Cell to Pack (CTP), Cell to Body (CTB) and Cell to Chassis (CTC) Integrated Battery Market 2024-2035

0

 

The growth in EV sales is driving demand for batteries,  with the market for EV batteries surpassing 750 GWh in 2023, up 40% on the previous year. Electric cars account for approximately 95% of this growth. The EV market is rapidly expanding, and one of the significant challenges is the development of a reliable and safe battery that can provide a long driving range. The traditional lithium-ion batteries used in electric vehicles have limitations such as low energy density, poor thermal stability, and a tendency to catch fire. Vehicle OEMS and battery manufacturing companies are developing new batteries to address these issues for safe uses in electric vehicles. The key advantage of cell to pack (CTP), cell to body (CTB), and cell to chassis (CTC) battery technologies over traditional lithium-ion battery technologies lies in their improved energy density and enhanced performance parameters. These innovative battery integration approaches enable higher volumetric and gravimetric energy densities, allowing for more compact and lightweight battery solutions that occupy less vehicle packaging space while contributing to reduced overall vehicle weight.

Moreover, CTP, CTB, and CTC technologies facilitate more efficient battery packaging designs, minimizing manufacturing steps, reducing overall battery packaging volume, and enabling greater design flexibility. This translates into longer battery life and superior performance metrics, such as more stable battery characteristics, extended battery lifespans, and improved overall battery performance. A significant advantage of these advanced battery technologies lies in their potential to lower battery packaging and assembly costs. By streamlining manufacturing processes and reducing complexity compared to traditional methods, CTP, CTB, and CTC packaging techniques offer cost-effective solutions for automotive manufacturers.

Cell to Pack (CTP), Cell to Body (CTB) and Cell to Chassis (CTC) Integrated Battery Market Report 2024-2035 covers the latest technologies, key applications, manufacturing processes, advantages, challenges, and opportunities within this rapidly evolving industry across major global regions. The integration of batteries directly into vehicle bodies and chassis represents a transformative shift in automotive design and engineering. This report meticulously evaluates the technological capabilities, real-world applicability, advantages, disadvantages, and tangible benefits CTP, CTB and CTC offer the entire automotive value chain. 

The report assesses the pivotal battery technology trends propelling advancements in on-road and off-road automotive and aerospace vehicles utilizing CTP, CTB and CTC integrated solutions. This comprehensive evaluation illuminates the key commercial opportunities and strategic entry points across different vehicle segments. Also covered are emerging next-generation battery chemistries, materials, and architectures poised to disrupt the market further. The role of transformative technologies like AI, IoT, and wireless battery management systems in optimizing performance, safety, and sustainability is examined in detail. Report contents include:

  • Technology Overview including in-depth technical specifications on: 
    • Cell-to-Pack (CTP) Technology
    • Cell-to-Body (CTB) Technology
    • Cell-to-Chassis (CTC) Technology
    • Thermal Management Systems
    • Battery Management Systems (BMS)
  • Market Analysis
    • Global Market Overview
    • Market Size and Forecast
    • Market Segmentation
    • Market Drivers
    • Market Restraints
    • Opportunities
    • Challenges
  • Competitive Landscape
    • Key Players and Strategies
    • Automotive OEMs
    • Strategic Partnerships
  • Regulatory Landscape
    • Safety and Environmental Regulations
    • Incentives and Subsidies
    • Recycling and Disposal Regulations
  • Future Outlook and Emerging Trends
    • Battery Chemistry and Materials Advancements
    • AI and IoT Integration
    • Wireless Battery Management Systems
    • Sustainability and Circularity Initiatives
    • Emerging Applications and Markets
  • Profiles of 49 companies including technology Company Overview, Product Portfolio and Recent Developments and Initiatives. Companies profiled include BYD, CALB, CATL, EVE Energy, GM, LG Energy, Leap Motor, NIO, Stellantis, StoreDot and SVOLT Energy (Full list of companies profiled in table of contents). 

