
cover
- Published: May 2025
- Pages: 585
- Tables: 124
- Figures: 68
The global white (industrial) biotechnology market is experiencing significant growth, driven by increasing demand for sustainable alternatives to traditional petroleum-based products. White biotechnology leverages biological systems, enzymes, and microorganisms to produce chemicals, materials, and energy through environmentally friendly processes. With rising environmental concerns, government regulations supporting bio-based products, and technological advancements in synthetic biology, the sector is poised for substantial expansion. The market is characterized by diverse applications across multiple industries including biofuels, bio-based chemicals, bioplastics, pharmaceuticals, food ingredients, textiles, and construction materials. Major growth drivers include carbon taxation policies, increasing consumer preference for sustainable products, and corporate sustainability commitments. The transition toward circular economy principles is further accelerating adoption as white biotechnology enables the valorization of various waste streams including agricultural residues, forestry waste, municipal solid waste, and industrial by-products.
Technological innovations in synthetic biology, metabolic engineering, and the emerging field of generative biology are dramatically improving production efficiencies and expanding the range of possible bio-manufactured molecules. Advanced fermentation processes, cell-free systems, and the development of novel microbial chassis organisms are contributing to increased commercial viability of white biotechnology products.
Report Contents include :
- Market Analysis and Forecasts 2025-2035
- Global market revenues by molecule type
- Market segmentation by application sector
- Regional market analysis and growth projections
- Competitive landscape and key player positioning
- Technology Landscape Assessment
- Production hosts (bacteria, yeast, fungi, marine organisms)
- Biomanufacturing processes and optimization techniques
- Synthetic biology advancements and applications
- Generative biology approaches and impact
- Feedstock analysis and alternative resource utilization
- Application Sector Analysis
- Biofuels (bioethanol, biodiesel, biogas, biojet fuel)
- Bio-based chemicals (organic acids, alcohols, monomers)
- Bioplastics and biopolymers (PLA, PHAs, bio-PET)
- Food and nutraceutical ingredients
- Agricultural biotechnology
- Textile applications
- Pharmaceuticals and cosmetics
- Construction materials
- Sustainability and Circular Economy Integration
- White biotechnology for waste valorization
- Carbon capture utilization
- Industrial symbiosis opportunities
- Environmental impact assessment
- Strategic Insights and Opportunities
- Technology adoption trends
- Regulatory landscape analysis
- Investment patterns and funding environment
- Strategic recommendations for market participants
- Comprehensive Company Profiles
- Detailed analysis of 395+ market participants
- Technology platforms and proprietary processes
- Commercial deployments and capacity expansions
- Partnership and collaboration networks
The report provides comprehensive profiles of over 395 companies operating across the industrial biotechnology value chain. These include established industry leaders like Novozymes, Braskem, LanzaTech, and Corbion, alongside innovative startups developing novel technologies and applications. The diverse ecosystem encompasses specialized synthetic biology platforms (Ginkgo Bioworks, Arzeda), biofuel producers (Aemetis, Gevo), bioplastics manufacturers (NatureWorks, Total Energies Corbion, Danimer Scientific), bio-based chemical developers (Avantium, METEX), cell-free system innovators (EnginZyme, Solugen), and companies focused on emerging applications like biocement (Biomason) and bio-textiles (Bolt Threads, Modern Meadow, Spiber). The landscape also includes AI-driven biotechnology platforms (Asimov, Zymergen) and specialized waste-to-value companies (Celtic Renewables, Full Cycle Bioplastics). This comprehensive company analysis provides unparalleled insights into the competitive dynamics, technological capabilities, and strategic positioning of key market participants across the global industrial biotechnology ecosystem.
