The Global Sodium-ion Batteries Market 2026-2036

0

cover

cover

  • Published: June 2025
  • Pages: 240
  • Tables: 57
  • Figures: 30

 

The sodium-ion battery market is experiencing unprecedented momentum as industries worldwide seek sustainable, cost-effective alternatives to traditional lithium-ion technology. This emerging sector represents a paradigm shift in energy storage, driven by compelling economic advantages, abundant raw materials, and growing geopolitical concerns over lithium supply chains. Sodium-ion batteries offer a compelling value proposition rooted in material abundance and cost efficiency. With sodium priced at just $0.05 per kilogram compared to lithium's $15 per kilogram, manufacturers can achieve significant cost reductions while maintaining comparable performance characteristics. This 300-fold price differential in raw materials translates directly into more affordable battery systems, positioning sodium-ion technology as a game-changer for price-sensitive applications.

The technology eliminates dependence on scarce and geopolitically sensitive materials like cobalt and nickel, while sodium's abundance in seawater ensures virtually unlimited supply. This resource independence addresses critical supply chain vulnerabilities that have plagued the lithium-ion industry, offering manufacturers greater pricing stability and strategic autonomy. Energy Storage Systems represent the primary growth driver, with utility-scale deployments leading adoption. Projects like HiNa Battery's 100MWh energy storage installation demonstrate the technology's readiness for grid-scale applications. These systems provide crucial grid stabilization services for renewable energy integration, addressing the intermittency challenges of solar and wind power while offering cost advantages over lithium-ion alternatives. Automotive Applications are rapidly emerging, particularly in the budget EV segment. JAC Motors' pioneering sodium-ion production vehicle, featuring a 25kWh battery with 155-mile range, validates the technology's automotive viability. Industry reports suggest major manufacturers like Tesla are evaluating sodium-ion batteries for entry-level vehicles, attracted by their safety profile, thermal stability, and cost benefits that could enable sub-$25,000 electric vehicles. Stationary Storage markets, including residential and commercial applications, benefit from sodium-ion batteries' enhanced safety characteristics and long cycle life. The technology's thermal resilience and reduced fire risk make it particularly suitable for indoor installations and applications requiring minimal maintenance.

China dominates the current market landscape, with companies like CATL and HiNa Battery leading technological development and manufacturing scale-up. CATL's planned large-scale production of second-generation sodium-ion batteries beginning in 2025 signals the technology's commercial maturity. Chinese manufacturers have established comprehensive supply chains encompassing cathode materials, cell production, and system integration. The technology is approaching cost parity with lithium iron phosphate (LFP) batteries by 2025, representing a critical inflection point for widespread adoption.

Manufacturing capacity is scaling rapidly across multiple form factors, including cylindrical, prismatic, and blade cell designs, enabling application-specific optimization. As production volumes increase and manufacturing processes mature, sodium-ion batteries are positioned to capture significant market share in cost-sensitive applications while providing strategic alternatives to lithium-dependent supply chains. The convergence of economic advantages, supply chain security, and environmental benefits positions sodium-ion technology as a cornerstone of the global energy transition, promising to democratize access to clean energy storage solutions.

The Global Sodium-ion Batteries Market 2026-2036  provides critical insights into the rapidly evolving sodium-ion battery industry, analyzing market drivers, technological advancements, competitive landscapes, and future growth projections through 2036. Report contents include: 

