The Global Advanced Nuclear Technologies Market 2026-2045

0

cover

cover

  • Published: November 2025
  • Pages: 754
  • Tables: 258
  • Figures: 74

 

The advanced nuclear technologies market encompasses three primary segments driving the future of clean energy: Small Modular Reactors (SMRs), Nuclear Fusion, and Emerging Advanced Technologies. Together, these innovations address the dual imperatives of powering exponential AI computing growth and achieving global decarbonization targets, with cumulative market projections exceeding $15 trillion through 2060.

Small Modular Reactors (SMRs) represent the most commercially mature segment, with multiple designs approaching deployment between 2025-2030. SMRs are advanced fission reactors with power output typically under 300 MWe, designed for factory fabrication and modular deployment. Unlike traditional large nuclear plants requiring 8-12 years for construction, SMRs can be manufactured in controlled factory environments and deployed in 12-24 months, dramatically reducing capital risk and enabling incremental capacity additions matching demand growth.

The SMR market spans multiple reactor types including Light Water Reactors (LWRs) led by NuScale Power's VOYGR system and Rolls-Royce UK SMR, High-Temperature Gas-Cooled Reactors (HTGRs) such as X-energy's Xe-100 and China's operational HTR-PM, Molten Salt Reactors from Terrestrial Energy and Moltex Energy, and various microreactor designs from companies including Last Energy, Westinghouse (eVinci), and BWXT. Global SMR capacity is projected to reach 50-150 GWe by 2045, with market values of $200-500 billion driven by applications in electricity generation, industrial process heat, remote power, hydrogen production, and increasingly, AI data center applications.

Major technology companies have recognized SMRs as essential for powering AI computing infrastructure. The combination of 24/7 operation, decades-long fuel cycles, compact footprint, and carbon-free generation aligns perfectly with data center requirements for reliable, sustainable power. Companies like NuScale, Oklo, and Kairos Power are actively pursuing partnerships with tech companies for dedicated data center deployments. Regional deployment is led by North America (particularly U.S. and Canada), China, Russia, and increasingly Europe and Middle East nations seeking energy independence and decarbonization pathways.

Nuclear Fusion represents the longest-term but potentially most transformative segment, offering virtually unlimited clean energy through the same process powering the sun. Recent breakthroughs including the National Ignition Facility's achievement of fusion ignition in December 2022 have catalyzed unprecedented private investment, with over $7 billion raised by private fusion companies since 2021. The fusion sector encompasses diverse technical approaches: magnetic confinement (tokamaks and stellarators) pursued by Commonwealth Fusion Systems, Tokamak Energy, and Type One Energy; inertial confinement from companies like First Light Fusion, Marvel Fusion, and Focused Energy; and alternative approaches including field-reversed configurations (Helion Energy, TAE Technologies), Z-pinch (Zap Energy), and magnetized target fusion (General Fusion).

Commercial fusion timeline projections range from 2030s for first demonstrations to 2040-2050 for widespread deployment. Commonwealth Fusion Systems targets grid power by 2030 with its SPARC demonstration and ARC commercial plant. Helion Energy has signed the world's first fusion power purchase agreement with Microsoft for 50 MW by 2028. The fusion market is projected to reach $40-150 billion by 2045 for initial commercial plants, expanding to $500 billion-$1.5 trillion by 2060 as technology matures. Critical materials including high-temperature superconductors, plasma-facing materials, and tritium breeding blankets represent substantial supply chain opportunities. AI data centers are identified as ideal early fusion customers due to their massive power requirements, tolerance for higher costs in exchange for reliability, and long-term energy security needs.

Emerging Advanced Technologies complement SMRs and fusion with specialized innovations addressing niche high-value markets. This segment includes: Accelerator-Driven Systems and actinide burning for nuclear waste transmutation; Traveling Wave Reactors (TerraPower's Natrium) offering decades of operation without refueling; advanced fuel cycles including thorium deployment by Copenhagen Atomics, Thorizon, and ThorCon; space nuclear systems for lunar and Mars missions; liquid metal microreactors specifically optimized for data centers; and integrated energy systems producing electricity, hydrogen, and industrial heat simultaneously. Revolutionary energy conversion technologies promise 70%+ efficiency versus 33-45% for conventional plants, while AI and quantum computing applications enable autonomous reactor design and operation.

The convergence of these three segments creates a comprehensive nuclear technology ecosystem addressing energy needs from immediate (SMRs deploying now) to medium-term (fusion demonstrations in 2030s) to long-term (advanced concepts maturing 2040-2060), with AI computing demand accelerating commercialization across all segments by providing guaranteed high-value customers willing to pay premium pricing for reliable carbon-free power.

"The Global Advanced Nuclear Technologies Market 2026-2045" provides comprehensive analysis of the three primary segments transforming nuclear energy: Small Modular Reactors (SMRs), Nuclear Fusion, and Emerging Advanced Technologies. This authoritative report examines how these innovations are being rapidly commercialized to meet explosive AI computing demands while enabling global decarbonization, with detailed technical assessments, deployment timelines, competitive landscapes, and strategic insights for technology companies, utilities, data center operators, investors, and policymakers.

Report Contents include:

  • SMR Technology Overview: Definition, Characteristics, Evolution, Comparison with Traditional Nuclear
  • SMR Types and Designs: Light Water Reactors (PWR, BWR, PHWR variants), High-Temperature Gas-Cooled Reactors, Molten Salt Reactors, Fast Neutron Reactors, Microreactors, Heat Pipe Reactors, Liquid Metal Cooled Systems
  • Technical Analysis: Design Principles, Key Components, Safety Features and Passive Systems, Fuel Cycle Management, Advanced Manufacturing, Modularization and Factory Fabrication, Grid Integration
  • SMR Applications: Electricity Generation, Industrial Process Heat, Hydrogen Production, Desalination, Remote/Off-Grid Power, District Heating, AI Data Center Power
  • Regional Market Analysis: North America (U.S., Canada), Europe (UK, France, others), Asia-Pacific (China, Korea, Japan), Middle East, Russia
  • Economic Analysis: Capital Costs (FOAK vs NOAK), Financing Models, ROI Projections, Comparison with Alternatives
  • Regulatory Framework: NRC Approach, IAEA Guidelines, ENSREG Perspective, Licensing Processes, Harmonization Efforts
  • SMR Market Projections 2026-2045: Capacity Additions by Region and Type, Market Value Forecasts, Deployment Scenarios
  • Company Profiles: NuScale Power, Rolls-Royce SMR, X-energy, GE Hitachi, Westinghouse, Holtec, Kairos Power, Last Energy, Terrestrial Energy, Moltex Energy, BWXT, CNNC, Rosatom, and 20+ additional companies
  • Fusion Fundamentals: Physics Principles, Fuel Cycles (D-T, D-D, Aneutronic), Power Production, Comparison with Fission
  • Magnetic Confinement Technologies: Tokamaks (Conventional and Spherical), Stellarators, Field-Reversed Configurations
  • Inertial Confinement Technologies: Laser-Driven Fusion, Projectile/Pulsed Systems, Z-Pinch Approaches
  • Alternative and Hybrid Approaches: Magnetized Target Fusion, Compact Fusion Concepts, Emerging Technologies
  • Critical Materials and Components: High-Temperature Superconductors, Plasma-Facing Materials, Breeder Blankets, Tritium Systems, Specialized Components (capacitors, lasers, vacuum systems)
  • Fusion Development Timelines: Technology Readiness by Approach, Commercial Deployment Projections 2030-2060, Technical Milestones
  • Investment Landscape: Private Funding Trends ($7B+ raised), Government Programs, Public-Private Partnerships, Corporate Investments
  • Fusion for AI Applications: Power Requirements Matching, Tech Company Partnerships (Helion-Microsoft, others), Economics of Premium Power
  • Regulatory Framework: International Developments, Regional Approaches, Licensing Pathways
  • Fusion Market Projections 2026-2060: Demonstration Phase (2030-2040), Initial Commercial (2040-2050), Mature Deployment (2050-2060)
  • Company Profiles: Commonwealth Fusion Systems, Helion Energy, TAE Technologies, Tokamak Energy, General Fusion, Type One Energy, Zap Energy, First Light Fusion, Marvel Fusion, Focused Energy, and 35+ additional companies
  • Advanced Reactor Concepts: Accelerator-Driven Systems, Traveling Wave Reactors (TerraPower Natrium), Fusion-Fission Hybrids
  • Revolutionary Energy Conversion: Direct Conversion Technologies, Thermionic/Thermophotovoltaic Systems
  • Specialized Applications: Space Nuclear Systems (NASA programs), Deep Underground Microreactors, Liquid Metal Microreactors for Data Centers
  • Advanced Fuel Cycles: Reprocessing Technologies, Thorium Fuel Cycle (Copenhagen Atomics, Thorizon, ThorCon), Actinide Burning
  • AI and Digital Technologies: Autonomous Reactor Design, Quantum Computing Applications, Predictive Maintenance, Digital Twins
  • Integrated Energy Systems: Nuclear-Hydrogen Production, Industrial Process Heat, Multi-Product Energy Centers
  • Technology Readiness Assessment: TRL by Technology, Commercial Timelines, Investment Requirements
  • Market Projections: Cumulative Value by Technology 2025-2060
  • AI Computing Power Requirements: Load Profiles, 24/7 Operation, Growth Projections to 2045
  • Nuclear-AI Integration: Technical Requirements (99.99%+ Availability), Economic Benefits (Premium Pricing), Carbon-Free Computing
  • Technology Suitability Analysis: SMRs for Near-Term (2026-2035), Fusion for Long-Term (2035-2050), Microreactors for Distributed Computing
  • Case Studies: Tech Company Nuclear Strategies (Google, Microsoft, Amazon), Vendor Partnerships, Planned Deployments
  • Market Sizing: Data Center Nuclear Demand by Segment, Regional Deployment, Investment Requirements
  • Competitive Landscape: Technology Positioning, Partnership Strategies, Regional Competition
  • Investment Analysis: Capital Requirements by Technology, Risk-Return Profiles, Public-Private Models, Venture Capital Trends
  • Policy and Regulatory Environment: Government Support Programs, R&D Funding, International Cooperation, Export Controls
  • Supply Chain Analysis: Critical Materials, Component Manufacturing, Strategic Dependencies
  • Challenges and Opportunities: Technical Barriers, Economic Viability, Regulatory Hurdles, Market Adoption Pathways

 

Companies Profiled include:

Aalo Atomics, ARC Clean Technology, Astral Systems, Avalanche Energy, Blue Capsule, Blue Laser Fusion, Blykalla, BWXT Advanced Technologies, China National Nuclear Corporation (CNNC), Commonwealth Fusion Systems (CFS), Copenhagen Atomics, Deep Fission, Deutelio AG, EDF, Electric Fusion Systems, Energy Singularity, ENN Science and Technology Development Co., Ex-Fusion, First Light Fusion, Flibe Energy, Focused Energy, Fuse Energy, GE Hitachi Nuclear Energy, General Atomics, General Fusion, HB11 Energy, Helical Fusion, Helicity Space, Helion Energy, Hexana, HHMAX-Energy, Holtec International, Hylenr, Inertia Enterprises, Kairos Power, Kärnfull Next, Korea Atomic Energy Research Institute (KAERI), Kyoto Fusioneering, Last Energy, Longview Fusion, Marvel Fusion, Metatron, Moltex Energy, Naarea, Nano Nuclear Energy, NearStar Fusion, Neo Fusion, Newcleo, Novatron Fusion Group AB, nT-Tao, NuScale Power, Oklo, OpenStar, Pacific Fusion and more.....

 

 

 