1 EXECUTIVE SUMMARY 27
- 1.1 Biotechnology "colours" 27
- 1.2 Definition 27
- 1.3 Comparison with conventional processes 28
- 1.4 Markets and applications 28
- 1.5 Advantages 30
- 1.6 Sustainability 31
- 1.7 White Biotechnology for the Circular Economy 32
- 1.7.1 Agricultural Waste 32
- 1.7.2 Forestry and Paper Waste 33
- 1.7.3 Gas Fermentation 33
- 1.7.4 Plastics Upcycling 34
- 1.7.5 Wastewater Valorization 34
2 TECHNOLOGY ANALYSIS 35
- 2.1 Production hosts 35
- 2.1.1 Bacteria 35
- 2.1.2 Yeast 36
- 2.1.3 Fungi 37
- 2.1.4 Marine 38
- 2.1.5 Enzymes 38
- 2.1.6 Photosynthetic organisms 39
- 2.2 Biomanufacturing processes 39
- 2.2.1 Batch biomanufacturing 42
- 2.2.2 Continuous biomanufacturing 42
- 2.2.3 Cell factories for biomanufacturing 44
- 2.2.4 Industry-Specific Microorganism Applications 48
- 2.2.4.1 Escherichia coli (E. coli) 49
- 2.2.4.2 Corynebacterium glutamicum (C. glutamicum) 50
- 2.2.4.3 Bacillus subtilis (B. subtilis) 50
- 2.2.4.4 Saccharomyces cerevisiae (S. cerevisiae) 50
- 2.2.4.5 Yarrowia lipolytica (Y. lipolytica) 50
- 2.2.5 Machine learning 53
- 2.2.6 Downstream processing 55
- 2.2.7 Perfusion bioreactors 56
- 2.2.8 Tangential flow filtration (TFF) 56
- 2.2.9 Hybrid biotechnological-chemical approaches 57
- 2.2.10 Process intensification and high-cell-density fermentation 58
- 2.3 Synthetic Biology 59
- 2.3.1 Technology Overview 59
- 2.3.2 Synthetic biology applied to white biotechnology 64
- 2.3.3 Metabolic engineering 64
- 2.3.3.1 DNA synthesis 65
- 2.3.3.2 CRISPR 65
- 2.3.3.2.1 CRISPR/Cas9-modified biosynthetic pathways 66
- 2.3.4 Protein/Enzyme Engineering 67
- 2.3.4.1 Computer-aided Design 68
- 2.3.4.2 Synthetic Biology and Metabolic Engineering (200 words) 69
- 2.3.4.3 Industrial Microbial Strains 70
- 2.3.4.4 Scaling 70
- 2.3.5 Strain construction and optimization 71
- 2.3.6 Smart bioprocessing 71
- 2.3.7 Cell-free systems 73
- 2.3.8 Chassis organisms 75
- 2.3.9 Biomimetics 77
- 2.3.10 Sustainable materials 78
- 2.3.11 Robotics and automation 78
- 2.3.11.1 Robotic cloud laboratories 79
- 2.3.11.2 Automating organism design 79
- 2.3.11.3 Artificial intelligence and machine learning 79
- 2.3.11.4 Automating Organism Design 80
- 2.3.11.5 De Novo Protein Prediction 80
- 2.3.11.6 Companies 84
- 2.3.12 Fermentation Processes 88
- 2.4 Generative Biology 89
- 2.4.1 Generative Models 91
- 2.4.2 Generative Adversarial Networks (GANs) 91
- 2.4.2.1 Variational Autoencoders (VAEs) 91
- 2.4.2.2 Normalizing Flows 92
- 2.4.2.3 Autoregressive Models 92
- 2.4.2.4 Evolutionary Generative Models 92
- 2.4.3 Design Optimization 92
- 2.4.3.1 Evolutionary Algorithms (e.g., Genetic Algorithms, Evolutionary Strategies) 93
- 2.4.3.1.1 Genetic Algorithms (GAs) 93
- 2.4.3.1.2 Evolutionary Strategies (ES) 93
- 2.4.3.2 Reinforcement Learning 93
- 2.4.3.3 Multi-Objective Optimization 94
- 2.4.3.4 Bayesian Optimization 94
- 2.4.3.1 Evolutionary Algorithms (e.g., Genetic Algorithms, Evolutionary Strategies) 93
- 2.4.4 Computational Biology 95
- 2.4.4.1 Molecular Dynamics Simulations 95
- 2.4.4.2 Quantum Mechanical Calculations 95
- 2.4.4.3 Systems Biology Modeling 96
- 2.4.4.4 Metabolic Engineering Modeling 97
- 2.4.5 Data-Driven Approaches 97
- 2.4.5.1 Machine Learning 98
- 2.4.5.2 Graph Neural Networks 98
- 2.4.5.3 Unsupervised Learning 98
- 2.4.5.4 Active Learning and Bayesian Optimization 99
