The Global Aerogels Market 2026-2036

0

cover

cover

  • Published: September 2025
  • Pages: 240
  • Tables: 59
  • Figures: 44

 

The global aerogel industry is experiencing unprecedented transformation as it transitions from a niche specialty materials sector into a mainstream technology platform with applications spanning electric vehicle batteries, building insulation, aerospace systems, and biomedical devices. This dynamic market evolution reflects both the unique properties of aerogels—ultralight materials with exceptional thermal insulation, high surface area, and remarkable porosity—and the growing recognition of their potential to address critical challenges in energy efficiency, thermal management, and sustainable manufacturing.

The aerogel landscape is undergoing rapid restructuring driven by both established players and innovative newcomers. Traditional manufacturers like Aspen Aerogels and Cabot Corporation continue advancing their core silica aerogel technologies while expanding into high-growth applications such as electric vehicle thermal barriers and advanced building insulation systems. Simultaneously, a wave of new entrants—ranging from university spin-offs to established materials companies diversifying their portfolios—are introducing novel products and competing for emerging market opportunities. This competitive environment has accelerated innovation across multiple dimensions. While silica aerogels maintain their position as the dominant commercial product category, polymer and biopolymer aerogels are gaining significant traction. Companies are developing specialized formulations targeting specific applications: carbon aerogels for energy storage electrodes, polymer aerogels for 5G telecommunications infrastructure, and bio-based aerogels for sustainable packaging and biomedical applications.

Manufacturing process innovation represents a critical competitive frontier. Companies are pursuing multiple strategies to reduce production costs and improve scalability, from ambient pressure drying techniques that eliminate expensive supercritical processing to continuous manufacturing systems that enhance throughput. Advanced 3D printing technologies are enabling complex aerogel geometries previously impossible to achieve, while sustainable feedstock development is addressing environmental concerns and supply chain resilience. The integration of digital technologies is significantly enhancing aerogel development and manufacturing. Computational modelling accelerates materials design, while advanced characterization techniques enable precise control over pore structure, thermal properties, and mechanical performance. These capabilities are essential for meeting increasingly stringent application requirements across diverse industries.

Electric vehicle applications have emerged as perhaps the most significant growth driver, with aerogels providing critical thermal management solutions for battery safety and performance. As EV adoption accelerates globally, thermal runaway protection systems incorporating aerogel barriers are becoming standard safety features, creating substantial market opportunities for specialized materials suppliers.

Building and construction applications continue expanding beyond traditional insulation, encompassing high-performance windows, thermal bridge solutions, and integrated building systems designed for net-zero energy performance. The aerospace and defense sectors are adopting aerogels for thermal protection systems, lightweight structural components, and advanced electronics cooling applications. Biomedical applications represent a particularly active research area, with developments in tissue engineering scaffolds, wound healing materials, and controlled drug release systems. Environmental applications, including carbon capture technologies and water purification systems, address global sustainability challenges while creating new commercial opportunities.

The aerogel market's trajectory reflects broader trends toward energy efficiency, sustainability, and advanced materials performance. As manufacturing costs continue declining and application knowledge expands, aerogels are positioned to become mainstream solutions across multiple industries. 

The Global Aerogels Market 2026-2036 provides strategic intelligence for materials manufacturers, end-users, investors, and technology developers navigating this rapidly evolving market. Analysis encompasses silica, polymer, carbon, and bio-based aerogel technologies, examining manufacturing scalability, cost structures, competitive dynamics, and emerging application opportunities through comprehensive company profiles and detailed market forecasts.

