The Global White Biotechnology Market 2025-2035

0

cover

cover

  • Published: May 2025
  • Pages: 585
  • Tables: 124
  • Figures: 68

 

The global white (industrial) biotechnology market is experiencing significant growth, driven by increasing demand for sustainable alternatives to traditional petroleum-based products. White biotechnology leverages biological systems, enzymes, and microorganisms to produce chemicals, materials, and energy through environmentally friendly processes. With rising environmental concerns, government regulations supporting bio-based products, and technological advancements in synthetic biology, the sector is poised for substantial expansion. The market is characterized by diverse applications across multiple industries including biofuels, bio-based chemicals, bioplastics, pharmaceuticals, food ingredients, textiles, and construction materials. Major growth drivers include carbon taxation policies, increasing consumer preference for sustainable products, and corporate sustainability commitments. The transition toward circular economy principles is further accelerating adoption as white biotechnology enables the valorization of various waste streams including agricultural residues, forestry waste, municipal solid waste, and industrial by-products.

Technological innovations in synthetic biology, metabolic engineering, and the emerging field of generative biology are dramatically improving production efficiencies and expanding the range of possible bio-manufactured molecules. Advanced fermentation processes, cell-free systems, and the development of novel microbial chassis organisms are contributing to increased commercial viability of white biotechnology products.

Report Contents include :

  • Market Analysis and Forecasts 2025-2035
    • Global market revenues by molecule type
    • Market segmentation by application sector
    • Regional market analysis and growth projections
    • Competitive landscape and key player positioning
  • Technology Landscape Assessment
    • Production hosts (bacteria, yeast, fungi, marine organisms)
    • Biomanufacturing processes and optimization techniques
    • Synthetic biology advancements and applications
    • Generative biology approaches and impact
    • Feedstock analysis and alternative resource utilization
  • Application Sector Analysis
    • Biofuels (bioethanol, biodiesel, biogas, biojet fuel)
    • Bio-based chemicals (organic acids, alcohols, monomers)
    • Bioplastics and biopolymers (PLA, PHAs, bio-PET)
    • Food and nutraceutical ingredients
    • Agricultural biotechnology
    • Textile applications
    • Pharmaceuticals and cosmetics
    • Construction materials
  • Sustainability and Circular Economy Integration
    • White biotechnology for waste valorization
    • Carbon capture utilization
    • Industrial symbiosis opportunities
    • Environmental impact assessment
  • Strategic Insights and Opportunities
    • Technology adoption trends
    • Regulatory landscape analysis
    • Investment patterns and funding environment
    • Strategic recommendations for market participants
  • Comprehensive Company Profiles
    • Detailed analysis of 395+ market participants
    • Technology platforms and proprietary processes
    • Commercial deployments and capacity expansions
    • Partnership and collaboration networks

 

The report provides comprehensive profiles of over 395 companies operating across the industrial biotechnology value chain. These include established industry leaders like Novozymes, Braskem, LanzaTech, and Corbion, alongside innovative startups developing novel technologies and applications. The diverse ecosystem encompasses specialized synthetic biology platforms (Ginkgo Bioworks, Arzeda), biofuel producers (Aemetis, Gevo), bioplastics manufacturers (NatureWorks, Total Energies Corbion, Danimer Scientific), bio-based chemical developers (Avantium, METEX), cell-free system innovators (EnginZyme, Solugen), and companies focused on emerging applications like biocement (Biomason) and bio-textiles (Bolt Threads, Modern Meadow, Spiber). The landscape also includes AI-driven biotechnology platforms (Asimov, Zymergen) and specialized waste-to-value companies (Celtic Renewables, Full Cycle Bioplastics). This comprehensive company analysis provides unparalleled insights into the competitive dynamics, technological capabilities, and strategic positioning of key market participants across the global industrial biotechnology ecosystem.