- 2.4.6 Agent-Based Modeling 99
- 2.4.7 Hybrid Approaches 100
- 2.5 Feedstocks 101
- 2.5.1 C1 feedstocks 105
- 2.5.1.1 Advantages 105
- 2.5.1.2 Pathways 106
- 2.5.1.3 Challenges 106
- 2.5.1.4 Non-methane C1 feedstocks 107
- 2.5.1.5 Gas fermentation 108
- 2.5.2 C2 feedstocks 108
- 2.5.3 Biological conversion of CO2 108
- 2.5.4 Food processing wastes 112
- 2.5.5 Lignocellulosic biomass 112
- 2.5.6 Methane 113
- 2.5.7 Municipal solid wastes 116
- 2.5.8 Plastic wastes 117
- 2.5.9 Plant oils 118
- 2.5.10 Starch 118
- 2.5.11 Sugars 119
- 2.5.12 Used cooking oils 119
- 2.5.13 Carbon capture 120
- 2.5.14 Green hydrogen production 123
- 2.5.15 Blue hydrogen production 124
- 2.5.1 C1 feedstocks 105
- 2.6 Blue biotechnology (Marine biotechnology) 126
- 2.6.1 Cyanobacteria 128
- 2.6.2 Macroalgae 129
- 2.6.3 Companies 129
3 MARKET ANALYSIS 131
- 3.1 Market trends 131
- 3.1.1 Demand for biobased products 131
- 3.1.2 Government regulation 132
- 3.1.3 Costs 133
- 3.1.4 Carbon taxes 133
- 3.2 Industry challenges and constraints 134
- 3.2.1 Costs 135
- 3.2.1.1 Oil prices 136
- 3.2.1.2 Green Premium 136
- 3.2.1.3 Cell Factory Cost 137
- 3.2.1 Costs 135
- 3.3 White biotechnology in the bioeconomy 138
- 3.4 SWOT analysis 138
- 3.5 Market map 140
- 3.6 Key market players and competitive landscape 140
- 3.7 Regulations 142
- 3.7.1 United States 142
- 3.7.2 European Union 143
- 3.7.3 International 143
- 3.7.4 Specific Regulations and Guidelines 144
- 3.8 Main end-use markets 144
- 3.8.1 Biofuels 145
- 3.8.1.1 Market supply chain 145
- 3.8.1.2 Solid Biofuels 147
- 3.8.1.3 Liquid Biofuels 148
- 3.8.1.4 Gaseous Biofuels 149
- 3.8.1.5 Conventional Biofuels 149
- 3.8.1.6 Next-generation Biofuels 150
- 3.8.1.7 Feedstocks 151
- 3.8.1.7.1 First-generation (1-G) 152
- 3.8.1.7.2 Second-generation (2-G) 153
- 3.8.1.7.2.1 Lignocellulosic wastes and residues 154
- 3.8.1.7.2.2 Biorefinery lignin 155
- 3.8.1.7.3 Third-generation (3-G) 159
- 3.8.1.7.3.1 Algal biofuels 159
- 3.8.1.7.3.1.1 Properties 160
- 3.8.1.7.3.1.2 Advantages 160
- 3.8.1.7.3.1 Algal biofuels 159
- 3.8.1.7.4 Fourth-generation (4-G) 161
- 3.8.1.7.5 Energy crops 162
- 3.8.1.7.6 Agricultural residues 162
- 3.8.1.7.7 Manure, sewage sludge and organic waste 162
- 3.8.1.7.8 Forestry and wood waste 163
- 3.8.1.7.9 Feedstock costs 163
- 3.8.1.8 Bioethanol 164
- 3.8.1.8.1 Ethanol to jet fuel technology 165
- 3.8.1.8.2 Methanol from pulp & paper production 165
- 3.8.1.8.3 Sulfite spent liquor fermentation 166
- 3.8.1.8.4 Gasification 166
- 3.8.1.8.4.1 Biomass gasification and syngas fermentation 166
- 3.8.1.8.4.2 Biomass gasification and syngas thermochemical conversion 167
- 3.8.1.8.5 CO2 capture and alcohol synthesis 167
- 3.8.1.8.6 Biomass hydrolysis and fermentation 167
- 3.8.1.8.7 Separate hydrolysis and fermentation 167
- 3.8.1.8.7.1 Simultaneous saccharification and fermentation (SSF) 168
- 3.8.1.8.7.2 Pre-hydrolysis and simultaneous saccharification and fermentation (PSSF) 168
- 3.8.1.8.7.3 Simultaneous saccharification and co-fermentation (SSCF) 169
- 3.8.1.8.7.4 Direct conversion (consolidated bioprocessing) (CBP) 169
- 3.8.1.9 Biodiesel 169
- 3.8.1.10 Biogas 172
- 3.8.1.10.1 Biomethane 173
- 3.8.1.10.2 Feedstocks 175
- 3.8.1.10.3 Anaerobic digestion 175
- 3.8.1.11 Renewable diesel 176
- 3.8.1.12 Biojet fuel 177
- 3.8.1.13 Algal biofuels (blue biotech) 181
