Global Superabsorbent Polymers (SAPs) Market 2025-2035

0

cover

cover

  • Published: January 2025
  • Pages: 183
  • Tables: 128
  • Figures: 47

 

Superabsorbent polymers (SAPs) are specialized materials with remarkable liquid absorption capabilities, able to retain many times their weight in fluids. While traditionally dominated by petroleum-based acrylate polymers, particularly sodium polyacrylate, the market is experiencing a significant shift toward sustainable and biodegradable alternatives in response to environmental concerns. The global SAP market remains primarily driven by hygiene applications, with baby diapers representing the largest segment. However, this dominance is expected to gradually decrease as adult incontinence products and other applications gain market share. Unlike traditional industrial markets, SAP demand correlates more strongly with demographic trends than economic cycles, as the primary end products are considered essential healthcare items. A critical market driver is the increasing focus on environmental sustainability. Traditional acrylate-based SAPs, while offering superior absorption properties, present significant environmental challenges due to their non-biodegradable nature and petroleum-based origins. This has spurred intensive research into bio-based alternatives, including modified starches, cellulose derivatives, and other natural polymers, though these currently face performance and cost challenges compared to conventional SAPs.

Market maturity varies significantly by region. Developed markets (North America and Western Europe) show stable demand in traditional applications but face headwinds from declining birth rates. However, this is offset by growing demand for adult incontinence products due to aging populations. Asia Pacific, particularly Northeast Asia, represents the primary growth market, driven by rising disposable incomes and increasing product penetration in developing countries. Beyond traditional hygiene applications, SAPs find increasing use in:

  • Agricultural water management
  • Medical and wound care
  • Construction materials
  • Environmental remediation
  • Specialty industrial applications

 

Research and development efforts focus on:

  • Bio-based and biodegradable alternatives
  • Enhanced performance characteristics
  • Cost-effective production methods
  • Novel application areas

 

Market Challenges include:

  • Environmental sustainability requirements
  • Raw material cost and availability
  • Performance requirements vs. biodegradability
  • Regional regulatory variations
  • Cultural and social factors affecting adoption

 

Despite these challenges, the global SAP market maintains positive growth prospects, supported by:

  • Increasing penetration in developing markets
  • Aging populations in developed regions
  • Expanding application scope
  • Technological innovations in sustainable materials

 

The industry faces a critical transition period as it balances performance requirements with environmental sustainability, driving innovation in both materials and applications. This evolution presents both challenges and opportunities for market participants across the value chain.

Global Superabsorbent Polymers (SAPs) Market 2025-2035 provides an in-depth analysis of the global superabsorbent polymers (SAPs) sector, covering key developments, market trends, growth opportunities, and detailed forecasts from 2025 to 2035. The study examines the entire value chain, from raw materials to end-user applications, with particular focus on emerging sustainable solutions and technological innovations.

Key Features of the Report:

  • Comprehensive analysis of various SAP types, including synthetic, natural, and bio-based materials
  • Detailed examination of manufacturing processes and production technologies
  • In-depth market size analysis with forecasts to 2035 (in both revenue and volume terms)
  • Regional market analysis covering North America, Europe, Asia Pacific, Latin America, and Middle East & Africa
  • Evaluation of key application sectors and emerging opportunities
  • Assessment of sustainability challenges and environmental impacts
  • Detailed company profiles of major market players and innovators. Companies profiled include BASF, Asahi Kasei Corporation, Chuetsu Pulp & Paper Co., Ltd., Daio Paper Corporation, Ecovia Biopolymers, EF Polymer, ICI, Formosa Plastics Corporation, Jiangtian Chemical, Kao Corporation, Nagase, Nippon Shokubai, Qingdao Soco New Materials Co., Ltd., Sanyo Chemical, Sumitomo Seika, Yixing Danson Technology, and ZymoChem.