 Report Contents include:

  • Comprehensive analysis of aerogel properties including thermal conductivity benchmarking, density comparisons, and mechanical characteristics
  • EV battery pack applications as primary growth driver with detailed thermal runaway protection analysis
  • Competitive landscape assessment covering 54+ global manufacturers
  • Market drivers spanning energy efficiency regulations, thermal management requirements, and sustainability mandates
  • Manufacturing capacity analysis by geography with focus on China's dominance in production versus revenue
  • Technology and market challenges including cost barriers, dust generation concerns, and integration complexities
  • Market forecasts 2026-2036 segmented by aerogel type (silica, polymer, carbon), end-use market, and geographic region
  • Technology & Materials Analysis
    • Detailed aerogel classification covering inorganic, organic, and composite materials
    • Manufacturing processes including supercritical drying, ambient pressure drying, and rapid extraction techniques
    • Silica aerogel products: monoliths, powders, granules, blankets, boards, and renders with SWOT analyses
    • Advanced composites using organic crosslinkers and fiber reinforcement
    • Sustainable feedstock development from food waste, textile waste, and agricultural byproducts
    • Polymer aerogels including polyimide, polyurethane, and resorcinol-formaldehyde systems
    • Bio-based aerogels: cellulose nanofibers, alginate, starch, chitosan, protein, pectin, and agar materials
    • Carbon aerogels, graphene aerogels, and carbon nanotube architectures
    • 3D printing technologies for complex aerogel geometries
    • Hybrid and composite systems including metal-organic framework aerogels
  • Manufacturing & Production
    • Sol-gel chemistry fundamentals and process optimization
    • Supercritical CO₂ drying with closed-loop systems and autoclave technologies
    • Ambient pressure drying innovations reducing production costs
    • Scale-up challenges from laboratory to commercial manufacturing
    • Cost analysis by aerogel type and production method
    • QT-polysiloxane enabler technologies
  • Applications & Markets
    • EV Batteries: Thermal runaway protection, fire safety regulations (UN GTR 20, GB 38031-2020), material intensity analysis, integration strategies, and comprehensive company assessment
    • Oil & Gas: Refinery insulation, cryogenic pipeline applications, LNG facilities
    • Building & Construction: Sustainable insulation materials, panels, renders, plasters, window glazing systems, industrial insulation standards (EN 17956)
    • Energy Storage: Silicon anodes, lithium-sulfur batteries, electrode materials, supercapacitors, hydrogen storage
    • Biomedical: Drug delivery systems, tissue engineering scaffolds, wound dressings, medical implants with sterilization protocols
    • Electronics & Telecommunications: EMI shielding, thermal management, 5G antenna substrates, low-loss dielectric materials
    • Environmental Applications: Water treatment, heavy metal removal, oil spill remediation, CO₂ capture and direct air capture systems
    • Textiles: Winter sports apparel, luxury fashion applications, protective equipment, footwear
    • Aerospace & Defense: Thermal protection systems, vibration suppression, NASA applications, crash absorbers
    • Additional Markets: Cold-chain packaging, cosmetics, catalysts, paints/coatings, food applications, solar energy, passive cooling
  • Patent Landscape
    • Analysis of 2010-2024 patent filings by technology area, assignee, and geography
    • Intellectual property trends and competitive positioning
  • Company Profiles Detailed profiles of 54 aerogel manufacturers including:
    • Production capacity and manufacturing processes
    • Product portfolios and specifications
    • Target markets and applications
    • Recent developments and strategic initiatives
    • Companies profiled include Aerobel BV, Aerofybers Technologies, Aerogel Core Ltd., Aerogel-it, Aerogel Technologies, Aeroshield, Aspen Aerogels, Blueshift Materials, Enersens, Keey Aerogel, IBIH Advanced Materials, Krosslinker, SA-Dynamics, siloxene AG, SUMTEQ GmbH, Thermulon, Westwood Aerogel and more.....

 

Report Features:

  • 59 detailed tables with market data, product comparisons, and technical specifications
  • 44 figures including market forecasts, technology schematics, and product imagery
  • Technology Readiness Level (TRL) assessments by application
  • Comprehensive cost analysis and pricing trends
  • Regional market analysis covering North America, Europe, Asia-Pacific, and emerging markets
  • Quantitative market forecasts through 2036 by material type, application, and geography

 

Purchasers will receive the following:

  • PDF report download/by email. Print edition also available. 
  • Comprehensive Excel spreadsheet of all data.
  • Mid-year Update

 

The Global Aerogels Market 2026-2036
The Global Aerogels Market 2026-2036
PDF download.