- 3.8.1.13.1 Conversion pathways 181
- 3.8.1.13.2 Market challenges 183
- 3.8.1.13.3 Prices 183
- 3.8.1.13.4 Producers 184
- 3.8.1.14 Biohydrogen 185
- 3.8.1.14.1 Biological Conversion Routes 187
- 3.8.1.14.1.1 Bio-photochemical Reaction 187
- 3.8.1.14.1.2 Fermentation and Anaerobic Digestion 187
- 3.8.1.14.1 Biological Conversion Routes 187
- 3.8.1.15 Biobutanol 187
- 3.8.1.16 Bio-based methanol 189
- 3.8.1.16.1 Anaerobic digestion 191
- 3.8.1.16.2 Biomass gasification 191
- 3.8.1.16.3 Power to Methane 192
- 3.8.1.17 Bioisoprene 193
- 3.8.1.18 Fatty Acid Esters 193
- 3.8.2 Bio-based chemicals 193
- 3.8.2.1 Market supply chain 193
- 3.8.2.2 Acetic acid 194
- 3.8.2.3 Adipic acid 194
- 3.8.2.4 Aldehydes 196
- 3.8.2.5 Acrylic acid 196
- 3.8.2.6 Bacterial cellulose 197
- 3.8.2.7 1,4-Butanediol (BDO) 199
- 3.8.2.8 Bio-DME 200
- 3.8.2.9 Dodecanedioic acid (DDDA) 201
- 3.8.2.10 Ethylene 201
- 3.8.2.11 3-Hydroxypropionic acid (3-HP) 202
- 3.8.2.12 1,3-Propanediol (1,3-PDO) 203
- 3.8.2.13 Itaconic acid 204
- 3.8.2.14 Lactic acid (D-LA) 204
- 3.8.2.15 1,5-diaminopentane (DA5) 205
- 3.8.2.16 Tetrahydrofuran (THF) 206
- 3.8.2.17 Malonic acid 207
- 3.8.2.18 Monoethylene glycol (MEG) 208
- 3.8.2.19 Propylene 208
- 3.8.2.20 Succinic acid (SA) 209
- 3.8.2.21 Triglycerides 211
- 3.8.2.22 Enzymes 211
- 3.8.2.23 Vitamins 211
- 3.8.2.24 Antibiotics 212
- 3.8.3 Bioplastics and Biopolymers 213
- 3.8.3.1 Bioplastics via white biotechnology 213
- 3.8.3.2 Biobased polymers from monosaccharides 214
- 3.8.3.3 Market supply chain 214
- 3.8.3.4 Lactic Acid and Polylactic Acid (PLA) 216
- 3.8.3.4.1 Lactic Acid (C3H6O3) 217
- 3.8.3.4.2 Industrial production of lactic acid 217
- 3.8.3.4.3 Engineering Yeast Strains for Lactic Acid Production 225
- 3.8.3.4.4 Polylactic acid (PLA) production 225
- 3.8.3.5 Succinic Acid 228
- 3.8.3.5.1 Biobased succinic acid production 228
- 3.8.3.5.2 PBS 229
- 3.8.3.6 2,5-furandicarboxylic acid (FDCA) 230
- 3.8.3.6.1 Monomer Production 230
- 3.8.3.7 Polyethylene Furanoate (PEF) 231
- 3.8.3.8 C6 monomers 241
- 3.8.3.9 Sebacic Acid 241
- 3.8.3.10 Dodecanedioic Acid 241
- 3.8.3.11 1,5-Pentanediamine (PDA) 242
- 3.8.3.12 1,3-Butadiene 243
- 3.8.3.13 Isoprene 244
- 3.8.3.14 Isobutene (Isobutylene) 244
- 3.8.3.15 PHAs 245
- 3.8.3.15.1 Production of PHAs 247
- 3.8.3.15.2 PHB, PHBV, and P(3HB-co-4HB) 253
- 3.8.3.15.3 Commercial PHA landscape 262
- 3.8.3.15.4 Short and medium chain-length PHAs 262
- 3.8.3.15.5 Economic viability of PHA production 269
- 3.8.3.15.6 Risks 269
- 3.8.3.15.7 Production scale 270
- 3.8.3.15.8 PHA production landscape 271
- 3.8.3.15.9 Commercially available PHAs 272
- 3.8.3.16 Bio-PET 274
- 3.8.3.17 Starch blends 274
- 3.8.3.18 Protein-based bioplastics 274
- 3.8.4 Bioremediation 276
- 3.8.5 Biocatalysis 277
- 3.8.5.1 Biotransformations 277
- 3.8.5.2 Cascade biocatalysis 278
- 3.8.5.3 Co-factor recycling 278
- 3.8.5.4 Immobilization 278
- 3.8.6 Food and Nutraceutical Ingredients 279
- 3.8.6.1 Market supply chain 279
- 3.8.6.2 Alternative Proteins 280
- 3.8.6.3 Natural Sweeteners 281
- 3.8.6.4 Natural Flavors and Fragrances 282
- 3.8.6.5 Texturants and Thickeners 282
- 3.8.6.6 Nutraceuticals and Supplements 283
- 3.8.7 Agricultural biotechnology 283
- 3.8.7.1 Market supply chain 283
- 3.8.7.2 Biofertilizers 284
- 3.8.7.2.1 Overview 284
- 3.8.7.2.2 Companies 285
- 3.8.7.3 Biopesticides 285