1             NUCLEAR SMALL MODULAR REACTORS (SMR)     31

  • 1.1        Introduction    34
    • 1.1.1    The nuclear industry 34
    • 1.1.2    Nuclear as a source of low-carbon power  34
    • 1.1.3    Challenges for nuclear power             34
    • 1.1.4    Construction and costs of commercial nuclear power plants      35
    • 1.1.5    Renewed interest in nuclear energy                41
    • 1.1.6    Projections for nuclear installation rates     42
    • 1.1.7    Nuclear energy costs                42
    • 1.1.8    SMR benefits  44
    • 1.1.9    Decarbonization          44
  • 1.2        Market Forecast           45
  • 1.3        Technological Trends                47
  • 1.4        Regulatory Landscape             48
  • 1.5        Definition and Characteristics of SMRs       52
  • 1.6        Established nuclear technologies    56
  • 1.7        History and Evolution of SMR Technology   63
    • 1.7.1    Nuclear fission             63
    • 1.7.2    Controlling nuclear chain reactions               66
    • 1.7.3    Fuels    67
    • 1.7.4    Safety parameters      68
      • 1.7.4.1 Void coefficient of reactivity 68
      • 1.7.4.2 Temperature coefficient          68
    • 1.7.5    Light Water Reactors (LWRs)               69
    • 1.7.6    Ultimate heat sinks (UHS)     70
  • 1.8        Advantages and Disadvantages of SMRs    71
  • 1.9        Comparison with Traditional Nuclear Reactors      72
  • 1.10     Current SMR reactor designs and projects 74
  • 1.11     Types of SMRs               77
    • 1.11.1 Designs             77
    • 1.11.2 Coolant temperature                78
    • 1.11.3 The Small Modular Reactor landscape         80
    • 1.11.4 Light Water Reactors (LWRs)               84
      • 1.11.4.1            Pressurized Water Reactors (PWRs)               85
      • 1.11.4.2            Pressurized Heavy Water Reactors (PHWRs)            92
      • 1.11.4.3            Boiling Water Reactors (BWRs)          101
    • 1.11.5 High-Temperature Gas-Cooled Reactors (HTGRs) 105
      • 1.11.5.1            Overview           105
      • 1.11.5.2            Key features    109
      • 1.11.5.3            Examples         111
    • 1.11.6 Fast Neutron Reactors (FNRs)            113
      • 1.11.6.1            Overview           113
      • 1.11.6.2            Key features    114
      • 1.11.6.3            Examples         114
    • 1.11.7 Molten Salt Reactors (MSRs)               115
      • 1.11.7.1            Overview           115
      • 1.11.7.2            Key features    116
      • 1.11.7.3            Examples         116
    • 1.11.8 Microreactors                118
      • 1.11.8.1            Overview           118
      • 1.11.8.2            Key features    119
      • 1.11.8.3            Examples         119
    • 1.11.9 Heat Pipe Reactors    120
      • 1.11.9.1            Overview           120
      • 1.11.9.2            Key features    120
      • 1.11.9.3            Examples         121
    • 1.11.10              Liquid Metal Cooled Reactors            121
      • 1.11.10.1         Overview           122
      • 1.11.10.2         Key features    123
      • 1.11.10.3         Examples         124
    • 1.11.11              Supercritical Water-Cooled Reactors (SCWRs)      126
      • 1.11.11.1         Overview           126
      • 1.11.11.2         Key features    127
    • 1.11.12              Pebble Bed Reactors 128
      • 1.11.12.1         Overview           128
      • 1.11.12.2         Key features    129
  • 1.12     Applications of SMRs               129
    • 1.12.1 Electricity Generation               134
      • 1.12.1.1            Overview           134
      • 1.12.1.2            Cogeneration 135
    • 1.12.2 Process Heat for Industrial Applications     135
      • 1.12.2.1            Overview           135
      • 1.12.2.2            Strategic co-location of SMRs            135
      • 1.12.2.3            High-temperature reactors   136
      • 1.12.2.4            Coal-fired power plant conversion  136
    • 1.12.3 Nuclear District Heating         137
    • 1.12.4 Desalination   137
    • 1.12.5 Remote and Off-Grid Power 138
    • 1.12.6 Hydrogen and industrial gas production      138
    • 1.12.7 Space Applications   140
    • 1.12.8 Marine SMRs  140
  • 1.13     Market challenges      145
  • 1.14     Safety of SMRs              148
  • 1.15     Global Energy Landscape and the Role of SMRs    150
    • 1.15.1 Current Global Energy Mix    150
    • 1.15.2 Projected Energy Demand (2025-2045)       152
    • 1.15.3 Climate Change Mitigation and the Paris Agreement          153
    • 1.15.4 Nuclear Energy in the Context of Sustainable Development Goals           154
    • 1.15.5 SMRs as a Solution for Clean Energy Transition     154
  • 1.16     Technology Analysis 155
    • 1.16.1 Design Principles of SMRs    155
    • 1.16.2 Key Components and Systems          156
    • 1.16.3 Safety Features and Passive Safety Systems            158
    • 1.16.4 Cycle and Waste Management          160
    • 1.16.5 Advanced Manufacturing Techniques           161
    • 1.16.6 Modularization and Factory Fabrication      164
    • 1.16.7 Transportation and Site Assembly   165
    • 1.16.8 Grid Integration and Load Following Capabilities  166
    • 1.16.9 Emerging Technologies and Future Developments               166
  • 1.17     Regulatory Framework and Licensing            171
    • 1.17.1 International Atomic Energy Agency (IAEA) Guidelines      171
    • 1.17.2 Nuclear Regulatory Commission (NRC) Approach to SMRs           171
    • 1.17.3 European Nuclear Safety Regulators Group (ENSREG) Perspective          171
    • 1.17.4 Regulatory Challenges and Harmonization Efforts               172
    • 1.17.5 Licensing Processes for SMRs            173
    • 1.17.6 Environmental Impact Assessment                175
    • 1.17.7 Public Acceptance and Stakeholder Engagement 176
  • 1.18     SMR Market Analysis 176
    • 1.18.1 Global Market Size and Growth Projections (2025-2045) 177
    • 1.18.2 Market Segmentation               177
      • 1.18.2.1            By Reactor Type            177
      • 1.18.2.2            By Application               177
      • 1.18.2.3            By Region         178
    • 1.18.3 SWOT Analysis             178
    • 1.18.4 Value Chain Analysis 179
    • 1.18.5 Cost Analysis and Economic Viability           181
    • 1.18.6 Financing Models and Investment Strategies           183
    • 1.18.7 Regional Market Analysis      186
      • 1.18.7.1            North America              186
      • 1.18.7.2            Europe                187
      • 1.18.7.3            Other European Countries    188
      • 1.18.7.4            Asia-Pacific    188
      • 1.18.7.5            Middle East and Africa             189
      • 1.18.7.6            Latin America 190
  • 1.19     Competitive Landscape         190
    • 1.19.1 Competitive Strategies            190
    • 1.19.2 Recent market news 192
    • 1.19.3 New Product Developments and Innovations          194
    • 1.19.4 SMR private investment          196
  • 1.20     SMR Deployment Scenarios 199
    • 1.20.1 First-of-a-Kind (FOAK) Projects          205
    • 1.20.2 Nth-of-a-Kind (NOAK) Projections   206
    • 1.20.3 Deployment Timelines and Milestones        206
    • 1.20.4 Capacity Additions Forecast (2025-2045)  209
    • 1.20.5 Market Penetration Analysis 211
    • 1.20.6 Replacement of Aging Nuclear Fleet              213
    • 1.20.7 Integration with Renewable Energy Systems             213
  • 1.21     Economic Impact Analysis   214
    • 1.21.1 Job Creation and Skill Development               214
    • 1.21.2 Local and National Economic Benefits        216
    • 1.21.3 Impact on Energy Prices         216
    • 1.21.4 Comparison with Other Clean Energy Technologies            218
  • 1.22     Environmental and Social Impact    223
    • 1.22.1 Carbon Emissions Reduction Potential        223
    • 1.22.2 Land Use and Siting Considerations              227
    • 1.22.3 Water Usage and Thermal Pollution               228
    • 1.22.4 Radioactive Waste Management      228
    • 1.22.5 Public Health and Safety        229
    • 1.22.6 Social Acceptance and Community Engagement 229
  • 1.23     Policy and Government Initiatives    230
    • 1.23.1 National Nuclear Energy Policies     232
    • 1.23.2 SMR-Specific Support Programs      232
    • 1.23.3 Research and Development Funding             233
    • 1.23.4 International Cooperation and Technology Transfer            234
    • 1.23.5 Export Control and Non-Proliferation Measures     234
  • 1.24     Challenges and Opportunities           235
    • 1.24.1 Technical Challenges               235
      • 1.24.1.1            Design Certification and Licensing  236
      • 1.24.1.2            Fuel Development and Supply           237
      • 1.24.1.3            Component Manufacturing and Quality Assurance             238
      • 1.24.1.4            Grid Integration and Load Following               238
    • 1.24.2 Economic Challenges              239
      • 1.24.2.1            Capital Costs and Financing               240
      • 1.24.2.2            Economies of Scale   241
      • 1.24.2.3            Market Competition from Other Energy Sources    242
    • 1.24.3 Regulatory Challenges            2
      • 1.24.3.1            Harmonization of International Standards 2
      • 1.24.3.2            Site Licensing and Environmental Approvals            3
      • 1.24.3.3            Liability and Insurance Issues            4
    • 1.24.4 Social and Political Challenges         6
      • 1.24.4.1            Public Perception and Acceptance  7
      • 1.24.4.2            Nuclear Proliferation Concerns         7
      • 1.24.4.3            Waste Management and Long-Term Storage             8
    • 1.24.5 Opportunities 10
      • 1.24.5.1            Decarbonization of Energy Systems               10
      • 1.24.5.2            Energy Security and Independence 10
      • 1.24.5.3            Industrial Applications and Process Heat   11
      • 1.24.5.4            Remote and Off-Grid Power Solutions          12
      • 1.24.5.5            Nuclear-Renewable Hybrid Energy Systems             13
  • 1.25     Future Outlook and Scenarios            14
    • 1.25.1 Technology Roadmap (2025-2045) 18
    • 1.25.2 Market Evolution Scenarios  20
    • 1.25.3 Long-Term Market Projections (Beyond 2045)         22
    • 1.25.4 Potential Disruptive Technologies    25
    • 1.25.5 Global Energy Mix Scenarios with SMR Integration               28
  • 1.26     Case Studies  31
    • 1.26.1 NuScale Power VOYGR™ SMR Power Plant 31
    • 1.26.2 Rolls-Royce UK SMR Program             32
    • 1.26.3 China's HTR-PM Demonstration Project      33
    • 1.26.4 Russia's Floating Nuclear Power Plant (Akademik Lomonosov)   34
    • 1.26.5 Canadian SMR Action Plan   35
  • 1.27     Investment Analysis  35
    • 1.27.1 Return on Investment (ROI) Projections       36
    • 1.27.2 Risk Assessment and Mitigation Strategies                38
    • 1.27.3 Comparative Analysis with Other Energy Investments       41
    • 1.27.4 Public-Private Partnership Models  43
  • 1.28     SMR Company Profiles            45 (33 company profiles)