The Global Aerogels Market 2026-2036
The Global Aerogels Market 2026-2036
PDF and Print Edition (including tracked delivery).

Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer. To order by Bank Transfer (Invoice) select this option from the payment methods menu after adding to cart, or contact info@futuremarketsinc.com

 

1             EXECUTIVE SUMMARY            14

  • 1.1        Aerogel Properties      14
  • 1.2        Aerogel Applications 16
    • 1.2.1    Application on EV Battery Packs       18
  • 1.3        Competitive Factors in the Aerogels Market              19
  • 1.4        Market Drivers and Trends     19
  • 1.5        Aerogel Manufacturer Production Capacity and Manufacturing Processes         23
  • 1.6        Market and Technology Challenges 24
  • 1.7        Market Size and Forecast to 2036    25
    • 1.7.1    By Aerogel Type             25
    • 1.7.2    By End Use Market      26
    • 1.7.3    By Region         27

 

2             INTRODUCTION          30

  • 2.1        Aerogels            30
    • 2.1.1    Origin of Aerogels        30
    • 2.1.2    Classification 30
    • 2.1.3    Aerogel Forms               32
    • 2.1.4    Commercially available aerogels     34
  • 2.2        Manufacturing processes      36
    • 2.2.1    Supercritical drying process 36
      • 2.2.1.1 Closed loop    37
      • 2.2.1.2 Autoclave loading       38
      • 2.2.1.3 Recent developments              39
    • 2.2.2    Ambient pressure drying process     40
  • 2.3        Silica aerogels               41
    • 2.3.1    Properties         41
      • 2.3.1.1 Thermal conductivity and density    42
      • 2.3.1.2 Mechanical     43
      • 2.3.1.3 Silica aerogel precursors        43
    • 2.3.2    Products           43
      • 2.3.2.1 Monoliths         43
        • 2.3.2.1.1           Properties         43
        • 2.3.2.1.2           Monoliths prepared under ambient pressure           44
        • 2.3.2.1.3           Scalable monolithic sheet production for windows             45
        • 2.3.2.1.4           Alternative monolithic aerogel manufacturing processes                45
      • 2.3.2.2 Powder               46
        • 2.3.2.2.1           Key characteristics    46
        • 2.3.2.2.2           Silica Aerogel powder manufacturing processes   46
        • 2.3.2.2.3           Powders and granules prepared under ambient pressure                47
      • 2.3.2.3 Granules           47
      • 2.3.2.4 Blankets            48
      • 2.3.2.5 Aerogel boards             49
      • 2.3.2.6 Aerogel renders            50
      • 2.3.2.7 Silica aerogel from sustainable feedstocks               50
      • 2.3.2.8 Silica composite aerogels     51
        • 2.3.2.8.1           Organic crosslinkers 51