 

The report provides detailed analysis across major SAP categories:

  • Synthetic Superabsorbent Polymers:
    • Sodium polyacrylate
    • Polyacrylamide copolymers
    • Polyvinyl alcohol copolymers
    • Other synthetic variants
  • Natural and Bio-based Superabsorbents:
    • Modified starches
    • Cellulose-based materials
    • Chitosan derivatives
    • Alginate compounds
    • Plant-based superabsorbents
    • Protein-based SAPs
  • Composite Superabsorbent Materials:
    • Clay-polymer composites
    • Nanocellulose composites
    • Graphene-based composites

 

Detailed market assessment is provided across key application sectors:

  • Personal Hygiene Products:
    • Baby diapers
    • Adult incontinence products
    • Feminine hygiene products
  • Agricultural Applications:
    • Water retention in soils
    • Controlled release fertilizers
    • Seed coating
  • Medical and Healthcare:
    • Wound dressings
    • Drug delivery systems
    • Medical devices
  • Industrial Applications:
    • Cable water blocking
    • Construction materials
    • Packaging
    • Oil spill treatment
  • Emerging Applications:
  • Smart textiles
  • Environmental remediation
  • Energy storage
  • Food packaging

 

 

Download table of contents (PDF)

1             INTRODUCTION          21

  • 1.1        Characteristics of SAPs          21
  • 1.2        Classification 23
  • 1.3        Types of superabsorbent materials 23
    • 1.3.1    Non-biodegradable, fossil-based SAPs        24
    • 1.3.2    Biodegradable, fossil-based SAPs   25
  • 1.4        Working principles and mechanisms            26
    • 1.4.1    Cross-linking agents 28
    • 1.4.2    Water absorbing mechanism of SAPs            29
  • 1.5        Key performance metrics       30
  • 1.6        Manufacturing processes      30
  • 1.7        Value chain analysis 32
  • 1.8        Regulatory landscape              33

 