 

 

1             EXECUTIVE SUMMARY            27

  • 1.1        Biotechnology "colours"         27
  • 1.2        Definition         27
  • 1.3        Comparison with conventional processes 28
  • 1.4        Markets and applications      28
  • 1.5        Advantages     30
  • 1.6        Sustainability 31
  • 1.7        White Biotechnology for the Circular Economy      32
    • 1.7.1    Agricultural Waste      32
    • 1.7.2    Forestry and Paper Waste     33
    • 1.7.3    Gas Fermentation       33
    • 1.7.4    Plastics Upcycling      34
    • 1.7.5    Wastewater Valorization        34

 

2             TECHNOLOGY ANALYSIS       35

  • 2.1        Production hosts         35
    • 2.1.1    Bacteria             35
    • 2.1.2    Yeast   36
    • 2.1.3    Fungi   37
    • 2.1.4    Marine 38
    • 2.1.5    Enzymes           38
    • 2.1.6    Photosynthetic organisms    39
  • 2.2        Biomanufacturing processes              39
    • 2.2.1    Batch biomanufacturing        42
    • 2.2.2    Continuous biomanufacturing          42
    • 2.2.3    Cell factories for biomanufacturing 44
    • 2.2.4    Industry-Specific Microorganism Applications       48
      • 2.2.4.1 Escherichia coli (E. coli)         49
      • 2.2.4.2 Corynebacterium glutamicum (C. glutamicum)     50
      • 2.2.4.3 Bacillus subtilis (B. subtilis) 50
      • 2.2.4.4 Saccharomyces cerevisiae (S. cerevisiae)  50
      • 2.2.4.5 Yarrowia lipolytica (Y. lipolytica)        50
    • 2.2.5    Machine learning        53
    • 2.2.6    Downstream processing        55
    • 2.2.7    Perfusion bioreactors               56
    • 2.2.8    Tangential flow filtration (TFF)             56
    • 2.2.9    Hybrid biotechnological-chemical approaches     57
    • 2.2.10 Process intensification and high-cell-density fermentation           58
  • 2.3        Synthetic Biology        59
    • 2.3.1    Technology Overview                59
    • 2.3.2    Synthetic biology applied to white biotechnology 64
    • 2.3.3    Metabolic engineering             64
      • 2.3.3.1 DNA synthesis              65
      • 2.3.3.2 CRISPR              65
        • 2.3.3.2.1           CRISPR/Cas9-modified biosynthetic pathways      66
    • 2.3.4    Protein/Enzyme Engineering                67
      • 2.3.4.1 Computer-aided Design         68
      • 2.3.4.2 Synthetic Biology and Metabolic Engineering (200 words)               69
      • 2.3.4.3 Industrial Microbial Strains  70
      • 2.3.4.4 Scaling               70
    • 2.3.5    Strain construction and optimization            71
    • 2.3.6    Smart bioprocessing 71
    • 2.3.7    Cell-free systems        73
    • 2.3.8    Chassis organisms    75
    • 2.3.9    Biomimetics   77
    • 2.3.10 Sustainable materials              78
    • 2.3.11 Robotics and automation      78
      • 2.3.11.1            Robotic cloud laboratories   79
      • 2.3.11.2            Automating organism design              79
      • 2.3.11.3            Artificial intelligence and machine learning              79
      • 2.3.11.4            Automating Organism Design             80
      • 2.3.11.5            De Novo Protein Prediction   80
      • 2.3.11.6            Companies     84
    • 2.3.12 Fermentation Processes        88
  • 2.4        Generative Biology     89
    • 2.4.1    Generative Models     91
    • 2.4.2    Generative Adversarial Networks (GANs)    91
      • 2.4.2.1 Variational Autoencoders (VAEs)      91
      • 2.4.2.2 Normalizing Flows      92
      • 2.4.2.3 Autoregressive Models            92
      • 2.4.2.4 Evolutionary Generative Models       92
    • 2.4.3    Design Optimization 92
      • 2.4.3.1 Evolutionary Algorithms (e.g., Genetic Algorithms, Evolutionary Strategies)       93
        • 2.4.3.1.1           Genetic Algorithms (GAs)      93
        • 2.4.3.1.2           Evolutionary Strategies (ES) 93
      • 2.4.3.2 Reinforcement Learning         93
      • 2.4.3.3 Multi-Objective Optimization              94
      • 2.4.3.4 Bayesian Optimization            94
    • 2.4.4    Computational Biology           95
      • 2.4.4.1 Molecular Dynamics Simulations    95
      • 2.4.4.2 Quantum Mechanical Calculations                95
      • 2.4.4.3 Systems Biology Modeling    96
      • 2.4.4.4 Metabolic Engineering Modeling       97
    • 2.4.5    Data-Driven Approaches       97
      • 2.4.5.1 Machine Learning       98
      • 2.4.5.2 Graph Neural Networks           98
      • 2.4.5.3 Unsupervised Learning           98
      • 2.4.5.4 Active Learning and Bayesian Optimization              99
    • 2.4.6    Agent-Based Modeling            99
    • 2.4.7    Hybrid Approaches    100
  • 2.5        Feedstocks      101
    • 2.5.1    C1 feedstocks               105
      • 2.5.1.1 Advantages     105
      • 2.5.1.2 Pathways          106
      • 2.5.1.3 Challenges      106
      • 2.5.1.4 Non-methane C1 feedstocks              107
      • 2.5.1.5 Gas fermentation        108
    • 2.5.2    C2 feedstocks               108
    • 2.5.3    Biological conversion of CO2              108
    • 2.5.4    Food processing wastes         112
    • 2.5.5    Lignocellulosic biomass        112
    • 2.5.6    Methane            113
    • 2.5.7    Municipal solid wastes            116
    • 2.5.8    Plastic wastes               117
    • 2.5.9    Plant oils           118
    • 2.5.10 Starch 118
    • 2.5.11 Sugars 119
    • 2.5.12 Used cooking oils       119
    • 2.5.13 Carbon capture            120
    • 2.5.14 Green hydrogen production 123
    • 2.5.15 Blue hydrogen production     124
  • 2.6        Blue biotechnology (Marine biotechnology)              126
    • 2.6.1    Cyanobacteria              128
    • 2.6.2    Macroalgae     129
    • 2.6.3    Companies     129

