cover
- Published: July 2025
- Pages: 382
- Tables: 133
- Figures: 57
The humanoid robots market is experiencing unprecedented investor enthusiasm and technological momentum, driven by breakthrough developments in artificial intelligence and rapidly improving hardware capabilities. Altogether, robotics-related startups secured around $7.2 billion in seed- through growth-stage investments in 2024. This investment wave reflects growing confidence that humanoid robots are transitioning from experimental technology to viable commercial products.
Recent funding activity demonstrates the sector's explosive growth potential. Figure, a 2-year-old startup dedicated to "bringing a general purpose humanoid to life," pulled in $675 million in Series B funding in February to further its vision of building robots to perform unsafe and undesirable jobs. Physical Intelligence, the San Francisco start-up, founded just this year, pulled in $400 million at a $2 billion valuation. The funding momentum continues with Apptronik announcing a $350 million Series A funding round to scale the production of artificial intelligence-powered humanoid robots, backed by major players including Google. Other significant 2025 funding includes Fourier's Series E funding round securing nearly ¥800 million (about $109.1 million) and NEURA Robotics raising €120 million in a Series B funding round.
Market forecasts have been dramatically revised upward as technology capabilities exceed expectations. Critical technological advances are accelerating market adoption. Manufacturing costs are declining faster than expected: The manufacturing cost of humanoid robots has dropped from a range between $50,000 and $250,000 per unit last year, to a range of between $30,000 and $150,000 now, with costs declining 40% rather than the expected 15-20% per annum. Tesla's Optimus program represents the highest-profile humanoid robot development, with plans to mass produce its humanoid robot, with ambitious growth targets predicting between 50,000 and 100,000 units by 2026.
The convergence of AI advancement, manufacturing scale, and urgent labor market needs positions humanoid robots for explosive growth, with applications spanning manufacturing, logistics, healthcare, and eventually consumer markets. While technical challenges remain, the unprecedented investment levels and rapid technological progress suggest humanoid robots are poised to transform multiple industries within the current decade.
The global humanoid robotics market stands at the precipice of explosive growth, driven by unprecedented advancements in artificial intelligence, machine learning capabilities, and breakthrough developments in robotic hardware systems. The Global Humanoid Robotics Market 2026-2036 provides an exhaustive analysis of the humanoid robotics industry, delivering critical insights into market dynamics, technological innovations, competitive landscapes, and strategic opportunities spanning the forecast period from 2026 to 2036. As labour shortages intensify across manufacturing, healthcare, and service industries worldwide, humanoid robots emerge as transformative solutions capable of performing dangerous, repetitive, and complex tasks previously requiring human intervention. The convergence of advanced AI algorithms, sophisticated sensor technologies, and energy-efficient power management systems has accelerated the commercial viability of humanoid platforms, positioning this market for extraordinary expansion over the next decade.
This authoritative report examines the complete humanoid robotics ecosystem, from foundational component technologies including actuators, sensors, power systems, and intelligent control mechanisms to end-use applications across healthcare assistance, education research, customer service, entertainment, manufacturing automation, logistics operations, military defence, and domestic personal use. The analysis encompasses detailed technology readiness level assessments, market driver evaluations, commercial development timelines, and comprehensive cost evolution projections that illuminate the pathway toward mainstream adoption.