2             TYPES OF SUPERABSORBENT POLYMERS 35

  • 2.1        Synthetic Superabsorbent Polymers              36
    • 2.1.1    Sodium polyacrylate 36
      • 2.1.1.1 Chemical structure and properties 36
      • 2.1.1.2 Synthesis methods    37
      • 2.1.1.3 Absorption mechanisms       37
      • 2.1.1.4 Performance characteristics               38
      • 2.1.1.5 Commercial grades and specifications        39
      • 2.1.1.6 Market applications  39
    • 2.1.2    Polyacrylamide copolymers 40
      • 2.1.2.1 Types and compositions        40
      • 2.1.2.2 Cross-linking mechanisms  40
      • 2.1.2.3 Synthesis routes          40
      • 2.1.2.4 Performance metrics                41
      • 2.1.2.5 Application-specific grades 41
      • 2.1.2.6 Market positioning     41
    • 2.1.3    Polyvinyl alcohol copolymers              42
      • 2.1.3.1 Molecular structure   42
      • 2.1.3.2 Manufacturing processes      43
      • 2.1.3.3 Property modification techniques    44
      • 2.1.3.4 Performance characteristics               44
      • 2.1.3.5 Application areas        45
    • 2.1.4    Other synthetic polymers      46
      • 2.1.4.1 Poly(vinyl pyrrolidone)              46
      • 2.1.4.2 Polyethylene oxide derivatives            46
      • 2.1.4.3 Polyurethane-based materials           46
      • 2.1.4.4 Novel synthetic approaches 47
        • 2.1.4.4.1           Double Network Systems      47
        • 2.1.4.4.2           Nanocomposite SAPs              47
        • 2.1.4.4.3           Bio-based Hybrid SAPs           48
        • 2.1.4.4.4           Stimuli-Responsive SAPs       49
        • 2.1.4.4.5           Microporous Networks            49
        • 2.1.4.4.6           Surface Modified SAPs            49
        • 2.1.4.4.7           Zero-monomer SAPs 49
        • 2.1.4.4.8           Reversible Cross-linking        49
        • 2.1.4.4.9           Multi-functional SAPs              50
        • 2.1.4.4.10        Dendrimeric SAPs       50
      • 2.1.4.5 Emerging materials    51
        • 2.1.4.5.1           Zwitterionic Polymers               51
        • 2.1.4.5.2           Graphene-based SAPs             51
        • 2.1.4.5.3           Self-healing SAPs        52
        • 2.1.4.5.4           Biodegradable Synthetics      53
        • 2.1.4.5.5           Thermo-responsive SAPs       53
        • 2.1.4.5.6           pH-selective SAPs      53
        • 2.1.4.5.7           Magnetic Responsive SAPs  54
        • 2.1.4.5.8           Shape Memory SAPs 54
        • 2.1.4.5.9           Photonic SAPs               54
        • 2.1.4.5.10        Conductive SAPs         54
  • 2.2        Natural and Bio-based Superabsorbents    55
    • 2.2.1    Modified starches       56
      • 2.2.1.1 Sources and types      56
      • 2.2.1.2 Modification methods              57
      • 2.2.1.3 Property enhancement            58
      • 2.2.1.4 Performance characteristics               58
      • 2.2.1.5 Environmental benefits           58
      • 2.2.1.6 Cost analysis 59
    • 2.2.2    Cellulose-based materials   59
      • 2.2.2.1 Types of cellulose derivatives              61
      • 2.2.2.2 Manufacturing processes      61
      • 2.2.2.3 Cross-linking methods            61
      • 2.2.2.4 Performance metrics                62
      • 2.2.2.5 Environmental impact             62
      • 2.2.2.6 Market applications  63
    • 2.2.3    Chitosan derivatives  63
      • 2.2.3.1 Source materials         63
      • 2.2.3.2 Modification techniques         64
      • 2.2.3.3 Property profiles          64
      • 2.2.3.4 Application areas        65
    • 2.2.4    Alginate compounds 65
      • 2.2.4.1 Types and sources      65
      • 2.2.4.2 Processing methods 66
      • 2.2.4.3 Performance characteristics               66
      • 2.2.4.4 Application development       66
      • 2.2.4.5 Market opportunities 67
    • 2.2.5    Plant-based superabsorbents            67
      • 2.2.5.1 Natural sources           67
      • 2.2.5.2 Extraction methods   67
      • 2.2.5.3 Modification techniques         68
      • 2.2.5.4 Sustainability aspects             68
      • 2.2.5.5 Market potential          68
    • 2.2.6    Protein-based SAPs   68
    • 2.2.7    Homo poly(amino acid)-based SAPs              69
    • 2.2.8    Other natural and bio-based materials        69
  • 2.3        Composite Superabsorbent Materials          70
    • 2.3.1    Clay-polymer composites     70
      • 2.3.1.1 Types of clay minerals             70
      • 2.3.1.2 Synthesis methods    70
      • 2.3.1.3 Property enhancement            71
      • 2.3.1.4 Performance characteristics               71
      • 2.3.1.5 Cost-benefit analysis               71
      • 2.3.1.6 Market applications  72
    • 2.3.2    Nanocellulose composites  72
      • 2.3.2.1 Types of nanocellulose           73
      • 2.3.2.2 Fabrication methods 74
      • 2.3.2.3 Performance metrics                75
      • 2.3.2.4 Application areas        76
      • 2.3.2.5 Future prospects         76
    • 2.3.3    Graphene-based composites             76
      • 2.3.3.1 Material types                76
      • 2.3.3.2 Synthesis routes          77
      • 2.3.3.3 Property enhancement            77
      • 2.3.3.4 Performance characteristics               77
      • 2.3.3.5 Market potential          78
      • 2.3.3.6 Cost considerations  78
  • 2.4        Novel and Emerging Materials            78
    • 2.4.1    Smart superabsorbents          79
      • 2.4.1.1 Response mechanisms          79
      • 2.4.1.2 Types and categories                79
      • 2.4.1.3 Performance characteristics               79
      • 2.4.1.4 Application development       80
      • 2.4.1.5 Market potential          80
    • 2.4.2    Stimuli-responsive materials              80
      • 2.4.2.1 Response types            80
      • 2.4.2.2 Design principles        81
      • 2.4.2.3 Performance metrics                81
      • 2.4.2.4 Application areas        81
    • 2.4.3    Biodegradable synthetics      81
      • 2.4.3.1 Material types                82
      • 2.4.3.2 Degradation mechanisms    82
      • 2.4.3.3 Performance characteristics               82
      • 2.4.3.4 Environmental impact             83
      • 2.4.3.5 Market opportunities 83

 

