabilities, representing a third pathway to market adoption.

Recent market activity has been characterized by significant venture capital investment, with several MI startups securing funding rounds exceeding $50 million. Simultaneously, large technology companies have entered the space, most notably Microsoft with its Azure Quantum Elements platform, potentially disrupting smaller players' market positions. Strategic partnerships between MI providers and traditional materials simulation software companies have also increased, creating more comprehensive integrated solutions. By application sector, battery materials currently represent the largest segment (approximately 30% of market value), followed by advanced polymers (20%), catalysts (15%), and alloys (12%). The strongest growth is projected in pharmaceutical materials discovery and renewable energy applications.

Key challenges facing the market include data quality and standardization issues, the high expertise barrier combining materials science and data science, and questions about return on investment given the significant upfront costs of MI implementation. Despite these challenges, the market is expected to continue rapid expansion as successful case studies demonstrate clear competitive advantages for early adopters, creating pressure across industries to implement MI approaches or risk falling behind in materials innovation capabilities.

The Global Materials Informatics Market 2025-20 provides an in-depth analysis of the rapidly evolving materials informatics (MI) industry, examining current technologies, market dynamics, key players, and future growth trajectories through 2035. As materials discovery and optimization increasingly leverage artificial intelligence and data science approaches, this report offers essential strategic insights for stakeholders across the materials value chain.

Report Contents include:

  • Historical development of materials informatics within data science evolution
  • Analysis of key motivating factors driving MI adoption, including time-to-market acceleration and cost reduction
  • Detailed examination of AI integration opportunities in materials science
  • Comparative analysis of MI with parallel informatics fields (bioinformatics, cheminformatics, etc.)
  • Assessment of primary challenges facing widespread MI implementation
  • Evaluation of machine learning advantages specific to materials development workflows
  • Technology Analysis
    • Detailed examination of MI workflows from scoping to implementation
    • Comprehensive analysis of core technology approaches including data mining, ML/AI, high-throughput computation
    • In-depth assessment of MI algorithm types, capabilities, and application scenarios
    • Evaluation of data infrastructure requirements and implementation strategies
    • Analysis of database integration approaches and big data challenges in materials science
    • Examination of small data strategies for materials development environments
    • Assessment of physical experimentation integration with MI workflows
    • Detailed overview of computational materials science applications
    • Evaluation of autonomous experimentation technologies and implementation roadmaps
  • Applications of Materials Informatics
    • Detailed case studies across 21 material categories including:
      • Alloy design optimization with specific focus on high-entropy, aluminum, titanium, and superalloys
      • Pharmaceutical and drug discovery applications
      • Specialty materials (intermetallics, organometallics, ionic liquids)
      • Electronic materials including organic electronics and 2D materials
      • Energy materials with focus on batteries, hydrogen technologies, and thermoelectrics
      • Structural materials including polymers, nanomaterials, and construction applications
      • Sustainable materials development for circular economy applications
  • Market Analysis
    • Comprehensive competitive landscape assessment of major players and emerging competitors
    • Detailed funding analysis for MI companies with investment trends through 2025
    • Strategic approaches analysis for both MI providers and end-users
    • Examination of key consortia, corporate initiatives, and strategic partnerships
    • Analysis of global MI initiatives and government-backed programs
    • Research center and academic activity assessment
    • Detailed company profiles of 42 MI technology providers and end-users. Companies profiled include Albert Invent, Alchemy Cloud, Ansatz AI, Citrine Informatics, Copernic Catalysts, Cynora, Dunia Innovations, Elix Inc., Enthought, Exomatter GmbH, Exponential Technologies Ltd., FEHRMANN MaterialsX, Fluence Analytics, Genie TechBio, Hitachi High-Tech, Innophore, Intellegens, Kebotix, Kyulux, LG AI Research, materialsIn, Materials Zone, Matmerize Inc., Mat3ra, META and more.....
    • Market size forecasts with segmentation by:
      • Technology type and application area
      • Geographic region and industry vertical
      • Business model (SaaS, consulting, in-house)
      • End-user type and company size
  • Future Outlook and Economic Impact
    • Assessment of emerging technologies including quantum machine learning and neuromorphic computing
    • Analysis of economic impacts including R&D cost savings and time-to-market acceleration
    • Evaluation of MI's role in sustainable development and circular economy initiatives
    • Global market forecasts from 2025-2035 with detailed growth analysis
    • Strategic recommendations for MI providers, end-users, and investors