 

2             NUCLEAR FUSION      104

  • 2.1        Market Overview          104
    • 2.1.1    What is Nuclear Fusion?        104
    • 2.1.2    Future Outlook             106
    • 2.1.3    Recent Market Activity             107
      • 2.1.3.1 Investment Landscape and Funding Trends              108
      • 2.1.3.2 Government Support and Policy Framework             108
      • 2.1.3.3 Technical Approaches and Innovation          108
      • 2.1.3.4 Commercial Partnerships and Power Purchase Agreements         109
      • 2.1.3.5 Regional Development and Manufacturing               109
      • 2.1.3.6 Regulatory Environment and Licensing        109
      • 2.1.3.7 Challenges and Technical Hurdles  110
      • 2.1.3.8 Market Projections and Timeline      110
      • 2.1.3.9 Investment Ecosystem Evolution     110
      • 2.1.3.10            Global Competitive Landscape         110
    • 2.1.4    Competition with Other Power Sources       111
    • 2.1.5    Investment Funding   113
    • 2.1.6    Materials and Components 116
    • 2.1.7    Commercial Landscape         119
    • 2.1.8    Applications and Implementation Roadmap           33
    • 2.1.9    Fuels    34
  • 2.2        Introduction    40
    • 2.2.1    The Fusion Energy Market      40
      • 2.2.1.1 Historical evolution   40
      • 2.2.1.2 Market drivers                40
      • 2.2.1.3 National strategies     41
    • 2.2.2    Technical Foundations            42
      • 2.2.2.1 Nuclear Fusion Principles     42
      • 2.2.2.2 Power Production Fundamentals     45
      • 2.2.2.3 Fusion and Fission     49
    • 2.2.3    Regulatory Framework             54
      • 2.2.3.1 International regulatory developments and harmonization            54
      • 2.2.3.2 Europe                56
      • 2.2.3.3 Regional approaches and policy implications         56
  • 2.3        Nuclear Fusion Energy Market            60
    • 2.3.1    Market Outlook            60
      • 2.3.1.1 Fusion deployment    61
      • 2.3.1.2 Alternative clean energy sources      63
      • 2.3.1.3 Application in data centers   64
      • 2.3.1.4 Deployment rate limitations and scaling challenges           65
    • 2.3.2    Technology Categorization by Confinement Mechanism 66
      • 2.3.2.1 Magnetic Confinement Technologies            66
      • 2.3.2.2 Inertial Confinement Technologies  76
      • 2.3.2.3 Hybrid and Alternative Approaches 85
      • 2.3.2.4 Emerging Alternative Concepts          93
      • 2.3.2.5 Compact Fusion Approaches             95
    • 2.3.3    Fuel Cycle Analysis   96
      • 2.3.3.1 Commercial Fusion Reactions          96
      • 2.3.3.2 Fuel Supply Considerations 104
    • 2.3.4    Ecosystem Beyond Power Plant OEMs         110
      • 2.3.4.1 Component manufacturers and specialized suppliers      110
      • 2.3.4.2 Engineering services and testing infrastructure      112
      • 2.3.4.3 Digital twin technology and advanced simulation tools    113
      • 2.3.4.4 AI applications in plasma physics and reactor operation 115
      • 2.3.4.5 Building trust in surrogate models for fusion            118
    • 2.3.5    Development Timelines          119
      • 2.3.5.1 Comparative Analysis of Commercial Approaches              119
      • 2.3.5.2 Strategic Roadmaps and Timelines 121
      • 2.3.5.3 Public funding for fusion energy research   126
      • 2.3.5.4 Integrated Timeline Analysis               127
  • 2.4        Key Technologies         131
    • 2.4.1    Magnetic Confinement Fusion           131
      • 2.4.1.1 Tokamak and Spherical Tokamak     131
      • 2.4.1.2 Stellarators      136
      • 2.4.1.3 Field-Reversed Configurations          142
    • 2.4.2    Inertial Confinement Fusion 146
      • 2.4.2.1 Fundamental operating principles   146
      • 2.4.2.2 National Ignition Facility         147
      • 2.4.2.3 Commercial development    148
      • 2.4.2.4 SWOT analysis              153
    • 2.4.3    Alternative Approaches          154
      • 2.4.3.1 Magnetized Target Fusion      155
      • 2.4.3.2 Z-Pinch Fusion              159
      • 2.4.3.3 Pulsed Magnetic Fusion         164
  • 2.5        Materials and Components 169
    • 2.5.1    Critical Materials for Fusion 169
      • 2.5.1.1 High-Temperature Superconductors (HTS) 171
      • 2.5.1.2 Plasma-Facing Materials       176
      • 2.5.1.3 Breeder Blanket Materials     181
      • 2.5.1.4 Lithium Resources and Processing 187
    • 2.5.2    Component Manufacturing Ecosystem       4
      • 2.5.2.1 Specialized capacitors and power electronics        4
      • 2.5.2.2 Vacuum systems and cryogenic equipment             5
      • 2.5.2.3 Laser systems for inertial fusion       5
      • 2.5.2.4 Target manufacturing for ICF               6
    • 2.5.3    Strategic Supply Chain Considerations        9
      • 2.5.3.1 Critical minerals          9
      • 2.5.3.2 China's dominance   10
      • 2.5.3.3 Public-private partnerships  10
      • 2.5.3.4 Component supply    12
  • 2.6        Business Models and Nuclear Fusion Energy           14
    • 2.6.1    Commercial Fusion Business Models           14
      • 2.6.1.1 Value creation               16
      • 2.6.1.2 Fusion commercialization    17
      • 2.6.1.3 Industrial process heat applications              18
    • 2.6.2    Investment Landscape            20
    • 2.6.2.1 Funding Trends and Sources               20
    • 2.6.2.2 Value Creation              29
  • 2.7        Future Outlook and Strategic Opportunities             35
    • 2.7.1    Technology Convergence and Breakthrough Potential       35
      • 2.7.1.1 AI and machine learning impact on development  35
      • 2.7.1.2 Advanced computing for design optimization          35
      • 2.7.1.3 Materials science advancement       36
      • 2.7.1.4 Control system and diagnostics innovations           37
      • 2.7.1.5 High-temperature superconductor advancements              40
    • 2.7.2    Market Evolution         42
      • 2.7.2.1 Commercial deployment       42
      • 2.7.2.2 Market adoption and penetration     44
      • 2.7.2.3 Grid integration and energy markets               47
      • 2.7.2.4 Specialized application development paths             49
    • 2.7.3    Strategic Positioning for Market Participants            51
      • 2.7.3.1 Component supplier opportunities 51
      • 2.7.3.2 Energy producer partnership strategies       52
      • 2.7.3.3 Technology licensing and commercialization paths             54
      • 2.7.3.4 Investment timing considerations   57
      • 2.7.3.5 Risk diversification approaches        58
    • 2.7.4    Pathways to Commercial Fusion Energy      60
      • 2.7.4.1 Critical Success Factors        60
      • 2.7.4.2 Key Inflection Points 70
      • 2.7.4.3 Long-Term Market Impact      74
  • 2.8        Fusion Energy Company Profiles      79 (46 company profiles)

 

