The Global Industrial Robots Market 2026-2046

0

cover

cover

  • Published: June 2025
  • Pages: 554
  • Tables: 218
  • Figures: 59
  • Companies profiled: 120

 

The industrial robots market has undergone a dramatic transformation, evolving from simple, cage-enclosed machines into a sophisticated ecosystem encompassing traditional industrial robots, collaborative robots (cobots), humanoid robots, and intelligent mobile systems. This expanded landscape reflects manufacturing's shift toward flexible, adaptive automation that seamlessly integrates human workers with advanced robotic technologies across diverse industrial applications. Today's industrial robotics market spans multiple categories, each addressing specific manufacturing needs. Traditional industrial robots continue to dominate high-volume, high-precision applications like automotive welding and electronics assembly. However, collaborative robots have emerged as a game-changing segment, designed to work safely alongside human operators without protective barriers. These cobots feature advanced force-limiting technology, speed monitoring systems, and intuitive programming interfaces that enable rapid deployment and reconfiguration.
Humanoid robots represent the market's most ambitious frontier, offering human-like dexterity and mobility for complex manufacturing tasks. Companies like Boston Dynamics, Figure AI, and Agility Robotics are pioneering bipedal humanoid systems capable of navigating standard industrial environments, manipulating diverse objects, and performing multi-step assembly processes. These systems promise to address labor shortages while handling tasks too complex for traditional fixed-base robots.
Autonomous Mobile Robots (AMRs) and mobile manipulators combine mobility with manipulation capabilities, creating flexible automation solutions that can adapt to changing production layouts. These systems utilize advanced SLAM (Simultaneous Localization and Mapping) technology, LiDAR sensors, and AI-powered navigation to operate safely in dynamic environments alongside human workers.
Technological Convergence and AI Integration The integration of artificial intelligence has fundamentally transformed industrial robotics capabilities. Modern systems incorporate computer vision for real-time quality inspection, object recognition, and adaptive assembly. Machine learning algorithms enable robots to optimize their performance continuously, learning from production variations and improving accuracy over time. Multi-modal AI systems combine vision, force sensing, and audio processing to create robots capable of sophisticated decision-making.
Edge computing has become crucial for real-time processing, allowing robots to analyze sensor data locally and respond instantly to changing conditions. This capability is particularly important for collaborative applications where safety requires immediate response to human presence or unexpected obstacles. Advanced sensor fusion combines data from cameras, LiDAR, force sensors, and proximity detectors to create comprehensive environmental awareness.
The automotive industry remains the largest adopter of industrial robotics, increasingly deploying cobots for final assembly operations and humanoid robots for complex wiring and interior component installation. Electronics manufacturing has embraced collaborative robots for delicate component handling and testing procedures, while humanoid systems show promise for smartphone and tablet assembly requiring human-like dexterity. Food and beverage processing increasingly utilizes advanced robotics for packaging, quality inspection, and material handling. Collaborative robots excel in food preparation and packaging applications where flexibility and easy cleaning are essential. Pharmaceutical manufacturing adopts these technologies for sterile handling, precise dispensing, and complex assembly of medical devices.
Labor shortages continue driving market growth, with humanoid robots particularly positioned to address skilled labor gaps in industries like aerospace and shipbuilding. The aging workforce in developed nations creates opportunities for robots to perform physically demanding tasks while experienced workers focus on oversight and quality control.
Asia-Pacific leads global adoption, with China implementing ambitious automation initiatives across manufacturing sectors. Japanese companies like Honda and Toyota are pioneering humanoid robot applications in manufacturing, while South Korean firms focus on collaborative robotics for electronics production. European manufacturers emphasize collaborative systems and sustainable automation technologies, particularly in automotive and precision manufacturing. North American adoption focuses on advanced applications in aerospace, medical device manufacturing, and high-tech industries. The region's emphasis on reshoring manufacturing creates opportunities for sophisticated automation systems that can compete with low-cost overseas production.
The industrial robotics market is transitioning toward increasingly intelligent, adaptable systems. Robot-as-a-Service (RaaS) models are emerging to lower entry barriers, particularly for small and medium enterprises. These subscription-based approaches provide access to advanced robotics technology without significant capital investment.
Swarm robotics represents an emerging trend where multiple robots coordinate to accomplish complex tasks, particularly valuable in large-scale manufacturing and logistics operations. The integration of digital twin technology enables virtual testing and optimization of robotic systems before physical deployment.
As artificial intelligence continues advancing, the distinction between different robot types will blur, with systems becoming more versatile and capable of handling diverse tasks. The future industrial robotics market will likely feature increasingly autonomous systems that can adapt to new products, processes, and environments with minimal human intervention, fundamentally reshaping manufacturing's operational paradigms while creating new opportunities for human-robot collaboration.

The Global Industrial Robots Market 2026-2046 provides in-depth analysis of the industrial robotics ecosystem, covering traditional industrial robots, collaborative robots (cobots), humanoid robots, autonomous mobile robots (AMRs), and emerging robotic technologies that are reshaping manufacturing across industries worldwide. Report contents include:

  • Market Segmentation & Revenue Analysis:
    • Detailed market size and growth forecasts for industrial robots, collaborative robots, humanoid robots, and mobile robots (2026-2046)
    • Revenue projections by robot type, technology, component, and end-use industry
    • Unit sales analysis across manufacturing, healthcare, logistics, agriculture, construction, and emerging sectors
    • Regional market analysis covering North America, Europe, Japan, China, and India
    • Pricing analysis and cost structure evaluation by robot category and application
  • Technology Landscape & Innovation Trends:
    • Advanced AI integration including machine learning, computer vision, and sensor fusion technologies
    • Collaborative robotics evolution through six stages of human-robot interaction
    • Humanoid robot development for industrial applications with design considerations and manufacturing use cases
    • Autonomous mobile robot navigation technologies and transition from AGVs to AMRs
    • Robotic arms analysis including SCARA, Delta, and Cartesian robot configurations
    • End-effector technologies and gripper systems for diverse manufacturing applications
  • Component Analysis & Supporting Systems:
    • Comprehensive sensor and perception systems including cameras, LiDAR, radar, and thermal imaging
    • AI and control systems featuring neuromorphic computing and edge processing capabilities
    • Software and control platforms for robotics applications
    • Linear motion systems, vision systems, and supporting infrastructure
    • Advanced materials including metals, polymers, composites, smart materials, and nanomaterials
  • Industry Applications & End-Use Analysis
    • Automotive industry opportunities, challenges, and robotic applications
    • Electronics manufacturing including 3C production challenges, quality control, and packaging automation
    • Food and beverage industry requirements, product variety handling, and hygiene considerations
    • Pharmaceutical manufacturing applications including sterile handling and precision dispensing
    • Emerging industrial applications in additive manufacturing and flexible manufacturing systems
  • Emerging Technologies & Future Trends: 
    • Swarm robotics technologies and multi-robot coordination systems
    • Human-robot collaboration advances and intuitive programming interfaces
    • Self-learning and adaptive robots using reinforcement learning
    • Cloud robotics and distributed computing architectures
    • Digital twin integration for simulation, predictive maintenance, and performance optimization
    • Robot-as-a-Service (RaaS) business models and subscription-based services
    • Soft robotics materials and actuators for delicate handling applications
    • Neuromorphic computing for energy-efficient robot perception
    • Micro-nano robots for medical and industrial applications
    • Brain-computer interfaces for advanced robot control
    • Mobile collaborative robots combining mobility with manipulation
    • Low-carbon robotics manufacturing and sustainable design approaches
  • Technical & Implementation Challenges:
    • Perception and sensing limitations in complex environments
    • Manipulation and dexterity requirements for human-like tasks
    • Power and energy management optimization
    • Human-robot interaction safety and regulatory compliance
    • Integration complexity with existing manufacturing systems
    • Skills gaps and workforce training requirements
  • Regulatory Landscape Analysis:
    • Safety standards and requirements for collaborative robots
    • Autonomous vehicle regulations and testing certifications
    • Industrial robot safety regulations across major markets
    • Data privacy and security requirements for connected robotics
    • Regional regulatory differences and compliance considerations
  • Future Outlook & Technology Roadmap
  • Company Profiles & Competitive Landscape. Companies profiled include 1X Technologies, ABB, Advanced Farm Technologies, Aethon, Agibot, Agility Robotics, Agilox, AheadForm, AIRSKIN, ANYbotics AG, Apptronik, Ati Motors, Aubo Robotics, Boardwalk Robotics, Booster Robotics, Boston Dynamics, BridgeDP Robotics, Bright Machines, Bruker Alicona, Clearpath Robotics, Clone Robotics, Cognibotics, Contoro Robotics, CynLr, Dataa Robotics, Denso, Devanthro, Dexterity Inc., Diligent Robotics, Dobot Robotics, Doosan Robotics, Elephant Robotics, Epson, Estun Automation, Eureka Robotics, F&P Personal Robotics, Fairino, Fanuc, FDROBOT, FESTO, Fetch Robotics, Figure AI, ForwardX, Fourier Intelligence, Franka Emika GmbH, fruitcore robotics GmbH, Furhat Robotics, Geekplus, GrayMatter Robotics, GreyOrange, H2 Clipper Inc., Haber, Han's Robot, Hanwha Robotics, HEBI Robotics, HIWIN, Holiday Robotics, Honda, Hyundai Robotics, Inceptio, Inivation AG, InVia Robotics, Inovance, Jaka Robotics, Kawasaki Heavy Industries, Kepler, Keybotic, Kivnon, KUKA, Leju Robotics, Libiao Robotics, LimX Dynamics, Locus Robotics, Macco Robotics, Magazino GmbH, MagicLab, Mbodi AI, Mecademic, MiR, Monumental, Mitsubishi Electric, NACHI, NAVIGANTIS, Neura Robotics GmbH, Nomagic, NVIDIA, Oinride Oy, Omron, OnRobot, Panasonic and more......

 

 

 

 

1             EXECUTIVE SUMMARY            31

  • 1.1        Market Overview and Size      31
  • 1.2        Robot Categorization                32
  • 1.3        Industrial Robotics Landscape          33
  • 1.4        Global Market Forecast           36
    • 1.4.1    Units    36
    • 1.4.2    Revenues          38
  • 1.5        Key Drivers and Restraints    40
  • 1.6        Technology Trends      41
    • 1.6.1    Automation for improved efficiency                41
      • 1.6.1.1 Robot Density in Manufacturing 2020-2024             41
      • 1.6.1.2 Growth of Robot Users 2020-2024 42
    • 1.6.2    Humanoid Robots      43
    • 1.6.3    Collaborative Robots (Cobots)          46
    • 1.6.4    Physical, Analytic and Generative AI              50
    • 1.6.5    Robotics Evolution Timeline 51
    • 1.6.6    Sustainability and Energy Consumption     51
    • 1.6.7    Addressing Labor Shortages                52
    • 1.6.8    Key Emerging Transitions in Sensing Technologies                52
  • 1.7        Industry Convergence              55
    • 1.7.1    Mobile Robots vs. Fixed Automation              55
    • 1.7.2    Robot-as-a-Service (RaaS) Business Models           56
    • 1.7.3    Industry 5.0 - Transformative Vision               56
    • 1.7.4    Collaborative Robots Driving Industry 5.0  57
    • 1.7.5    Parameter Comparison - Payload vs. Speed             57
  • 1.8        Competitive Landscape         58
    • 1.8.1    Global Competitive Landscape         58
    • 1.8.2    Leading Companies by Robot Type 59
    • 1.8.3    Major Industrial Robot Manufacturers          60
    • 1.8.4    Service Robot Specialists      60
    • 1.8.5    Cobot Manufacturers               61
    • 1.8.6    AI Robotics Companies          61
    • 1.8.7    Sensor and Component Developers               62
    • 1.8.8    End-Effector Suppliers            62
    • 1.8.9    Humanoid Robot Developers              63
  • 1.9        Investment Trends      63
    • 1.9.1    Historic Funding Trends          63
    • 1.9.2    Recent investment     65
    • 1.9.3    Venture Capital Funding of Robotics Startups         66

 