 

This comprehensive analysis includes company overviews, proprietary technology assessments, business models, key partnerships, target markets, funding history, and strategic positioning within the materials informatics ecosystem. The report provides both established industry leaders and emerging start-ups with actionable intelligence to navigate this rapidly evolving market landscape through 2035.

 

1             EXECUTIVE SUMMARY            10

  • 1.1        What is Materials Informatics?           10
  • 1.2        Issues with Materials Science Data 11
  • 1.3        Dealing with little or sparse data      12
  • 1.4        Key Technologies Driving Materials Informatics      12
  • 1.5        Importance in Modern Materials Science and Engineering             14
  • 1.6        Market Challenges and Restraints   16
  • 1.7        Recent Industry Developments         17
  • 1.8        Market Players               19
  • 1.9        Future Markets Outlook and Opportunities               21
    • 1.9.1    Integration of AI and Robotics in Materials Labs     21
    • 1.9.2    Quantum Machine Learning for Materials Discovery           22
    • 1.9.3    Blockchain for Materials Data Management             23
    • 1.9.4    Edge Computing in Materials Informatics   24
    • 1.9.5    Augmented and Virtual Reality in Materials Design              25
    • 1.9.6    Neuromorphic Computing for Materials Modeling                25
    • 1.9.7    Materials Informatics as a Service (MIaaS) 27
    • 1.9.8    Integration with Internet of Things (IoT)         27
    • 1.9.9    Green Technology and Circular Economy Applications     27
  • 1.10     MI Roadmap  27
  • 1.11     Economic Impact Analysis   29
    • 1.11.1 Cost Savings in Materials R&D           29
    • 1.11.2 Accelerated Time-to-Market for New Materials       30
    • 1.11.3 Job Creation and Skill Development               31
    • 1.11.4 Impact on Traditional Materials Industries 32
  • 1.12     Sustainability and Environmental    33
    • 1.12.1 Role of Materials Informatics in Sustainable Development             33
    • 1.12.2 Reducing Environmental Impact of Materials Production 34
    • 1.12.3 Design for Recyclability and Circular Economy      35
    • 1.12.4 Bio-inspired Materials Discovery      36
  • 1.13     Global Market Forecasts        36

 

2             INTRODUCTION          39

  • 2.1        Advent of the data science era           39
  • 2.2        Background to the emergence of MI               40
  • 2.3        Motivation for Materials Informatics Development               41
    • 2.3.1    Accelerating Discovery            41
    • 2.3.2    Cost Reduction            42
    • 2.3.3    Addressing Global Challenges           43
    • 2.3.4    Maximizing Data Value            44
    • 2.3.5    Handling Complexity 45
    • 2.3.6    Enabling Targeted Design      46
    • 2.3.7    Improving Reproducibility      47
    • 2.3.8    Integrating Multidisciplinary Knowledge      48
    • 2.3.9    Supporting Sustainability      49
    • 2.3.10 Competitive Advantage          50
  • 2.4        Integration of Artificial Intelligence (AI) into materials science and engineering                50
    • 2.4.1    AI Opportunities          51
  • 2.5        Problems with Materials Science Data         52
  • 2.6        Algorithm Advancements      53
  • 2.7        Materials Informatics Categories      54
  • 2.8        Trend towards data-driven approaches in science and engineering          55
    • 2.8.1    Bioinformatics              55
    • 2.8.2    Cheminformatics        57
    • 2.8.3    Geoinformatics            58
    • 2.8.4    Health Informatics     59
    • 2.8.5    Environmental Informatics   60
    • 2.8.6    Astroinformatics         60
    • 2.8.7    Neuroinformatics        61
    • 2.8.8    Engineering Informatics          61
    • 2.8.9    Energy Informatics     62
    • 2.8.10 Quantum Informatics               63
  • 2.9        Challenges      64
  • 2.10     Advantages of Machine Learning      65