  • Market Fundamentals and Technology Assessment:
    • In-depth electrochemistry definitions and fundamentals of sodium-ion battery technology
    • Comprehensive comparison of sodium-ion vs lithium-ion batteries across performance metrics
    • Detailed analysis of cathode active materials (CAMs) including transition metal layered oxides, polyanionic materials, and Prussian blue analogues
    • Extensive evaluation of anode active materials (AAMs) covering hard carbons, graphite, carbon nanotubes, graphene, and alloying materials
    • Complete electrolyte formulations analysis including thermal stability and solid-state electrolyte technologies
    • Alternative sodium battery technologies including molten sodium, aqueous rechargeable, lithium-sodium hybrid, iron-sodium, and sodium-air fuel cells
  • Manufacturing and Cost Analysis:
    • Detailed manufacturing process descriptions and production step analysis
    • Comprehensive cost breakdown comparing sodium-ion to lithium-ion battery production
    • Material cost analysis with price forecasts for 2023-2025 period
    • Manufacturing capacity analysis by cathode type and regional distribution
    • Supply chain optimization strategies and value chain mapping
  • Market Segmentation and Applications:
    • Grid storage market analysis including utility-scale energy storage systems (ESS) and battery energy storage systems (BESS) projects
    • Electric vehicle (EV) market assessment covering passenger vehicles, two-wheelers, and EV fast charging applications
    • Consumer electronics market penetration analysis and competitive positioning
    • Stationary battery applications including residential and commercial energy storage
    • Electric boats and marine applications market opportunities
    • Emerging applications and niche market segments
  • Regional Market Analysis:
    • China's dominant position in sodium-ion battery development and manufacturing capacity
    • Regional demand forecasting by geography through 2036
    • Market penetration strategies by region and regulatory environment assessment
  • Competitive Intelligence and Company Profiles:
    • Comprehensive analysis of 77 market players and emerging companies. Companies profiled include Acculon Energy, Adena Power, Aeson Power, Altech Batteries Ltd., Altris AB, BASF, Biwatt Power, BenAn Energy Technology, Broadbit Batteries Oy, Build Your Dreams (BYD), Contemporary Amperex Technology Co Ltd (CATL), CAPCHEM, CBAK Energy Technology Inc., Central Glass Co. Ltd., Cham Battery Technology, Chengdu Baisige Technology Co. Ltd., China Sodium-ion Times, Desay Battery, DFD Energy, EcoPro BM, Enchampion, EVE Energy Co. Ltd, Exencell New Energy, Faradion Limited, Farasis Energy, Geyser Batteries Oy, Great Power Energy, Guoke Tanmei New Materials, Heiwit, Highstar Sodium Battery (Guangdong) Co. Ltd., HiNa Battery Technologies Limited, Hithium, HORIEN Salt Battery Solutions and more....
    • Detailed performance comparison across key manufacturers
    • Supply chain mapping and strategic partnerships analysis
    • Commercial product portfolios and market positioning strategies
  • Market Forecasting and Future Outlook:
    • Market size projections from 2018-2036 with detailed revenue forecasts in millions USD
    • Capacity growth analysis measured in GWh by application segment
    • EV market segmentation forecasts including A00, A0, and premium vehicle categories
    • Regional market distribution and growth rate analysis
    • Technology roadmap and innovation pipeline assessment

 

 

 

 

 

1             EXECUTIVE SUMMARY            12

  • 1.1        Market drivers for Sodium-ion Batteries (SIBs)        12
  • 1.2        Cost analysis of SIBs 14
  • 1.3        The market in China  16
  • 1.4        Sodium-ion battery manufacturing capacity            18
  • 1.5        Markets for Sodium-ion Batteries     21
  • 1.6        Impact on the L-ion battery market 23

 

2             INTRODUCTION AND TECHNOLOGY FUNDAMENTALS     25

  • 2.1        Electrochemistry definitions and fundamentals    25
  • 2.2        Li-ion batteries              26
  • 2.3        Motivation for battery development beyond lithium            28
  • 2.4        Value proposition for sodium-ion batteries                30
  • 2.5        Technology description           31
  • 2.6        Key performance metrics       33
  • 2.7        The Li-ion battery market       34

 