3             MANUFACTURING AND PRODUCTION        84

  • 3.1        Production Methods 84
    • 3.1.1    Solution polymerization          84
      • 3.1.1.1 Process parameters and controls    84
      • 3.1.1.2 Equipment requirements       85
      • 3.1.1.3 Batch vs continuous processing       85
      • 3.1.1.4 Yield optimization       86
      • 3.1.1.5 Quality control points              86
      • 3.1.1.6 Energy consumption 86
      • 3.1.1.7 Cost analysis 86
    • 3.1.2    Suspension polymerization  87
      • 3.1.2.1 Process conditions    87
      • 3.1.2.2 Stabilizer systems      87
      • 3.1.2.3 Particle size control   87
      • 3.1.2.4 Equipment specifications     87
      • 3.1.2.5 Process optimization                88
      • 3.1.2.6 Production rates          88
      • 3.1.2.7 Cost considerations  88
    • 3.1.3    Bulk polymerization   88
      • 3.1.3.1 Process variables        88
      • 3.1.3.2 Heat management     89
      • 3.1.3.3 Conversion rates         89
      • 3.1.3.4 Equipment needs        89
      • 3.1.3.5 Scale-up considerations        90
      • 3.1.3.6 Production efficiency                90
      • 3.1.3.7 Economic analysis    90
    • 3.1.4    Grafting methods        91
      • 3.1.4.1 Substrate preparation              91
      • 3.1.4.2 Process controls          91
      • 3.1.4.3 Equipment requirements       91
      • 3.1.4.4 Yield optimization       91
      • 3.1.4.5 Cost factors    92
  • 3.2        Raw Materials                92
    • 3.2.1    Monomers and crosslinkers 92
      • 3.2.1.1 Types and specifications        92
      • 3.2.1.2 Quality requirements                93
      • 3.2.1.3 Cost trends     93
      • 3.2.1.4 Environmental considerations           93
    • 3.2.2    Initiators and catalysts            93
      • 3.2.2.1 Types and selection criteria  93
      • 3.2.2.2 Performance impact 94
      • 3.2.2.3 Cost analysis 94
    • 3.2.3    Natural raw materials               94
      • 3.2.3.1 Sources and availability          94
      • 3.2.3.2 Processing requirements       95
      • 3.2.3.3 Quality variations        95
      • 3.2.3.4 Cost implications       95
  • 3.3        Production Capacities             95
  • 3.4        Manufacturing Costs 96
  • 3.5        Quality Control and Testing  97

 

4             MARKETS AND APPLICATIONS           98

  • 4.1        Personal Hygiene Products   98
    • 4.1.1    Baby diapers  98
      • 4.1.1.1 Product requirements              98
      • 4.1.1.2 Material specifications            99
      • 4.1.1.3 Market size by region 99
      • 4.1.1.4 Growth drivers               100
      • 4.1.1.5 Technology trends      101
      • 4.1.1.6 Cost analysis 102
    • 4.1.2    Adult incontinence products               102
      • 4.1.2.1 Regional demand        102
      • 4.1.2.2 Growth factors              104
      • 4.1.2.3 Manufacturing considerations           104
      • 4.1.2.4 Market opportunities 104
    • 4.1.3    Feminine hygiene products  104
      • 4.1.3.1 Product categories     104
      • 4.1.3.2 Material requirements              105
      • 4.1.3.3 Market dynamics        105
      • 4.1.3.4 Growth trends               105
      • 4.1.3.5 Future outlook              105
    • 4.1.4    Market size (2020-2035)        106
  • 4.2        Agricultural Applications       107
  • 4.2.1    Water retention in soils           107
  • 4.2.1.1 Application methods 107
  • 4.2.1.2 Performance metrics                108
  • 4.2.1.3 Cost-benefit analysis               109
  • 4.2.1.4 Market adoption          109
  • 4.2.2    Controlled release fertilizers               109
  • 4.2.3    Seed coating  110
  • 4.2.4    Market trends 111
  • 4.2.5    Market size (2020-2025)        112
  • 4.3        Medical and Healthcare         113
  • 4.3.1    Wound dressings        114
  • 4.3.2    Drug delivery systems              115
  • 4.3.3    Medical devices           115
  • 4.3.4    Tissue Engineering     115
  • 4.3.5    Market dynamics        115
  • 4.3.6    Regulatory considerations    115
  • 4.3.7    Market size (2020-2025)        116
  • 4.4        Industrial Applications            117
  • 4.4.1    Cable water blocking                118
  • 4.4.2    Construction materials           118
  • 4.4.2.1 Fiber concrete               119
  • 4.4.3    Packaging        120
  • 4.4.4    Water treatment           121
  • 4.4.5    Oil spill treatment       121
  • 4.4.6    Market size (2020-2025)        122
  • 4.5        Emerging Applications             124
  • 4.5.1    Smart textiles 124
  • 4.5.2    Environmental remediation  125
  • 4.5.3    Energy storage              126
  • 4.5.4    Food packaging           127
  • 4.5.5    Future prospects         128

