Advanced Materials and Technologies for Smart and Sustainable Buildings

0

Published April 2021, 450 pages, 43 tables, 97 figures

Due to evolving standards for building regulations and demand for occupant comfort, the performance of building envelopes continues to improve. Buildings account for ~30-40% of the world’s total primary energy, and the benefits of energy efficient buildings are numerous, from better thermal comfort to longer buildings lifecycle. In order to adhere to regulations, many new buildings are required to meet energy efficiency targets.  These targets are increasingly met through technology, and in most cases rely on advanced materials, either by developing new materials or modifying existing ones.

The use of advanced materials, nanomaterials, and smart materials, is now driving improved building envelope performance by allowing reconciliation of the architectural features of buildings with the new challenges of energy and environmental efficiency. Technologies and materials include:

  • Smart glass and windows
    • Electrochromic (EC) smart glass 
    • Thermochromic smart glass
    • Suspended particle device (SPD) smart glass
    • Polymer dispersed liquid crystal (PDLC) smart glass
    • Photochromic smart glass
    • Micro-blinds
    • Electrokinetic glass
    • Graphene smart glass
    • Heat insulation solar glass (HISG)
  • Thermal and sound insulation
    • Vacuum Insulation Panels (VIP)
    • Aerogels
    • Transparent Insulation Materials (TIM)
    • Metamaterials
    • Graphene
    • Nanofiber‐based insulation material
    • Shape memory sound absorption
  • Advanced construction materials
    • Advanced concrete additives
      • Graphene
      • Multi-walled carbon nanotubes (MWCNTs)
      • Single-walled carbon nanotubes (SWCNTs)
      • Cellulose nanofibers
      • Nanosilica
      • Nano-titania (TiO2)
      • Zycosoil
      • Phase change materials
      • Self-healing materials
    • Self-sensing concrete
    • 3D printing construction materials
    • Environment-adaptive skin facades
    • Memory steel
    • Biomaterials
    • Double-skin façades
  • Vibration dampening
    • Passive vibration mitigation materials
    • Smart vibration mitigation materials
    • Metamaterials
    • Shape memory materials
    • Carbon nanotubes
    • Magnetorheological fluid (MRF)
    • Magnetostrictive materials
  • Smart coatings and films
    • Cool roofs
    • Antireflective glazing
    • Metamaterials
    • Photocatalytic self-cleaning coatings
    • Hydrophobic coatings
    •  Superhydrophobic surfaces
    • Anti-fouling and easy-to-clean coatings
    • Advanced antimicrobial coatings
    • Thermally insulating paint
  • Smart air filtration and HVAC
    • Nanofibers
    • Graphene
    • Metal-Organic Frameworks (MOF)
    • Nanosilver filters
    • Carbon nanotubes
    • Phase change materials
    • Nano-TiO2 photocatalyst filter coatings
    • Self-healing coatings
  • Heating and energy efficiency
    • Metal-Organic Frameworks (MOF)
    • Phase change materials
  • Energy harvesting
    • Piezoelectric materials
    • Thermoelectric materials
    • Building Integrated Photovoltaics (BIPV)
    • Bioadaptive glazing
  • Smart sensors
    • Temperature sensors
    • Motion sensors
    • Humidity sensors
    •  Sensors for air quality
    • CO2 sensors for energy efficient buildings
  • Smart lighting
    • LEDs
    • Organic LEDs (OLEDs)
    • Quantum dots
    • Flexible lighting

 

Report contents include:

  • Market drivers for advanced materials in smart and sustainable buildings.
  • Revenues for smart and advanced materials building applications and markets.
  • In-depth technology analysis.
  • In depth market analysis.
  • Profiles of over 210 companies in the smart and sustainable buildings market.  Companies profiled include View, Inc., ChromoGenics AB, RavenWindow, Research Frontiers, Inc., Aerogel Technologies LLC, Blueshift Materials, Inc., Aspen Aerogels, Inc., Acoustic Metamaterials Group Limited, Carbon Upcycling Technologies, re-fer AG, Awaji Materia Co., Ltd., Phononic Vibes, Croda, HeatVentors, Solaxess SA and many more. 