2             INTRODUCTION          67

  • 2.1        Defining Advanced Robotics               67
    • 2.1.1    Definitions of Key Terms         67
    • 2.1.2    Classification of Robot Types              68
    • 2.1.3    What are Robots?       70
      • 2.1.3.1 Industrial Robots        70
      • 2.1.3.2 Service Robots             70
      • 2.1.3.3 Collaborative Robots                71
      • 2.1.3.4 Mobile Robots               72
      • 2.1.3.5 Humanoid Robots      72
    • 2.1.4    Why Robots?  73
      • 2.1.4.1 Productivity Enhancement   73
      • 2.1.4.2 Labor Shortage Solutions      73
      • 2.1.4.3 Safety Improvements               74
      • 2.1.4.4 Quality and Precision Requirements              74
  • 2.2        Industrial Robots        75
  • 2.3        Evolution from Traditional to Advanced Robotics  76
    • 2.3.1    Historical Overview and Evolution   76
    • 2.3.2    Current State of Robotics in 2025    76
    • 2.3.3    Three Phases of Robot Adoption       77
    • 2.3.4    Evolution from Industrial to Service Robots              78
  • 2.4        Key Enabling Technologies    79
    • 2.4.1    Artificial Intelligence and Machine Learning             79
      • 2.4.1.1 What is Artificial Intelligence?             80
        • 2.4.1.1.1           Key AI Methods for Robotics 80
      • 2.4.1.2 Deep Learning Approaches  82
      • 2.4.1.3 Convolutional Neural Networks in Robotics             83
    • 2.4.2    Computer Vision         84
      • 2.4.2.1 Image Recognition Technologies      85
      • 2.4.2.2 Object Detection and Tracking          85
      • 2.4.2.3 Scene Understanding              86
    • 2.4.3    Sensor Fusion               87
      • 2.4.3.1 Multi-sensor Integration         87
      • 2.4.3.2 Data Processing for Sensor Fusion  88
    • 2.4.4    Advanced Materials   89
      • 2.4.4.1 Metals 91
      • 2.4.4.2 Plastics and Polymers              92
      • 2.4.4.3 Composites    93
      • 2.4.4.4 Elastomers      94
      • 2.4.4.5 Smart Materials            96
      • 2.4.4.6 Textiles               97
      • 2.4.4.7 Ceramics          99
      • 2.4.4.8 Biomaterials   100
      • 2.4.4.9 Nanomaterials              103
      • 2.4.4.10            Coatings            105
      • 2.4.4.10.1        Self-healing coatings                107
      • 2.4.4.10.2        Conductive coatings 107
      • 2.4.4.11            Flexible and Soft Materials    108
    • 2.4.5    Edge Computing          109
      • 2.4.5.1 Local Processing vs. Cloud Computing        110
      • 2.4.5.2 Real-time Decision Making  111
    • 2.4.6    SLAM - Simultaneous Localization and Mapping   111
      • 2.4.6.1 LiDAR SLAM    112
      • 2.4.6.2 Visual SLAM (vSLAM)                113
      • 2.4.6.3 Hybrid SLAM Approaches     113
    • 2.4.7    Typical Sensors for Object Detection             114
      • 2.4.7.1 Camera-based Detection      115
      • 2.4.7.2 LiDAR-based Detection           117
      • 2.4.7.3 Radar Systems              118
      • 2.4.7.4 Ultrasonic Sensors     120
      • 2.4.7.5 Infrared and Thermal Sensors             122
  • 2.5        Technology Readiness Assessment               124
    • 2.5.1    Technology Readiness Levels (TRL) 124
    • 2.5.2    Roadmap and Maturity Analysis by Industry             127
    • 2.5.3    Readiness Level of Technologies by Application Sector     130
  • 2.6        Standards and Regulations  134
    • 2.6.1    Safety Requirements - Five Main Types         134
      • 2.6.1.1 Power and Force Limiting      134
      • 2.6.1.2 Speed and Separation Monitoring   134
      • 2.6.1.3 Hand Guiding 134
      • 2.6.1.4 Safety Monitored Stop             135
      • 2.6.1.5 Soft Impact Design    135
    • 2.6.2    Regional Safety Standards   136
      • 2.6.2.1 European Standards 136
      • 2.6.2.2 Asian Standards          137
    • 2.6.3    Global Regulatory Landscape            137
      • 2.6.3.1 Authorities Regulating Autonomous Driving              137
      • 2.6.3.2 Regulations for Delivery Robots and Drones             138
      • 2.6.3.3 Industrial Robot Regulations               139
      • 2.6.3.4 Data Privacy and Security Regulations         140
      • 2.6.3.5 Regional Differences in Regulations               141
      • 2.6.3.6 Data Security Requirements                142

 

3             GLOBAL MARKET ANALYSIS  144

  • 3.1        Market Segmentation               144
    • 3.1.1    By Robot Type                144
      • 3.1.1.1 Industrial Robots        144
        • 3.1.1.1.1           Units    144
        • 3.1.1.1.2           Revenues          144
      • 3.1.1.2 Collaborative Robots (Cobots)          145
        • 3.1.1.2.1           By revenues     145
        • 3.1.1.2.2           By Payload Capacity 145
        • 3.1.1.2.3           By Degrees of Freedom           146
        • 3.1.1.2.4           By End-Effector Type 146
      • 3.1.1.3 Humanoid Robots      147
        • 3.1.1.3.1           By Type (Full-Size, Medium, Small)  147
        • 3.1.1.3.2           By Application               148
      • 3.1.1.4 Mobile Robots               148
        • 3.1.1.4.1           Autonomous Mobile Robots (AMRs)              149
        • 3.1.1.4.2           Automated Guided Vehicles (AGVs)               149
        • 3.1.1.4.3           Grid-Based Automated Guided Carts (AGCs)          150
        • 3.1.1.4.4           Mobile Picking Robots             150
        • 3.1.1.4.5           Mobile Manipulators 151
        • 3.1.1.4.6           Last-Mile Delivery Robots     151
        • 3.1.1.4.7           Heavy-Duty L4 Autonomous Trucks                152
    • 3.1.2    By Technology                152
      • 3.1.2.1 Navigation and Mapping        152
      • 3.1.2.2 Object Recognition and Tracking      153
      • 3.1.2.3 End-Effector and Manipulation         153
      • 3.1.2.4 Human-Robot Interaction     154
      • 3.1.2.5 Artificial Intelligence 154
    • 3.1.3    By Component              155
      • 3.1.3.1 Hardware          155
        • 3.1.3.1.1           Sensors             155
        • 3.1.3.1.2           Actuators          156
        • 3.1.3.1.3           Power Systems             156
        • 3.1.3.1.4           Control Systems          157
        • 3.1.3.1.5           End-Effectors 158
      • 3.1.3.2 Software            159
        • 3.1.3.2.1           Control Software         159
        • 3.1.3.2.2           Perception Software  159
        • 3.1.3.2.3           Human-Machine Interface    160
      • 3.1.3.3 Services             161
        • 3.1.3.3.1           Installation and Integration   161
        • 3.1.3.3.2           Maintenance and Support     161
    • 3.1.4    By End-use Industry  162
      • 3.1.4.1 Manufacturing              162
      • 3.1.4.2 Logistics and Warehousing  163
  • 3.2        Regional Market Analysis      164
    • 3.2.1    North America              164
    • 3.2.2    Europe                164
    • 3.2.3    Japan  165
    • 3.2.4    China  165
    • 3.2.5    India    167
  • 3.3        Pricing Analysis and Cost Structure                167
    • 3.3.1    Cost Analysis by Robot Type                167
      • 3.3.1.1 Industrial Robot Costs             167
      • 3.3.1.2 Collaborative Robot Costs    168
      • 3.3.1.3 Service Robot Costs 168
      • 3.3.1.4 Humanoid Robot Costs          168
      • 3.3.1.5 Mobile Robot Costs   169
    • 3.3.2    Cost Analysis by Component              169
      • 3.3.2.1 Sensor Costs 169
      • 3.3.2.2 Actuator and Power System Costs  170
      • 3.3.2.3 Computing and Control System Costs         170
      • 3.3.2.4 End-Effector Costs    171
    • 3.3.3    Payback Time/ROI by Application    171
      • 3.3.3.1 Manufacturing ROI     171
      • 3.3.3.2 Logistics ROI  172
    • 3.3.4    Parameter Comparison - Payload vs. Max Traveling Speed              172
      • 3.3.4.1 Industrial Robots Performance Metrics        173
      • 3.3.4.2 Mobile Robots Performance Metrics              174
      • 3.3.4.3 Collaborative Robots Performance Metrics               174

 