3             EMERGING ADANCED NUCLEAR TECHOLOGIES 142

  • 3.1        Advanced Reactor Concepts               142
    • 3.1.1    Introduction    142
    • 3.1.2    Accelerator-Driven Systems (ADS)  142
      • 3.1.2.1 Technical Architecture             143
      • 3.1.2.2 Waste Transmutation Capability      143
      • 3.1.2.3 Current Development Status               144
      • 3.1.2.4 Market Applications and Economics             144
    • 3.1.3    Traveling Wave Reactors (TWR)          144
      • 3.1.3.1 The Breed-and-Burn Concept             144
      • 3.1.3.2 TerraPower's Natrium: The First TWR Evolution       145
      • 3.1.3.3 Resource Implications            145
      • 3.1.3.4 Development Challenges      146
      • 3.1.3.5 Market Projections and Economics 146
      • 3.1.3.6 Strategic Significance              147
    • 3.1.4    Fusion-Fission Hybrid Systems         147
      • 3.1.4.1 The Hybrid Advantage              147
      • 3.1.4.2 Waste Transmutation Application    148
      • 3.1.4.3 Technical Configurations       148
      • 3.1.4.4 Current Status and Development Gap          148
      • 3.1.4.5 Economic and Strategic Assessment            149
  • 3.2        Energy Conversion     149
    • 3.2.1    Introduction to Advanced Energy Conversion          149
    • 3.2.2    Direct Energy Conversion Technologies       150
      • 3.2.2.1 Physical Principles and Approaches              150
      • 3.2.2.2 Thermionic Conversion: Nearest-Term Technology               150
      • 3.2.2.3 Thermophotovoltaics: The Photonic Approach       151
      • 3.2.2.4 Direct Charge Collection: The Ultimate Conversion            151
      • 3.2.2.5 Market Analysis and Economics       152
  • 3.3        Specialized Reactor Applications    152
    • 3.3.1    Introduction    152
    • 3.3.2    Space Nuclear Systems         153
      • 3.3.2.1 Historical Context and Current Revival         153
      • 3.3.2.2 Technical Requirements and Challenges    153
      • 3.3.2.3 Current Active Programs        154
      • 3.3.2.4 Market Projections and Strategic Importance          154
    • 3.3.3    Deep Underground Microreactors   155
      • 3.3.3.1 Strategic Rationale and Origins         155
      • 3.3.3.2 Technical Concept and Challenges 155
      • 3.3.3.3 Conceptual Design Approaches       156
      • 3.3.3.4 Applications and Market Analysis    157
      • 3.3.3.5 Development Timeline and Barriers               157
      • 3.3.3.6 Economic Analysis    158
    • 3.3.4    Liquid Metal Microreactors   158
      • 3.3.4.1 Technology Fundamentals   158
      • 3.3.4.2 Commercial Leaders and Recent Developments  159
      • 3.3.4.3 Key Design Innovations           160
      • 3.3.4.4 Market Applications and Economics             160
      • 3.3.4.5 Deployment Timeline and Commercialization Path             161
      • 3.3.4.6 Technical Challenges and Risk Mitigation  162
      • 3.3.4.7 Strategic Implications              162
  • 3.4        Advanced Fuel Cycles              163
    • 3.4.1    Introduction to Advanced Fuel Cycles           163
    • 3.4.2    Advanced Reprocessing Technologies          163
      • 3.4.2.1 Advanced Reprocessing Approaches            163
      • 3.4.2.2 Integrated Fuel Cycle Concepts        164
      • 3.4.2.3 Economic and Policy Challenges     165
      • 3.4.2.4 Partnership Developments   165
      • 3.4.2.5 Waste Impact Analysis           166
    • 3.4.3    Thorium Fuel Cycle Deployment       166
      • 3.4.3.1 Thorium Fuel Cycle Fundamentals 167
      • 3.4.3.2 Proliferation Resistance: The U-232 Challenge       168
      • 3.4.3.3 Current Thorium Development Programs   168
      • 3.4.3.4 Molten Salt Reactors: Thorium's Best Hope              169
      • 3.4.3.5 Economic and Resource Assessment          170
      • 3.4.3.6 Market Projections and Regional Strategies              171
      • 3.4.3.7 Strategic Assessment              171
    • 3.4.4    Actinide Burning and Transmutation Systems         172
      • 3.4.4.1 The Minor Actinide Problem 172
      • 3.4.4.2 Transmutation Technologies and Approaches         172
      • 3.4.4.3 System Requirements for Effective Transmutation              173
      • 3.4.4.4 Active Programs and Commercial Developers         174
      • 3.4.4.5 Scenarios and Impact Analysis         174
      • 3.4.4.6 Economic and Investment Analysis               175
      • 3.4.4.7 Strategic Considerations       175
  • 3.5        AI and Digital Technologies   176
    • 3.5.1    Introduction to AI and Digital Innovation in Nuclear             176
    • 3.5.2    Autonomous AI-Designed Reactors                176
      • 3.5.2.1 AI Design Capabilities and Applications      177
      • 3.5.2.2 Design Optimization Examples          177
      • 3.5.2.3 Autonomous Control and Operation              178
      • 3.5.2.4 Current Development Activities         179
      • 3.5.2.5 Regulatory Challenges and Solutions           180
      • 3.5.2.6 Market Projections     180
    • 3.5.3    Quantum Computing Applications for Nuclear Energy      181
      • 3.5.3.1 Quantum Advantage in Nuclear Applications          181
      • 3.5.3.2 Current Hardware Status and Development             182
      • 3.5.3.3 Pilot Programs and Early Applications          183
      • 3.5.3.4 Digital Twin Evolution with Quantum Computing  184
      • 3.5.3.5 Quantum Algorithms for Nuclear Engineering         184
      • 3.5.3.6 Market Development and Investment           185
      • 3.5.3.7 Development Challenges      186
      • 3.5.3.8 Strategic Implications              186
  • 3.6        Integrated Energy Systems   187
    • 3.6.1    Introduction to Integrated Nuclear Energy Systems             187
    • 3.6.2    Nuclear-Hydrogen Production Integration  187
      • 3.6.2.1 Production Technologies and Efficiency      187
      • 3.6.2.2 Reactor-Hydrogen System Matching              188
      • 3.6.2.3 Active Development Programs          189
      • 3.6.2.4 Market Development and Economics           189
      • 3.6.2.5 End-Use Applications              190
      • 3.6.2.6 Integration Architectures and Operational Strategies         191
    • 3.6.3    Industrial Process Heat Applications            192
      • 3.6.3.1 Industrial Heat Requirements and Nuclear Solutions        192
      • 3.6.3.2 Reactor-Industry Technology Matching        193
      • 3.6.3.3 Active Industrial Partnerships             194
      • 3.6.3.4 Economic Analysis and Value Proposition 194
      • 3.6.3.5 Integrated Industrial Energy Park Concept 195
      • 3.6.3.6 Deployment Scenarios and Market Projections      196
      • 3.6.3.7 Regional Strategies and Policy Environments          196
      • 3.6.3.8 Technical and Institutional Barriers 197
    • 3.6.4    Multi-Product Energy Centers             198
      • 3.6.4.1 Product Portfolio and Value Streams             198
      • 3.6.4.2 System Architecture and Integration              199
      • 3.6.4.3 Detailed System Example - Advanced Multi-Product Center          200
      • 3.6.4.4 Revenue Optimization and Economic Performance            201
      • 3.6.4.5 Dynamic Optimization and Control 201
      • 3.6.4.6 Market Projections and Deployment Scenarios      202
      • 3.6.4.7 Technology Enablers and Requirements     203
      • 3.6.4.8 Strategic Value and Market Transformation               203
  • 3.7        Technology Readiness and Investment Landscape              204
  • 3.8        Market Value and Investment Requirements            205
  • 3.9        Company profiles       206 (10 company profiles)

 

4             APPENDICES  220

  • 4.1        Research Methodology           220

 

5             REFERENCES 222

 

