The Global Advanced Semiconductor Packaging Market 2025-2035

0

cover

cover

  • Published: May 2025
  • Pages: 333
  • Tables: 52
  • Figures: 31

 

The advanced semiconductor packaging market is experiencing rapid growth, driven by technological demands that are pushing the industry beyond traditional Moore's Law scaling.  The market's growth is underpinned by the increasing importance of packaging technologies in addressing computing demands. The telecom and infrastructure sector currently dominates the market, and the mobile and consumer segment is emerging as the fastest-growing market.

3D stack memory technologies—including HBM, 3DS, 3D NAND, and CBA DRAM—are key growth drivers. The fastest-growing platforms include CBA DRAM, 3D SoC, active silicon interposers, 3D NAND stacks, and embedded silicon bridges. These technologies are critical for meeting the increasing performance, power, and miniaturization demands of modern electronics.

Heterogeneous integration and chiplet-based designs are revolutionizing semiconductor architecture. Major industry players like TSMC, Intel, AMD, and Nvidia are heavily investing in advanced packaging solutions to overcome the limitations of traditional monolithic chip designs. The adoption of hybrid bonding technologies is particularly transformative, enabling finer interconnect pitches and higher integration densities. The competitive landscape is evolving as foundries, IDMs, and OSATs vie for market share. In 2024, memory players including YMTC, Samsung, SK Hynix, and Micron. Top OSATs like ASE, SPIL, JCET, Amkor, and TF continue to provide assembly and test services while developing their high-end packaging capabilities through UHD FO and mold interposer technologies.

Looking toward 2035, several trends will shape the market. The integration of chiplets using 3D SoC, 2.5D interposers, embedded silicon bridges, and co-packaged optics will create increasingly complex "3.5D" packages. Panel-level packaging is gaining traction for larger packages, offering cost advantages over wafer-level processes. Simultaneously, the industry is transitioning from micro-bump technology to bumpless hybrid bonding, enabling finer interconnect pitches necessary for advanced nodes. By application, high-performance computing, AI accelerators, data centers, and autonomous vehicles represent the fastest-growing segments. The rise of AI and cloud computing is driving demand for advanced memory packaging solutions like HBM and specialized processors requiring sophisticated heterogeneous integration.

Further consolidation among suppliers is likely, with foundries and IDMs strengthening their packaging capabilities. The emergence of new players from regions like China will intensify competition, while the importance of equipment suppliers like BESI, Applied Materials, and EVG will grow with the adoption of cutting-edge bonding technologies.

The Global Advanced Semiconductor Packaging Market 2025-2035 provides a comprehensive analysis of the rapidly evolving advanced semiconductor packaging industry, examining how technological innovations are reshaping the semiconductor landscape beyond traditional Moore's Law scaling.

Report Contents include:

  • Market Size and Growth Projections: Detailed forecasts of the advanced semiconductor packaging market from 2025 to 2035, with comprehensive breakdowns by packaging type, units and wafers, end-use markets, and geographical regions.
  • Technology Evolution Analysis: In-depth examination of the transition from 1D to 3D packaging architectures, including technology roadmaps for interconnect density, reticle size considerations, and the shifting value balance between front-end and back-end processes.
  • Packaging Technology Deep Dives:
    • Wafer Level Packaging (WLP) and Fan-Out techniques
    • 2.5D and 3D packaging architectures
    • Silicon, organic, and glass-based interposer technologies
    • Through-silicon via (TSV) implementation strategies
    • Hybrid bonding and copper-to-copper interconnect innovations
    • Panel Level Packaging (PLP) advancements and scaling benefits
  • Emerging Technology Assessments:
    • Chiplet ecosystem development and standardization efforts
    • System-in-Package (SiP) integration approaches
    • Co-Packaged Optics (CPO) implementations
    • Monolithic 3D integration pathways
    • Advanced IC substrate technologies
  • Market Segmentation Analysis: Detailed examination of packaging requirements, challenges, and solutions across key application segments:
    • High Performance Computing and AI accelerators
    • Data center infrastructure
    • Mobile devices and consumer electronics
    • Automotive electronics and autonomous systems
    • IoT and edge computing devices
    • 5G/6G communication infrastructure
    • Aerospace and defense applications
    • Medical electronics
  • Competitive Landscape: Comprehensive profiles of 128+ companies spanning the entire advanced packaging ecosystem, including:
    • Integrated Device Manufacturers (IDMs)
    • Outsourced Semiconductor Assembly and Test (OSAT) providers
    • Foundries and semiconductor manufacturing leaders
    • Equipment and materials suppliers
    • Electronics OEMs driving packaging innovation. Companies profiled include AaltoSemi, Absolic, ACCRETECH, Adeia, Advanced Micro Devices (AMD), Amkor Technology, Anmuquan Intelligent Technology, Apple, Applied Materials, Ardentec, ARM, ASE, ASMPT, Besi, Biren Technology, Blue Ocean Smart System, Brewer Science, Broadcom, BroadPak, Cambricon Technologies, Capcon Semiconductor, CAS Microelectronics Integration, CD Micro-Technology, CEA-Leti, Cerebras, China Wafer Level CSP, Chipbond Technology, Chipletz, ChipMOS Technologies, Corning, Dewo Advanced Automation, Disco, Dupont, Ebara, Eliyan, EMC Semi-Conductor Technology, Entegris, EPS Technology, EV Group, GlobalFoundries, Global Unichip, Gloway, Goldenscope Tech, Gona Semiconductor Technology, Graphcore, Greatek Electronics, Hangke Chuangxing, Hanmi Semiconductor, HiSilicon, HLMC, Huatian Huichuang Technology, Huawei, Ibiden, IBM, ICLeague Technology, IMEC, Infineon Technologies, Integra, Inari Amertron Berhad, Intel, JCET Group, Jiangsu IC Assembly & Test, Jingdu Semiconductor, Keyang Semiconductor, King Yuan Electronics, Kioxia, KyLitho, Kyocera, Lam Research, Lapis Technology, LB Semicon, Leading Interconnect Semiconductor Technology, Lidrotec, Lux Semiconductors, Malaysian Pacific Industries Berhad, MediaTek, Micron Technology, Micross Components, Mitsubishi, National Center For Advanced Packaging China, NEC, Nepes Corporation, Nvidia, Onsemi, Orient Semiconductor Electronics, Panasonic, Powertech Technology, Pragmatic Semiconductor, Qorvo, Renesas and more....
  • Product Analysis: Detailed examination of commercialized advanced packaging implementations in leading-edge products:
    • GPU architectures (Nvidia Hopper/Blackwell, AMD Instinct, Intel)
    • AI accelerators (Google TPU, Amazon Trainium/Inferentia, Microsoft Maia)
    • Advanced CPUs (AMD Ryzen/EPYC, Intel Meteor Lake/Arrow Lake, AWS Graviton)
    • Memory technologies (HBM, 3D NAND, CBA DRAM)
  • Supply Chain Dynamics: Analysis of the evolving advanced packaging supply chain, including the shifting relationships between IDMs, foundries, OSATs, and materials/equipment providers.
  • Regional Market Assessment: Geographic breakdown of market opportunities, manufacturing capabilities, and investment trends across North America, Europe, Asia-Pacific, and emerging semiconductor hubs.
  • Technology Adoption Challenges: Critical examination of barriers to widespread implementation of advanced packaging technologies, including thermal management issues, cost considerations, design complexity, reliability concerns, and ecosystem standardization requirements.

 

The report provides essential strategic intelligence for semiconductor manufacturers, packaging providers, equipment suppliers, materials companies, electronics OEMs, and investors to navigate the complex advanced packaging landscape. It identifies key innovation vectors, potential market disruptions, and strategic partnership opportunities that will shape competitive positioning through 2035. With semiconductor packaging increasingly becoming the critical enabler for next-generation electronic systems—from AI accelerators to autonomous vehicles—this report delivers the actionable insights needed to capitalize on the industry's shift from traditional monolithic approaches to heterogeneous integration and advanced packaging solutions.