- 3.8.7.3.1 Overview 285
- 3.8.7.3.2 Companies 285
- 3.8.7.4 Biostimulants 286
- 3.8.7.4.1 Overview 286
- 3.8.7.4.2 Companies 286
- 3.8.7.5 Crop Biotechnology 287
- 3.8.7.5.1 Genetic engineering 287
- 3.8.7.5.2 Genome editing 287
- 3.8.7.5.3 Companies 288
- 3.8.8 Textiles 288
- 3.8.8.1 Market supply chain 289
- 3.8.8.2 Bio-Based Fibers 290
- 3.8.8.2.1 Lyocell 290
- 3.8.8.2.2 Bacterial cellulose 290
- 3.8.8.2.3 Algae textiles 291
- 3.8.8.3 Spider silk 292
- 3.8.8.4 Collagen-derived textiles 293
- 3.8.8.5 Recombinant Materials 293
- 3.8.8.6 Sustainable Processing 294
- 3.8.9 Consumer goods 294
- 3.8.9.1 Market supply chain 294
- 3.8.9.2 White biotechnology in consumer goods 295
- 3.8.10 Biopharmaceuticals 296
- 3.8.10.1 Market supply chain 296
- 3.8.10.2 Market overview for white biotechnology 297
- 3.8.11 Cosmetics 298
- 3.8.11.1 Market supply chain 298
- 3.8.11.2 Market overview for white biotechnology 299
- 3.8.12 Surfactants and detergents 300
- 3.8.12.1 Market supply chain 300
- 3.8.12.2 Market overview for white biotechnology 301
- 3.8.13 Construction materials 302
- 3.8.13.1 Market supply chain 302
- 3.8.13.2 Biocement 303
- 3.8.13.3 Mycelium materials 305
- 3.8.1 Biofuels 145
- 3.9 Global market revenues 2018-2035 307
- 3.9.1 By molecule 307
- 3.9.2 By market 308
- 3.9.3 By region 310
- 3.10 Future Market Outlook 312
4 COMPANY PROFILES 313 (396 company profiles)
5 APPENDIX 571
- 5.1 Research methodology 571
- 5.2 Acronyms 572
- 5.3 Glossary of Terms 573
6 REFERENCES 574
List of Tables
- Table 1. Biotechnology "colours". 27
- Table 2. Differences between white biotechnology and conventional processes. 28
- Table 3. Application areas for white biotechnology. 29
- Table 4. Advantages of white biotechnology. 30
- Table 5. Routes for carbon capture in white biotechnology. 31
- Table 6. Molecules produced through industrial biomanufacturing. 35
- Table 7. Commonly used bacterial hosts for white biotechnology production. 36
- Table 8. Commonly used yeast hosts for white biotech production. 36
- Table 9. Examples of fungal hosts used in white biotechnology processes. 37
- Table 10. Examples of marine organisms as hosts for white biotechnology applications. 38
- Table 11. Common microbial hosts used for enzyme production in white biotechnology. 38
- Table 12. Photosynthetic microorganisms used as production hosts in white biotechnology 39
- Table 13. Biomanufacturing processes utilized in white biotechnology. 40
- Table 14. Continuous vs batch biomanufacturing 41
- Table 15. Key fermentation parameters in batch vs continuous biomanufacturing processes. 42
- Table 16. Microorganisms in Biomanufacturing Processes. 44
- Table 17. Pharmaceutical Industry 48
- Table 18. Biofuel Industry 48
- Table 19. Industrial Enzyme Production 48
- Table 20. Food and Beverage Industry 49
- Table 21. Non-Model Organisms for White Biotechnology 51
- Table 22. Machine Learning Applications in Biomanufacturing 54
- Table 23. Hybrid Biotechnological-Chemical Approaches 57
- Table 24. Core stages - Design, Build and Test. 60
- Table 25. Synthetic Biology: Drivers and Barriers for Adoption 61
- Table 26. Products and applications enabled by synthetic biology. 63
- Table 27. Engineered proteins in industrial applications. 69
- Table 29. Cell-free versus cell-based systems 73
- Table 30. Technology Readiness Assessment 76