 

5             MARKET ANALYSIS      131

  • 5.1        Global Market Size and Growth         131
    • 5.1.1    Current market status              131
    • 5.1.2    Market forecasts 2024-2035               132
      • 5.1.2.1 Revenues          132
      • 5.1.2.2 Metric tons      132
  • 5.2        Regional Markets         133
    • 5.2.1    North America              134
    • 5.2.2    Europe                135
    • 5.2.3    Asia Pacific     136
    • 5.2.4    Latin America 137
    • 5.2.5    Middle East and Africa             137
  • 5.3        Market Drivers and Trends     138
  • 5.4        Market Challenges     138

 

6             SUSTAINABILITY AND ENVIRONMENTAL IMPACT  140

  • 6.1        Environmental Concerns       140
    • 6.1.1    Biodegradability          140
    • 6.1.2    Microplastic issues   141
    • 6.1.3    Waste management 142
  • 6.2        Sustainable Solutions              143
    • 6.2.1    Bio-based alternatives             143
    • 6.2.2    Recycling technologies           144
    • 6.2.3    Circular economy approaches          145
  • 6.3        Regulatory Compliance          145
    • 6.3.1    Medical and Healthcare Applications           146
    • 6.3.2    Food Packaging and Agricultural Use            146
    • 6.3.3    Environmental and Waste Management Compliance         146
    • 6.3.4    Compliance Challenges         146
    • 6.3.5    Emerging Regulatory Trends 146

 

7             SUPPLY CHAIN AND DISTRIBUTION               148

  • 7.1        Raw Material Supply 148
  • 7.2        Production and Manufacturing          149
  • 7.3        Distribution Channels              149
  • 7.4        End-user Markets        150
  • 7.5        Supply Chain Challenges      151

 

8             COMPANY PROFILES                153 (28 company profiles)

 

9             APPENDICES  179

  • 9.1        Research Methodology           179
  • 9.2        Glossary of Terms       179

 

10          REFERENCES 181

 