4             TECHNOLOGY LANDSCAPE 176

  • 4.1        Collaborative Robots (Cobots)          176
    • 4.1.1    Six Stages of Human-Robot Interaction (HRI)           176
      • 4.1.1.1 Stage One: Non-Collaborative Robots          176
      • 4.1.1.2 Stage Two: Non-Collaborative with Virtual Guarding           177
      • 4.1.1.3 Stage Three: Laser Scanner Separation        177
      • 4.1.1.4 Stage Four: Shared Workspace          178
      • 4.1.1.5 Stage Five: Operators and Robots Working Together            178
      • 4.1.1.6 Stage Six: Autonomous Mobile Collaborative Robots         179
    • 4.1.2    Traditional Industrial Robots vs. Collaborative Robots      179
    • 4.1.3    Benefits and Drawbacks of Cobots 180
    • 4.1.4    Safety Requirements for Cobots       181
      • 4.1.4.1 Power and Force Limiting      182
      • 4.1.4.2 Speed and Separation Monitoring   182
      • 4.1.4.3 Hand Guiding 183
      • 4.1.4.4 Safety-Rated Monitored Stop              183
      • 4.1.4.5 Biomechanical Limit Criteria               184
    • 4.1.5    Cobot Cost Analysis 184
    • 4.1.6    Payload Summary of Cobots               185
    • 4.1.7    Overview of Commercialized Cobots            185
      • 4.1.7.1 Benchmarking Based on DoF, Payload, Weight       187
      • 4.1.7.2 6-DoF Cobots                188
      • 4.1.7.3 7-DoF Cobots                188
      • 4.1.7.4 Price Categories of Cobots   189
    • 4.1.8    Market Players               190
  • 4.2        Autonomous Mobile Robots (AMRs)              190
    • 4.2.1    Transition from AGVs to AMRs            190
    • 4.2.2    Technology Evolution Towards Fully Autonomous Mobile Robots              191
    • 4.2.3    AMR Navigation Technologies             192
  • 4.3        Humanoid Industrial Robots               193
    • 4.3.1    Applications in Manufacturing           193
    • 4.3.2    Design Considerations            194
    • 4.3.3    Market Players               196
  • 4.4        Mobile Robots               196
    • 4.4.1    Rolling Robots               197
    • 4.4.2    Market Players               197
  • 4.5        Robotic Arms 198
    • 4.5.1    Types and Applications           198
    • 4.5.2    SCARA Robots              199
    • 4.5.3    Delta Robots  200
    • 4.5.4    Cartesian (Gantry) Robots    201
    • 4.5.5    Market Players               202
  • 4.6        Robotic Grippers         202
    • 4.6.1    Market Players               203
  • 4.7        Software & Control    203
  • 4.8        Supporting Systems  204
    • 4.8.1    Linear Motion Systems            205
      • 4.8.1.1 Rails    205
      • 4.8.1.2 Actuators for Cartesian robots or auxiliary axes     206
      • 4.8.1.3 Market Players               207
    • 4.8.2    Vision Systems             207
      • 4.8.2.1 Cameras           208
      • 4.8.2.2 LiDAR  209
      • 4.8.2.3 Sensors for guidance/QC      210
      • 4.8.2.4 Market Players               212

 

5             TECHNOLOGY COMPONENTS AND SUBSYSTEMS              213

  • 5.1        AI and Control Systems          213
    • 5.1.1    Artificial Intelligence and Machine Learning             213
      • 5.1.1.1 AI Applications in Robotics   213
      • 5.1.1.2 Machine Learning Techniques for Robotics               214
    • 5.1.2    End-to-end AI 214
      • 5.1.2.1 Perception to Action Systems             214
      • 5.1.2.2 Implementation Challenges 215
    • 5.1.3    Multi-modal AI Algorithms    215
      • 5.1.3.1 Vision-Language Models        216
      • 5.1.3.2 Sensor-Fusion AI         216
    • 5.1.4    Intelligent Control Systems and Optimization         217
      • 5.1.4.1 Control Architectures               217
      • 5.1.4.2 Motion Planning           217
  • 5.2        Sensors and Perception          218
    • 5.2.1    Sensory Systems in Robots  218
      • 5.2.1.1 Importance of Sensing in Robots     218
      • 5.2.1.2 Typical Sensors Used for Robots      218
    • 5.2.2    Sensors by Functions and Tasks       219
      • 5.2.2.1 Navigation and Mapping        220
      • 5.2.2.2 Object Detection and Recognition  221
      • 5.2.2.3 Safety and Collision Avoidance         221
      • 5.2.2.4 Environmental Sensing           221
    • 5.2.3    Sensors by Robot Type             222
      • 5.2.3.1 Industrial Robotic Arms          222
      • 5.2.3.2 AGVs and AMRs           223
      • 5.2.3.3 Collaborative Robots                224
      • 5.2.3.4 Drones               226
      • 5.2.3.5 Service Robots             228
      • 5.2.3.6 Underwater Robots   230
      • 5.2.3.7 Agricultural Robots    232
      • 5.2.3.8 Cleaning Robots          233
      • 5.2.3.9 Social Robots 235
    • 5.2.4    Vision Systems             237
      • 5.2.4.1 Cameras (RGB, Depth, Thermal, Event-based)       237
        • 5.2.4.1.1           RGB/Visible Light Cameras  238
        • 5.2.4.1.2           Depth Cameras           238
        • 5.2.4.1.3           Thermal Cameras       239
        • 5.2.4.1.4           Event-based Cameras             240
      • 5.2.4.2 CMOS Image Sensors vs. CCD Cameras    241
        • 5.2.4.2.1           Comparative Analysis              241
      • 5.2.4.3 Stereo Vision and 3D Perception       242
        • 5.2.4.3.1           Depth Calculation Methods 242
        • 5.2.4.3.2           3D Reconstruction     243
      • 5.2.4.4 In-Camera Computer Vision                243
        • 5.2.4.4.1           Edge Processing          243
        • 5.2.4.4.2           Applications in Autonomous Vehicles           244
      • 5.2.4.5 Hyperspectral Imaging Sensors        245

 

6             END-USE INDUSTRY ANALYSIS          247

  • 6.1        Automotive      247
    • 6.1.1    Opportunities and Challenges           247
    • 6.1.2    Applications   248
  • 6.2        Electronics      249
    • 6.2.1    3C Manufacturing Challenges            249
    • 6.2.2    Production Volume Requirements   251
    • 6.2.3    Quality Control             252
    • 6.2.4    Applications   253
    • 6.2.5    Testing and Inspection             254
    • 6.2.6    Packaging        256
  • 6.3        Food and Beverage    258
    • 6.3.1    Industry Challenges and Requirements       258
    • 6.3.2    Product Variety             259
    • 6.3.3    Applications   260
      • 6.3.3.1 Palletizing        260
      • 6.3.3.2 Packaging        261
      • 6.3.3.3 Food Processing          262
  • 6.4        Pharmaceutical           263
    • 6.4.1    Industry Requirements            264
    • 6.4.2    Applications   265
  • 6.5        Emerging Industrial Applications      266
    • 6.5.1    Additive manufacturing integration 266
    • 6.5.2    Flexible manufacturing systems       267
    • 6.5.3    Lights-out manufacturing     269
    • 6.5.4    Mass customization robotics              270