 

 

1              EXECUTIVE SUMMARY   26

  • 1.1          What are smart buildings?           27
  • 1.2          Market drivers  28
  • 1.3          Environmental, social, and economic benefits     30
    • 1.3.1.1   Smart, sustainable, and inclusive buildings            31
    • 1.3.1.2   Zero-energy buildings    32
    • 1.3.2      Green buildings 33
  • 1.4          Energy consumption       33
  • 1.5          Traditional construction materials with new properties   34
  • 1.6          Smart/switchable/dynamic glass or smart windows          35
  • 1.7          Advanced thermal and sound insulation 38
  • 1.8          Smart lighting    39
  • 1.9          Smart coatings  39
  • 1.10        Energy harvesting            40
  • 1.11        Bio-perceptive building envelopes           41
  • 1.12        Market revenues and forecasts, by technology area to 2031          42

 

2              AIMS AND OBJECTIVES OF THIS STUDY    43

 

3              RESEARCH METHODOLOGY         44

 

4              SMART GLASS AND WINDOWS   45

  • 4.1          What is smart glass?       46
  • 4.2          Market drivers for smart glass    48
  • 4.3          Smart windows 50
  • 4.4          Types of smart glass        50
    • 4.4.1      Passive smart glass          50
    • 4.4.2      Active smart glass            50
  • 4.5          Comparison of smart glass technologies 51
  • 4.6          Nanomaterials in smart glass       51
  • 4.7          Competitive landscape  52
  • 4.8          Manufacturers  53
  • 4.9          Routes to market             54
    • 4.9.1      Residential and commercial glazing          57
  • 4.10        Market and technical challenges               58
  • 4.11        Future of smart glass      60
    • 4.11.1    Need for innovation        60
    • 4.11.2    Reducing costs  60
    • 4.11.3    Integration with building systems/Internet of things (IoT)              61
    • 4.11.4    Photovoltaic smart glass                61
    • 4.11.5    Faster switching times:  61
  • 4.12        Advanced materials for smart glass and windows              61
    • 4.12.1    Electrochromic (EC) smart glass  61
      • 4.12.1.1                Technology description 61
      • 4.12.1.2                Materials             62
        • 4.12.1.2.1             Inorganic metal oxides  63
        • 4.12.1.2.2             Organic EC materials       63
        • 4.12.1.2.3             Nanomaterials  63
      • 4.12.1.3                Benefits               64
      • 4.12.1.4                Shortcomings    64
      • 4.12.1.5                Application in residential and commercial windows          64
      • 4.12.1.6                Companies         67
    • 4.12.2    Thermochromic smart glass         75
      • 4.12.2.1                Technology description 75
      • 4.12.2.2                Benefits               76
      • 4.12.2.3                Shortcomings    76
      • 4.12.2.4                Application in residential and commercial windows          76
      • 4.12.2.5                Companies         77
    • 4.12.3    Suspended particle device (SPD) smart glass         78
      • 4.12.3.1                Technology description 78
      • 4.12.3.2                Benefits               79
      • 4.12.3.3                Shortcomings    79
      • 4.12.3.4                Application in residential and commercial windows          80
      • 4.12.3.5                Companies         81
    • 4.12.4    Polymer dispersed liquid crystal (PDLC) smart glass           90
      • 4.12.4.1                Technology description 90
      • 4.12.4.2                Types    92
        • 4.12.4.2.1             Laminated Switchable PDLC Glass             92
        • 4.12.4.2.2             Self-adhesive Switchable PDLC Film          92
      • 4.12.4.3                Benefits               93
      • 4.12.4.4                Shortcomings    93
      • 4.12.4.5                Application in residential and commercial windows          93
        • 4.12.4.5.1             Interior glass      93
      • 4.12.4.6                Companies         94
    • 4.12.5    Photochromic smart glass             110
      • 4.12.5.1                Technology analysis        110
      • 4.12.5.2                Application in residential and commercial windows          110
    • 4.12.6    Micro-blinds       110
      • 4.12.6.1                Technology analysis        111
      • 4.12.6.2                Benefits               111
    • 4.12.7    Electrokinetic glass          111
      • 4.12.7.1                Technology analysis        111
      • 4.12.7.2                Companies         113
    • 4.12.8    Other advanced glass technologies          115
      • 4.12.8.1                Graphene smart glass     115
        • 4.12.8.1.1             Companies         115
      • 4.12.8.2                Heat insulation solar glass (HISG)              117