List of Tables

  • Table 1. Motivation for Adopting SMRs.        32
  • Table 2. Generations of nuclear technologies.        35
  • Table 3. SMR Construction Economics.       37
  • Table 4. Cost of Capital for SMRs vs. Traditional NPP Projects.    39
  • Table 5. Comparative Costs of SMRs with Other Types.     43
  • Table 6. SMR Benefits.             44
  • Table 7. SMR Market Growth Trajectory, 2025-2045.           46
  • Table 8. Technological trends in Nuclear Small Modular Reactors (SMR).            47
  • Table 9. Regulatory landscape for Nuclear Small Modular Reactors (SMR).        49
  • Table 10. Designs by generation.      53
  • Table 11. Established nuclear technologies.            56
  • Table 12. Advantages and Disadvantages of SMRs.             71
  • Table 13. Comparison with Traditional Nuclear Reactors.               72
  • Table 14. SMR Projects            75
  • Table 15. Project Types by Reactor Class.  78
  • Table 16. SMR Technology Benchmarking. 80
  • Table 17. Comparison of SMR Types: LWRs, HTGRs, FNRs, and MSRs.  83
  • Table 18. Types of PWR.          86
  • Table 19. Key Features of Pressurized Water Reactors (PWRs).    88
  • Table 20. Comparison of Leading Gen III/III+ Designs         93
  • Table 21. Gen-IV Reactor Designs    96
  • Table 22. Key Features of Pressurized Heavy Water Reactors        98
  • Table 23. Key Features of Boiling Water Reactors (BWRs).               102
  • Table 24. HTGRs- Rankine vs. Brayton vs. Combined Cycle Generation.                107
  • Table 25. Key Features of High-Temperature Gas-Cooled Reactors (HTGRs)       109
  • Table 26. Comparing LMFRs to Other Gen IV Types.            122
  • Table 27. Markets and Applications for SMRs          129
  • Table 28. SMR Applications and Their Market Share, 2025-2045.               132
  • Table 29. Development Status.          142
  • Table 30. Market Challenges for SMRs          145
  • Table 31. Global Energy Mix Projections, 2025-2045.         150
  • Table 32. Projected Energy Demand (2025-2045). 152
  • Table 33. Key Components and Systems.   156
  • Table 34. Key Safety Features of SMRs.        158
  • Table 35. Advanced Manufacturing Techniques.    162
  • Table 36. Emerging Technologies and Future Developments in SMRs.    168
  • Table 37.SMR Licensing Process Timeline. 173
  • Table 38. SMR Market Size by Reactor Type, 2025-2045.  177
  • Table 39. SMR Market Size by Application, 2025-2045.     177
  • Table 40. SMR Market Size by Region, 2025-2045. 178
  • Table 41. Cost Breakdown of SMR Construction and Operation. 182
  • Table 42. Financing Models for SMR Projects.          184
  • Table 43. Projected SMR Capacity Additions by Region, 2025-2045.       186
  • Table 44. Competitive Strategies in SMR     190
  • Table 45. Nuclear Small Modular Reactor (SMR) Market News 2022-2024.         192
  • Table 46. New Product Developments and Innovations    195
  • Table 47. SMR private investment.   196
  • Table 48. Major SMR Projects and Their Status, 2025.       200
  • Table 49. SMR Deployment Scenarios: FOAK vs. NOAK.    204
  • Table 50. SMR Deployment Timeline, 2025-2045. 206
  • Table 51. Job Creation in SMR Industry by Sector. 214
  • Table 52. Comparison with Other Clean Energy Technologies.     218
  • Table 53. Comparison of Carbon Emissions: SMRs vs. Other Energy Sources.  223
  • Table 54. Carbon Emissions Reduction Potential of SMRs, 2025-2045. 225
  • Table 55. Land Use Comparison: SMRs vs. Traditional Nuclear Plants.  227
  • Table 56. Water Usage Comparison: SMRs vs. Traditional Nuclear Plants.           228
  • Table 57. Government Funding for SMR Research and Development by Country.           230
  • Table 58. Government Initiatives Supporting SMR Development by Country.     231
  • Table 59. National Nuclear Energy Policies.              232
  • Table 60. SMR-Specific Support Programs.               233
  • Table 61. R&D Funding Allocation for SMR Technologies. 233
  • Table 62. International Cooperation Networks in SMR Development.      234
  • Table 63. Export Control and Non-Proliferation Measures.              234
  • Table 64. Technical Challenges in SMR Development and Deployment. 235
  • Table 65. Economic Challenges in SMR Commercialization.         239
  • Table 66. Economies of Scale in SMR Production. 241
  • Table 67. Market Competition: SMRs vs. Other Clean Energy Technologies         243
  • Table 68. Regulatory Challenges for SMR Adoption.            2
  • Table 69. Regulatory Harmonization Efforts for SMRs Globally.   3
  • Table 70. Liability and Insurance Models for SMR Operations.     4
  • Table 71. Social and Political Challenges for SMR Implementation.          6
  • Table 72. Non-Proliferation Measures for SMR Technology.             7
  • Table 73. Waste Management Strategies for SMRs.             9
  • Table 74. Decarbonization Potential of SMRs in Energy Systems.               10
  • Table 75. SMR Applications in Industrial Process Heat.     11
  • Table 76. Off-Grid and Remote Power Solutions Using SMRs.      12
  • Table 77. SMR Market Evolution Scenarios, 2025-2045.   20
  • Table 78. Long-Term Market Projections for SMRs (Beyond 2045).             22
  • Table 79. Potential Disruptive Technologies in Nuclear Energy.    25
  • Table 80. Global Energy Mix Scenarios with SMR Integration, 2045.         29
  • Table 81. ROI Projections for SMR Investments, 2025-2045.         36
  • Table 82. Risk Assessment and Mitigation Strategies.        38
  • Table 83. Comparative Analysis with Other Energy Investments. 41
  • Table 84. Public-Private Partnership Models for SMR Projects      43
  • Table 85. Comparison of Nuclear Fusion Energy with Other Power Sources.      112
  • Table 86. Private and public funding for Nuclear Fusion Energy 2021-2025.       113
  • Table 87. Nuclear Fusion Energy Investment Funding, by company .       114
  • Table 88. Key Materials and Components for Fusion           117
  • Table 89.Commercial Landscape by Reactor Class             30
  • Table 90. Market by Reactor Type.    33
  • Table 91. Applications by Sector.      34
  • Table 92. Fuels in Commercial Fusion.         2
  • Table 93. Commercial Fusion Market by Fuel.          38
  • Table 94. Market drivers for commercialization of nuclear fusion energy.              40
  • Table 95. National strategies in Nuclear Fusion Energy.    42
  • Table 96. Fusion Reaction Types and Characteristics.       43
  • Table 97. Energy Density Advantages of Fusion Reactions.            44
  • Table 98. Q values.     45
  • Table 99. Electricity production pathways from fusion energy.     46
  • Table 100. Engineering efficiency factors.  47
  • Table 101. Heat transfer and power conversion .   48
  • Table 102. Nuclear fusion and nuclear fission.       49
  • Table 103. Pros and cons of fusion and fission.      50
  • Table 104. Safety aspects.    51
  • Table 105. Waste management considerations and radioactivity.              52
  • Table 106.  International regulatory developments .            55
  • Table 107. Regional approaches to fusion regulation and policy support.            57
  • Table 108. Reactions in Commercial Fusion             2
  • Table 109. Alternative clean energy sources.            63
  • Table 110. Deployment rate limitations and scaling challenges. 65
  • Table 111. Comparison of magnetic confinement approaches.  71
  • Table 112. Plasma stability and confinement innovations.             73
  • Table 113. Inertial Confinement Technologies         76
  • Table 114. Inertial confinement fusion Manufacturing and scaling barriers.        80
  • Table 115. Commercial viability of inertial confinement fusion energy.   82
  • Table 116. High repetition rate approaches.             84
  • Table 117. Hybrid and Alternative Approaches.      85
  • Table 118. Emerging Alternative Concepts.               94
  • Table 119. Compact fusion approaches.    95
  • Table 120. Comparative advantages and technical challenges.  99
  • Table 121. Aneutronic fusion approaches. 2
  • Table 122. Tritium self-sufficiency challenges for D-T reactors.   105
  • Table 123. Supply chain considerations.     108
  • Table 124. Component manufacturers and specialized suppliers.            111
  • Table 125. Engineering services and testing infrastructure.            112
  • Table 126. Digital twin technology and advanced simulation tools.          114
  • Table 127. AI applications in plasma physics and reactor operation.       116
  • Table 128. Comparative Analysis of Commercial Nuclear Fusion Approaches. 119
  • Table 129. Field-reversed configuration (FRC) developer timelines.         122
  • Table 130. Inertial, magneto-inertial and Z-pinch deployment .   123
  • Table 131. Commercial plant deployment projections, by company.      124