 

 

1             EXECUTIVE SUMMARY 12

  • 1.1         Market Overview            12
  • 1.2         Market Drivers and Trends         15
  • 1.3         Recent Market Developments and Technology Highlights         16
  • 1.4         Competitive Landscape             18
  • 1.5         Regulatory Landscape 19
  • 1.6         Future Outlook and Emerging Trends   21
  • 1.7         Market Forecast and Growth Projections          23

 

2             TECHNOLOGY OVERVIEW        32

  • 2.1         Overview of Integrated Battery Systems            32
    • 2.1.1     Battery Materials for Electric Vehicles 33
    • 2.1.2     Cell-to-Module (CTM)   34
    • 2.1.3     Passenger Car Integrated Battery (Chassis)      36
    • 2.1.4     Comparative analysis  36
  • 2.2         Importance of CTP, CTB, and CTC in Electric Vehicles 38
  • 2.3         Cost analysis   39
  • 2.4         Cell-to-Pack (CTP) Technology 40
    • 2.4.1     Definition and Concept               41
    • 2.4.2     Key Components and Architecture       43
    • 2.4.3     Comparison between CTC and CTP      45
    • 2.4.4     Cell Design Optimization           46
    • 2.4.5     Advantages and Challenges     47
    • 2.4.6     Manufacturing Processes          48
    • 2.4.7     Design Considerations 49
  • 2.5         Cell-to-Body (CTB) Technology               50
    • 2.5.1     Definition and Concept               51
    • 2.5.2     Key Components and Architecture       53
    • 2.5.3     Comparison between CTB and CTP      55
    • 2.5.4     Comparison between CTB and CTC      56
    • 2.5.5     Advantages and Challenges.    57
    • 2.5.6     Manufacturing Processes          58
    • 2.5.7     Design Considerations 59
  • 2.6         Cell-to-Chassis (CTC) Technology         60
    • 2.6.1     Definition and Concept               60
    • 2.6.2     Key Components and Architecture       61
    • 2.6.3     Advantages and Challenges     64
    • 2.6.4     Manufacturing Processes          65
    • 2.6.5     Design Considerations 66
  • 2.7         Thermal Management Systems              67
    • 2.7.1     Liquid Cooling Systems              68
    • 2.7.2     Air Cooling Systems     69
    • 2.7.3     Phase Change Materials (PCMs)            70
    • 2.7.4     Emerging Technologies and Innovations            72
  • 2.8         Battery Management Systems (BMS)   73
    • 2.8.1     Functions and Components     74
    • 2.8.2     Centralized vs. Distributed BMS             75
    • 2.8.3     Communication Protocols        76
    • 2.8.4     Advancements in BMS 76
    • 2.8.5     Safety and Reliability Considerations  77

 