Report Contents:
- Market Size and Growth Projections: Conservative and optimistic revenue forecasts through 2036, with detailed unit shipment analysis by robot type (bipedal vs. wheeled platforms) and regional market distribution across Asia-Pacific, North America, Europe, and emerging markets
- Technology Analysis: Comprehensive examination of critical components including advanced actuator systems, reducer technologies, sensor fusion capabilities, AI hardware/software integration, power management solutions, thermal control systems, and biomimetic design principles
- Component Cost Evolution: Detailed breakdown of hardware component costs including actuators, sensors, processing units, battery systems, structural materials, and end effectors, with year-over-year cost reduction projections and manufacturing scale impact analysis
- End-Use Market Assessment: Granular analysis of application segments including healthcare robotics, educational platforms, hospitality automation, entertainment systems, industrial manufacturing, automotive assembly, logistics warehousing, military applications, and domestic assistance robots
- Investment and Funding Landscape: Comprehensive overview of venture capital investments, funding rounds, strategic partnerships, and government initiatives driving market development across major geographic regions
- Regulatory Framework Analysis: Global regulatory landscape examination covering safety standards, certification requirements, liability frameworks, and policy developments influencing commercial deployment timelines
- Competitive Intelligence: Detailed market positioning analysis, technology benchmarking, commercial development status, and strategic initiatives of leading humanoid robotics companies
- Manufacturing Challenges: In-depth assessment of production bottlenecks, supply chain constraints, quality assurance requirements, and scalability obstacles facing mass commercialization
- Advanced Technologies: Cutting-edge developments in brain-computer interfaces, cloud robotics integration, human-robot interaction protocols, biomimetic materials, wireless power transfer, energy harvesting systems, and next-generation sensor technologies
- Academic Research Overview: Comprehensive survey of university-based humanoid robot development programs and emerging research directions influencing commercial applications
The report features comprehensive profiles of 80 leading humanoid robotics companies including 1X Technologies, AeiRobot, Aeolus Robotics, Agibot, Agility Robotics, Andromeda, Apptronik, Axibo, Baidu, Beyond Imagination, Boardwalk Robotics, Booster Robotics, Boston Dynamics, BridgeDP Robotics, BXI Robotics, Clone Robotics, Dataa Robotics, Devanthro, Diligent Robotics, Dreame Technology, Electron Robots, Elephant Robotics, Embodied Inc., Enchanted Tools, Engineered Arts, EX Robots, FDROBOT, Figure AI, Foundation, Fourier Intelligence, Furhat Robotics, Galbot, Generation Robots, Hanson Robotics, Holiday Robotics, Honda, Humanoid, Kawada Robotics, Kawasaki Heavy Industries, Keenon Robotics, Kepler, K-Scale Labs, Leju Robotics, LimX Dynamics, Macco Robotics, MagicLab, Mentee Robotics, and more, providing detailed analysis of their technology platforms, commercial strategies, funding status, and market positioning within the rapidly evolving humanoid robotics landscape.
1 INTRODUCTION 17
- 1.1 Humanoid Robots: Definition and Characteristics 17