 

3             MARKET ANALYSIS      131

  • 3.1        Market trends 131
    • 3.1.1    Demand for biobased products         131
    • 3.1.2    Government regulation           132
    • 3.1.3    Costs  133
    • 3.1.4    Carbon taxes  133
  • 3.2        Industry challenges and constraints              134
    • 3.2.1    Costs  135
      • 3.2.1.1 Oil prices          136
      • 3.2.1.2 Green Premium            136
      • 3.2.1.3 Cell Factory Cost        137
  • 3.3        White biotechnology in the bioeconomy     138
  • 3.4        SWOT analysis              138
  • 3.5        Market map    140
  • 3.6        Key market players and competitive landscape     140
  • 3.7        Regulations     142
    • 3.7.1    United States 142
    • 3.7.2    European Union           143
    • 3.7.3    International   143
    • 3.7.4    Specific Regulations and Guidelines             144
  • 3.8        Main end-use markets             144
    • 3.8.1    Biofuels             145
      • 3.8.1.1 Market supply chain  145
      • 3.8.1.2 Solid Biofuels 147
      • 3.8.1.3 Liquid Biofuels              148
      • 3.8.1.4 Gaseous Biofuels       149
      • 3.8.1.5 Conventional Biofuels             149
      • 3.8.1.6 Next-generation Biofuels       150
      • 3.8.1.7 Feedstocks      151
        • 3.8.1.7.1           First-generation (1-G)               152
        • 3.8.1.7.2           Second-generation (2-G)       153
          • 3.8.1.7.2.1      Lignocellulosic wastes and residues             154
          • 3.8.1.7.2.2      Biorefinery lignin         155
        • 3.8.1.7.3           Third-generation (3-G)             159
          • 3.8.1.7.3.1      Algal biofuels 159
            • 3.8.1.7.3.1.1  Properties         160
            • 3.8.1.7.3.1.2  Advantages     160
        • 3.8.1.7.4           Fourth-generation (4-G)          161
        • 3.8.1.7.5           Energy crops  162
        • 3.8.1.7.6           Agricultural residues 162
        • 3.8.1.7.7           Manure, sewage sludge and organic waste                162
        • 3.8.1.7.8           Forestry and wood waste       163
        • 3.8.1.7.9           Feedstock costs          163
      • 3.8.1.8 Bioethanol       164
        • 3.8.1.8.1           Ethanol to jet fuel technology             165
        • 3.8.1.8.2           Methanol from pulp & paper production      165
        • 3.8.1.8.3           Sulfite spent liquor fermentation      166
        • 3.8.1.8.4           Gasification    166
          • 3.8.1.8.4.1      Biomass gasification and syngas fermentation       166
          • 3.8.1.8.4.2      Biomass gasification and syngas thermochemical conversion    167
        • 3.8.1.8.5           CO2 capture and alcohol synthesis               167
        • 3.8.1.8.6           Biomass hydrolysis and fermentation           167
        • 3.8.1.8.7           Separate hydrolysis and fermentation           167
          • 3.8.1.8.7.1      Simultaneous saccharification and fermentation (SSF)    168
          • 3.8.1.8.7.2      Pre-hydrolysis and simultaneous saccharification and fermentation (PSSF)      168
          • 3.8.1.8.7.3      Simultaneous saccharification and co-fermentation (SSCF)         169
          • 3.8.1.8.7.4      Direct conversion (consolidated bioprocessing) (CBP)      169
      • 3.8.1.9 Biodiesel           169
      • 3.8.1.10            Biogas 172
        • 3.8.1.10.1        Biomethane    173
        • 3.8.1.10.2        Feedstocks      175
        • 3.8.1.10.3        Anaerobic digestion  175
      • 3.8.1.11            Renewable diesel        176