3             MARKET ANALYSIS       78

  • 3.1         Global Integrated Battery Market Overview      78
    • 3.1.1     CTP and CTC market penetration          79
    • 3.1.2     Sales in China  80
  • 3.2         Market Size and Forecast (2024-2035) 81
    • 3.2.1     CTP Market       81
    • 3.2.2     CTB Market       84
    • 3.2.3     CTC Market       86
  • 3.3         Market Segmentation  87
    • 3.3.1     By Technology (CTP, CTB, CTC)               88
    • 3.3.2     By Vehicle Type (Passenger Cars, Commercial Vehicles, Others)         88
    • 3.3.3     By Region (North America, Europe, Asia-Pacific, Rest of the World)     89
    • 3.3.4     By Application (Battery Electric Vehicles, Hybrid Electric Vehicles, Plug-in Hybrid Electric Vehicles) 91
    • 3.3.5     By Battery Chemistry (Lithium-ion, Lead-acid, Others)               92
  • 3.4         Market Drivers 92
    • 3.4.1     Increasing Demand for Electric Vehicles           92
    • 3.4.2     Need for Lightweight and Efficient Battery Systems     94
    • 3.4.3     Advancements in Battery Technology  94
    • 3.4.4     Regulatory Initiatives and Incentives   95
    • 3.4.5     Government Policies and Emissions Targets   96
  • 3.5         Market Restraints          97
    • 3.5.1     High Initial Costs            98
    • 3.5.2     Technical Challenges and Integration Complexities    99
    • 3.5.3     Safety Concerns and Reliability Issues               100
    • 3.5.4     Limited Infrastructure and Charging Facilities 100
  • 3.6         Opportunities  101
  • 3.7         Challenges        103
  • 3.8         Competitive Landscape             105
    • 3.8.1     Key Players and Strategies        105
    • 3.8.2     Automotive OEMS         107
    • 3.8.3     Strategic partnerships 113
    • 3.8.4     Battery Integration Policies in China    114
  • 3.9         Regulatory Landscape 115
    • 3.9.1     Safety and Environmental Regulations 115
      • 3.9.1.1 Battery Safety Standards           115
      • 3.9.1.2 Emissions and Fuel Economy Standards           116
      • 3.9.1.3 Environmental Impact Regulations       117
    • 3.9.2     Incentives and Subsidies           118
      • 3.9.2.1 Government Incentives              118
      • 3.9.2.2 Tax Credits and Rebates             119
    • 3.9.3     Recycling and Disposal Regulations     120
      • 3.9.3.1 Battery Recycling Regulations 121
      • 3.9.3.2 End-of-Life Vehicle Directives 122
  • 3.10       Future Outlook and Emerging Trends   123
    • 3.10.1   Advancements in Battery Chemistry and Materials      124
      • 3.10.1.1               Solid-State Batteries    124
      • 3.10.1.2               Lithium-Sulfur Batteries             126
      • 3.10.1.3               Sodium-ion Batteries   127
      • 3.10.1.4               Silicon Anodes 128
    • 3.10.2   Integration of Artificial Intelligence and Internet of Things (IoT)               129
      • 3.10.2.1               Predictive Maintenance             129
      • 3.10.2.2               Smart Battery Management Systems  130
      • 3.10.2.3               Connected Vehicle Services    130
    • 3.10.3   Wireless Battery Management Systems             131
    • 3.10.4   Increasing Focus on Sustainability and Circularity       134
      • 3.10.4.1               Sustainable Battery Materials 134
      • 3.10.4.2               Battery Recycling and Reuse    135
      • 3.10.4.3               Life Cycle Assessment (LCA) and Environmental Impact          136
  • 3.11       Emerging Applications and Markets     138
    • 3.11.1   Aerospace and Defense             138
    • 3.11.2   Energy Storage Systems             139
    • 3.11.3   Marine and Shipping     140

 

4             COMPANY PROFILES  141

  • 4.1         24M Technologies          142
  • 4.2         AESC    143
  • 4.3         BJEV      144
  • 4.4         BAIC BJEV          145
  • 4.5         BAK Battery       146
  • 4.6         Bosch and Benteler      147
  • 4.7         BYD       148
  • 4.8         CALB    151
  • 4.9         CATL     152
  • 4.10       Changan Automobile   155
  • 4.11       Chery   156
  • 4.12       CNP      157
  • 4.13       Envision AESC 159
  • 4.14       EVE Energy        160
  • 4.15       Farasis Energy 161
  • 4.16       FAW      162
  • 4.17       FinDreams Battery        163
  • 4.18       Ford      164
  • 4.19       GAC      165
  • 4.20       GM        166
  • 4.21       Great Wall Motor            168
  • 4.22       Hycan  169
  • 4.23       IAT Automobile                170
  • 4.24       JAC        171
  • 4.25       Kunshan JuTron New Energy Technology & Kunshan BaoTron New Energy Technology              172
  • 4.26       LG Energy           173
  • 4.27       Leap Motor        174
  • 4.28       Lishen Battery 176
  • 4.29       Neta     177
  • 4.30       NIO       178
  • 4.31       Our Next Energy (ONE) 178
  • 4.32       Phoenix Battery              180
  • 4.33       REPT     181
  • 4.34       SAIC     182
  • 4.35       Samsung SDI Co.            184
  • 4.36       SEVB    185
  • 4.37       SK On   186
  • 4.38       Stellantis           187
  • 4.39       StoreDot             188
  • 4.40       SVOLT Energy  189
  • 4.41       Tesla     191
  • 4.42       Tianjin EV Energies (JEVE)           192
  • 4.43       Tuopu Group    193
  • 4.44       Volvo    194
  • 4.45       Volkswagen      195
  • 4.46       Xiaomi Automobile       196
  • 4.47       XING Mobility   197
  • 4.48       Xpeng   197
  • 4.49       ZEEKR  199