 

7             MARKET DRIVERS AND RESTRAINTS              273

  • 7.1        Market Drivers               273
    • 7.1.1    Labor Shortages and Wage Inflation               273
      • 7.1.1.1 Global Labor Market Trends 273
      • 7.1.1.2 Industry-Specific Impacts     273
    • 7.1.2    Productivity and Efficiency Demands            273
      • 7.1.2.1 Manufacturing Efficiency       273
      • 7.1.2.2 Logistics Optimization             274
      • 7.1.2.3 Healthcare Productivity          274
    • 7.1.3    Quality and Precision Requirements              274
      • 7.1.3.1 Manufacturing Quality Control           274
      • 7.1.3.2 Healthcare Precision                274
    • 7.1.4    Workplace Safety Concerns 274
      • 7.1.4.1 Hazardous Environment Applications           274
      • 7.1.4.2 Ergonomic Considerations   275
    • 7.1.5    Aging Population         275
      • 7.1.5.1 Healthcare Applications        275
      • 7.1.5.2 Workforce Replacement         275
    • 7.1.6    Advancements in Artificial Intelligence and Machine Learning    275
      • 7.1.6.1 Improved Perception Systems            275
      • 7.1.6.2 Enhanced Decision Making 276
      • 7.1.6.3 Autonomous Capabilities     276
    • 7.1.7    Need for Personal Assistance and Companionship            276
      • 7.1.7.1 Eldercare Applications            276
      • 7.1.7.2 Household Assistance            276
    • 7.1.8    Exploration of Hazardous and Extreme Environments       276
      • 7.1.8.1 Nuclear Applications                277
      • 7.1.8.2 Deep Sea Exploration               277
      • 7.1.8.3 Space Applications   277
    • 7.1.9    E-commerce Growth 277
      • 7.1.9.1 Last-Mile Delivery Challenges            277
      • 7.1.9.2 Warehouse Automation Needs          278
  • 7.2        Market Restraints       278
    • 7.2.1    High Initial Investment Costs              278
      • 7.2.1.1 Robot Hardware Costs            278
      • 7.2.1.2 Integration and Implementation Costs         278
    • 7.2.2    Technical Limitations               279
      • 7.2.2.1 AI and Perception Challenges             279
      • 7.2.2.2 Manipulation Challenges       279
      • 7.2.2.3 Energy and Power Limitations            279
    • 7.2.3    Implementation Challenges 280
      • 7.2.3.1 Integration with Existing Systems     280
      • 7.2.3.2 User Training and Adoption  280
    • 7.2.4    Safety and Regulatory Concerns       281
      • 7.2.4.1 Human-Robot Collaboration Safety               281
      • 7.2.4.2 Autonomous System Regulations    281
    • 7.2.5    Workforce Resistance and Social Acceptance        282
      • 7.2.5.1 Employment Concerns           282
      • 7.2.5.2 Human-Robot Interaction Challenges          282

 

8             EMERGING TRENDS AND DEVELOPMENTS              284

  • 8.1        Swarm Robotics          284
    • 8.1.1    Technologies and Approaches           285
    • 8.1.2    Application Potential 286
    • 8.1.3    Market Outlook            287
  • 8.2        Human-Robot Collaboration               287
    • 8.2.1    Advances in Safe Interaction               288
    • 8.2.2    Intuitive Programming Interfaces     288
    • 8.2.3    Market Implementation Examples   289
  • 8.3        Self-Learning and Adaptive Robots 291
    • 8.3.1    Reinforcement Learning Applications           292
    • 8.3.2    Transfer Learning        293
    • 8.3.3    Continual Learning Systems                294
  • 8.4        Cloud Robotics            295
    • 8.4.1    Distributed Computing for Robotics               295
    • 8.4.2    Remote Operation Capabilities         296
  • 8.5        Digital Twin Integration            297
    • 8.5.1    Simulation and Planning        298
    • 8.5.2    Predictive Maintenance          298
    • 8.5.3    Performance Optimization   299
  • 8.6        Robot-as-a-Service (RaaS) Business Models           299
    • 8.6.1    Subscription-Based Services              300
    • 8.6.2    Pay-Per-Use Models  301
    • 8.6.3    Market Adoption Trends          303
  • 8.7        Soft Robotics 305
    • 8.7.1    Materials and Actuators          306
  • 8.8        Neuromorphic Computing for Robotics       311
    • 8.8.1    Brain-Inspired Computing Architectures     312
    • 8.8.2    Applications in Perception    316
    • 8.8.3    Energy Efficiency Benefits     320
  • 8.9        Micro-nano Robots    323
    • 8.9.1    Technologies and Designs    323
    • 8.9.2    Medical Applications                325
    • 8.9.3    Industrial Applications            330
  • 8.10     Brain Computer Interfaces    331
    • 8.10.1 Non-Invasive BCIs      332
    • 8.10.2 Invasive BCIs 332
    • 8.10.3 Applications in Robot Control             332
  • 8.11     Mobile Cobots              333
    • 8.11.1 Technologies and Designs    333
    • 8.11.2 Applications   334
    • 8.11.3 Market Outlook            335
  • 8.12     Industry 5.0 and Collaborative Robots         335
    • 8.12.1 Human-Machine Collaboration         335
    • 8.12.2 Sustainable Manufacturing  336
    • 8.12.3 Implementation Examples   337
  • 8.13     Low-carbon Robotics Manufacturing            338
    • 8.13.1 Sustainable Design Approaches       339
    • 8.13.2 Energy-Efficient Operation    339
    • 8.13.3 End-of-Life Considerations  340
  • 8.14     Autonomous Navigation and Localization  340
    • 8.14.1 SLAM Advancements               341
    • 8.14.2 Multi-Sensor Fusion  342
    • 8.14.3 GPS-Denied Navigation          342
  • 8.15     Navigation Sensors Driven by Autonomous Mobility           342
    • 8.15.1 LiDAR Innovations      343
    • 8.15.2 Computer Vision Advancements      344
    • 8.15.3 Sensor Fusion Approaches  345

 

9             CHALLENGES AND OPPORTUNITIES             346

  • 9.1        Technical Challenges               346
    • 9.1.1    Perception and Sensing          346
    • 9.1.2    Manipulation and Dexterity   346
    • 9.1.3    Power and Energy Management        347
    • 9.1.4    Human-Robot Interaction     348
  • 9.2        Market Challenges     348
    • 9.2.1    Cost Barriers  348
    • 9.2.2    Skills and Training Gaps          349
    • 9.2.3    Integration Complexity            350
    • 9.2.4    Supply Chain Issues 351
  • 9.3        Regulatory Challenges            352
    • 9.3.1    Regulations for Autonomous Vehicles          352
      • 9.3.1.1 SAE Level 4-5 Regulations     352
      • 9.3.1.2 Testing and Certification Requirements       353
    • 9.3.2    Regulations for Delivery Drones        354
      • 9.3.2.1 Airspace Regulations               355
      • 9.3.2.2 Payload and Distance Limitations   355
    • 9.3.3    Recent Regulatory Updates  356