      • 3.8.1.12            Biojet fuel         177
      • 3.8.1.13            Algal biofuels (blue biotech) 181
        • 3.8.1.13.1        Conversion pathways               181
        • 3.8.1.13.2        Market challenges      183
        • 3.8.1.13.3        Prices  183
        • 3.8.1.13.4        Producers         184
      • 3.8.1.14            Biohydrogen   185
        • 3.8.1.14.1        Biological Conversion Routes             187
          • 3.8.1.14.1.1   Bio-photochemical Reaction              187
          • 3.8.1.14.1.2   Fermentation and Anaerobic Digestion        187
      • 3.8.1.15            Biobutanol      187
      • 3.8.1.16            Bio-based methanol 189
        • 3.8.1.16.1        Anaerobic digestion  191
        • 3.8.1.16.2        Biomass gasification 191
        • 3.8.1.16.3        Power to Methane       192
      • 3.8.1.17            Bioisoprene    193
      • 3.8.1.18            Fatty Acid Esters          193
    • 3.8.2    Bio-based chemicals               193
      • 3.8.2.1 Market supply chain  193
      • 3.8.2.2 Acetic acid      194
      • 3.8.2.3 Adipic acid      194
      • 3.8.2.4 Aldehydes        196
      • 3.8.2.5 Acrylic acid     196
      • 3.8.2.6 Bacterial cellulose      197
      • 3.8.2.7 1,4-Butanediol (BDO)              199
      • 3.8.2.8 Bio-DME            200
      • 3.8.2.9 Dodecanedioic acid (DDDA)                201
      • 3.8.2.10            Ethylene            201
      • 3.8.2.11            3-Hydroxypropionic acid (3-HP)        202
      • 3.8.2.12            1,3-Propanediol (1,3-PDO)   203
      • 3.8.2.13            Itaconic acid  204
      • 3.8.2.14            Lactic acid (D-LA)       204
      • 3.8.2.15            1,5-diaminopentane (DA5)   205
      • 3.8.2.16            Tetrahydrofuran (THF)               206
      • 3.8.2.17            Malonic acid   207
      • 3.8.2.18            Monoethylene glycol (MEG) 208
      • 3.8.2.19            Propylene         208
      • 3.8.2.20            Succinic acid (SA)       209
      • 3.8.2.21            Triglycerides    211
      • 3.8.2.22            Enzymes           211
      • 3.8.2.23            Vitamins           211
      • 3.8.2.24            Antibiotics       212
    • 3.8.3    Bioplastics and Biopolymers              213
      • 3.8.3.1 Bioplastics via white biotechnology               213
      • 3.8.3.2 Biobased polymers from monosaccharides             214
      • 3.8.3.3 Market supply chain  214
      • 3.8.3.4 Lactic Acid and Polylactic Acid (PLA)             216
      • 3.8.3.4.1           Lactic Acid (C3H6O3)              217
      • 3.8.3.4.2           Industrial production of lactic acid 217
      • 3.8.3.4.3           Engineering Yeast Strains for Lactic Acid Production          225
      • 3.8.3.4.4           Polylactic acid (PLA) production       225
      • 3.8.3.5 Succinic Acid 228
      • 3.8.3.5.1           Biobased succinic acid production 228
      • 3.8.3.5.2           PBS       229
      • 3.8.3.6 2,5-furandicarboxylic acid (FDCA)   230
      • 3.8.3.6.1           Monomer Production               230
      • 3.8.3.7 Polyethylene Furanoate (PEF)             231
      • 3.8.3.8 C6 monomers               241
      • 3.8.3.9 Sebacic Acid  241
      • 3.8.3.10            Dodecanedioic Acid  241
      • 3.8.3.11            1,5-Pentanediamine (PDA)   242
      • 3.8.3.12            1,3-Butadiene               243
      • 3.8.3.13            Isoprene            244
      • 3.8.3.14            Isobutene (Isobutylene)          244
      • 3.8.3.15            PHAs   245