3             SODIUM-ION BATTERY CHEMISTRIES AND CELL DESIGNS            36

  • 3.1        Comparative analysis with other battery types        37
  • 3.2        Cost comparison with Li-ion                38
  • 3.3        Materials in sodium-ion battery cells             39
    • 3.3.1    Prices  40
  • 3.4        Cathode Active Materials (CAMS)    41
    • 3.4.1    Transition metal layered oxides         41
      • 3.4.1.1 Types   41
      • 3.4.1.2 Cycling performance 42
      • 3.4.1.3 Advantages and disadvantages        43
      • 3.4.1.4 Market prospects for LO SIB 43
      • 3.4.1.5 Types and comparative analysis       43
    • 3.4.2    Polyanionic materials               43
      • 3.4.2.1 Advantages and disadvantages        44
      • 3.4.2.2 Types   44
      • 3.4.2.3 Market prospects for Poly SIB             45
    • 3.4.3    Prussian blue analogues (PBA)          45
      • 3.4.3.1 Types and characteristics      46
      • 3.4.3.2 Advantages and disadvantages        47
      • 3.4.3.3 Market prospects for PBA-SIB             47
  • 3.5        Anode Active Materials (AAMs)          50
    • 3.5.1    Hard carbons 51
      • 3.5.1.1 Hard carbon precursors          52
      • 3.5.1.2 Bio-waste vs oil-based feedstocks for HC  53
    • 3.5.2    Carbon black 54
    • 3.5.3    Graphite            55
    • 3.5.4    Carbon nanotubes     58
    • 3.5.5    Graphene         59
    • 3.5.6    Alloying materials       60
    • 3.5.7    Sodium Titanates        61
    • 3.5.8    Sodium Metal 61
  • 3.6        Electrolytes     63
    • 3.6.1    Electrolyte formulations         63
    • 3.6.2    Thermal stability          64
    • 3.6.3    Carbonate-based liquid electrolytes (e.g. EC/PC with Na salts)  64
    • 3.6.4    Ionic liquids    65
    • 3.6.5    Solid state electrolytes (e.g. Na-beta-alumina)      65
    • 3.6.6    Fluorinated amorphous halides        66
  • 3.7        Other components    68
  • 3.8        Alternative Sodium Battery Technologies    71
    • 3.8.1    Molten sodium batteries         71
    • 3.8.2    Aqueous rechargeable sodium ion batteries             73
    • 3.8.3    Lithium-Sodium Hybrid Technology                74
    • 3.8.4    Iron-Sodium Batteries              75
    • 3.8.5    Sodium-Air Fuel Cells              77

 

4             MANUFACTURING PROCESS AND COST ANALYSIS             78

  • 4.1        Description of manufacturing process         78
  • 4.2        Cost breakdown and analysis            79

 

5             SAFETY OF NA-ION BATTERIES          84

  • 5.1        Safety profiles               84
  • 5.2        Risks   86
  • 5.3        Mitigation         88

 

6             THE GLOBAL MARKET FOR SODIUM-ION BATTERIES         92

  • 6.1        Market drivers                92
  • 6.2        Market challenges      94
  • 6.3        Recent market developments, company news and funding           94
  • 6.4        Main players and competitive landscape   96
    • 6.4.1    Battery Manufacturers            96
    • 6.4.2    Large Corporations    96
    • 6.4.3    Automotive Companies          97
    • 6.4.4    Chemicals and Materials Firms         97
  • 6.5        Target markets for Na-ion      99
  • 6.6        SWOT analysis              101
  • 6.7        Market value chain     102
  • 6.8        The market in China  102
  • 6.9        Global patent landscape       103
  • 6.10     Planned capacities by cathode type               103
  • 6.11     Grid storage    105
    • 6.11.1 Market overview           105
    • 6.11.2 Grid applications        106
    • 6.11.3 Stationary energy storage      107
    • 6.11.4 ESS       108
    • 6.11.5 BESS projects                110
    • 6.11.6 Competing technologies        112
    • 6.11.7 Market outlook             112
  • 6.12     Electric vehicles (EV) 114
    • 6.12.1 Market overview           114
    • 6.12.2 Applications   115
    • 6.12.3 EV Batteries     117
    • 6.12.4 Na-ion two-wheelers 119
    • 6.12.5 EV fast charging           121
    • 6.12.6 China’s EV Market       122
    • 6.12.7 Competing technologies        124
    • 6.12.8 Market outlook             125
  • 6.13     Consumer electronics             126
    • 6.13.1 Market overview           126
    • 6.13.2 Competing technologies        126
    • 6.13.3 Market outlook             127
  • 6.14     Stationary batteries   129
    • 6.14.1 Market overview           129
    • 6.14.2 Applications   131
    • 6.14.3 Competing technologies        133
    • 6.14.4 Market outlook             134
  • 6.15     Electric boats 135
    • 6.15.1 Market overview           135
    • 6.15.2 Competing technologies        135
    • 6.15.3 Market outlook             136
  • 6.16     Global Market Size and Forecast      137
    • 6.16.1 Capacities       137
    • 6.16.2 Total market revenues              138
    • 6.16.3 By application               139
    • 6.16.4 By region           143
  • 6.17     Future outlook              145