 

10          FUTURE OUTLOOK    358

  • 10.1     Technology Roadmap (2025-2046) 358
    • 10.1.1 Short-term Developments (2025-2030)       358
    • 10.1.2 Medium-term Developments (2030-2035) 359
    • 10.1.3 Long-term Developments (2035-2046)        361
  • 10.2     Industry Convergence Opportunities             363
    • 10.2.1 Robotics and AI            363
    • 10.2.2 Robotics and IoT          363
    • 10.2.3 Robotics and Advanced Manufacturing       364
  • 10.3     Robotics and the Future of Work      365
    • 10.3.1 Job Transformation    365
    • 10.3.2 New Skill Requirements         365
    • 10.3.3 Human-Robot Collaboration Models             366

 

11          COMPANY PROFILES                368 (120 company profiles)

 

12          REFERENCES 548

 

List of Tables

  • Table 1. Robot Categorization.           32
  • Table 2. Global Unit Sales Forecast 2023-2046 (Million Units), Total.      36
  • Table 3. Global Unit Sales Forecast 2023-2046 (Million USD).     38
  • Table 4. Key Market Drivers and Restraints for Advanced Robotics.          40
  • Table 5. Robot Density in Manufacturing 2020-2024.         42
  • Table 6. Growth of Robot Users 2020-2024               42
  • Table 7. Growth of Robot Stock by Sector 2020-2024.       43
  • Table 8. Performance Parameters of Humanoid Robots.  45
  • Table 9. Three Phases of Cobot Adoption    46
  • Table 10. Six Stages of Human-Robot Interaction (HRI)     47
  • Table 11. Traditional Industrial Robots vs. Collaborative Robots 48
  • Table 12. Benefits and Drawbacks of Cobots           48
  • Table 13. Safety Requirements for Cobots 49
  • Table 14. Comparison of Sensing Technologies      53
  • Table 15. Navigation Sensors for Autonomous Mobility     54
  • Table 16. Parameter Comparison - Payload vs. Speed.      57
  • Table 17. Leading Companies by Robot Type.          59
  • Table 18. Major Industrial Robot Manufacturers.   60
  • Table 19. Service Robot Companies.             61
  • Table 20. Collaborative Robot (Cobot) Manufacturer          61
  • Table 21. AI Robotics Companies    61
  • Table 22. Sensor and Component Developers         62
  • Table 23. End Effector Suppliers.      62
  • Table 24. Humanoid Robot Developers.       63
  • Table 25. Global Robotics Investment by Funding Category 2015-2024 (Billions USD).              64
  • Table 26. Industrial Robotics Funding by Technology Type 2014-2024    64
  • Table 27. Recent investments in advanced robotics companies.               65
  • Table 28. Venture Capital Funding of Robotics Startups.  66
  • Table 29. Classification of Robot Types.       68
  • Table 30. Three Phases of Robot Adoption.                78
  • Table 31. Evolution from Industrial to Service Robots         79
  • Table 32. Key AI Methods for Robotics          81
  • Table 33. Deep Learning Approaches.           82
  • Table 34. Convolutional Neural Networks in Robotics.      83
  • Table 35. Image Recognition Technologies.               85
  • Table 36. Multi-sensor Integration in Advanced Robotics 88
  • Table 37. Advanced Materials in Advanced Robotics.        89
  • Table 38. Types of metals commonly used in advanced robots.  91
  • Table 39. Types of plastics and polymers commonly used in advanced robots.               92
  • Table 40. Types of composites commonly used in advanced robots.       94
  • Table 41. Types of elastomers commonly used in advanced robots.        95
  • Table 42. Types of smart materials in advanced robotics.                96
  • Table 43. Types of textiles commonly used in advanced robots. 98
  • Table 44. Types of ceramics commonly used in advanced robots.             99
  • Table 45. Biomaterials commonly used in advanced robotics.     101
  • Table 46. Types of nanomaterials used in advanced robotics.      103
  • Table 47. Types of coatings used in advanced robotics.    105
  • Table 48. Flexible and soft materials .           108
  • Table 49. Edge Computing in Advanced Robotics. 109
  • Table 50. Local Processing vs. Cloud Computing. 110
  • Table 51. Typical Sensors for Object Detection.      114
  • Table 52. Camera-based Detection Technologies for Advanced Robotics.          116
  • Table 53. LiDAR-based Detection Technologies for Advanced Robotics.               117
  • Table 54. Radar Systems for Advanced Robotics Object Detection.         119
  • Table 55. Ultrasonic Sensor Technologies for Advanced Robotics             121
  • Table 56. Infrared and Thermal Sensor Technologies for Advanced Robotics.    122
  • Table 57. Technology Maturity Status Definitions. 124
  • Table 58. Readiness Level of Technologies by Application Sector.              130
  • Table 59. Regional Safety Standards in North America.     136
  • Table 60. Regional Safety Standards in Europe.      136
  • Table 61. Regional Safety Standards in Europe.      137
  • Table 62. Authorities Regulating Autonomous Driving.      137
  • Table 63. Regulations for Delivery Robots and Drones.     138
  • Table 64. Industrial Robot Regulations.        139
  • Table 65. Data Privacy and Security Regulations.  140
  • Table 66. Regional Differences in Regulations.       141
  • Table 67. Data Security Requirements.        142
  • Table 68. Global Market for Industrial Robots 2020-2046 (Million Units).              144
  • Table 69. Global market for industrial robots 2020-2046 (Millions USD).              145
  • Table 70. Global market for Cobots by revenues 2025-2046 (US$ Millions).       145
  • Table 71. Global market for Cobots by payload capacity 2025-2046 (US$ Millions).     146
  • Table 72. Global market for Cobots By Degrees of Freedom 2025-2046 (US$ Millions).              146
  • Table 73. Global market for Cobots By End-Effector Type 2025-2046(US$ Millions).    147
  • Table 74. Global market for Humanoid Robots by type 2025-2046 (Million Units).         147
  • Table 75. Global market for Humanoid Robots by Application 2025-2046 (Million Units).         148
  • Table 76. Global Market for Mobile Robots 2020-2046 (Millions USD).   149
  • Table 77. Global Market for Autonomous Mobile Robots (AMRs) 2025-2046 (Million Units).    149
  • Table 78. Global Market for Automated Guided Vehicles (AGVs) 2025-2046 (Million Units)      150
  • Table 79. Global Market for Grid-Based Automated Guided Carts (AGCs) 2025-2046 (Million Units) 150
  • Table 80.  Global Market for Mobile Picking Robots 2025-2046 (Million Units)   151
  • Table 81. Global Market for Mobile Manipulators 2025-2046 (Million Units)       151
  • Table 82. Global Market for Last-Mile Delivery Robots 2025-2046 (Million Units)            152
  • Table 83. Global Market for Heavy-Duty L4 Autonomous Trucks 2025-2046 (Million Units)      152
  • Table 84. Global Market for Robotics Navigation and Mapping 2025-2046 (Billions USD).        152
  • Table 85. Global Market for Robotics Object Recognition and Tracking 2025-2046 (Billions USD).      153
  • Table 86. Global Market for Robotics Manipulation Technologies 2025-2046 (Billions USD)    154
  • Table 87. Global Market for Human-Robot Interaction Technologies 2025-2046.            154
  • Table 88. Global Market for Robotics Artificial Intelligence 2025-2046 (Billions USD)  155
  • Table 89. Global Market for Robotics Sensors 2025-2046 (Billions USD)               155
  • Table 90. Global Market for Robotics Actuators 2025-2046 (Billions USD).         156
  • Table 91. Global Market for Robotics Power Systems 2025-2046 (Billions USD).             157
  • Table 92. Global Market for Robotics Control Systems 2025-2046 (Billions USD).          158
  • Table 93. Global Market for Robotics End-Effectors 2025-2046 (Billions USD)  158
  • Table 94. Global Market for Robotics Control Software 2025-2046 (Billions USD)          159
  • Table 95. Global Market for Robotics Perception Software 2025-2046 (Billions USD). 160
  • Table 96. Global Market for Robotics Human-Machine Interfaces 2025-2046 (Billions USD)  161
  • Table 97. Global Market for Robotics Installation and Integration Services 2025-2046 (Billions USD)                161
  • Table 98. Global Market for Robotics Maintenance and Support Services 2025-2046 (Billions USD) 162
  • Table 99. Global Market for Advanced Robotics in Manufacturing 2025-2046 (Thousands of Units). 162
  • Table 100. Global Market for Advanced Robotics in Logistics and Warehousing 2025-2046 (Thousands of Units).           163