      • 3.8.3.15.1        Production of PHAs   247
      • 3.8.3.15.2        PHB, PHBV, and P(3HB-co-4HB)       253
      • 3.8.3.15.3        Commercial PHA landscape               262
      • 3.8.3.15.4        Short and medium chain-length PHAs          262
      • 3.8.3.15.5        Economic viability of PHA production           269
      • 3.8.3.15.6        Risks   269
      • 3.8.3.15.7        Production scale         270
      • 3.8.3.15.8        PHA production landscape  271
      • 3.8.3.15.9        Commercially available PHAs            272
      • 3.8.3.16            Bio-PET              274
      • 3.8.3.17            Starch blends 274
      • 3.8.3.18            Protein-based bioplastics     274
    • 3.8.4    Bioremediation             276
    • 3.8.5    Biocatalysis    277
      • 3.8.5.1 Biotransformations   277
      • 3.8.5.2 Cascade biocatalysis               278
      • 3.8.5.3 Co-factor recycling    278
      • 3.8.5.4 Immobilization             278
    • 3.8.6    Food and Nutraceutical Ingredients               279
      • 3.8.6.1 Market supply chain  279
      • 3.8.6.2 Alternative Proteins   280
      • 3.8.6.3 Natural Sweeteners   281
      • 3.8.6.4 Natural Flavors and Fragrances         282
      • 3.8.6.5 Texturants and Thickeners     282
      • 3.8.6.6 Nutraceuticals and Supplements    283
    • 3.8.7    Agricultural biotechnology    283
      • 3.8.7.1 Market supply chain  283
      • 3.8.7.2 Biofertilizers   284
        • 3.8.7.2.1           Overview           284
        • 3.8.7.2.2           Companies     285
      • 3.8.7.3 Biopesticides 285
        • 3.8.7.3.1           Overview           285
        • 3.8.7.3.2           Companies     285
      • 3.8.7.4 Biostimulants 286
        • 3.8.7.4.1           Overview           286
        • 3.8.7.4.2           Companies     286
      • 3.8.7.5 Crop Biotechnology   287
        • 3.8.7.5.1           Genetic engineering  287
        • 3.8.7.5.2           Genome editing           287
        • 3.8.7.5.3           Companies     288
    • 3.8.8    Textiles               288
      • 3.8.8.1 Market supply chain  289
      • 3.8.8.2 Bio-Based Fibers         290
        • 3.8.8.2.1           Lyocell                290
        • 3.8.8.2.2           Bacterial cellulose      290
        • 3.8.8.2.3           Algae textiles  291
      • 3.8.8.3 Spider silk        292
      • 3.8.8.4 Collagen-derived textiles       293
      • 3.8.8.5 Recombinant Materials           293
      • 3.8.8.6 Sustainable Processing          294
    • 3.8.9    Consumer goods        294
      • 3.8.9.1 Market supply chain  294
      • 3.8.9.2 White biotechnology in consumer goods    295
    • 3.8.10 Biopharmaceuticals 296
      • 3.8.10.1            Market supply chain  296
      • 3.8.10.2            Market overview for white biotechnology    297
    • 3.8.11 Cosmetics       298
      • 3.8.11.1            Market supply chain  298
      • 3.8.11.2            Market overview for white biotechnology    299
    • 3.8.12 Surfactants and detergents  300
      • 3.8.12.1            Market supply chain  300
      • 3.8.12.2            Market overview for white biotechnology    301
    • 3.8.13 Construction materials           302
      • 3.8.13.1            Market supply chain  302
      • 3.8.13.2            Biocement       303
      • 3.8.13.3            Mycelium materials   305
  • 3.9        Global market revenues 2018-2035               307
    • 3.9.1    By molecule    307
    • 3.9.2    By market         308
    • 3.9.3    By region           310
  • 3.10     Future Market Outlook            312