 

3             TECHNOLOGY ANALYSIS       75

  • 3.1        Overview           76
    • 3.1.1    Scoping and Screening            76
    • 3.1.2    New Species and Relationships        76
    • 3.1.3    Closing the Loop on Traditional Synthetic Approaches     77
    • 3.1.4    High Throughput Virtual Screening (HTVS) 78
    • 3.1.5    Inputs and outputs of materials informatics algorithms   80
  • 3.2        Technology approaches         82
    • 3.2.1    Data Mining    83
    • 3.2.2    Machine Learning and AI        84
    • 3.2.3    High-Throughput Computation          85
    • 3.2.4    Data Infrastructure     86
    • 3.2.5    Visualization Tools      87
    • 3.2.6    Reinforcement Learning         87
    • 3.2.7    Natural Language Processing             88
    • 3.2.8    Automated Experimentation                89
    • 3.2.9    Workflow Management           90
    • 3.2.10 Quantum Computing               91
    • 3.2.11 QSAR and QSPR          92
  • 3.3        MI algorithms 93
    • 3.3.1    Types of MI Algorithms            94
    • 3.3.2    Automated feature selection               96
    • 3.3.3    Supervised learning models 97
      • 3.3.3.1 Supervised Learning Algorithms       98
      • 3.3.3.2 Unsupervised Learning Algorithms 99
    • 3.3.4    Bayesian optimization             100
    • 3.3.5    Genetic algorithms    101
    • 3.3.6    Generative vs discriminative algorithms      102
    • 3.3.7    Deep learning 102
    • 3.3.8    Large Language Models (LLMs) and Materials R&D              104
  • 3.4        Data infrastructure     105
  • 3.5        Databases       107
  • 3.6        Databases to big data              108
    • 3.6.1    Rapid data generation and collection            108
    • 3.6.2    Integrated use of materials databases          109
    • 3.6.3    Data reliability               110
  • 3.7        Small data strategies in materials informatics        111
    • 3.7.1    Utilizing data correlations      112
    • 3.7.2    Selecting descriptors based on theory and experience      113
  • 3.8        MI with Physical Experiments and Characterization            114
    • 3.8.1    High-Throughput Experimentation (HTE)     114
    • 3.8.2    In-situ and Operando Characterization        116
    • 3.8.3    Advanced Imaging and Spectroscopy            118
  • 3.9        Computational Materials Science    120
    • 3.9.1    Integrated Computational Materials Engineering (ICME)  121
    • 3.9.2    Quantum Computing               123
  • 3.10     Autonomous Experimentation and Labs     125
    • 3.10.1 Fully autonomous labs           125
  • 3.11     Multi-modal Data Integration              129
  • 3.12     Inverse Problems in Materials Characterization     130
  • 3.13     Data-driven Experimental Design    131
  • 3.14     Automated Data Analysis and Interpretation            131
  • 3.15     Robotics and Automation in Materials Research   133

 