List of Tables

  • Table 1. Dry (a) and hydrated (b) potassium polyacrylate hydrogel.           22
  • Table 2. Superabsorbent Polymers (SAPs) properties.        22
  • Table 3. Types of Superabsorbent Polymers (SAPs).            24
  • Table 4. Non-Biodegradable vs. Biodegradable Fossil-Based SAPs.          25
  • Table 5. Applications and Mechanism Alignment. 27
  • Table 6. Key performance metrics for Superabsorbent Polymers (SAPs).              30
  • Table 7. Manufacturing processes for Superabsorbent Polymers (SAPs).              31
  • Table 8. Regulatory landscape for Superabsorbent Polymers (SAPs).      33
  • Table 9. Types of superabsorbent polymers (SAPs).             35
  • Table 10. Comparison of Key Properties of Different Synthetic Superabsorbents.          36
  • Table 11. Sodium polyacrylate Synthesis methods.            37
  • Table 12. Sodium polyacrylate absorption mechanisms. 38
  • Table 13. Commercial Grades and Specifications.               39
  • Table 14. Market Applications of Sodium polyacrylate SAPs.        39
  • Table 15. Polyacrylamide copolymers Types and compositions. 40
  • Table 16. Polyacrylamide copolymers Synthesis routes.  41
  • Table 17. Polyacrylamide copolymers Performance metrics.        41
  • Table 18. Polyacrylamide copolymers Application-specific grades.         41
  • Table 19.Key Structural Features and Functional Groups.               42
  • Table 20. Applications Linked to Molecular Design.             43
  • Table 21. Manufacturing Processes for PVA Copolymers. 43
  • Table 22. Property Modification Techniques.            44
  • Table 23. Polyvinyl alcohol copolymers Performance characteristics.    44
  • Table 24. Polyvinyl alcohol copolymers application areas.             45
  • Table 25. Novel synthetic approaches.         47
  • Table 26. Applications of Nanocomposite Superabsorbent Polymers (SAPs).    48
  • Table 27. Emerging materials.             51
  • Table 28. Natural Superabsorbent Materials and Properties.         55
  • Table 29. Modified starches-Sources and types.    56
  • Table 30. Modified starches Modification methods.            57
  • Table 31. Summary of composition and properties of starch-based SAPs.          58
  • Table 32. Cost analysis of modified starch.               59
  • Table 33. Types of cellulose derivatives.       61
  • Table 34. Manufacturing Processes for cellulose-based SAPs.    61
  • Table 35. Cross-linking Methods for cellulose-based materials. 62
  • Table 36. Performance Metrics of Cellulose-based SAPs.                62
  • Table 37. Market Applications of Cellulose-based SAPs.  63
  • Table 38. Modification Techniques for Chitosan derivatives.          64
  • Table 39, Property Profiles.   64
  • Table 40. Chitosan Derivatives and Their SAP Applications.           65
  • Table 41. Alginate compounds Types and Sources.             65
  • Table 42. Processing methods for Alginate compounds.  66
  • Table 43. Natural Sources for Plant-based Superabsorbents.       67
  • Table 44. Modification Techniques. 68
  • Table 45. Summary of composition and properties of protein-based SAPs.         69
  • Table 46. Other Natural and Bio-based Materials for SAPs.            69
  • Table 47. Types of Clay Minerals.     70
  • Table 48. Synthesis Methods.             70
  • Table 49. Performance Characteristics.       71
  • Table 50. Cost-Benefit Analysis.       72
  • Table 51. Applications of clay-polymer composite superabsorbent polymers (SAPs). 72
  • Table 52. Types of nanocellulose.    74
  • Table 53. Fabrication Methods.         74
  • Table 54. Performance Metrics.         75
  • Table 55. Applications of Nanocellulose Composites for SAPs.   76
  • Table 56. Synthesis Routes for Graphene-based SAP composites.           77
  • Table 57. Performance Characteristics.       77
  • Table 58. Novel and Emerging Materials for SAPs. 78
  • Table 59. Response mechanisms for Smart superabsorbents.    79
  • Table 60. Types and Categories of Smart Superabsorbents.          79
  • Table 61. Stimuli-responsive Materials Response Types. 80
  • Table 62. Performance Metrics.         81
  • Table 63. Applications Areas for Stimuli-responsive Materials.    81
  • Table 64. Material Types for Biodegradable Synthetics.     82
  • Table 65. Degradation Mechanisms for biodegradable synthetic SAPs. 82
  • Table 66. Performance Characteristics of Biodegradable Synthetic SAPs.           82
  • Table 67. Comparison of Production Methods.       84
  • Table 68. Batch vs Continuous Processing.               85