  • Table 132. Pure inertial confinement fusion commercialization. 124
  • Table 133. Public funding for fusion energy research .        126
  • Table 134. Technology approach commercialization sequence.  127
  • Table 135. Fuel cycle development dependencies.              128
  • Table 136. Cost trajectory projections.         130
  • Table 137. Conventional Tokamak versus Spherical Tokamak.     132
  • Table 138. ITER Specifications.          133
  • Table 139. Design principles and advantages over tokamaks.     137
  • Table 140. Stellarator vs. Tokamak Comparative Analysis               139
  • Table 141. Stellarator Commercial development. 140
  • Table 142. Technical principles and design advantages.  142
  • Table 143. Commercial Timeline Assessment.       144
  • Table 144. Inertial Confinement Fusion (ICF) operating principles.           146
  • Table 145. Inertial Confinement Fusion commercial development.          149
  • Table 146. Inertial Confinement Fusion funding.   150
  • Table 147. Timeline of laser-driven inertial confinement fusion. 152
  • Table 148. Alternative Approaches. 154
  • Table 149. Magnetized Target Fusion (MTF) Technical overview and operating principles.          156
  • Table 150. Magnetized Target Fusion (MTF) commercial development.  156
  • Table 151. Z-pinch fusion Technical principles and operational characteristics.              160
  • Table 152. Z-pinch fusion commercial development.         161
  • Table 153. Commercial Viability Assessment.        162
  • Table 154. Pulsed magnetic fusion commercial development.     165
  • Table 155. Critical Materials for Fusion.       169
  • Table 156. Global Value Chain.          172
  • Table 157. Demand Projections and Manufacturing Bottlenecks for HTC.            173
  • Table 158. First wall challenges and material requirements.          177
  • Table 159. Ceramic, Liquid Metal and Molten Salt Options.           181
  • Table 160. Comparison of solid-state and fluid (liquid metal or molten salt) blanket concepts.            184
  • Table 161. Technology Readiness Level Assessment for Breeder Blanket Materials.     184
  • Table 162. Alternatives to COLEX Process for Enrichment.             2
  • Table 163. Comparison of Lithium Separation Methods.  2
  • Table 164. Competition with Battery Markets for Lithium.               2
  • Table 165. Key Components Summary by Fusion Approach.        7
  • Table 166. Fusion Energy for industrial process heat applications.           18
  • Table 167. Public funding mechanisms and programs.     21
  • Table 168. Corporate investments. 25
  • Table 169. Component and material supply opportunities.            31
  • Table 170. Control system and diagnostic innovations.    38
  • Table 171. High-temperature superconductor (HTS) technology advancements.            41
  • Table 172. Market adoption patterns and penetration rates.          45
  • Table 173. Grid integration and energy market impacts.   47
  • Table 174. Specialized application development paths.   50
  • Table 175. Energy producer partnership strategies.             53
  • Table 176. Technology licensing and commercialization paths.  55
  • Table 177. Risk diversification approaches.              59
  • Table 178. Technical milestone achievement requirements.         61
  • Table 179. Supply chain development imperatives.             64
  • Table 180. Capital Formation Mechanisms.             68
  • Table 182. Accelerator-Driven Systems - Technical Specifications            143
  • Table 183. ADS Market Development Timeline        144
  • Table 184. Traveling Wave Reactor Technical Characteristics       145
  • Table 185. Traveling Wave Reactor Development   146
  • Table 186. TWR Market Scenarios (2040-2070)      146
  • Table 187. Fusion-Fission Hybrid Reactor Characteristics              147
  • Table 188. Fusion-Fission Hybrid Concepts              148
  • Table 189. Fusion-Fission Hybrid Development Roadmap              148
  • Table 190. Direct Energy Conversion Technologies               150
  • Table 191. Next-Generation DEC Systems for Nuclear       151
  • Table 192. Direct Energy Conversion Market Projections  152
  • Table 193. Space Nuclear Power Systems  153
  • Table 194. Space Nuclear System Developers         154
  • Table 195. Space Nuclear Systems Market (2030-2060)  154
  • Table 196. Deep Underground Microreactor Characteristics         156
  • Table 197. Deep Underground Reactor Concepts 156
  • Table 198. Deep Underground Microreactor Applications               157
  • Table 199. Deep Underground Reactor Development Barriers.    157
  • Table 200. Liquid Metal Microreactor Technical Specifications    159
  • Table 201. Liquid Metal Microreactor Companies (2024-2025)   159
  • Table 202. Liquid Metal Microreactor Design Innovations                160
  • Table 203. Liquid Metal Microreactor Market Segments    160
  • Table 204. Liquid Metal Microreactor Deployment Roadmap       161
  • Table 205. Liquid Metal Microreactor Challenges  162
  • Table 206. Advanced Nuclear Fuel Reprocessing Technologies   163
  • Table 207. Next-Generation Reprocessing Systems             164
  • Table 208. Advanced Reprocessing Market Projections (2030-2060)       165
  • Table 209. Reprocessing Technology Developers   165
  • Table 210. Impact of Advanced Reprocessing on Waste Management   166
  • Table 211. Thorium vs. Uranium Fuel Cycles Comparison              168
  • Table 212. Thorium-Fueled Reactor Technologies 168
  • Table 213. Active Thorium Fuel Cycle Companies (2024-2025)   169
  • Table 214. Thorium Fuel Cycle Development Barriers        170
  • Table 215. Thorium Fuel Cycle Market Development (2030-2070)             171
  • Table 216. Thorium Deployment Strategies by Region        171
  • Table 217. Long-Lived Actinides in Spent Nuclear Fuel.    172
  • Table 218. Actinide Transmutation Technologies   172
  • Table 219.Technical Requirements for Actinide Burning   173
  • Table 220. Actinide Burning Development Programs          174
  • Table 221. Transmutation Deployment Scenarios 174
  • Table 222. Actinide Burning Infrastructure Investment (2030-2070)         175
  • Table 223. AI Applications in Advanced Nuclear Reactor Design 177
  • Table 224. AI Design Optimization Domains             177
  • Table 225. Levels of Reactor Autonomy       178
  • Table 226. AI in Nuclear - Active Programs (2024-2025)    179
  • Table 227. AI Regulatory Framework Development               180
  • Table 228. AI in Nuclear Market Value (2025-2060)              180
  • Table 229. Quantum Computing Applications in Nuclear Energy                181
  • Table 230. Quantum Computing Hardware Development                182
  • Table 231. Quantum Computing Pilot Programs for Nuclear (2024-2026)            183
  • Table 232. Classical vs. Quantum Digital Twins      184
  • Table 233. Key Quantum Algorithms and Nuclear Applications   184
  • Table 234. Quantum Computing in Nuclear Market Projections  185
  • Table 235. Quantum Computing Barriers for Nuclear Applications           186
  • Table 236. Nuclear Hydrogen Production Technologies     187
  • Table 237. Reactor-Hydrogen Production Compatibility   188
  • Table 238. Nuclear-Hydrogen Integration Projects (2024-2025)  189
  • Table 239. Nuclear-Hydrogen Market Projections (2030-2060)    189
  • Table 240. Nuclear Hydrogen End-Use Markets      190
  • Table 241. Nuclear-Hydrogen Integration Models  191
  • Table 242. Industrial Process Heat Requirements 192
  • Table 243. Nuclear Reactor Suitability for Industrial Applications              193
  • Table 244. Nuclear-Industry Process Heat Projects             194
  • Table 245. Industrial Process Heat Economics - Nuclear vs. Fossil           195
  • Table 246. Integrated Industrial Energy Park Concept (Illustrative Example)       195
  • Table 247. Industrial Process Heat Market Projections (2030-2060)        196
  • Table 248. Industrial Decarbonization via Nuclear by Region        196
  • Table 249. Industrial Nuclear Heat Integration Challenges             197
  • Table 250. Multi-Product Nuclear Energy Center Outputs               198
  • Table 251. Multi-Product Energy Center Configurations   199
  • Table 252. Integrated Nuclear Energy Complex - Technical Specifications (2040 Scenario)     200
  • Table 253. Multi-Product Revenue Streams and Optimization (2040 Scenario) 201
  • Table 254. Real-Time Energy Product Optimization Strategies      201
  • Table 255. Multi-Product Energy Centers - Deployment Projections (2030-2065)           202
  • Table 256. Technologies Enabling Multi-Product Centers 203
  • Table 257. Technology Readiness and Commercialization Timeline Summary  204
  • Table 258. Cumulative Market Value by Technology Area (2025-2060, $ Billions)            205