 

5              THERMAL AND SOUND INSULATION        120

  • 5.1          Market drivers  120
  • 5.2          Advanced materials for thermal and sound insulation      121
    • 5.2.1      Super-Insulating materials           121
    • 5.2.2      Transparent and flexible thermal insulation windows       122
    • 5.2.3      Vacuum Insulation Panels (VIP) 123
    • 5.2.4      Aerogels              126
      • 5.2.4.1   Commercially available aerogels 130
      • 5.2.4.2   Silica aerogels    130
        • 5.2.4.2.1               Properties           131
          • 5.2.4.2.1.1           Thermal conductivity      131
          • 5.2.4.2.1.2           Mechanical         131
        • 5.2.4.2.2               Monoliths           131
        • 5.2.4.2.3               Powder 132
        • 5.2.4.2.4               Granules              132
        • 5.2.4.2.5               Blankets               133
        • 5.2.4.2.6               Aerogel boards 134
        • 5.2.4.2.7               Aerogel renders 134
      • 5.2.4.3   Aerogel-like polymer foams        134
      • 5.2.4.4   Biobased aerogels (bio-aerogels)              135
        • 5.2.4.4.1               Cellulose aerogels            135
          • 5.2.4.4.1.1           Cellulose nanofiber (CNF) aerogels           135
          • 5.2.4.4.1.2           Cellulose nanocrystal aerogels   136
        • 5.2.4.4.2               Lignin aerogels  136
        • 5.2.4.4.3               Alginate aerogels             137
        • 5.2.4.4.4               Starch aerogels 137
      • 5.2.4.5   Thermal and sound insulation     138
      • 5.2.4.6   Companies         139
    • 5.2.5      Transparent Insulation Materials (TIM)   168
      • 5.2.5.1   Flat-plate solar collectors              169
      • 5.2.5.2   Solar walls           170
    • 5.2.6      Metamaterials  172
      • 5.2.6.1   Metasurfaces    173
      • 5.2.6.2   Types of metamaterials 173
      • 5.2.6.3   Sound insulation               175
      • 5.2.6.4   Companies         177
    • 5.2.7      Graphene           179
      • 5.2.7.1   Graphene foam 179
    • 5.2.8      Nanofiber‐based insulation material        180
    • 5.2.9      Shape memory 181
      • 5.2.9.1   Sound absorption            181

 

6              ADVANCED CONSTRUCTION MATERIALS 183

  • 6.1          Market drivers  183
  • 6.2          Concrete additives          184
    • 6.2.1      Graphene           187
    • 6.2.2      Multi-walled carbon nanotubes (MWCNTs)          188
    • 6.2.3      Single-walled carbon nanotubes (SWCNTs)           190
    • 6.2.4      Cellulose nanofibers       191
    • 6.2.5      Nanosilica            192
    • 6.2.6      Nano-titania (TiO2)          193
    • 6.2.7      Zycosoil 194
    • 6.2.8      Phase change materials 196
    • 6.2.9      Self-healing materials     196
      • 6.2.9.1   Extrinsic self-healing       199
      • 6.2.9.2   Capsule-based  199
      • 6.2.9.3   Vascular self-healing      199
      • 6.2.9.4   Intrinsic self-healing       200
      • 6.2.9.5   Healing volume 201
      • 6.2.9.6   Self-healing concrete     203
        • 6.2.9.6.1               Bioconcrete        204
        • 6.2.9.6.2               Fibre concrete   204
  • 6.3          Self-sensing concrete     205
  • 6.4          3D printing construction materials            207
  • 6.5          Environment-adaptive skin facades         208
  • 6.6          Companies         210
  • 6.7          Memory steel    226
    • 6.7.1      Shape memory alloys     226
    • 6.7.2      Companies         227
  • 6.8          Biomaterials       228
    • 6.8.1      Mycelium            228
  • 6.9          Double-skin façades       231

 