        • 2.3.2.8.2           Composites from powders and granules    51
        • 2.3.2.8.3           Commercial activity  52
    • 2.3.3    Cost     55
    • 2.3.4    Main Companies and Products         56
  • 2.4        Aerogel-like polymer foams 57
    • 2.4.1    Properties         57
    • 2.4.2    Applications for aerogel-like polymer foams include:         57
  • 2.5        Metal oxide aerogels 58
  • 2.6        Organic aerogels         59
    • 2.6.1    Polymer-based aerogels         59
    • 2.6.2    Biobased aerogels (bio-aerogels)     61
      • 2.6.2.1 Overview           61
      • 2.6.2.2 Sustainable Feedstocks         61
        • 2.6.2.2.1           Silica aerogels derived from waste sources               62
          • 2.6.2.2.1.1      Food waste  to bioaerogel conversion           62
        • 2.6.2.2.2           Commercial development    64
        • 2.6.2.2.3           Textile waste into high-value aerogel materials       64
      • 2.6.2.3 Cellulose aerogels     66
        • 2.6.2.3.1           Cellulose nanofiber (CNF) aerogels                67
        • 2.6.2.3.2           Cellulose nanocrystal aerogels         67
        • 2.6.2.3.3           Bacterial nanocellulose aerogels     67
      • 2.6.2.4 Lignin aerogels              68
      • 2.6.2.5 Alginate aerogels         68
      • 2.6.2.6 Starch aerogels            69
      • 2.6.2.7 Chitosan aerogels      70
      • 2.6.2.8 Protein aerogels           70
        • 2.6.2.8.1           Albumin aerogels        71
        • 2.6.2.8.2           Casein aerogels           71
        • 2.6.2.8.3           Gelatin aerogels           71
        • 2.6.2.8.4           Whey protein isolate aerogels            72
      • 2.6.2.9 Silk fiber            72
      • 2.6.2.10            Pectin composite aerogels for thermal superinsulation    73
      • 2.6.2.11            Agar aerogels for biomedical applications 74
    • 2.6.3    Carbon aerogels          74
      • 2.6.3.1 Manufacturing and properties            74
      • 2.6.3.2 Carbon nanotube aerogels   76
      • 2.6.3.3 Graphene and graphite aerogels       77
      • 2.6.3.4 Carbon aerogel manufacturers         78
  • 2.7        3D printed aerogels   80
    • 2.7.1    3D printing processes and applications       80
    • 2.7.2    Carbon nitride               82
    • 2.7.3    Gold     83
    • 2.7.4    Cellulose          83
    • 2.7.5    Graphene oxide            83
  • 2.8        Hybrid and composite aerogels        84
    • 2.8.1    Mixed oxide aerogels 84
    • 2.8.2    Metal oxide aerogel composites       85
    • 2.8.3    Carbon-based aerogel composites 85
    • 2.8.4    Metal Organic Framework Aerogel Composites (MOFACs)             86