 

5             RESEARCH METHODOLOGY   200

 

6             REFERENCES   201

 

List of Tables

  • Table 1. CTP, CTB and CTC Integrated Battery Market 12
  • Table 2. Comparison of Advanced Battery Chemistries.            13
  • Table 3. CTP, CTB and CTC Integrated Battery Market Drivers and Trends.        15
  • Table 4. Recent CTP, CTB and CTC Integrated Battery Market Developments and Technology Highlights.       16
  • Table 5. CTP, CTB and CTC Integrated Battery Market Regulations.     19
  • Table 6. Trends in CTP, CTB and CTC Integrated Batteries.       22
  • Table 7. EV Battery Demand Market Share Forecast (GWh)..    24
  • Table 8. Battery Cell Material Market Value Forecast for EVs 2023-2035 (US$).              25
  • Table 9. Battery Pack Materials Market 2023-2035 (kg).              26
  • Table 10. Battery Pack Material Market Revenue Forecast for EVs 2023-2035 (US$).   28
  • Table 11. Total Battery Cell and Pack Materials Forecast by Material 2023-2035 (kg). 29
  • Table 12. Total Battery Cell and Pack Materials Forecast by Vehicle Type 2023-2035 (kg).        30
  • Table 13. Total Battery Cell and Pack Materials Market Value Forecast 2023-2035 (US$).        31
  • Table 14. Battery Materials for Electric Vehicles.           33
  • Table 15. Cell vs Pack Energy Density. 33
  • Table 16. Comparative analysis of CTP, CTB and CTC.                36
  • Table 17. Cost analysis for CTP, CTB and CTC Integrated Batteries.    39
  • Table 18. Comparison between CTC and CTP. 45
  • Table 19. Cell to Pack (CTP) Advantages and Challenges.         47
  • Table 20. Comparison between CTB and CTP. 55
  • Table 21. Comparison between CTB and CTC. 56
  • Table 22. Cell to Body (CTB) Advantages and Challenges.         57
  • Table 23. Cell to Chassis (CTC) Advantages and Challenges,  64
  • Table 24. Comparison of Thermal Management Systems.        67
  • Table 25. Liquid Cooling Systems.         68
  • Table 26.  Air Cooling Systems.               69
  • Table 27. Types of PCMs.           70
  • Table 28. Comparison of Battery Management System (BMS) Architectures.  73
  • Table 29. Safety and Reliability Considerations,            77
  • Table 30. Global CTP Market Size and Forecast (2024-2035), billions USD.      82
  • Table 31. Global CTB Market Size and Forecast (2024-2035), Billions USD.      85
  • Table 32. Global CTC Market Size and Forecast (2024-2035), Billions USD.     86
  • Table 33. Challenges in CTP, CTB and CTC Integrated Battery Market.               104
  • Table 34.  Key Players in the Integrated Battery Market.              105
  • Table 35. Comparison of Automotive OEM integrated batteries.            112
  • Table 36. Strategic partnerships in the CTP, CTB and CTC Integrated Battery Market .                113
  • Table 37. Battery Recycling Regulations.           121
  • Table 38. End-of-Life Vehicle Directives.           122
  • Table 39. CATL CTP 1.0-3.0.      154

 