- 1.2 Historical Overview and Evolution 19
- 1.3 Current State of Humanoid Robots in 2025 20
- 1.4 The Importance of Humanoid Robots 21
- 1.5 Markets and Applications (TRL) 22
- 1.6 Models and Stage of Commercial Development 23
- 1.7 Investments and Funding 25
- 1.8 Costs 28
- 1.8.1 Type 28
- 1.8.2 Components 30
- 1.8.3 Cost Evolution 37
- 1.9 Market Drivers 38
- 1.9.1 Advancements in Artificial Intelligence (AI) and Machine Learning (ML) 39
- 1.9.2 Labour force shortages 39
- 1.9.3 Labour force substitution 40
- 1.9.4 Need for Personal Assistance and Companionship 40
- 1.9.5 Exploration of Hazardous and Extreme Environments 41
- 1.10 Challenges 41
- 1.10.1 Commercial Challenges 42
- 1.10.2 Technical Challenges 43
- 1.11 Global regulations 45
- 1.12 Market in Japan 46
- 1.13 Market in United States 47
- 1.14 Market in China 48
2 TECHNOLOGY AND COMPONENT ANALYSIS 50
- 2.1 Advancements in Humanoid Robot Design 50
- 2.2 Critical Components 54
- 2.3 Intelligent Control Systems and Optimization 55
- 2.4 Advanced Robotics and Automation 56
- 2.5 Manufacturing 57
- 2.5.1 Design and Prototyping 57
- 2.5.2 Component Manufacturing 57
- 2.5.3 Assembly and Integration 58
- 2.5.4 Software Integration and Testing 58
- 2.5.5 Quality Assurance and Performance Validation 58
- 2.5.6 Challenges 59
- 2.5.6.1 Actuators 59
- 2.5.6.2 Reducers 60
- 2.5.6.3 Thermal management 61
- 2.5.6.4 Batteries 62
- 2.5.6.5 Cooling 63
- 2.5.6.6 Sensors 63
- 2.6 Brain Computer Interfaces 64
- 2.7 Robotics and Intelligent Health 65
- 2.7.1 Robotic Surgery and Minimally Invasive Procedures 65
- 2.7.2 Rehabilitation and Assistive Robotics 65
- 2.7.3 Caregiving and Assistive Robots 66
- 2.7.4 Intelligent Health Monitoring and Diagnostics 66
- 2.7.5 Telemedicine and Remote Health Management 66
- 2.7.6 Robotics in Mental Health 66
- 2.8 Micro-nano Robots 67
- 2.9 Medical and Rehabilitation Robots 69
- 2.10 Mechatronics and Robotics 70
- 2.11 Image Processing, Robotics and Intelligent Vision 71
- 2.12 Artificial Intelligence and Machine Learning 71
- 2.12.1 Overview 71
- 2.12.2 AI Hardware and Software 72
- 2.12.2.1 Functions 72
- 2.12.2.2 Simulation 74
- 2.12.2.3 Motion Planning and Control 75
- 2.12.2.4 Foundation Models 75
- 2.12.2.5 Synthetic Data Generation 76
- 2.12.2.6 Multi-contact planning and control 77
- 2.12.3 End-to-end AI 78
- 2.12.4 Multi-modal AI algorithms 78
- 2.13 Sensors and Perception Technologies 79
- 2.13.1 Vision Systems 79
- 2.13.1.1 Commerical examples 80
- 2.13.2 Hybrid LiDAR-camera approaches 81
- 2.13.3 Cameras and LiDAR 83
- 2.13.3.1 Cameras (RGB, depth, thermal, event-based) 87
- 2.13.3.2 Stereo vision and 3D perception 88
- 2.13.3.3 Optical character recognition (OCR) 89
- 2.13.3.4 Facial recognition and tracking 90
- 2.13.3.5 Gesture recognition 90
- 2.13.3.6 mmWave Radar 92
- 2.13.4 Tactile and Force Sensors 92
- 2.13.4.1 Value proposition of advanced tactile systems 93
- 2.13.4.2 Commercial examples 95
- 2.13.4.3 Flexible tactile sensors 97
- 2.13.4.4 Tactile sensing for humanoid extremities 97
- 2.13.4.5 Tactile sensors (piezoresistive, capacitive, piezoelectric) 98
- 2.13.4.6 Force/torque sensors (strain gauges, load cells) 99
- 2.13.4.7 Haptic feedback sensors 99
- 2.13.4.8 Skin-like sensor arrays 101
- 2.13.5 Auditory Sensors 103
- 2.13.5.1 Microphones (array, directional, binaural) 104
- 2.13.5.2 Sound Localization and Source Separation 105
- 2.13.5.3 Speech Recognition and Synthesis 107