 

3             PRODUCTION METHODS      87

  • 3.1        Overview           87
  • 3.2        Sol-gel process             89
  • 3.3        3D printing of aerogels             91
  • 3.4        Drying methods            91
    • 3.4.1    Overview of drying methods 92
    • 3.4.2    Supercritical Drying   93
      • 3.4.2.1 Closed loop    94
      • 3.4.2.2 Autoclave loading       94
    • 3.4.3    Ambient Pressure Drying       95
    • 3.4.4    Rapid Supercritical Extraction (RSCE)          99
    • 3.4.5    Advantages and disadvantages        100
  • 3.5        Costs  101
  • 3.6        Manufacturing scale-up challenges               106

 

4             MARKETS AND APPLICATIONS FOR AEROGELS     108

  • 4.1        Competitive landscape          108
  • 4.2        EV Batteries     109
    • 4.2.1    Overview           109
    • 4.2.2    EV batteries     111
      • 4.2.2.1 Fire protection               111
      • 4.2.2.2 Thermal barriers          114
      • 4.2.2.3 Regulations     116
      • 4.2.2.4 Challenges      118
      • 4.2.2.5 Integration of aerogels with specialized foam materials   119
      • 4.2.2.6 Companies     119
  • 4.3        Oil and Gas     122
    • 4.3.1    Overview           122
    • 4.3.2    Applications   122
      • 4.3.2.1 Refineries         123
      • 4.3.2.2 Pipelines           124
  • 4.4        Building and Construction    126
    • 4.4.1    Overview           126
    • 4.4.2    Types of sustainable insulation materials   127
    • 4.4.3    Applications   128
      • 4.4.3.1 Panels and blankets  129
      • 4.4.3.2 Plaster, concrete and bricks 130
      • 4.4.3.3 Coatings and paints  131
      • 4.4.3.4 Windows/Daylighting               133
      • 4.4.3.5 Industrial insulation  136
  • 4.5        Energy Storage              137
    • 4.5.1    Overview           137
    • 4.5.2    Applications   137
      • 4.5.2.1 Silicon anodes              138
      • 4.5.2.2 Li-S batteries  138
      • 4.5.2.3 Electrodes        139
      • 4.5.2.4 Thermal insulation     140
      • 4.5.2.5 Supercapacitors          141
  • 4.6        Biomedical      142
    • 4.6.1    Overview           142
    • 4.6.2    Applications   142
      • 4.6.2.1 Drug delivery  142
      • 4.6.2.2 Tissue engineering      144
      • 4.6.2.3 Medical implants        144
      • 4.6.2.4 Wound care    145
  • 4.7        Cold-Chain Packaging            146
    • 4.7.1    Overview           146
  • 4.8        Electronics and Telecommunications           147
    • 4.8.1    Overview           147
    • 4.8.2    Applications   148
      • 4.8.2.1 EMI Shielding 149
      • 4.8.2.2 Thermal insulation     150
      • 4.8.2.3 5G         150
        • 4.8.2.3.1           Antenna modules       150
        • 4.8.2.3.2           High-performance antenna substrates        151
        • 4.8.2.3.3           Advanced low-loss materials              152
  • 4.9        Filtration, Separation, and Sorption                153
    • 4.9.1    Overview           153
    • 4.9.2    Applications   154
      • 4.9.2.1 Sorbents for liquids, hazardous ions (heavy metal ions) (e.g., water treatment)               154
      • 4.9.2.2 Sorbent for oil spills  155
      • 4.9.2.3 Sorbents for gases (CO2, hazardous gases, VOC) 156
  • 4.10     Textiles               156
    • 4.10.1 Overview           157
    • 4.10.2 Applications   157
      • 4.10.2.1            Winter sports apparel              158
      • 4.10.2.2            Consumer apparel     159
      • 4.10.2.3            Protective equipment               161
      • 4.10.2.4            Footwear applications             161
  • 4.11     Food    162
    • 4.11.1 Overview           162
  • 4.12     Catalysts          163
  • 4.13     Paint and Coatings     164
  • 4.14     Aerospace and Defence         164
    • 4.14.1 Overview           164
    • 4.14.2 Applications   167
      • 4.14.2.1            Thermal protection systems 167
      • 4.14.2.2            Crash absorbers          167
      • 4.14.2.3            Defense applications               168
  • 4.15     Cosmetics       172
    • 4.15.1 Overview           172
  • 4.16     Other markets and applications       173
    • 4.16.1 Sports equipment       174
    • 4.16.2 Fire retardant applications   176
    • 4.16.3 Solar energy collection            176
    • 4.16.4 Knudsen pumps          177
    • 4.16.5 Passive Cooling         178

 

5             AEROGEL PATENTS    179

  • 5.1        Patent applications   179

 

6             AEROGEL COMPANY PROFILES        182 (54 company profiles)

 

7             RESEARCH SCOPE AND METHODOLOGY 233

  • 7.1        Report scope 233
  • 7.2        Research methodology           233

 

8             REFERENCES 234

 