4             APPLICATIONS OF MATERIALS INFORMATICS        135

  • 4.1        Alloy Design and Optimization           135
    • 4.1.1    High-Entropy Alloy Design     135
    • 4.1.2    Aluminum and titanium alloys           136
    • 4.1.3    Metallic glass alloys  137
    • 4.1.4    Nickel-base superalloys         137
  • 4.2        Drug Discovery and Development    139
    • 4.2.1    AI-Driven Drug Design              139
  • 4.3        Intermetallics 140
  • 4.4        Organometallics         141
  • 4.5        Organic Electronics   142
  • 4.6        Coatings            144
  • 4.7        Catalysts          145
  • 4.8        Ionic liquids    146
  • 4.9        Battery Materials         148
    • 4.9.1    Lithium-ion batteries 148
    • 4.9.2    Accelerated Battery Material Discovery       149
  • 4.10     High-density Heat Storage Materials              149
  • 4.11     Hydrogen-based Superconductors 150
  • 4.12     Polymer Informatics  152
    • 4.12.1 Optimizing Additive Manufacturing Materials          152
    • 4.12.2 Sustainable Polymer Development 153
  • 4.13     Rubber processing     155
  • 4.14     Nanomaterials              156
  • 4.15     2D materials   158
  • 4.16     Metamaterials               159
  • 4.17     Lubricants       160
  • 4.18     Thermoelectric Materials       161
  • 4.19     Photovoltaics 162
  • 4.20     Construction Materials           164
  • 4.21     Biomaterials   165

 

5             MARKET PLAYERS       166

  • 5.1        Main Players   166
  • 5.2        Funding             168
  • 5.3        Market Strategies        170
  • 5.4        MI Consortia  172
  • 5.5        Corporate Initiatives in MI      173
  • 5.6        Strategic Collaborations and Agreements  174
  • 5.7        Global Initiatives          176
  • 5.8        Research Centre and Academic Activity      177

 

6             COMPANY PROFILES                178 (42 company profiles)

 

7             RESEARCH METHODOLOGY              219

 

8             REFERENCES 220

 

List of Tables

  • Table 1. Issues with materials science data.             12
  • Table 2. Key Technologies Driving Materials Informatics. 13
  • Table 3. Market Challenges and Restraint in Materials Informatics.          16
  • Table 4. Materials informatics industry developments 2022-2025.           17
  • Table 5. Market players in materials informatics-comparative analysis. 19
  • Table 6. Global materials informatics market size 2023-2035 (Millions USD).   37
  • Table 7. Key areas of algorithm advancements in materials informatics                53
  • Table 8. Main categories within Materials Informatics.      54
  • Table 9. Key challenges for MI in materials-by type.             64
  • Table 10. Technology approaches.  82
  • Table 11. Types of MI Algorithms.     94
  • Table 12. Generative vs discriminative algorithms.              102
  • Table 13. Types of neural network.   103
  • Table 14. Materials informatics investment funding.           168
  • Table 15. Corporate Initiatives in MI.              173
  • Table 16. MI Strategic Collaborations and Agreements.    174

 

List of Figures

  • Figure 1. Comparison of Conventional Materials Development and Materials Informatics.      11
  • Figure 2. Materials Informatics (MI) Roadmap.       28
  • Figure 3. Global materials informatics market size 2023-2035 (Millions USD). 38
  • Figure 4. Incorporating Machine Learning into Established Bioinformatics Frameworks.           56
  • Figure 5. Example of CI Utilization.  57
  • Figure 6. Molecular design methodology based on QSPR/QSAR.               92
  • Figure 7. Overview of the ICME process integration and optimization workflow.              121
  • Figure 8. Chemputer. 126
  • Figure 9. Citrine Platform Overview.                184
  • Figure 10. Hitachi High-Tech Chemicals Informatics and Materials Informatics proof of concept.       195

 

 

The Global Materials Informatics Market 2025-2035
The Global Materials Informatics Market 2025-2035
PDF Download/by email.

The Global Materials Informatics Market 2025-2035
The Global Materials Informatics Market 2025-2035
PDF and Print Edition (including tracked delivery).

Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer. To order by Bank Transfer (Invoice) select this option from the payment methods menu after adding to cart, or contact info@futuremarketsinc.com