7              VIBRATION DAMPENING              233

  • 7.1          Market drivers  233
  • 7.2          Advanced materials for vibration dampeners      234
    • 7.2.1      Passive vibration mitigation materials     234
    • 7.2.2      Smart vibration mitigation materials        235
      • 7.2.2.1   Metamaterials  236
      • 7.2.2.2   Shape memory materials              237
        • 7.2.2.2.1               Shape memory effect    237
        • 7.2.2.2.2               Superelasticity  238
        • 7.2.2.2.3               Nickel-Titanium (Ni-Ti) alloys       238
          • 7.2.2.2.3.1           Properties           239
        • 7.2.2.2.4               Copper-based SMAs       241
        • 7.2.2.2.5               Iron-based SMAs             242
        • 7.2.2.2.6               Hardened high temperature shape memory alloys (HTSMAs)       243
        • 7.2.2.2.7               Titanium-Tantalum (Ti-Ta)-based alloys  244
        • 7.2.2.2.8               Shape-memory polymers             244
      • 7.2.2.3   Carbon nanotubes           246
      • 7.2.2.4   Magnetorheological fluid (MRF) 246
      • 7.2.2.5   Magnetostrictive materials          247
  • 7.3          Companies         249

 

8              SMART COATINGS AND FILMS    255

  • 8.1          Market drivers  255
  • 8.2          Advanced materials for smart coatings and films 256
    • 8.2.1      Cool roofs           257
    • 8.2.2      Antireflective glazing      258
    • 8.2.3      Metamaterials  260
      • 8.2.3.1   Cooling films      260
    • 8.2.4      Photocatalytic self-cleaning coatings       261
      • 8.2.4.1   Glass coatings    262
      • 8.2.4.2   Exterior coatings               265
      • 8.2.4.3   Interior coatings               266
        • 8.2.4.3.1               Medical facilities               266
        • 8.2.4.3.2               Antimicrobial coating indoor light activation         267
    • 8.2.5      Hydrophobic coatings     267
    • 8.2.6      Superhydrophobic surfaces         269
      • 8.2.6.1   Properties           269
    • 8.2.7      Anti-fouling and easy-to-clean coatings  270
    • 8.2.8      Advanced antimicrobial coatings               272
      • 8.2.8.1   Metallic-based coatings 272
      • 8.2.8.2   Polymer-based coatings 273
      • 8.2.8.3   Mode of action  275
    • 8.2.9      Thermally insulating paint            276
      • 8.2.9.1   Aerogels              276

 

9              SMART AIR FILTRATION AND HVAC          325

  • 9.1          Market drivers  325
  • 9.2          Advanced materials for smart filtration and HVAC             327
    • 9.2.1      Carbon nanotubes           329
    • 9.2.2      Graphene           330
    • 9.2.3      Nanofibers         331
    • 9.2.4      Nanosilver          332
    • 9.2.5      Metal-Organic Frameworks (MOF)           332
    • 9.2.6      Phase change materials 334
    • 9.2.7      Nano-TiO2 photocatalyst coatings            334
    • 9.2.8      Self-healing coatings       336
  • 9.3          Companies         337

 

10           HEATING AND ENERGY EFFICIENCY           346

  • 10.1        Market drivers  346
  • 10.2        Advanced materials for heating and energy efficiency     348
    • 10.2.1    Metal-Organic Frameworks (MOF)           348
      • 10.2.1.1                Heat exchangers for heat pumps               348
    • 10.2.2    Phase change materials 348
      • 10.2.2.1                Organic/biobased phase change materials            351
        • 10.2.2.1.1             Paraffin wax       351
        • 10.2.2.1.2             Non-Paraffins/Bio-based              352
      • 10.2.2.2                Inorganic phase change materials             352
        • 10.2.2.2.1             Salt hydrates      352
        • 10.2.2.2.2             Metal and metal alloy PCMs (High-temperature) 354
      • 10.2.2.3                Eutectic mixtures             354
      • 10.2.2.4                Encapsulation of PCMs  354
        • 10.2.2.4.1             Macroencapsulation       355
        • 10.2.2.4.2             Micro/nanoencapsulation            355
      • 10.2.2.5                Nanomaterial phase change materials     356
      • 10.2.2.6                PCMS in buildings and construction          356
        • 10.2.2.6.1             Water heaters   359
        • 10.2.2.6.2             Thermal batteries for water heaters and EVs        360
  • 10.3        Companies         364