- 2.13.5.4 Acoustic Event Detection 109
- 2.13.6 Inertial Measurement Units (IMUs) 111
- 2.13.6.1 Accelerometers 111
- 2.13.6.2 Gyroscopes 112
- 2.13.6.3 Magnetometers 114
- 2.13.6.4 Attitude and Heading Reference Systems (AHRS) 116
- 2.13.7 Proximity and Range Sensors 117
- 2.13.7.1 Ultrasonic sensors 118
- 2.13.7.2 Laser range finders (LiDAR) 118
- 2.13.7.3 Radar sensors 119
- 2.13.7.4 Time-of-Flight (ToF) sensors 119
- 2.13.8 Environmental Sensors 120
- 2.13.8.1 Temperature sensors 121
- 2.13.8.2 Humidity sensors 122
- 2.13.8.3 Gas and chemical sensors 122
- 2.13.8.4 Pressure sensors 123
- 2.13.9 Biometric Sensors 124
- 2.13.9.1 Heart rate sensors 125
- 2.13.9.2 Respiration sensors 126
- 2.13.9.3 Electromyography (EMG) sensors 126
- 2.13.9.4 Electroencephalography (EEG) sensors 127
- 2.13.10 Sensor Fusion 128
- 2.13.10.1 Kalman Filters 129
- 2.13.10.2 Particle Filters 129
- 2.13.10.3 Simultaneous Localization and Mapping (SLAM) 129
- 2.13.10.4 Object Detection and Recognition 130
- 2.13.10.5 Semantic Segmentation 131
- 2.13.10.6 Scene Understanding 131
- 2.13.1 Vision Systems 79
- 2.14 Power and Energy Management 132
- 2.14.1 Battery Technologies 136
- 2.14.2 Challenges 140
- 2.14.3 Energy Harvesting and Regenerative Systems 143
- 2.14.3.1 Energy Harvesting Techniques 144
- 2.14.3.2 Regenerative Braking Systems 145
- 2.14.3.3 Hybrid Power Systems 145
- 2.14.4 Power Distribution and Transmission 145
- 2.14.4.1 Efficient Power Distribution Architectures 146
- 2.14.4.2 Advanced Power Electronics and Motor Drive Systems 146
- 2.14.4.3 Distributed Power Systems and Intelligent Load Management 146
- 2.14.5 Thermal Management 148
- 2.14.5.1 Cooling Systems 148
- 2.14.5.2 Thermal Modeling and Simulation Techniques 148
- 2.14.5.3 Advanced Materials and Coatings 149
- 2.14.6 Energy-Efficient Computing and Communication 150
- 2.14.6.1 Low-Power Computing Architectures 151
- 2.14.6.2 Energy-Efficient Communication Protocols and Wireless Technologies 151
- 2.14.6.3 Intelligent Power Management Strategies 151
- 2.14.7 Wireless Power Transfer and Charging 153
- 2.14.8 Energy Optimization and Machine Learning 155
- 2.15 Actuators 156
- 2.15.1 Humanoid robot actuation systems 158
- 2.15.2 Actuators in humanoid joint systems 161
- 2.15.3 Energy transduction mechanism 163
- 2.16 Motors 169
- 2.16.1 Overview 169
- 2.16.2 Frameless motors 171
- 2.16.3 Brushed/Brushless Motors 172
- 2.16.4 Coreless motors 173
- 2.17 Reducers 175
- 2.17.1 Harmonic reducers 177
- 2.17.2 RV (Rotary Vector) reducers 178
- 2.17.3 Planetary gear systems 178
- 2.18 Screws 180
- 2.18.1 Screw-based transmission systems 180
- 2.18.2 Ball screw assemblies 181
- 2.18.3 Planetary Roller Screws 181
- 2.19 Bearings 186
- 2.19.1 Overview 186
- 2.20 Arm Effectors 188
- 2.20.1 Overview 188
- 2.20.2 Hot-swappable end effector systems 192
- 2.20.3 Challenges 193
- 2.21 SoCs for Humanoid Robotics 195
- 2.22 Cloud Robotics and Internet of Robotic Things (IoRT) 196
- 2.23 Human-Robot Interaction (HRI) and Social Robotics 198
- 2.24 Biomimetic and Bioinspired Design 198
- 2.25 Materials for Humanoid Robots 200
- 2.25.1 New materials development 200
- 2.25.2 Metals 200
- 2.25.2.1 Magnesium Alloy 201
- 2.25.3 Shape Memory Alloys 203
- 2.25.4 Plastics and Polymers 203
- 2.25.5 Composites 207
- 2.25.6 Elastomers 208
- 2.25.7 Smart Materials 209
- 2.25.8 Textiles 211
- 2.25.9 Ceramics 212
- 2.25.10 Biomaterials 214
- 2.25.11 Nanomaterials 216