- Table 31. Machine Learning Based Improvements for Biomanufacturing. 81
- Table 32. AI-driven Fermentation Platform Companies 84
- Table 33. White biotechnology fermentation processes. 89
- Table 34. Alternative feedstocks for white biotechnology 102
- Table 35. Products from C1 feedstocks in white biotechnology. 107
- Table 36. C2 Feedstock Products. 108
- Table 37. CO2 derived products via biological conversion-applications, advantages and disadvantages. 110
- Table 38. Production capacities of biorefinery lignin producers. 113
- Table 39. Common starch sources that can be used as feedstocks for producing biochemicals. 119
- Table 40. Routes for carbon capture in white biotechnology. 120
- Table 41. Biomass processes summary, process description and TRL. 124
- Table 42. Pathways for hydrogen production from biomass. 126
- Table 43. Overview of alginate-description, properties, application and market size. 127
- Table 44. Blue biotechnology companies. 129
- Table 45. Market trends and drivers in white biotechnology. 131
- Table 46. Industry challenges and restraints in white biotechnology. 134
- Table 47. White biotechnology key application sectors and products. 144
- Table 48. Comparison of biofuels. 146
- Table 49. Categories and examples of solid biofuel. 148
- Table 50. Comparison of biofuels and e-fuels to fossil and electricity. 150
- Table 51. Classification of biomass feedstock. 151
- Table 52. Biorefinery feedstocks. 151
- Table 53. Feedstock conversion pathways. 152
- Table 54. First-Generation Feedstocks. 152
- Table 55. Lignocellulosic ethanol plants and capacities. 154
- Table 56. Comparison of pulping and biorefinery lignins. 156
- Table 57. Commercial and pre-commercial biorefinery lignin production facilities and processes 156
- Table 58. Operating and planned lignocellulosic biorefineries and industrial flue gas-to-ethanol. 158
- Table 59. Properties of microalgae and macroalgae. 160
- Table 60. Yield of algae and other biodiesel crops. 161
- Table 61. Processes in bioethanol production. 168
- Table 62. Microorganisms used in CBP for ethanol production from biomass lignocellulosic. 169
- Table 63. Biodiesel by generation. 170
- Table 64. Biodiesel production techniques. 171
- Table 65. Biofuel production cost from the biomass pyrolysis process. 172
- Table 66. Biogas feedstocks. 175
- Table 67. Advantages and disadvantages of Bio-aviation fuel. 178
- Table 68. Production pathways for Bio-aviation fuel. 178
- Table 69. Current and announced Bio-aviation fuel facilities and capacities. 180
- Table 70. Algae-derived biofuel producers. 184
- Table 71. Markets and applications for biohydrogen. 185
- Table 72. Comparison of different Bio-H2 production pathways. 186
- Table 73. Properties of petrol and biobutanol. 188
- Table 74. Comparison of biogas, biomethane and natural gas. 190
- Table 75. Applications of bio-based caprolactam. 195
- Table 76. Applications of bio-based acrylic acid. 196
- Table 77. Applications of bio-based 1,4-Butanediol (BDO). 200
- Table 78. Applications of bio-based ethylene. 201
- Table 79. Biobased feedstock sources for 3-HP. 202
- Table 80. Applications of 3-HP. 202
- Table 81. Applications of bio-based 1,3-Propanediol (1,3-PDO). 203
- Table 82. Biobased feedstock sources for itaconic acid. 204
- Table 83. Applications of bio-based itaconic acid. 204