 

11           ENERGY HARVESTING    388

  • 11.1        Market drivers  388
  • 11.2        Advanced materials for building energy harvesting           389
    • 11.2.1    Piezoelectric materials   389
    • 11.2.2    Thermoelectric materials              390
    • 11.2.3    Building Integrated Photovoltaics (BIPV) 391
      • 11.2.3.1                Technology description 391
        • 11.2.3.1.1             Printed photovoltaics     392
        • 11.2.3.1.2             Printed semi-transparent and multi-coloured PV modules             393
    • 11.2.4    Bioadaptive glazing          393
  • 11.3        Companies         395

 

12           SMART SENSORS              405

  • 12.1        Market drivers  405
  • 12.2        Types of smart building sensors 405
  • 12.3        Applications       406
    • 12.3.1.1                Temperature sensors     407
    • 12.3.1.2                Humidity sensors             408
    • 12.3.1.3                Sensors for air quality     408
    • 12.3.1.4                CO2 sensors for energy efficient buildings             409
  • 12.4        Companies         410

 

13           SMART LIGHTING             416

  • 13.1        Advanced materials for smart lighting     418
    • 13.1.1    LEDs       419
    • 13.1.2    Organic LEDs (OLEDs)     420
    • 13.1.3    Quantum dots   421
    • 13.1.4    Flexible lighting 423
  • 13.2        Companies         424

 

14           RISK ASSESSMENT AND ANALYSIS             432

 

15           REFERENCES       437

 

Tables

  • Table 1. Advanced materials used in smart and sustainable buildings.       27
  • Table 2. Market drivers for advanced materials in smart buildings.             28
  • Table 3. Markets for smart glass and windows.   37
  • Table 4. Comparison of smart glass and windows types. 46
  • Table 5. Market drivers for smart glass.  48
  • Table 6. Types of passive smart glass.      50
  • Table 7. Types of active smart glass.         50
  • Table 8. Advantages and disadvantages of respective smart glass technologies.   51
  • Table 9. Market structure for smart glass and windows.  52
  • Table 10. Manufacturers of smart film and glass, by type.              53
  • Table 11. Routes to market for smart glass companies.    55
  • Table 12. Technologies for smart windows in buildings.   57
  • Table 13. Market and technical challenges for smart glass and windows, by main technology type.             59
  • Table 14. Types of electrochromic materials and applications.      62
  • Table 15. Market drivers for advanced materials in sound insulation.        120
  • Table 16. Market overview of aerogels in building and construction-market drivers, types of aerogels utilized, motivation for use of aerogels, applications, TRL.               126
  • Table 17.  General properties and value of aerogels.         129
  • Table 18. Commercially available aerogel-enhanced blankets.     134
  • Table 19.  Physical properties of glazing-perpendicular TIM.          168
  • Table 20. Market drivers for advanced construction materials.     183
  • Table 21. Improvement in properties of cement-based composites with different nanofillers.       186
  • Table 22. Types of self-healing coatings and materials.     197
  • Table 23. Comparative properties of self-healing materials.           202
  • Table 24. Types of self-healing concrete.               203
  • Table 25. Overview of mycelium fibers-description, properties, drawbacks and applications.          228
  • Table 26. Market drivers for advanced materials for vibration dampening.             233
  • Table 27. Physical properties of NiTi.        239
  • Table 28. Applications of shape memory materials in construction and stage of development.      240
  • Table 29. Properties of copper-based shape memory alloys           241
  • Table 30. Comparison between the SMAs and SMPs.       244
  • Table 31. Advanced coating applied in the building and construction industry.      256
  • Table 32. Contact angles of hydrophilic, super hydrophilic, hydrophobic and superhydrophobic surfaces. 269
  • Table 33. Anti-fouling and easy-to-clean coatings-Nanomaterials used, principles, properties and applications.      270
  • Table 34. Polymer-based coatings for antimicrobial coatings and surfaces.             273
  • Table 35. Comparison of CNT membranes with other membrane technologies     329
  • Table 36.  PCM Types and properties.     350
  • Table 37. Advantages and disadvantages of organic PCM Fatty Acids.        352
  • Table 38. Advantages and disadvantages of salt hydrates               353
  • Table 39. Advantages and disadvantages of low melting point metals.      354
  • Table 40. Market assessment for PCMs in building and construction-market age, applications, key benefits and motivation for use, market drivers and trends, market challenges.             358
  • Table 41. CrodaTherm Range.     368
  • Table 42. Types of smart building sensors.            406
  • Table 43. QD-LEDs and External quantum efficiencies (EQE).         423