List of Figures

  • Figure 1. CTP, CTB and CTC Integrated Battery Market Competitive Landscape.          18
  • Figure 2. EV Battery Demand Market Share Forecast (GWh).    25
  • Figure 3. Battery Cell Material Market Value Forecast for EVs 2023-2035 (US$).            26
  • Figure 4. Battery Pack Materials Market 2023-2035 (kg).            27
  • Figure 5. Battery Pack Material Market Revenue Forecast for EVs 2023-2035 (US$).    28
  • Figure 6. Total Battery Cell and Pack Materials Forecast by Material 2023-2035 (kg).  29
  • Figure 7. Total Battery Cell and Pack Materials Forecast by Vehicle Type 2023-2035 (kg).         30
  • Figure 8. Total Battery Cell and Pack Materials Market Value Forecast 2023-2035 (US$).         32
  • Figure 9. Component Breakdown of a Battery Pack.     34
  • Figure 10. Battery pack with a cell-to-pack design and prismatic cells.              41
  • Figure 11. Qilin battery.               42
  • Figure 12. Comparison of CTP Mode and Conventional Battery Pack. 43
  • Figure 13. CTP Technology Architecture.           44
  • Figure 14. . The structural design of blade cell, cell arrays, and battery pack.  44
  • Figure 15. Gravimetric Energy Density and Cell-to-pack Ratio.               44
  • Figure 16. Volumetric Energy Density and Cell-to-pack Ratio. 45
  • Figure 17. BYD CTP schematic.              53
  • Figure 18. BYD Cell-to-body.    54
  • Figure 19. CTB Technology Architecture.           54
  • Figure 20. Tesla CTC Technology.          62
  • Figure 21. CATL Cell-to-chassis.            63
  • Figure 22. CTC Technology Architecture.           63
  • Figure 23. Number and sales of vehicle models incorporating CTP battery 2021-2024.              82
  • Figure 24. Global CTP Market Size and Forecast (2024-2035), billions USD.     83
  • Figure 25. Global CTB Market Size and Forecast (2024-2035), Billions USD.    85
  • Figure 26. Global CTC Market Size and Forecast (2024-2035), Billions USD.    87
  • Figure 27. Integrated Battery Market Share by Technology (2024 and 2035).    88
  • Figure 28. Integrated Battery Market Share by Vehicle Type (2024 and 2035),  88
  • Figure 29. Integrated Battery Market Share by Region (2024 and 2035).              90
  • Figure 30. Integrated Battery Market Share by Application (2024 and 2035).    91
  • Figure 31. Integrated Battery Market Share by Battery Chemistry (2024 and 2035).      92
  • Figure 32. Pouch CTP.  143
  • Figure 33. BYD CTB technology.              150
  • Figure 34. CTP 3.0: Shenxing Batteries.              155
  • Figure 35. Features of Electric CTC.      157
  • Figure 36. “π” Battery System. 160
  • Figure 37. 46 Large Cylindrical Battery Packs. 160
  • Figure 38. GM Ultium.  166
  • Figure 39. Moduleless CTP.       169
  • Figure 40. LG Energy’s cell-to-pack technology for pouch batteries.    173
  • Figure 41. Leapmotor CTC 2.0. 175
  • Figure 42. Tiangong Battery.     177
  • Figure 43. Nio Hybrid Chemistry Cell-to-pack. 178
  • Figure 44. Our Next Energy: Aeris.          179
  • Figure 45. ONE PACK battery.  182
  • Figure 46. Stellantis Cell-to-pack.         187
  • Figure 47. Dragon Armor Battery.           189
  • Figure 48. Cobalt-free Battery LCTP Technology.           190
  • Figure 49. Short Blade Battery LCTP Technology.           190
  • Figure 50. LCTP 3.0 .     190
  • Figure 51. L400 Short Blade Batteries. 190
  • Figure 52. Tesla Cell-to-body.  192
  • Figure 53. VW Cell-to-pack.      196
  • Figure 54. Xpeng CIB technology.           199
  • Figure 55. Gold brick battery.   199

 

 

Cell to Pack (CTP), Cell to Body (CTB) and Cell to Chassis (CTC) Integrated Battery Market 2024-2035
Cell to Pack (CTP), Cell to Body (CTB) and Cell to Chassis (CTC) Integrated Battery Market 2024-2035
PDF download/by email.

Cell to Pack (CTP), Cell to Body (CTB) and Cell to Chassis (CTC) Integrated Battery Market 2024-2035
Cell to Pack (CTP), Cell to Body (CTB) and Cell to Chassis (CTC) Integrated Battery Market 2024-2035
PDF and print edition (including tracked delivery).

Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer. 

To purchase by invoice (bank transfer) contact info@futuremarketsinc.com or select Bank Transfer (Invoice) as a payment method at checkout.