  • Table 101. Market for Advanced Robotics in North America 2020-2046 (1000 units, by Robot Type). 164
  • Table 102. Market for Advanced Robotics in Europe 2020-2046 (1000 units, by Robot Type).  164
  • Table 103. Market for Advanced Robotics in Japan 2020-2046 (1000 units, by Robot Type).     165
  • Table 104. Market for Advanced Robotics in China 2020-2046 (1000 units, by Robot Type).     166
  • Table 105. Market for Advanced Robotics in China 2020-2046 (1000 units, by End-Use Industry).      166
  • Table 106. Market for Advanced Robotics in India 2020-2046 (1000 units, by Robot Type)         167
  • Table 107.  Average Cost per Unit for Industrial Robots 2025-2046 (Thousands USD). 167
  • Table 108. Average Cost per Unit for Collaborative Robots 2025-2046 (Thousands USD).         168
  • Table 109. Average Cost per Unit for Service Robots 2025-2046 (Thousands USD).      168
  • Table 110. Average Cost per Unit for Humanoid Robots 2025-2046 (Thousands USD) 169
  • Table 111. Average Cost per Unit for Mobile Robots 2025-2046 (Thousands USD)         169
  • Table 112. Average Cost for Robot Sensor Packages 2025-2046 (Thousands USD)        170
  • Table 113. Average Cost for Robot Actuator and Power Systems 2025-2046 (Thousands USD).            170
  • Table 114. Average Cost for Robot Computing and Control Systems 2025-2046 (Thousands USD).   170
  • Table 115. Average Cost for Robot End-Effectors 2025-2046 (Thousands USD).              171
  • Table 116. Payback Time for Advanced Robotics in Manufacturing 2025-2046 (Months).          172
  • Table 117. Payback Time for Advanced Robotics in Logistics 2025-2046 (Months).       172
  • Table 118. Payload and Speed Capabilities by Robot Type 2025-2046.  173
  • Table 119. Key Performance Metrics for Industrial Robots 2025-2046.  173
  • Table 120. Mobile Robots Performance Metrics.    174
  • Table 121. Key Performance Metrics for Collaborative Robots 2025-2046.          175
  • Table 122. Six Stages of Human-Robot Interaction (HRI). 176
  • Table 123. Benefits and Drawbacks of Cobots.       180
  • Table 124. Safety Requirements for Cobots.             181
  • Table 125. Cobot Cost Analysis.       184
  • Table 126. Payload Summary of Cobots.     185
  • Table 127. Commercialized Cobots.              185
  • Table 128. Benchmarking Based on DoF, Payload, Weight.             187
  • Table 129. Price Categories of Cobots.         189
  • Table 130. Market Players in Collaborative Robots (Cobots).        190
  • Table 131. AMR Navigation Technologies    192
  • Table 132. Applications in Manufacturing for Humanoid Industrial Robots.        193
  • Table 133. Design Considerations for Humanoid Industrial Robots.         195
  • Table 134. Market Players in Humanoid Robots.    196
  • Table 135. Market Players in Mobile Robots.             197
  • Table 136. Articulated Robots Types and Applications.     198
  • Table 137. SCARA Robots Market Overview.             199
  • Table 138. Delta Robots Market Overview. 200
  • Table 139. Cartesian (Gantry) Robots Market Overview.   201
  • Table 140. Market Players in Robotic Arms (Delta, Cartesian/Gantry, SCARA)   202
  • Table 141. Market Players in Robotic Grippers.       203
  • Table 142. Robot Software and Control Systems Market Overview.          204
  • Table 143. Rails Market Overview.    206
  • Table 144. Actuators for Cartesian Robots Market Overview.        207
  • Table 145. Market Players in Linear Motion Systems.          207
  • Table 146. Vision Systems Market Overview.            208
  • Table 147. Industrial Cameras Market Overview.   209
  • Table 148. LiDAR Market Overview. 210
  • Table 149. Sensors for Guidance/QC Market Overview.    211
  • Table 150. Vision Systems Market Players. 212
  • Table 151. AI Applications in Robotics.        213
  • Table 152. Machine Learning Techniques for Robotics.     214
  • Table 153. Typical Sensors Used for Robots.            218
  • Table 154. Sensors by Functions and Tasks.             219
  • Table 155. Sensors for Industrial Robotic Arms      222
  • Table 156. Sensors for AGVs and AMRs.      223
  • Table 157. Sensors for Collaborative Robots.          225
  • Table 158. Sensors for Drones            226
  • Table 159. Sensors for Service Robots          228
  • Table 160. Sensors for Underwater Robots.              230
  • Table 161. Sensors for Agricultural Robots 232
  • Table 162. Sensors for Cleaning Robots      233
  • Table 163. Sensors for Social Robots            235
  • Table 164. Cameras (RGB, Depth, Thermal, Event-based).             237
  • Table 165. RGB/Visible Light Cameras.        238
  • Table 166. Depth cameras.  239
  • Table 167. Thermal cameras.              240
  • Table 168. Event-based cameras.    241
  • Table 169. CMOS Image Sensors vs. CCD Cameras            241
  • Table 170. Edge Processing Technologies for Robotic Vision.        244
  • Table 171. In-camera Computer Vision in Autonomous Vehicles                244
  • Table 172. Automotive Industry Robotics Opportunities and Challenges              247
  • Table 173. Advanced Robotics Applications in Automotive Manufacturing         248
  • Table 174. Miniaturization Challenges and Robotic Solutions in Electronics Manufacturing   249
  • Table 175. Production Volume Challenges in Electronics Manufacturing             251
  • Table 176. Quality Control Challenges in Electronics Manufacturing      252
  • Table 177. Advanced Robotics in Electronics Component Assembly      253
  • Table 178. Advanced Robotics in Electronics Testing and Inspection      254
  • Table 179. Advanced Robotics in Electronics Packaging  256
  • Table 180. Hygiene and Safety Requirements for Food Robotics 258
  • Table 181. Product Variety Challenges in Food Robotics  259
  • Table 182. Applications of Advanced Robots in Palletizing              260
  • Table 183. Industry Requirements for Pharmaceutical Robotics 264
  • Table 184. Applications of Advanced Robotics in Pharmaceuticals          265
  • Table 185. Key Technologies for Additive Manufacturing Integration.       266
  • Table 186. Companies Implementing Additive Manufacturing Integration            267
  • Table 187. Key Technologies for Flexible Manufacturing Systems.             268
  • Table 188. Companies Implementing Flexible Manufacturing Systems. 268
  • Table 189. Key Technologies Enabling Lights-Out Manufacturing.             269
  • Table 190. Companies Implementing Lights-Out Manufacturing.              270
  • Table 191. Key Technologies for Mass Customization Robotics.  270
  • Table 192. Companies Implementing Mass Customization Robotics.     271
  • Table 193. Swarm Robotics: Technologies and Approaches          285
  • Table 194. Market Implementation Examples for Human-Robot Collaboration.               289
  • Table 195. Reinforcement Learning Applications for Self-Learning and Adaptive Robots           292
  • Table 196. Robot-as-a-Service (RaaS)  Subscription-based services.      300
  • Table 197. Pay-per-use models .       302
  • Table 198. Market adoption of Robot-as-a-Service.             304
  • Table 199. Materials and actuators.                307
  • Table 200. Control systems for soft robots.               310
  • Table 201. Brain-inspired computing architectures.            313
  • Table 202. Applications in Perception.          317
  • Table 203. Neuromorphic computing Energy Efficiency Benefits.               321
  • Table 204. Micro-nano robots medical applications.          326
  • Table 205. Industrial Applications of Micro-Nano Robots .              331
  • Table 206. BCIs in Robot Control Applications        332
  • Table 207. Technologies and Designs in Mobile Cobots.  333
  • Table 208. Mobile Cobots in Industry.           334
  • Table 209. Sustainable Manufacturing.       336
  • Table 210. Implementation Examples.         337
  • Table 211. Sustainable Design Approaches in Low-Carbon Robotics Manufacturing. 339
  • Table 212. SLAM Advancements in Autonomous Navigation and Localization. 341
  • Table 213. LiDAR Innovations in Advanced Robotics.         343
  • Table 214. Computer Vision Advancements in Advanced Robotics.         344
  • Table 215. Sensor Fusion Approaches in Advanced Robotics.     345
  • Table 216.  SAE Level 4-5 Regulations.          353
  • Table 217.  Testing and Certification Requirements              354
  • Table 218. Recent Regulatory Updates.       356