  • Table 69. Cost Analysis.         87
  • Table 70. Production Rates. 88
  • Table 71. Conversion Rates. 89
  • Table 72. Equipment Needs for bulk polymerization.          89
  • Table 73. Production efficiency in bulk polymerization.     90
  • Table 74. Economic Analysis of bulk polymerization.          90
  • Table 75. Grafting Techniques.           91
  • Table 76. Raw Material Cost Analysis.          92
  • Table 77. Raw materials Types and specifications.               92
  • Table 78. Types and Selection Criteria.         93
  • Table 79.Sources and Availability.   94
  • Table 80. Processing Requirements.              95
  • Table 81.  Global Production Capacity by Region for Superabsorbent Polymers (2025 Forecast).        96
  • Table 82. Capacity utilization rates. 96
  • Table 83. Manufacturing Cost Breakdown. 96
  • Table 84. Quality Control Parameters for SAPs.      97
  • Table 85. Commercial Examples and Applications.             98
  • Table 86. Material Specifications for Baby Diapers.             99
  • Table 87. Market Size by Region (Million USD) for SAPs in Baby Diapers.               99
  • Table 88. Growth Drivers for SAPs in Baby Diapers.              100
  • Table 89. Adult incontinence Product Types.            102
  • Table 90. Adult incontinence SAP Product Regional Demand 2020-2035 (Million USD).            103
  • Table 91. Product Categories.             104
  • Table 92. Material Requirements.     105
  • Table 93. Market for SAPs in personal hygiene products (Millions USD), 2020-2035.    106
  • Table 94. Applications of SAPs in Agriculture.          107
  • Table 95. Application Methods.         108
  • Table 96. Performance Metrics in Agriculture.         108
  • Table 97. Cost-Benefit Analysis in Agriculture.        109
  • Table 98. Manufacturing Processes for Superabsorbent polymers in controlled release fertilizers (CRF).                109
  • Table 99. Application Methods in Agriculture.          110
  • Table 100. Global Market for SAPs in Agriculture (Millions USD). 112
  • Table 101. Global Market for SAPs in Agriculture (Metric Tons, Dry Weight).        112
  • Table 102. Applications of SAPs in Medical and Healthcare.          113
  • Table 103. Global Market for SAPs in Medical and Healthcare (Millions USD).   116
  • Table 104. Global Market for SAPs in Medical and Healthcare (Metric Tons, Dry Weight).          116
  • Table 105. SAPs in Industrial Applications. 117
  • Table 106. Global Market for SAPs in Industrial Applications (Millions USD).      122
  • Table 107. Global Market for SAPs in Industrial Applications (Metric Tons, Dry Weight).             123
  • Table 108. Superabsorbent Polymers (SAPs) in Smart Textiles.     125
  • Table 109. Applications of Superabsorbent Polymers (SAPs) in Environmental Remediation. 126
  • Table 110. Superabsorbent Polymers (SAPs) in Energy Storage.  127
  • Table 111. Superabsorbent Polymers (SAPs) in Food Packaging. 128
  • Table 112. Market Opportunities by Application.   129
  • Table 113. Major Manufacturers of Superabsorbent Polymers (SAPs) and production capacities.       131
  • Table 114. Global market for Superabsorbent polymers (SAPS), by end use market, 2020-2035 (Millions USD).  132
  • Table 115. Global market for Superabsorbent polymers (SAPS), by end use market, 2020-2035 (metric tons, dry weight).         132
  • Table 116. Global market for Superabsorbent polymers (SAPS), by region, 2020-2035 (metric tons, dry weight).              133
  • Table 117. Global market for Superabsorbent polymers (SAPS), in North America, 2020-2035 (metric tons, dry weight).         134
  • Table 118. Global market for Superabsorbent polymers (SAPS), in Europe, 2020-2035 (metric tons, dry weight).              135
  • Table 119. Global market for Superabsorbent polymers (SAPS), in Asia-Pacific, 2020-2035 (metric tons, dry weight).     137
  • Table 120. Market drivers and trends in Superabsorbent polymers (SAPs).          138
  • Table 121. Market challenges in Superabsorbent polymers (SAPs).          138
  • Table 122. Waste Management Strategies for Superabsorbent Polymers (SAPs).            142
  • Table 123. Bio-based alternatives.   143
  • Table 124. Recycling Technologies for SAPs.             144
  • Table 125. Circular Economy Implementation Strategies.               145
  • Table 126. Supply Chain Challenges.            151
  • Table 127. Nippon Paper commercial CNF products.         170
  • Table 128. Glossary of Terms for Superabsorbent Polymers (SAPs).         179