 

7             MARKET PLAYERS AND COMPETITIVE LANDSCAPE             147

  • 7.1        Main market players  147
  • 7.2        Na-ion performance comparison    149
  • 7.3        Na-ion supply chain  150
  • 7.4        Commercial products              152

 

8             COMPANY PROFILES                154 (77 company profiles)

 

9             RESEARCH METHODOLOGY              236

  • 9.1        Report scope 236
  • 9.2        Research methodology           236

 

10          REFERENCES 238

 

List of Tables

  • Table 1. Na-ion vs other chemistries.             13
  • Table 2. Global Na-ion battery manufacturing capacity.   18
  • Table 3. Markets for Sodium-ion Batteries. 21
  • Table 4. Value proposition for sodium-ion batteries             30
  • Table 5. Na-ion vs Li-ion.        32
  • Table 6. Key performance metrics for sodium-ion batteries.          33
  • Table 7.  Comparison of rechargeable battery technologies.         34
  • Table 8. Na-based battery types.      36
  • Table 9. Component and materials in sodium-ion batteries.          37
  • Table 10. Pros and cons compared to other battery types.              37
  • Table 11. Cost comparison with Li-ion batteries.   38
  • Table 12. Key materials in sodium-ion battery cells.            39
  • Table 13. Price of battery materials for sodium-ion batteries 2023-2025.             40
  • Table 14. Comparison of cathode materials.            41
  • Table 15.  Layered transition metal oxide cathode materials for sodium-ion batteries. 41
  • Table 16. General cycling performance characteristics of common layered transition metal oxide cathode materials.     42
  • Table 17. Polyanionic materials for sodium-ion battery cathodes.             44
  • Table 18. Comparative analysis of different polyanionic materials.           44
  • Table 19.  Common types of Prussian Blue Analogue materials used as cathodes or anodes in sodium-ion batteries.  46
  • Table 20. Comparison of Na-ion battery anode materials.              50
  • Table 21. Hard Carbon producers for sodium-ion battery anodes.            51
  • Table 22. Comparison of carbon materials in sodium-ion battery anodes.          54
  • Table 23. Comparison between Natural and Synthetic Graphite.               55
  • Table 24. Properties of graphene, properties of competing materials, applications thereof.     59
  • Table 25. Comparison of carbon based anodes.    60
  • Table 26.  Alloying materials used in sodium-ion batteries.             60
  • Table 27. Na-ion electrolyte formulations. 63
  • Table 28. Comparison of electrolyte salts and solvents.   64
  • Table 29.  Solid-state electrolyte materials for sodium-ion batteries.       65
  • Table 30. Other components in Na-ion batteries.  68
  • Table 31.  Types of molten sodium batteries:            71
  • Table 32. Production steps in Na-ion battery manufacturing process.    78
  • Table 33. Na-ion costs compared to other battery types. 79
  • Table 34. Na-ion cell material costs compared to Li-ion. 80
  • Table 35. Na-ion price reported by companies.      81
  • Table 36. Comparative price of sodium-ion batteries, USD/kwh Pack.    82
  • Table 37. Market drivers for sodium-ion batteries. 92
  • Table 38. Market challenges for sodium-ion batteries.       94
  • Table 39. Recent market developments.     94
  • Table 40. Target markets for Na-ion.               99
  • Table 41. Competing technologies for sodium-ion batteries in grid storage.       112
  • Table 42. Competing technologies for sodium-ion batteries in electric vehicles.             124
  • Table 43. Competing technologies for sodium-ion batteries in consumer electronics  126
  • Table 44. Competing technologies for sodium-ion batteries in stationary batteries.      133
  • Table 45. Competing technologies for sodium-ion batteries in electric boats.   135
  • Table 46. Global market for sodium-ion batteries 2018-2036 (Millions USD).    138
  • Table 47. Market for sodium-ion batteries by application 2023-2036 (GWh).     139
  • Table 48. Market for sodium-ion batteries by EV segment 2023-2036 (GWh).    142
  • Table 49. Regional demand, GWh by 2036.               143
  • Table 50. Na-ion players.        147
  • Table 51. Na-ion performance comparison by player.         149
  • Table 52. CATL sodium-ion battery characteristics.             166
  • Table 53. CHAM sodium-ion battery characteristics.          169
  • Table 54. Faradion sodium-ion battery characteristics.    178
  • Table 55. HiNa Battery sodium-ion battery characteristics.           185
  • Table 56. LiNa Energy battery characteristics.         202
  • Table 57. Natrium Energy battery characteristics. 208