- 2.25.12 Coatings 218
- 2.25.12.1 Self-healing coatings 221
- 2.25.12.2 Conductive coatings 221
- 2.26 Binding Skin Tissue 221
3 END USE MARKETS 223
- 3.1 Market supply chain 223
- 3.2 Level of commercialization 224
- 3.3 Healthcare and Assistance 226
- 3.4 Education and Research 229
- 3.5 Customer Service and Hospitality 234
- 3.6 Entertainment and Leisure 237
- 3.7 Manufacturing and Industry 240
- 3.7.1 Overview 241
- 3.7.1.1 Assembly and Production 241
- 3.7.1.2 Quality Inspection 242
- 3.7.1.3 Warehouse Assistance 243
- 3.7.2 Automotive 245
- 3.7.2.1 Commercial examples 246
- 3.7.3 Logistics 252
- 3.7.3.1 Warehouse environments 254
- 3.7.3.2 Commercial examples 255
- 3.7.1 Overview 241
- 3.8 Military and Defense 260
- 3.9 Personal Use and Domestic Settings 264
4 GLOBAL MARKET SIZE (UNITS AND REVENUES) 2024-2036 269
- 4.1 Global shipments in units (Total) 269
- 4.2 By type of robot in units 271
- 4.3 By region in units 273
- 4.4 Revenues (Total) 275
- 4.5 Revenues (By end use market) 277
- 4.6 Automotive 279
- 4.6.1 Revenues 279
- 4.6.2 Units 280
- 4.6.3 Deployment 281
- 4.7 Logistics and warehousing 281
- 4.7.1 Revenues 282
- 4.7.2 Units 283
- 4.7.3 Deployment 283
- 4.8 Battery Capacity (GWh) Forecast 284
- 4.9 Hardware Components 285
5 COMPANY PROFILES 288 (80 company profiles)
6 HUMANOID ROBOTS DEVELOPED BY ACADEMIA 369
7 RESEARCH METHODOLOGY 372
8 REFERENCES 373
List of Tables
- Table 1. Core Components of Humanoid Robots. 17
- Table 2. Classification of Humanoid Robots. 19
- Table 3. Historical Overview and Evolution of Humanoid Robots. 20
- Table 4. Importance of humanoid robots by end use. 21
- Table 5. Markets and applications for humanoid robots and TRL. 22
- Table 6. Humanoid Robots under commercial development. 23
- Table 7. Comparison of major humanoid robot prototypes. 25
- Table 8. Humanoid Robot investments 2023-2025. 25
- Table 9. Overall Sector Funding. 28
- Table 10. Cost Breakdown by Humanoid Type. 29
- Table 11. Cost Analysis by Component for Humanoid Robots. 32
- Table 12. Average Unit Cost (Thousands USD) 37
- Table 13. Year-over-Year Cost Reduction (%). 37
- Table 14. Cost Breakdown by Component (% of Total Cost, 2025 vs 2035). 37
- Table 15. Cost Evolution Projections 37
- Table 16. Market drivers for humanoid robots. 38
- Table 17. Market challenges for humanoid robots. 42
- Table 18. Technical challenges for humanoid robots. 45
- Table 19. Global regulatory landscape for humanoid robots. 46
- Table 20. Performance Parameters of Humanoid Robots. 52
- Table 21. Common Actuators in Humanoid Robotics. 70
- Table 22. Software and Functions in Humanoid Robots. 73
- Table 23. Sensors and Perception Technologies for humanoid robotics. 79
- Table 24. Comparison of LiDAR, Cameras, and 1D/3D Ultrasonic Sensors. 82
- Table 25. Categorization of LiDAR in Humanoids 84
- Table 26. LiDAR Costs. 85
- Table 27. LiDAR Costs in Humanoid Robots. 85
- Table 28. Tactile and force sensors for humanoid robots, 92
- Table 29. Benchmarking Tactile Sensors by Technology 94
- Table 30. Challenges of Tactile Sensors and Electronic Skins 102
- Table 31. Auditory sensors for humanoid robots. 103
- Table 32. Inertial Measurement Units (IMUs) for humanoid robots. 111
- Table 33. Key characteristics of proximity and range sensors commonly used in humanoid robots. 117
- Table 34. Environmental Sensors for humanoid robots. 120
- Table 35. Biometric sensors commonly used in humanoid robots: 124