Tables

  • Table 1. General properties and value of aerogels.               15
  • Table 2. Aerogel Thermal Conductivity and Density Benchmarking.         16
  • Table 3. Growing EV Market. 19
  • Table 4. Market drivers for aerogels.               20
  • Table 5.  Aerogel Manufacturer Production Capacity and Manufacturing Processes.    23
  • Table 6. Planned aerogel production expansions. 24
  • Table 7. Market and technology challenges in aerogels.   25
  • Table 8. Aerogel Forecast 2021-2036 (Million USD), by aerogel type.        25
  • Table 9. Aerogel Forecast 2021-2036 by Markets (Million USD).   26
  • Table 10. Aerogel Manufacturers in China. 28
  • Table 11. Aerogel Forecast 2021-2036 by Region (Million USD).  29
  • Table 12. Aerogel Form Factors.        32
  • Table 13. Commercially Available Aerogel Products.          34
  • Table 14. Silica aerogel properties . 42
  • Table 15. Chemical precursors used to synthesize silica aerogels.           43
  • Table 16. Commercially available aerogel-enhanced blankets.   49
  • Table 17. Commercial Silica Composite Aerogels.               54
  • Table 18. Main manufacturers of silica aerogels and product offerings. 56
  • Table 19. Typical structural properties of metal oxide aerogels.  58
  • Table 20. Polymer aerogels companies.      60
  • Table 21. Types of biobased aerogels.           65
  • Table 22. Carbon aerogel companies.          76
  • Table 23. Carbon aerogel manufacturers.  78
  • Table 24.  3D printing processes and applications.              82
  • Table 25. Synthesis methods-Aerogels synthesised, advantages and disadvantages. 88
  • Table 26. Silica Aerogel Powder Manufacturing Processes Using Ambient Drying.          95
  • Table 27. Drying methods for aerogel production. 98
  • Table 28. Advantages and disadvantages of drying methods.       100
  • Table 29. Silica Composite Aerogels - Cost Analysis.         102
  • Table 30. Cost Analysis by Aerogel Type.     104
  • Table 31. Market overview of aerogels in automotive-market drivers, types of aerogels utilized, motivation for use of aerogels, applications, TRL. 110
  • Table 32. Properties of Aerogels and Other Fire Protection Materials.      111
  • Table 33. Types of Fire Protection Materials.             113
  • Table 34. Thermally Insulating Fire Protection Products for EVs. 114
  • Table 35. Comparison of Aerogels vs Other Fire Protection Materials.    114
  • Table 36. Comparison of Aerogel Fire Protection Materials for EV Batteries.       115
  • Table 37. Companies producing  Aerogels for EV Batteries.            119
  • Table 38. Market overview of aerogels in oil and gas-market drivers, types of aerogels utilized, motivation for use of aerogels, applications, TRL. 122
  • Table 39. Aerogel Products for Cryogenic Insulation.          125
  • Table 40. Market overview of aerogels in building and construction-market drivers, types of aerogels utilized, motivation for use of aerogels, applications, TRL.             128
  • Table 41. Aerogel Materials for Building & Construction Applications.    132
  • Table 42. Aerogel Products for Windows/Daylighting.         133
  • Table 43. Market overview of aerogels in energy conversion and storage-market drivers, types of aerogels utilized, motivation for use of aerogels, applications, TRL.         137
  • Table 44. Market overview of aerogels in drug delivery-market drivers, types of aerogels utilized, motivation for use of aerogels, applications, TRL. 143
  • Table 45. Market overview of aerogels in tissue engineering-market drivers, types of aerogels utilized, motivation for use of aerogels, applications, TRL. 144
  • Table 46. Market overview of aerogels in medical implants-market drivers, types of aerogels utilized, motivation for use of aerogels, applications, TRL. 145
  • Table 47. Market overview of aerogels in wound care-market drivers, types of aerogels utilized, motivation for use of aerogels, applications, TRL. 146
  • Table 48. Market overview of aerogels in cold-chain packaging-market drivers, types of aerogels utilized, motivation for use of aerogels, applications, TRL. 146
  • Table 49. Market overview of aerogels in electronics and Telecommunications-market drivers, types of aerogels utilized, motivation for use of aerogels, applications, TRL.         147
  • Table 50. Aerogel Products for Electronic Appliances.       148
  • Table 51. Market overview of aerogels in filtration, separation, and sorption-market drivers, types of aerogels utilized, motivation for use of aerogels, applications, TRL.         153
  • Table 52. Market overview of aerogels in textiles- market drivers, types of aerogels utilized, motivation for use of aerogels, applications, TRL.          161
  • Table 53. Market overview of aerogels in food- market drivers, types of aerogels utilized, motivation for use of aerogels, applications, TRL. 162
  • Table 54. Market overview of aerogels in catalysts-market drivers, types of aerogels utilized, motivation for use of aerogels, applications, TRL.          163
  • Table 55. Market overview of aerogels in paints and coatings-market drivers, types of aerogels utilized, motivation for use of aerogels, applications, TRL. 164
  • Table 56. Market overview of aerogels in aerospace-market drivers, types of aerogels utilized, motivation for use of aerogels, applications, TRL. 168
  • Table 57. Market overview of aerogels in cosmetics-market drivers, types of aerogels utilized, motivation for use of aerogels, applications, TRL. 173
  • Table 58. Other markets and applications for aerogels.    173
  • Table 59. Aerogel patents 2010-2024.          179