 

4             COMPANY PROFILES                313 (396 company profiles)

 

5             APPENDIX        571

  • 5.1        Research methodology           571
  • 5.2        Acronyms         572
  • 5.3        Glossary of Terms       573

 

6             REFERENCES 574

 

List of Tables

  • Table 1. Biotechnology "colours".     27
  • Table 2. Differences between white biotechnology and conventional processes.           28
  • Table 3. Application areas for  white biotechnology.            29
  • Table 4. Advantages of white biotechnology.            30
  • Table 5. Routes for carbon capture in white biotechnology.           31
  • Table 6. Molecules produced through industrial biomanufacturing.        35
  • Table 7. Commonly used bacterial hosts for white biotechnology production. 36
  • Table 8. Commonly used yeast hosts for white biotech production.         36
  • Table 9. Examples of fungal hosts used in white biotechnology processes.         37
  • Table 10. Examples of marine organisms as hosts for white biotechnology applications.          38
  • Table 11. Common microbial hosts used for enzyme production in white biotechnology.         38
  • Table 12. Photosynthetic microorganisms used as production hosts in white biotechnology  39
  • Table 13. Biomanufacturing processes utilized in white biotechnology. 40
  • Table 14. Continuous vs batch biomanufacturing 41
  • Table 15. Key fermentation parameters in batch vs continuous biomanufacturing processes.              42
  • Table 16. Microorganisms in Biomanufacturing Processes.           44
  • Table 17. Pharmaceutical Industry  48
  • Table 18. Biofuel Industry      48
  • Table 19. Industrial Enzyme Production       48
  • Table 20. Food and Beverage Industry           49
  • Table 21. Non-Model Organisms for White Biotechnology               51
  • Table 22. Machine Learning Applications in Biomanufacturing   54
  • Table 23. Hybrid Biotechnological-Chemical Approaches              57
  • Table 24. Core stages - Design, Build and Test.       60
  • Table 25. Synthetic Biology: Drivers and Barriers for Adoption      61
  • Table 26. Products and applications enabled by synthetic biology.           63
  • Table 27. Engineered proteins in industrial applications. 69
  • Table 29. Cell-free versus cell-based systems         73
  • Table 30. Technology Readiness Assessment          76
  • Table 31. Machine Learning Based Improvements for Biomanufacturing.            81
  • Table 32. AI-driven Fermentation Platform Companies     84
  • Table 33. White biotechnology fermentation processes.  89
  • Table 34. Alternative feedstocks for white biotechnology 102
  • Table 35. Products from C1 feedstocks in white biotechnology.  107
  • Table 36. C2 Feedstock Products.   108
  • Table 37. CO2 derived products via biological conversion-applications, advantages and disadvantages.                110
  • Table 38. Production capacities of biorefinery lignin producers. 113
  • Table 39. Common starch sources that can be used as feedstocks for producing biochemicals.        119
  • Table 40. Routes for carbon capture in white biotechnology.         120
  • Table 41. Biomass processes summary, process description and TRL.  124
  • Table 42. Pathways for hydrogen production from biomass.          126
  • Table 43. Overview of alginate-description, properties, application and market size.   127
  • Table 44. Blue biotechnology companies.  129
  • Table 45. Market trends and drivers in white biotechnology.          131
  • Table 46. Industry challenges and restraints in white biotechnology.       134
  • Table 47. White biotechnology key application sectors and products.    144
  • Table 48. Comparison of biofuels.   146
  • Table 49. Categories and examples of solid biofuel.            148
  • Table 50. Comparison of biofuels and e-fuels to fossil and electricity.     150
  • Table 51. Classification of biomass feedstock.       151
  • Table 52. Biorefinery feedstocks.     151
  • Table 53. Feedstock conversion pathways.                152
  • Table 54. First-Generation Feedstocks.        152
  • Table 55.  Lignocellulosic ethanol plants and capacities. 154
  • Table 56. Comparison of pulping and biorefinery lignins. 156
  • Table 57. Commercial and pre-commercial biorefinery lignin production facilities and  processes    156
  • Table 58. Operating and planned lignocellulosic biorefineries and industrial flue gas-to-ethanol.      158
  • Table 59. Properties of microalgae and macroalgae.          160