- Table 36. Power and Energy Management in Humanoid Robotics.- Integrated Systems Overview. 132
- Table 37. Energy Management Strategies for Humanoid Robots. 134
- Table 38. Advanced Power Management Technologies. 135
- Table 39. Battery technologies for humanoid robotics. 136
- Table 40. Battery Capacity per Humanoid Robot for Industrial Applications. 137
- Table 41. Humanoid Batteries - Parameters Comparison. 138
- Table 42. Challenges of Batteries in Humanoid Robots. 141
- Table 43. Energy Harvesting and Regenerative Systems in Humanoid Robots. 144
- Table 44.Power Distribution and Transmission Techniques in Humanoid Robots 147
- Table 45. Thermal Management Techniques for Humanoid Robots 149
- Table 46. Energy-Efficient Computing and Communication Techniques for Humanoid Robots 152
- Table 47. Wireless Power Transfer and Charging for Humanoid Robots. 154
- Table 48. Actuator Components. 156
- Table 49. Actuator Types. 158
- Table 50. Pros and Cons Comparison. 160
- Table 51. Joint Application Matrix. 161
- Table 52. Comparison of Electric, Hydraulic, and Pneumatic Actuators. 164
- Table 53. Actuator challenges. 165
- Table 54. Direct Drive vs. Geared Comparison 168
- Table 55. Motors for Commercial Humanoid Robots. 169
- Table 56. Benefits and Drawbacks of Coreless Motors. 173
- Table 57. Benchmarking of Reducers. 176
- Table 58. Bearings for Humanoids. 187
- Table 59. Actuation Methods of Humanoid's Hands. 188
- Table 60. Technical barriers of humanoid's hands 193
- Table 61. Key aspects of Cloud Robotics and Internet of Robotic Things (IoRT) for humanoid robotics. 197
- Table 62. Examples of Biomimetic Design for Humanoid Robots. 199
- Table 63. Examples of Bioinspired Design for Humanoid Robots. 199
- Table 64. Types of metals commonly used in humanoid robots. 200
- Table 65. Types of plastics and polymers commonly used in humanoid robots. 203
- Table 66. PEEK - Costs and Technical Properties. 205
- Table 67. Types of composites commonly used in humanoid. 207
- Table 68. Types of elastomers commonly used in humanoid robots. 208
- Table 69. Types of smart materials in humanoid robotics. 210
- Table 70. Types of textiles commonly used in humanoid robots. 211
- Table 71. Types of ceramics commonly used in humanoid robots. 213
- Table 72. Biomaterials commonly used in humanoid robotics. 214
- Table 73. Types of nanomaterials used in humanoid robotics. 217
- Table 74. Types of coatings used in humanoid robotics. 219
- Table 75. Industry Segment Adoption Timeline. 223
- Table 76. Level of commercialization of humanoid robots by application 224
- Table 77. Market Drivers in healthcare and assistance. 226
- Table 78. Applications of humanoid robots in healthcare and assistance. 227
- Table 79. Technology Readiness Level (TRL) Table; humanoid robots in healthcare and assistance. 227
- Table 80. Market Drivers in education and research. 230
- Table 81. Applications of humanoid robots in education and research. 231
- Table 82. Technology Readiness Level (TRL) for humanoid robots in education and research. 231
- Table 83. Market Drivers in Customer Service and Hospitality. 234
- Table 84. Technology Readiness Level (TRL) for humanoid robots in Customer Service and Hospitality. 235
- Table 85. Market Drivers in Entertainment and Leisure. 237
- Table 86. Applications of humanoid robots in Entertainment and Leisure. 238
- Table 87. Technology Readiness Level (TRL) for humanoid robots in Entertainment and Leisure. 239