- Table 84. Biobased feedstocks that can be used to produce 1,5-diaminopentane (DA5). 205
- Table 85. Applications of DN5. 206
- Table 86. Applications of bio-based Tetrahydrofuran (THF). 207
- Table 87. Markets and applications for malonic acid. 207
- Table 88. Biobased feedstock sources for MEG. 208
- Table 89. Applications of bio-based MEG. 208
- Table 90. Applications of bio-based propylene. 209
- Table 91. Biobased feedstock sources for Succinic acid. 210
- Table 92. Applications of succinic acid. 210
- Table 94. Bioplastics and bioplastic precursors synthesized via white biotechnology processes . 216
- Table 95. Optimal Lactic Acid Bacteria Strains for Fermentation. 219
- Table 96. Polylactic acid (PLA) market analysis-manufacture, advantages, disadvantages and applications. 226
- Table 97. PLA producers and production capacities. 227
- Table 98. Molecules for Other Biobased Synthetic Polymers. 232
- Table 99. Biosynthetic Pathways to Polyamides 237
- Table 100. Biosynthetic Pathways to PHAs 245
- Table 101. Key Commercial PHAs and Microstructures. 249
- Table 102. Types of PHAs 253
- Table 103. Material Properties of Commercial PHAs 255
- Table 104. Property Comparison Across Applications 260
- Table 105. Applications of PHAs. 263
- Table 106. Application-Specific Economic Analysis 267
- Table 107. Polyhydroxyalkanoate (PHA) extraction methods. 271
- Table 108. Commercially available PHAs. 273
- Table 109. Types of protein based-bioplastics, applications and companies. 275
- Table 110. Applications of white biotechnology in bioremediation and environmental remediation. 276
- Table 111. Companies developing fermentation-derived food. 281
- Table 112. Biofertilizer companies. 285
- Table 113. Biopesticides companies. 285
- Table 114. Biostimulants companies. 286
- Table 115. Crop biotechnology companies. 288
- Table 116. White biotechnology applications in consumer goods. 295
- Table 117. Pharmaceutical applications of white biotechnology. 298
- Table 118. Applications of white biotechnology in the cosmetics industry. 300
- Table 119. Sustainable biomanufacturing of surfactants and detergents. 302
- Table 120. Global revenues for white biotechnology, by molecule, 2018-2035 (Billion USD). 307
- Table 121. Global revenues for white biotechnology, by market, 2018-2035 (Billion USD). 308
- Table 122. Global revenues for white biotechnology, by region, 2018-2035 (Billion USD). 310
- Table 123. White biotechnology Glossary of Acronyms. 572
- Table 124. White biotechnology Glossary of Terms. 573
List of Figures
- Figure 1. CRISPR/Cas9 & Targeted Genome Editing. 67
- Figure 2. Genetic Circuit-Assisted Smart Microbial Engineering. 72
- Figure 3. Cell-free and cell-based protein synthesis systems. 75
- Figure 4. Microbial Chassis Development for Natural Product Biosynthesis. 77
- Figure 5. The design-make-test-learn loop of generative biology. 90
- Figure 6. LanzaTech gas-fermentation process. 109
- Figure 7. Schematic of biological CO2 conversion into e-fuels. 110
- Figure 8. Overview of biogas utilization. 114
- Figure 9. Biogas and biomethane pathways. 115
- Figure 10. Schematic overview of anaerobic digestion process for biomethane production. 116
- Figure 11. BLOOM masterbatch from Algix. 128
- Figure 12. SWOT analysis: white biotechnology. 139
- Figure 13. Market map: white biotechnology. 140