 

List of Figures

  • Figure 1. Schematic illustration of sodium-ion battery.      31
  • Figure 2.  CATL's first-generation sodium-ion battery.         32
  • Figure 3. Li-ion battery cell pack.      35
  • Figure 4. Schematic diagram of a Na-ion battery.  40
  • Figure 5. Schematic of Prussian blue analogues (PBA).     46
  • Figure 6. Comparison of SEM micrographs of sphere-shaped natural graphite (NG; after several processing steps) and synthetic graphite (SG).       55
  • Figure 7. Overview of graphite production, processing and applications.             57
  • Figure 8. Schematic diagram of a multi-walled carbon nanotube (MWCNT).      58
  • Figure 9. Battery pack costs by chemistry. 81
  • Figure 10. SWOT analysis: Sodium-ion battery market.     101
  • Figure 11. Market value chain for sodium-ion batteries.    102
  • Figure 12. Sodium-ion grid storage units.    113
  • Figure 13. E10X model with sodium-ion battery pack.        125
  • Figure 14. Salt-E Dog mobile battery.             129
  • Figure 15. I.Power Nest - Residential Energy Storage System Solution.   130
  • Figure 16. Sodium-ion battery capacities, 2022-2036 (GWh).      137
  • Figure 17. Global market for sodium-ion batteries 2018-2036 (Millions USD).  139
  • Figure 18. Market for sodium-ion batteries by application 2023-2036 (GWh).   141
  • Figure 19. Market for sodium-ion batteries by EV segment 2023-2036 (GWh).  143
  • Figure 20. Global market for sodium-ion batteries 2018-2036, by region (Millions USD).*          144
  • Figure 21. Na-ion supply chain.         150
  • Figure 22. Containerized NAS® batteries.    160
  • Figure 23. BYD Seagull.           164
  • Figure 24. HiNa Battery pack for EV.               186
  • Figure 25. JAC demo EV powered by a HiNa Na-ion battery.           186
  • Figure 26. Kite Rise’s A-sample sodium-ion battery module.         196
  • Figure 27. Li-FUN sodium-ion battery cells.               200
  • Figure 28. LiNa Energy battery.           202
  • Figure 29. Stora Enso lignin battery materials.         225
  • Figure 30. Zoolnasm batteries.           234

 

 

 

 

The Global Sodium-ion Batteries Market 2026-2036
The Global Sodium-ion Batteries Market 2026-2036
PDF download.

The Global Sodium-ion Batteries Market 2026-2036
The Global Sodium-ion Batteries Market 2026-2036
PDF and Print Edition (including tracked delivery).

Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer. To order by Bank Transfer (Invoice) select this option from the payment methods menu after adding to cart, or contact info@futuremarketsinc.com