 

 

 

1             EXECUTIVE SUMMARY            19

  • 1.1        Semiconductor Packaging Technology Overview   19
    • 1.1.1    Key challenges              20
    • 1.1.2    Evolution of semiconductor packaging        21
      • 1.1.2.1 From 1D to 3D               22
    • 1.1.3    Conventional packaging approaches            24
    • 1.1.4    Advanced packaging approaches    24
  • 1.2        Semiconductor Supply Chain            26
  • 1.3        Advanced Packaging Supply Chain 26
  • 1.4        Key Technology Trends in Advanced Packaging      27
  • 1.5        Market Growth Drivers             28
  • 1.6        Competitive Landscape         28
  • 1.7        Market Challenges     29
  • 1.8        Future outlook              30
    • 1.8.1    Heterogeneous Integration   30
    • 1.8.2    Chiplets and Die Disaggregation      31
    • 1.8.3    Advanced Interconnects        32
    • 1.8.4    Scaling and Miniaturization  32
    • 1.8.5    Thermal Management             33
    • 1.8.6    Materials Innovation 33
    • 1.8.7    Supply Chain Developments               34
    • 1.8.8    Role of Simulation and Data Analytics          34

 

2             SEMICONDUCTOR PACKAGING TECHNOLOGIES 35

  • 2.1        Transistor Device Scaling       35
    • 2.1.1    Overview           35
    • 2.1.2    Heterogeneous Architecture Transition       36
    • 2.1.3    Co-Design Focus Areas          36
  • 2.2        Wafer Level Packaging            38
  • 2.3        Fan-Out Wafer Level Packaging        40
  • 2.4        Chiplets             41
    • 2.4.1    AMD EPYC and Ryzen processor families   43
    • 2.4.2    Disaggregation Needs              44
  • 2.5        Interconnection in Semiconductor Packaging        44
    • 2.5.1    Overview           45
    • 2.5.2    Wire Bonding 46
    • 2.5.3    Flip-chip bonding        46
    • 2.5.4    Interposer         47
      • 2.5.4.1 Glass interposer          48
    • 2.5.5    Through-silicon via (TSV) bonding    48
    • 2.5.6    Hybrid bonding with chiplets               48
  • 2.6        2.5D and 3D Packaging           49
    • 2.6.1    2.5D packaging            49
      • 2.6.1.1 Overview           49
        • 2.6.1.1.1           Silicon Interposer 2.5D           50
          • 2.6.1.1.1.1      Through Si Via (TSV)   51
          • 2.6.1.1.1.2      (SiO2) based redistribution layers (RDLs)   52
        • 2.6.1.1.2           2.5D Organic-based packaging         53
          • 2.6.1.1.2.1      Chip-first and chip-last fan-out packaging 54
          • 2.6.1.1.2.2      Organic substrates     55
          • 2.6.1.1.2.3      Organic RDL   56
        • 2.6.1.1.3           2.5D glass-based packaging               57
          • 2.6.1.1.3.1      Benefits             58
          • 2.6.1.1.3.2      Glass Si interposers in advanced packaging            59
          • 2.6.1.1.3.3      Glass material properties      59
          • 2.6.1.1.3.4      2/2 μm line/space metal pitch on glass substrates              60
          • 2.6.1.1.3.5      3D Glass Panel Embedding (GPE) packaging           61
          • 2.6.1.1.3.6      Thermal management             63
          • 2.6.1.1.3.7      Polymer dielectric films          63
          • 2.6.1.1.3.8      Challenges      63
          • 2.6.1.1.3.9      Comparison with other substrates  64
        • 2.6.1.1.4           2.5D vs. 3D Packaging             65
          • 2.6.1.2 Benefits             66
          • 2.6.1.3 Challenges      66
          • 2.6.1.4 Trends 66
          • 2.6.1.5 Market players               67
    • 2.6.2    3D packaging 67
      • 2.6.2.1 Overview           69
        • 2.6.2.1.1           Conventional 3D packaging 69
        • 2.6.2.1.2           Advanced 3D Packaging with through-silicon vias (TSVs) 70
        • 2.6.2.1.3           Three-dimensional (3D) hybrid bonding       71
          • 2.6.2.1.3.1      Devices using hybrid bonding             71
      • 2.6.2.2 3D Microbump technology    72
        • 2.6.2.2.1           Technologies  73
        • 2.6.2.2.2           Challenges      74
        • 2.6.2.2.3           Bumpless copper-to-copper (Cu-Cu) hybrid bonding        74
      • 2.6.2.3 Trends 75
        • 2.6.2.3.1           3D interconnect trends           77
      • 2.6.2.4 Hybrid Bond and Fusion Bond            78

 