 

List of Figures

  • Figure 1. Industrial Robotics Landscape.    35
  • Figure 2. Global Market Size by Robot Type 2023-2046 (Million Units).   37
  • Figure 3. Global Market Size by Robot Type 2023-2046 (Million USD).     39
  • Figure 4. Historical progression of humanoid robots.         44
  • Figure 5. Robotics Evolution Timeline.          51
  • Figure 6. Service Robot in Japan.      71
  • Figure 7. Technology Readiness Levels (TRL) for Advanced Robotics.     126
  • Figure 8. Roadmap and Maturity Analysis by Industry.       130
  • Figure 9. Robot swarms.        284
  • Figure 10. System architecture of cloud robotics. 295
  • Figure 11. Micro-bot. 324
  • Figure 12. Robotics Technology Roadmap: Short-term Developments (2025-2030)      359
  • Figure 13. Robotics Technology Roadmap: Medium-term Developments (2030-2035).              361
  • Figure 14. Robotics Technology Roadmap: Long-term Developments (2035-2046)       362
  • Figure 15. EVE/NEO.  368
  • Figure 16. RAISE-A1.  374
  • Figure 17. Agibot product line-up.    374
  • Figure 18. Digit humanoid robot.      376
  • Figure 19. ANYbotics robot.  380
  • Figure 20. Apptronick Apollo.              381
  • Figure 21. Aubo Robotics - i series. 382
  • Figure 22. Alex.              384
  • Figure 23. BR002.       385
  • Figure 24. Atlas.           386
  • Figure 25. XR-4.            398
  • Figure 26. Dreame Technology's second-generation bionic robot dog and general-purpose humanoid robot.  410
  • Figure 27. Mercury X1.             413
  • Figure 28. Prototype Ex-Robots humanoid robots.               418
  • Figure 29. F&P Personal Robotics - P-Rob. 420
  • Figure 30. Figure.ai humanoid robot.             427
  • Figure 31. Figure 02 humanoid robot.            427
  • Figure 32. GR-1.            430
  • Figure 33. Sophia.       438
  • Figure 34. Honda ASIMO.       442
  • Figure 35. Kaleido.      450
  • Figure 36. Forerunner.              451
  • Figure 37. Keyper.        454
  • Figure 38. KUKA - LBR iiwa series.    458
  • Figure 39. Kuafu.         459
  • Figure 40. CL-1.            463
  • Figure 41. MagicHand S01    470
  • Figure 42. Monumental construction robot.              473
  • Figure 43. Neura Robotics - Cognitive Cobots.        479
  • Figure 44. Omron - TM5-700 and TM5X-700.             485
  • Figure 45.  Tora-One. 488
  • Figure 46. HUBO2.     491
  • Figure 47. XBot-L.        500
  • Figure 48. Sanctuary AI Phoenix.      508
  • Figure 49. Pepper Humanoid Robot.              515
  • Figure 50. Astribot S1.              516
  • Figure 51. Stäubli - TX2touch series.              518
  • Figure 52. Tesla Optimus Gen 2.       526
  • Figure 53. Toyota T-HR3           532
  • Figure 54. UBTECH Walker.   533
  • Figure 55. G1 foldable robot.               534
  • Figure 56. WANDA.     536
  • Figure 57. Unitree H1.              540
  • Figure 58. CyberOne.                544
  • Figure 59. PX5.              546

 

 

 

 

 

 

 

 

          

The Global Industrial Robots Market 2026-2036
The Global Industrial Robots Market 2026-2036
PDF download.

The Global Industrial Robots Market 2026-2036
The Global Industrial Robots Market 2026-2036
PDF and Print Edition (including tracked delivery).

Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer. To order by Bank Transfer (Invoice) select this option from the payment methods menu after adding to cart, or contact info@futuremarketsinc.com

20% discount available for Academic and Government Organizations and Start-Ups. Those eligible to receive a discount code, please contact info@futuremarketsinc.com