 

Figures

  • Figure 1. Productivity and comfort gains achieved through window and ventilation technologies. 37
  • Figure 2. Global market revenues for smart buildings, by technology areas, 2021-2031 (Millions USD).      42
  • Figure 3. Nanocrystal smart glass that can switch between fully transparent, heat-blocking, and light-and-heat-blocking modes.               52
  • Figure 4. Typical setup of an electrochromic device (ECD).             62
  • Figure 5. Electrochromic smart glass schematic.  62
  • Figure 6. Electrochromic smart glass.       65
  • Figure 7. Examples of electrochromic smart windows each in fully coloured (left) and bleached state (right).          66
  • Figure 8. Argil smart glass for buildings.  67
  • Figure 9. CoverLight by Chromogenics.   69
  • Figure 10. Thermochromic smart windows schematic.     76
  • Figure 11. Vertical insulated glass unit for a Suntuitive® thermochromic window. 77
  • Figure 12. SPD smart windows schematic.             79
  • Figure 13. SPD film lamination.   80
  • Figure 14. SPD smart film schematic. Control the transmittance of light and glare by adjusting AC voltage to the SPD Film.      81
  • Figure 15. SPD film glass installation at Indiana University.             85
  • Figure 16. Schematic of Cromalite SPD film.          86
  • Figure 17. PDLC schematic.          91
  • Figure 18. Schematic of PDLC film and self-adhesive PDLC film.    92
  • Figure 19. Smart glass made with polymer dispersed liquid crystal (PDLC) technology.      94
  • Figure 20. e-Tint® cell in the (a) OFF and in the (b) ON states.       95
  • Figure 21. Bestroom Smart VU film.          98
  • Figure 22. Schematic of Magic Glass.       100
  • Figure 23. Application of Magic Glass in office.    100
  • Figure 24. Installation schematic of Magic Glass. 101
  • Figure 25. Micro-blinds schematic.           111
  • Figure 26. Cross-section of Electro Kinetic Film.   112
  • Figure 27. Scheme (left) and a cross section (right) of vacuum insulation panel.    124
  • Figure 28. Main characteristics of aerogel type materials.               128
  • Figure 29. Classification of aerogels.        129
  • Figure 30. Flower resting on a piece of silica aerogel suspended in mid air by the flame of a bunsen burner.           131
  • Figure 31. Monolithic aerogel.    132
  • Figure 32. Aerogel granules.        132
  • Figure 33. Internal aerogel granule applications. 133
  • Figure 34. Fabrication routes for starch-based aerogels. 138
  • Figure 35. Aerogel construction applications.       139
  • Figure 36. Thermal Conductivity Performance of ArmaGel HT.      145
  • Figure 37. SLENTEX® roll (piece).               148
  • Figure 38. Schematic of TIMs.     168
  • Figure 39. Appearance of typical TIMs.   169
  • Figure 40. Metamaterials example structures.    172
  • Figure 41. Metamaterial schematic versus conventional materials.             173
  • Figure 42. Prototype metamaterial device used in acoustic sound insulation.         175
  • Figure 43. Metamaterials installed in HVAC sound insulation the Hotel Madera Hong Kong.            176
  • Figure 44. Comparison of nanofillers with supplementary cementitious materials and aggregates in concrete.       186
  • Figure 45. SEM micrographs of plain (A) and nano-silica modified cement paste (B).           192
  • Figure 46. Schematic of self-healing polymers. Capsule based (a), vascular (b), and intrinsic (c) schemes for self-healing materials.  Red and blue colours indicate chemical species which react (purple) to heal damage.  197
  • Figure 47. Stages of self-healing mechanism.       198
  • Figure 48. Schematic of the self-healing concept using microcapsules with a healing agent inside.                199
  • Figure 49. Self-healing mechanism in vascular self-healing systems.          200
  • Figure 50. Comparison of self-healing systems.   201