  • Table 60. Yield of algae and other biodiesel crops.               161
  • Table 61.  Processes in bioethanol production.     168
  • Table 62. Microorganisms used in CBP for ethanol production from biomass lignocellulosic.               169
  • Table 63. Biodiesel by generation.    170
  • Table 64. Biodiesel production techniques.              171
  • Table 65. Biofuel production cost from the biomass pyrolysis process. 172
  • Table 66. Biogas feedstocks.               175
  • Table 67. Advantages and disadvantages of Bio-aviation fuel.      178
  • Table 68. Production pathways for Bio-aviation fuel.           178
  • Table 69. Current and announced Bio-aviation fuel facilities and capacities.    180
  • Table 70. Algae-derived biofuel producers.                184
  • Table 71. Markets and applications for biohydrogen.          185
  • Table 72. Comparison of different Bio-H2 production pathways.                186
  • Table 73. Properties of petrol and biobutanol.         188
  • Table 74. Comparison of biogas, biomethane and natural gas.   190
  • Table 75. Applications of bio-based caprolactam.               195
  • Table 76. Applications of bio-based acrylic acid.  196
  • Table 77. Applications of bio-based 1,4-Butanediol (BDO).           200
  • Table 78. Applications of bio-based ethylene.         201
  • Table 79. Biobased feedstock sources for 3-HP.     202
  • Table 80. Applications of 3-HP.           202
  • Table 81. Applications of bio-based 1,3-Propanediol (1,3-PDO). 203
  • Table 82. Biobased feedstock sources for itaconic acid.  204
  • Table 83. Applications of bio-based itaconic acid.               204
  • Table 84. Biobased feedstocks that can be used to produce 1,5-diaminopentane (DA5).         205
  • Table 85. Applications of DN5.           206
  • Table 86. Applications of bio-based Tetrahydrofuran (THF).           207
  • Table 87. Markets and applications for malonic acid.         207
  • Table 88. Biobased feedstock sources for MEG.     208
  • Table 89. Applications of bio-based MEG.  208
  • Table 90. Applications of bio-based propylene.      209
  • Table 91. Biobased feedstock sources for Succinic acid. 210
  • Table 92. Applications of succinic acid.       210
  • Table 94. Bioplastics and bioplastic precursors synthesized via white biotechnology processes .      216
  • Table 95. Optimal Lactic Acid Bacteria Strains for Fermentation.               219
  • Table 96. Polylactic acid (PLA) market analysis-manufacture, advantages, disadvantages and applications.  226
  • Table 97. PLA producers and production capacities.          227
  • Table 98. Molecules for Other Biobased Synthetic Polymers.        232
  • Table 99. Biosynthetic Pathways to Polyamides     237
  • Table 100. Biosynthetic Pathways to PHAs 245
  • Table 101. Key Commercial PHAs and Microstructures.   249
  • Table 102. Types of PHAs       253
  • Table 103. Material Properties of Commercial PHAs           255
  • Table 104. Property Comparison Across Applications        260
  • Table 105. Applications of PHAs.      263
  • Table 106. Application-Specific Economic Analysis            267
  • Table 107. Polyhydroxyalkanoate (PHA) extraction methods.        271
  • Table 108. Commercially available PHAs.  273
  • Table 109. Types of protein based-bioplastics, applications and companies.   275
  • Table 110. Applications of white biotechnology in bioremediation and environmental remediation.  276
  • Table 111. Companies developing fermentation-derived food.    281
  • Table 112. Biofertilizer companies. 285
  • Table 113. Biopesticides companies.            285
  • Table 114. Biostimulants companies.          286
  • Table 115. Crop biotechnology companies.              288
  • Table 116. White biotechnology applications in consumer goods.            295
  • Table 117. Pharmaceutical applications of white biotechnology.               298
  • Table 118. Applications of white biotechnology in the cosmetics industry.         300
  • Table 119. Sustainable biomanufacturing of surfactants and detergents.            302
  • Table 120. Global revenues for white biotechnology, by molecule, 2018-2035 (Billion USD).  307
  • Table 121. Global revenues for white biotechnology, by market, 2018-2035 (Billion USD).       308
  • Table 122. Global revenues for white biotechnology, by region, 2018-2035 (Billion USD).         310
  • Table 123. White biotechnology Glossary of Acronyms.    572
  • Table 124. White biotechnology Glossary of Terms.             573