 

List of Figures

  • Figure 1. Schematic of Small Modular Reactor (SMR) operation. 53
  • Figure 2. Linglong One.            75
  • Figure 3. Pressurized Water Reactors.           86
  • Figure 4. CAREM reactor.       91
  • Figure 5. Westinghouse Nuclear AP300™ Small Modular Reactor.              92
  • Figure 6. Advanced CANDU Reactor (ACR-300) schematic.           100
  • Figure 7. GE Hitachi's BWRX-300.    105
  • Figure 8. The nuclear island of HTR-PM Demo.        112
  • Figure 9. U-Battery schematic.           113
  • Figure 10. TerraPower's Natrium.      114
  • Figure 11. Russian BREST-OD-300. 115
  • Figure 12. Terrestrial Energy's IMSR.               117
  • Figure 13. Moltex Energy's SSR.         118
  • Figure 14. Westinghouse's eVinci .   120
  • Figure 15. GE Hitachi PRISM.              125
  • Figure 16. Leadcold SEALER.              126
  • Figure 17. SCWR schematic.               128
  • Figure 18. SWOT Analysis of the SMR Market.          179
  • Figure 19. Nuclear SMR Value Chain.            181
  • Figure 20. Global SMR Capacity Forecast, 2025-2045.     209
  • Figure 21. SMR Market Penetration in Different Energy Sectors.   211
  • Figure 22. SMR Fuel Cycle Diagram.              238
  • Figure 23. Power plant with small modular reactors.          239
  • Figure 24. Nuclear-Renewable Hybrid Energy System Configurations.   14
  • Figure 25. Technical Readiness Levels of Different SMR Technologies.   18
  • Figure 26. Technology Roadmap (2025-2045).        20
  • Figure 27. NuScale Power VOYGR™ SMR Power Plant Design.       32
  • Figure 28. China's HTR-PM Demonstration Project Layout.             34
  • Figure 29. Russia's Floating Nuclear Power Plant Schematic.        35
  • Figure 30. ARC-100 sodium-cooled fast reactor.    49
  • Figure 31. ACP100 SMR.         55
  • Figure 32. Deep Fission pressurised water reactor schematic.     56
  • Figure 33. NUWARD SMR design.     58
  • Figure 34. A rendering image of NuScale Power's SMR plant.        81
  • Figure 35. Oklo Aurora Powerhouse reactor.             83
  • Figure 36. Multiple LDR-50 unit plant.           89
  • Figure 37.  AP300™ Small Modular Reactor.               100
  • Figure 38.  The fusion energy process.          104
  • Figure 39. A fusion power plant .       105
  • Figure 40. Experimentally inferred Lawson parameters.   106
  • Figure 41. ITER nuclear fusion reactor.          107
  • Figure 42. Comparing energy density and CO₂ emissions of major energy sources.      111
  • Figure 43. Timeline and Development Phases.       33
  • Figure 44. Schematic of a D–T fusion reaction.        44
  • Figure 45. Comparison of conventional tokamak and spherical tokamak.           67
  • Figure 46.  Interior of the Wendelstein 7-X stellarator.         68
  • Figure 47. Wendelstein 7-X plasma and layer of magnets.              69
  • Figure 48. Z-pinch device.      89
  • Figure 49. Sandia National Laboratory's Z Machine.            90
  • Figure 50. ZAP Energy sheared-flow stabilized Z-pinch.    90
  • Figure 51. Kink instability.      91
  • Figure 52. Helion’s fusion generator.              92
  • Figure 53. Tokamak schematic.         131
  • Figure 54. SWOT Analysis of Conventional and Spherical Tokamak Approaches.            135
  • Figure 55. Roadmap for Commercial Tokamak Fusion.     136
  • Figure 56. SWOT Analysis of Stellarator Approach.              142
  • Figure 57. SWOT Analysis of FRC Technology.          145
  • Figure 58. SWOT Analysis of ICF for Commercial Power.  154
  • Figure 59. SWOT Analysis of Magnetized Target Fusion.    158
  • Figure 60. Magnetized Target Fusion (MTF) Roadmap.        159
  • Figure 61. SWOT Analysis of Z-Pinch Reactors.       164
  • Figure 62. SWOT Analysis and Timeline Projections for Pulsed Magnetic Fusion.            168
  • Figure 63. SWOT Analysis of HTS for Fusion.             176
  • Figure 64. Value Chain for Breeder Blanket Materials.        187
  • Figure 65. Lithium-6 isotope separation requirements.     188
  • Figure 66. Commercial Deployment Timeline Projections.             44
  • Figure 67. Commonwealth Fusion Systems (CFS) Central Solenoid Model Coil (CSMC).          88
  • Figure 68. General Fusion reactor plasma injector.              100
  • Figure 69. Helion Polaris device.       107
  • Figure 70. Novatron’s nuclear fusion reactor design.          119
  • Figure 71. Realta Fusion Tandem Mirror Reactor.   130
  • Figure 72. Proxima Fusion Stellaris fusion plant.   135
  • Figure 73. ZAP Energy Fusion Core. 141
  • Figure 74. Liquid-Fluoride Thorium Reactor schematic.    167

 

 

 

 

 

 

 

Purchasers will receive the following:

  • PDF report download/by email. 
  • Comprehensive Excel spreadsheet of all data.
  • Mid-year Update

 

The Global Advanced Nuclear Technologies Market 2026-2045
The Global Advanced Nuclear Technologies Market 2026-2045
PDF download/by email.

 

Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer. To order by Bank Transfer (Invoice) select this option from the payment methods menu after adding to cart, or contact info@futuremarketsinc.com