 

Figures

  • Figure 1. Classification of aerogels. 15
  • Figure 2. SLENTEX® thermal insulation.       18
  • Figure 3. Aerogel Forecast 2021-2036 (Million USD), by aerogel type.      26
  • Figure 4. Aerogel Forecast 2021-2036 by Markets (Million USD). 27
  • Figure 5. Aerogel Forecast 2021-2036 by Region (Million USD).   29
  • Figure 6. Main characteristics of aerogel type materials.  30
  • Figure 7. Classification of aerogels. 31
  • Figure 8. Canada Goose luxury footwear.   33
  • Figure 9. Flower resting on a piece of silica aerogel suspended in mid air by the flame of a bunsen burner.                41
  • Figure 10. Monolithic aerogel.            44
  • Figure 11. Aerogel granules. 47
  • Figure 12. Internal aerogel granule applications.   48
  • Figure 13. Slentite.      56
  • Figure 14. Methods for producing bio-based aerogels.      66
  • Figure 15. Types of cellulose aerogel.            67
  • Figure 16. Lignin-based aerogels.     68
  • Figure 17. Fabrication routes for starch-based aerogels. 70
  • Figure 18. Schematic of silk fiber aerogel synthesis.           73
  • Figure 19. Graphene aerogel.              78
  • Figure 20. Commonly employed printing technologies for aerogels.        81
  • Figure 21. Schematic for direct ink writing of silica aerogels.        82
  • Figure 22. 3D printed aerogel.             82
  • Figure 23. Schematic of silica aerogels synthesis.                88
  • Figure 24. Formation of aerogels, cryogels and xerogels. 89
  • Figure 25. Aerogel engineering strategies.  90
  • Figure 26. 3D printed aerogels.          91
  • Figure 27. SEM images of the microstructures of (a) alginate and (b) pectin aerogels obtained by supercritical drying, (c) cellulose aerogels by freeze-drying, and (d) silica-cellulose composite aerogels by ambient drying.     92
  • Figure 28. Methods of gel drying.      93
  • Figure 29. Pyrogel insulation on a heat-exchange vessel in a petrochemical plant.        122
  • Figure 30. Aerogel construction applications.         127
  • Figure 31. Incorporation of aerogels into textiles.  158
  • Figure 32. Aerogel dust collector.     169
  • Figure 33. Thermal Conductivity Performance of ArmaGel HT.     193
  • Figure 34. A pencil resting on a PyroThin thermal barrier to show its comparative thickness.  195
  • Figure 35. SLENTEX® roll (piece).      196
  • Figure 36. CNF gel.     210
  • Figure 37. Block nanocellulose material.    210
  • Figure 38. Keey Aerogel.          212
  • Figure 39. Fire-resistance in Keey Aerogel. 213
  • Figure 40. Melodea CNC suspension.           217
  • Figure 41. HIP AERO paint.   220
  • Figure 42. Insulation of various aerogel fibres illustrated using the example of a cushion,        223
  • Figure 43. Sunthru Aerogel pane.     226
  • Figure 44. Quartzene®.             228

 

 

 

 

 

 

 

 

 

Purchasers will receive the following:

  • PDF report download/by email. Print edition also available. 
  • Comprehensive Excel spreadsheet of all data.
  • Mid-year Update

 

The Global Aerogels Market 2026-2036
The Global Aerogels Market 2026-2036
PDF download.

The Global Aerogels Market 2026-2036
The Global Aerogels Market 2026-2036
PDF and Print Edition (including tracked delivery).

Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer. To order by Bank Transfer (Invoice) select this option from the payment methods menu after adding to cart, or contact info@futuremarketsinc.com