  • Figure 51. Self-healing concrete test study with cracked concrete (left) and self-healed concrete after 28 days (right).                203
  • Figure 52. Self-healing bacteria crack filler for concrete. 204
  • Figure 53. Self-healing concrete.               204
  • Figure 54. Graphene asphalt additives.   214
  • Figure 55. OG (Original Graphene) Concrete Admix Plus. 217
  • Figure 56. Talcoat graphene mixed with paint.     221
  • Figure 57. Memory-steel reinforcement bars.     226
  • Figure 58. Typical structure of mycelium-based foam.     229
  • Figure 59. Commercial mycelium composite construction materials.          230
  • Figure 60. Robotic metamaterial device for seismic-induced vibration mitigation. 236
  • Figure 61. Histeresys cycle for Superelastic and shape memory material. 237
  • Figure 62. Shape memory effect.              238
  • Figure 63. Superelasticity Elastic Property.            238
  • Figure 64. Stress x Strain diagram.             240
  • Figure 65. Shape memory pipe joint.       243
  • Figure 66. The molecular mechanism of the shape memory effect under different stimuli.              245
  • Figure 67. Schematic of dry-cooling technology. 260
  • Figure 68. Mechanism of photocatalysis on a surface treated with TiO2 nanoparticles.      262
  • Figure 69. Schematic showing the self-cleaning phenomena on superhydrophilic surface. 263
  • Figure 70. Titanium dioxide-coated glass (left) and ordinary glass (right). 264
  • Figure 71. Schematic of photocatalytic air purifying pavement.   265
  • Figure 72.  Self-Cleaning mechanism utilizing photooxidation.      266
  • Figure 73. (a) Water drops on a lotus leaf.             268
  • Figure 74. Self-cleaning superhydrophobic coating schematic.      269
  • Figure 75. Contact angle on superhydrophobic coated surface.    270
  • Figure 76. Antibacterial mechanisms of metal and metallic oxide nanoparticles.   273
  • Figure 77. Quartzene®. 279
  • Figure 78. GermStopSQ mechanism of action.     290
  • Figure 79. NOx reduction with TioCem®. 293
  • Figure 80. V-CAT® photocatalyst mechanism.      320
  • Figure 81. Applications of Titanystar.       323
  • Figure 82. Capture mechanism for MOFs toward air pollutants.   333
  • Figure 83. Schematic of photocatalytic indoor air purification filter.           335
  • Figure 84. Photocatalytic oxidation (PCO) air filter.            335
  • Figure 85. Schematic indoor air filtration.              336
  • Figure 86. Mosaic Materials MOFs.           338
  • Figure 87. MOF-based cartridge (purple) added to an existing air conditioner.       341
  • Figure 88. Global energy consumption growth of buildings.           346
  • Figure 89.  Energy consumption of residential building sector.      347
  • Figure 90. MOF-coated heat exchanger. 348
  • Figure 91. Classification of PCMs.              349
  • Figure 92. Phase-change materials in their original states.              349
  • Figure 93. Schematic of PCM use in buildings.      357
  • Figure 94. Comparison of the maximum energy storage capacity of 10 mm thickness of different building materials operating between 18 °C and 26 °C for 24 h.        358
  • Figure 95. Schematic of PCM in storage tank linked to solar collector.       360
  • Figure 96. UniQ line of thermal batteries.              361
  • Figure 97. Fourth generation QD-LEDs.   422

 

 

Advanced Materials and Technologies for Smart and Sustainable Buildings
Advanced Materials and Technologies for Smart and Sustainable Buildings
PDF download.

Advanced Materials and Technologies for Smart and Sustainable Buildings
Advanced Materials and Technologies for Smart and Sustainable Buildings
Print edition (including tracked delivery).

Advanced Materials and Technologies for Smart and Sustainable Buildings
Advanced Materials and Technologies for Smart and Sustainable Buildings
PDF and Print edition (including tracked delivery).

To purchase by invoice (bank transfer or cheque)contact info@futuremarketsinc.com or use our Order Form.