- Figure 14. Biofuels market supply chain. 146
- Figure 15. Schematic of a biorefinery for production of carriers and chemicals. 156
- Figure 16. Hydrolytic lignin powder. 159
- Figure 17. Range of biomass cost by feedstock type. 163
- Figure 18. Overview of biogas utilization. 173
- Figure 19. Biogas and biomethane pathways. 174
- Figure 20. Schematic overview of anaerobic digestion process for biomethane production. 176
- Figure 21. Algal biomass conversion process for biofuel production. 183
- Figure 22. Pathways for algal biomass conversion to biofuels. 185
- Figure 23. Biobutanol production route. 188
- Figure 24. Renewable Methanol Production Processes from Different Feedstocks. 190
- Figure 25. Production of biomethane through anaerobic digestion and upgrading. 191
- Figure 26. Production of biomethane through biomass gasification and methanation. 192
- Figure 27. Production of biomethane through the Power to methane process. 192
- Figure 28. Bio-based chemicals market supply chain. 194
- Figure 29. Overview of Toray process. 195
- Figure 30. Bacterial nanocellulose shapes 198
- Figure 31. Bioplastics and biopolymers market supply chain. 215
- Figure 32. Food and Nutraceutical Ingredients market supply chain. 280
- Figure 33. Agricultural biotechnology market supply chain. 284
- Figure 34. Bio-textiles market supply chain. 290
- Figure 35. AlgiKicks sneaker, made with the Algiknit biopolymer gel. 292
- Figure 36. Biobased consumer goods market supply chain. 295
- Figure 37. Biopharmaceuticals market supply chain. 297
- Figure 38. Biobased cosmetics market supply chain. 299
- Figure 39. Surfactants and detergents market supply chain. 301
- Figure 40. Biobased construction materials market supply chain. 303
- Figure 41. BioMason cement. 304
- Figure 42. Microalgae based biocement masonry bloc. 305
- Figure 43. Typical structure of mycelium-based foam. 305
- Figure 44. Commercial mycelium composite construction materials. 306
- Figure 45. Global revenues for white biotechnology, by market, 2018-2035 (Billion USD). 309
- Figure 46. Global revenues for white biotechnology, by region, 2018-2035 (Billion USD). 311
- Figure 47. Algiknit yarn. 320
- Figure 48. ALGIECEL PhotoBioReactor. 321
- Figure 49. Jelly-like seaweed-based nanocellulose hydrogel. 322
- Figure 50. BIOLO e-commerce mailer bag made from PHA. 352
- Figure 51. Domsjö process. 396
- Figure 52. Mushroom leather. 399
- Figure 53. PHA production process. 418
- Figure 54. Light Bio Bioluminescent plants. 457
- Figure 55. Lignin gel. 458
- Figure 56. BioFlex process. 461
- Figure 57. TransLeather. 465
- Figure 58. Reishi. 479
- Figure 59. Compostable water pod. 488
- Figure 60. Precision Photosynthesis™ technology. 514
- Figure 61. Enfinity cellulosic ethanol technology process. 515
- Figure 62. Fabric consisting of 70 per cent wool and 30 per cent Qmilk. 518
- Figure 63. Lyocell process. 533
- Figure 64. Spider silk production. 538
- Figure 65. Corbion FDCA production process. 551
- Figure 66. UPM biorefinery process. 555
- Figure 67. The Proesa® Process. 559
- Figure 68. XtalPi’s automated and robot-run workstations. 566
Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer. To order by Bank Transfer (Invoice) select this option from the payment methods menu after adding to cart, or contact info@futuremarketsinc.com