- Table 88. Market Drivers manufacturing and industry. 240
- Table 89. Applications for humanoid robots in manufacturing and industry. 241
- Table 90. Humanoid Robots in the Automotive Sector. 246
- Table 91. Implementation of humanoids in automotive manufacturing. 249
- Table 92. Humanoid robots in the logistics industry. 253
- Table 93. Timeline of Tasks Handled by Humanoid Robots in Logistics. 257
- Table 94. Market Drivers in Military and Defense. 260
- Table 95. Applications for humanoid robots in Military and Defense. 261
- Table 96. Technology Readiness Level (TRL) for humanoid robots in Military and Defense. 262
- Table 97. Market Drivers in Personal Use and Domestic Settings. 264
- Table 98. Applications in humanoid robots in Personal Use and Domestic Settings. 265
- Table 99. Technology Readiness Level (TRL) humanoid robots in Personal Use and Domestic Settings. 265
- Table 100. Global humanoid robot shipments (1,000 units) 2024-2036, conservative estimate. 269
- Table 101. Global humanoid robot shipments (Millions units) 2024-2036, optimistic estimate. 270
- Table 102. Global humanoid robot shipments by type (Million units) 2024-2036, conservative estimate. 271
- Table 103. Global humanoid robot shipments by type (Million units) 2024-2036, optimistic estimate. 272
- Table 104. Global humanoid robot shipments by region (Million units) 2024-2036, conservative estimate. 273
- Table 105. Global humanoid robot shipments by region (Million units) 2024-2036, optimistic estimate. 274
- Table 106. Global humanoid robot shipments (Millions USD) 2024-2036, conservative estimate. 276
- Table 107. Global humanoid robot shipments (Millions USD) 2024-2036, optimistic estimate. 277
- Table 108. Global humanoid robot shipments by end use market (Millions USD) 2024-2036, conservative estimate. 278
- Table 109. Global humanoid robot shipments by end use market (Millions USD) 2024-2036, optimistic estimate. 278
- Table 110. Global Market Revenues for Humanoid Robots in the Automotive Industry: 2025-2036. 280
- Table 111. Global market forecast of humanoid robots in the Automotive industry: 2025-2036 281
- Table 112.Deployment Distribution by 2035 (Conservative Estimate). 281
- Table 113. Deployment Distribution by 2035 (Optimistic Estimate). 281
- Table 114. Market Size Forecast of Humanoid Robots in the Logistics and Warehousing Industry: 2025-2036, Conservative Estimate 282
- Table 115. Market Size Forecast of Humanoid Robots in the Logistics and Warehousing Industry: 2025-2036, Optimistic Estimate. 283
- Table 116. Global Volume Forecast of Humanoid Robots in the Logistics and Warehousing Industry: 2025-2036, Conservative Estimate. 283
- Table 117. Global Volume Forecast of Humanoid Robots in the Logistics and Warehousing Industry: 2025-2036, Conservative Estimate, Optimistic Estimate. 283
- Table 118. Market Value Distribution by Application Area (2036, Conservative). 284
- Table 119. Market Value Distribution by Application Area (2036, Optimistic). 284
- Table 120. Battery Capacity (GWh) Forecast for Humanoid Robots Used for Industries 2025-2036.. 285
- Table 121. Battery Capacity by Industry Segment (GWh, 2036) 285
- Table 122. Average Battery Capacity per Humanoid Robot (kWh) 286
- Table 123. Average Battery Capacity per Humanoid Robot by Application (2036). 287
- Table 124. Humanoid Robot Hardware Component Volume Forecast, 2025-2036 288