 

List of Figures

  • Figure 1. CRISPR/Cas9 & Targeted Genome Editing.           67
  • Figure 2. Genetic Circuit-Assisted Smart Microbial Engineering. 72
  • Figure 3. Cell-free and cell-based protein synthesis systems.      75
  • Figure 4. Microbial Chassis Development for Natural Product Biosynthesis.     77
  • Figure 5. The design-make-test-learn loop of generative biology.                90
  • Figure 6. LanzaTech gas-fermentation process.      109
  • Figure 7. Schematic of biological CO2 conversion into e-fuels.   110
  • Figure 8. Overview of biogas utilization.       114
  • Figure 9. Biogas and biomethane pathways.             115
  • Figure 10. Schematic overview of anaerobic digestion process for biomethane production.   116
  • Figure 11. BLOOM masterbatch from Algix.               128
  • Figure 12. SWOT analysis: white biotechnology.    139
  • Figure 13. Market map: white biotechnology.           140
  • Figure 14. Biofuels market supply chain.    146
  • Figure 15.  Schematic of a biorefinery for production of carriers and chemicals.             156
  • Figure 16. Hydrolytic lignin powder. 159
  • Figure 17. Range of biomass cost by feedstock type.          163
  • Figure 18. Overview of biogas utilization.    173
  • Figure 19. Biogas and biomethane pathways.          174
  • Figure 20. Schematic overview of anaerobic digestion process for biomethane production.   176
  • Figure 21. Algal biomass conversion process for biofuel production.      183
  • Figure 22.  Pathways for algal biomass conversion to biofuels.    185
  • Figure 23. Biobutanol production route.      188
  • Figure 24. Renewable Methanol Production Processes from Different Feedstocks.       190
  • Figure 25. Production of biomethane through anaerobic digestion and upgrading.        191
  • Figure 26. Production of biomethane through biomass gasification and methanation.               192
  • Figure 27. Production of biomethane through the Power to methane process.  192
  • Figure 28. Bio-based chemicals market supply chain.       194
  • Figure 29. Overview of Toray process.            195
  • Figure 30. Bacterial nanocellulose shapes 198
  • Figure 31. Bioplastics and biopolymers market supply chain.      215
  • Figure 32. Food and Nutraceutical Ingredients market supply chain.      280
  • Figure 33. Agricultural biotechnology market supply chain.           284
  • Figure 34. Bio-textiles market supply chain.             290
  • Figure 35. AlgiKicks sneaker, made with the Algiknit biopolymer gel.       292
  • Figure 36. Biobased consumer goods market supply chain.          295
  • Figure 37. Biopharmaceuticals market supply chain.         297
  • Figure 38. Biobased cosmetics market supply chain.        299
  • Figure 39. Surfactants and detergents market supply chain.         301
  • Figure 40. Biobased construction materials market supply chain.            303
  • Figure 41. BioMason cement.             304
  • Figure 42. Microalgae based biocement masonry bloc.    305
  • Figure 43. Typical structure of mycelium-based foam.      305
  • Figure 44. Commercial mycelium composite construction materials.    306
  • Figure 45. Global revenues for white biotechnology, by market, 2018-2035 (Billion USD).        309
  • Figure 46. Global revenues for white biotechnology, by region, 2018-2035 (Billion USD).          311
  • Figure 47. Algiknit yarn.           320
  • Figure 48. ALGIECEL PhotoBioReactor.        321
  • Figure 49. Jelly-like seaweed-based nanocellulose hydrogel.       322
  • Figure 50. BIOLO e-commerce mailer bag made from PHA.           352
  • Figure 51. Domsjö process.  396
  • Figure 52. Mushroom leather.              399
  • Figure 53. PHA production process.               418
  • Figure 54. Light Bio Bioluminescent plants.              457
  • Figure 55. Lignin gel. 458
  • Figure 56. BioFlex process.   461
  • Figure 57. TransLeather.          465
  • Figure 58. Reishi.         479
  • Figure 59. Compostable water pod.               488
  • Figure 60.  Precision Photosynthesis™ technology.               514
  • Figure 61. Enfinity cellulosic ethanol technology process.              515
  • Figure 62. Fabric consisting of 70 per cent wool and 30 per cent Qmilk.               518
  • Figure 63. Lyocell process.   533
  • Figure 64. Spider silk production.     538
  • Figure 65. Corbion FDCA production process.        551
  • Figure 66. UPM biorefinery process.               555
  • Figure 67. The Proesa® Process.        559
  • Figure 68. XtalPi’s automated and robot-run workstations.            566

 

 

 

 

 

The Global White Biotechnology Market 2025-2035
The Global White Biotechnology Market 2025-2035
PDF download/by email.

The Global White Biotechnology Market 2025-2035
The Global White Biotechnology Market 2025-2035
PDF and Print Edition (including tracked delivery).

Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer. To order by Bank Transfer (Invoice) select this option from the payment methods menu after adding to cart, or contact info@futuremarketsinc.com