 

List of Figures

  • Figure 1. Classification of SAPs according to their origin and biodegradability and the representative examples of the four classes.             26
  • Figure 2. Network structure of SAPs after swelling. (A) non-cross-linked (B) lightly cross-linked (C) fully cross-linked.  28
  • Figure 3. Illustration of absorbing mechanism.       30
  • Figure 4. Value chain for Superabsorbent Polymers (SAPs).           32
  • Figure 5. Polyacrylic acid sodium salt.          37
  • Figure 6. Superabsorbent polymer absorbing water.            38
  • Figure 7. Superabsorbent polymer pad absorbing water.  39
  • Figure 8. Hydrogels with Reversible Crosslinks for Improved Localised Stem Cell Retention. 50
  • Figure 9. Approaches towards the fabrication of hydrogels using dendron- and dendrimer-based building blocks.            50
  • Figure 10. Investigation of functionalized graphene oxide incorporated superabsorbent polymers for enhanced durability, hydration, microstructure and mechanical strength of modified concrete.          52
  • Figure 11. Superabsorbent polymer in soil-cement subsurface barriers for enhanced heavy metal sorption and self-healing.     53
  • Figure 12. Cellulosic Superabsorbent Polymer from Post-consumer Textile Waste.      59
  • Figure 13. (A) Cellulose raw materials [94]. (B) Cellulose to nanocellulose processing [94]. Copyright 2023, reproduced with permission of Elsevier. (C) Chitosan extraction process [96] Copyright 2022, reproduced with permission of Elsevier. (D) Protein-based bio stimulants [97]. Copyright 2022, reproduced with permission of MDPI.           60
  • Figure 14. Organization and morphology of cellulose synthesizing terminal complexes (TCs) in different organisms.      73
  • Figure 15. Raw Material Price Trends.            93
  • Figure 16. SAP within the larger context of the main end-use product, a diaper.               99
  • Figure 17. Market Size by Region (Million USD) for SAPs in Baby Diapers.             100
  • Figure 18. Adult incontinence SAP Product Regional Demand 2020-2035 (Million USD).           103
  • Figure 19. Market for SAPs in personal hygiene products (Millions USD), 2020-2035.  106
  • Figure 20. SAP operating mechanism as a soil conditioner.            108
  • Figure 21. Global Market for SAPs in Agriculture (Millions USD). 112
  • Figure 22. Global Market for SAPs in Agriculture (Metric Tons, Dry Weight).         113
  • Figure 23. Superabsorbent polymers in advanced wound dressings.       114
  • Figure 24. Global Market for SAPs in Medical and Healthcare (Millions USD).    116
  • Figure 25. Global Market for SAPs in Medical and Healthcare (Metric Tons, Dry Weight).           117
  • Figure 26. The use of SAP a to change the microstructure, b to increase freeze–thaw resistance, c to induce sealing, and d to provide for healing characteristics in a cementitious material; the materials represented are shown as light grey SAP in a dark grey cementitious matrix with blue water and medium grey healing product formation.        119
  • Figure 27. (A) Main mechanism of self-healing (B) Changes in self-shrinkage and compressive strength of cement pastes with different particle sizes of SAP powders [. 120
  • Figure 28. a Experiments for oil recovery using superabsorbent in combination with a skimmer. b Oil recovery through synthetic sorbent with the aid of a pump. c Combination of the pump, sorbents, and heat to recover the heavy oil . d Experiments for oil recovery by using tube-shaped polymers housed in regular sacks. 122
  • Figure 29. Global Market for SAPs in Industrial Applications (Millions USD).       123
  • Figure 30. Global Market for SAPs in Industrial Applications (Millions USD).       124
  • Figure 31. Global market for Superabsorbent polymers (SAPS), by end use market, 2020-2035 (Millions USD).  132
  • Figure 32. Global market for Superabsorbent polymers (SAPS), by end use market, 2020-2035 (metric tons, dry weight).         133
  • Figure 33. Global market for Superabsorbent polymers (SAPS), by region, 2020-2035 (metric tons, dry weight).              134
  • Figure 34. Global market for Superabsorbent polymers (SAPS), in North America, 2020-2035 (metric tons, dry weight).         135
  • Figure 35. Global market for Superabsorbent polymers (SAPS), in Europe, 2020-2035 (metric tons, dry weight).              136
  • Figure 36. Global market for Superabsorbent polymers (SAPS), in Asia-Pacific, 2020-2035 (metric tons, dry weight).     137
  • Figure 37: Asahi Kasei CNF fabric sheet.     153
  • Figure 38: Properties of Asahi Kasei cellulose nanofiber nonwoven fabric.          154
  • Figure 39. nanoforest-S.         157
  • Figure 40. nanoforest-PDP.   157
  • Figure 41. ELLEX products.   159
  • Figure 42. Kirekira! toilet wipes.         160
  • Figure 43. AzuraGel™.                162
  • Figure 44. Example of Bio-balanced SAP cool patch.          165
  • Figure 45. NAGASE's Biomass SAP. 166
  • Figure 46: Nippon Paper Industries’ adult diapers.               169
  • Figure 47. Bayse Bio-Process.            178
  •  

 

 

Global Superabsorbent Polymers (SAPs) Market 2025-2035
Global Superabsorbent Polymers (SAPs) Market 2025-2035
PDF download/by email.

Global Superabsorbent Polymers (SAPs) Market 2025-2035
Global Superabsorbent Polymers (SAPs) Market 2025-2035
PDF and Print Edition (including tracked delivery).

Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer. To order by Bank Transfer (Invoice) select this option from the payment methods menu after adding to cart, or contact info@futuremarketsinc.com