- Table 125. Humanoid Robot Hardware Component Market Size Forecast: 2025-2036, Conservative Estimate (Millions USD) 288
- Table 126. Humanoid Robot Hardware Component Market Size Forecast: 2025-2036, Optimistic Estimate (Millions USD). 289
- Table 127. Component Market Share (Conservative Estimate). 289
- Table 128. Component Market Share (Optimistic Estimate) 289
- Table 129. Average Component Cost per Robot (Thousands USD). 290
- Table 130. Humanoid Robots Developed by Academia. 373
List of Figures
- Figure 1. Core components of a humanoid robot. 19
- Figure 2. Status of humanoid robots. 21
- Figure 3. Humanoid robot for railroad maintenance to be implemented by West Japan Railway Co. 40
- Figure 4. Historical progression of humanoid robots. 51
- Figure 5. Event-based cameras. 88
- Figure 6. Humanoid Robots Market Supply Chain. 223
- Figure 7. Global humanoid robot shipments (1,000 units) 2024-2036, conservative estimate. 270
- Figure 8. Global humanoid robot shipments (1,000 units) 2024-2036, optimistic estimate. 271
- Figure 9. Global humanoid robot shipments by type (Million units) 2024-2036, conservative estimate. 272
- Figure 10. Global humanoid robot shipments by type (Million units) 2024-2036, optimistic estimate. 273
- Figure 11. Global humanoid robot shipments by region (Million units) 2024-2036, conservative estimate. 274
- Figure 12. Global humanoid robot shipments by region (Million units) 2024-2036, optimistic estimate. 275
- Figure 13. Global humanoid robot shipments (Millions USD) 2024-2036, conservative estimate. 276
- Figure 14. Global humanoid robot shipments (Millions USD) 2024-2036, optimistic estimate. 277
- Figure 15. Global humanoid robot shipments by end use market (Millions USD) 2024-2036, conservative estimate. 278
- Figure 16. Global humanoid robot shipments by end use market (Millions USD) 2024-2036, optimistic estimate. 279
- Figure 17. NEO. 291
- Figure 18. Alice: A bipedal walking humanoid robot from AeiRobot. 293
- Figure 19. RAISE-A1. 294
- Figure 20. Digit humanoid robot. 295
- Figure 21. Apptronick Apollo. 298
- Figure 22. Alex. 302
- Figure 23. BR002. 304
- Figure 24. Atlas. 305
- Figure 25. XR-4. 309
- Figure 26. Dreame Technology's second-generation bionic robot dog and general-purpose humanoid robot. 313
- Figure 27. Mercury X1. 315
- Figure 28. Mirokaï robots. 317
- Figure 29. Ameca. 320
- Figure 30. Prototype Ex-Robots humanoid robots. 321
- Figure 31. Figure.ai humanoid robot. 323
- Figure 32. Figure 02 humanoid robot. 323
- Figure 33. GR-1. 325
- Figure 34. Sophia. 328
- Figure 35. Honda ASIMO. 330
- Figure 36. Kaleido. 333
- Figure 37. Forerunner. 334
- Figure 38. Kuafu. 336
- Figure 39. CL-1. 337
- Figure 40. MagicHand S01 339
- Figure 41. EVE/NEO. 343
- Figure 42. Tora-One. 345
- Figure 43. HUBO2. 350
- Figure 44. XBot-L. 355
- Figure 45. Sanctuary AI Phoenix. 357
- Figure 46. Pepper Humanoid Robot. 359
- Figure 47. Astribot S1. 360
- Figure 48. Tesla Optimus Gen 2. 361
- Figure 49. Toyota T-HR3 364
- Figure 50. UBTECH Walker. 365
- Figure 51. G1 foldable robot. 366
- Figure 52. Unitree H1. 367
- Figure 53. WANDA. 368
- Figure 54. CyberOne. 370
- Figure 55. PX5. 371
- Figure 56. Q Family robots from the Institute of Automation, Chinese Academy of Sciences. 373
Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer. To order by Bank Transfer (Invoice) select this option from the payment methods menu after adding to cart, or contact info@futuremarketsinc.com