3             WAFER-LEVEL PACKAGING  78

  • 3.1        Introduction    79
    • 3.1.1    WLP to PLP      79
  • 3.2        Benefits             79
  • 3.3        Types of Wafer Level Packaging        80
    • 3.3.1    Wafer Level Chip Scale Packaging  81
      • 3.3.1.1 Overview           81
      • 3.3.1.2 Advantages     81
      • 3.3.1.3 Applications   82
    • 3.3.2    Wafer Level Fan-Out Packaging        82
      • 3.3.2.1 Overview           82
      • 3.3.2.2 Advantages     83
      • 3.3.2.3 Applications   84
    • 3.3.3    Wafer Level Fan-In Packaging             85
      • 3.3.3.1 Overview           85
      • 3.3.3.2 Advantages     85
      • 3.3.3.3 Applications   86
    • 3.3.4    Other Types of WLP    86
      • 3.3.4.1 Cu-Pillar Flip Chip      86
      • 3.3.4.2 Advantages     86
        • 3.3.4.2.1           Applications   87
      • 3.3.4.3 Embedded Wafer Level BGA (eWLB)              87
      • 3.3.4.4 Advantages     88
        • 3.3.4.4.1           Applications   89
      • 3.3.4.5 Chip-last FO-WLP       89
        • 3.3.4.5.1           Advantages     89
        • 3.3.4.5.2           Applications   90
      • 3.3.4.6 Wafer-on-Wafer (WoW)          91
        • 3.3.4.6.1           Applications   91
  • 3.4        WLP Manufacturing Processes          92
    • 3.4.1    Wafer Preparation       92
    • 3.4.2    RDL Buildup   93
    • 3.4.3    Bumping           93
    • 3.4.4    Encapsulation               93
    • 3.4.5    Integration       94
    • 3.4.6    Test and Singulation  94
  • 3.5        Wafer Level Packaging Trends            95
  • 3.6        Applications of Wafer Level Packaging         96
    • 3.6.1    Mobile and Consumer Electronics  96
    • 3.6.2    Automotive Electronics           96
    • 3.6.3    IoT and Industrial         96
    • 3.6.4    High Performance Computing            97
    • 3.6.5    Aerospace and Defense         97
  • 3.7        Wafer Level Packaging Outlook         97

 

4             SYSTEM-IN-PACKAGE AND HETEROGENEOUS INTEGRATION     98

  • 4.1        Introduction    99
  • 4.2        Approaches for heterogenous integration  100
    • 4.2.1    Technology Building Blocks  100
  • 4.3        SiP Manufacturing Approaches         101
    • 4.3.1    2.5D Integrated Interposers  102
    • 4.3.2    Multi-Chip Modules   102
    • 4.3.3    3D Stacked packages              103
    • 4.3.4    Fan-Out Wafer Level Packaging        103
    • 4.3.5    Flip Chip Package-on-Package          103
  • 4.4        SiP Component Integration  104
  • 4.5        Heterogeneous Integration Drivers  104
  • 4.6        Trends Driving SiP Adoption 105
  • 4.7        SiP Applications           107
  • 4.8        SiP Industry Landscape          107
  • 4.9        Future Outlook on Heterogeneous Integration        108
  • 4.10     CPO (Co-Packaged Optics)  110
    • 4.10.1 Co-packaging approaches   110
    • 4.10.2 Heterogeneous integration of EIC and PIC 111
    • 4.10.3 Advantages and limitations  112
  • 4.11     IC Substrates 113

 

5             MONOLITHIC 3D IC   113

  • 5.1        Overview           114
    • 5.1.1    Transitioning from 2D Systems           114
    • 5.1.2    Motivation for developing monolithic 3D manufacturing 114
    • 5.1.3    Improved M3D Interconnect Density              114
    • 5.1.4    Heterogenous 3D vs Monolithic 3D 116
    • 5.1.5    2D Materials   116
  • 5.2        Benefits             117
  • 5.3        Challenges      118
  • 5.4        Future outlook              118

 

6             MARKETS AND APPLICATIONS           120

  • 6.1        Market value chain     120
    • 6.1.1    SiP OEM/Designers    121
    • 6.1.2    Chiplet OEM/Designer and Chiplet Foundry             121
    • 6.1.3    Chiplet Integrator        122
      • 6.1.3.1 Integrated Device Manufacturers (IDMs)     122
      • 6.1.3.2 Outsourced Semiconductor Assembly and Test (OSAT) Providers             122
    • 6.1.4    Material Suppliers       122
    • 6.1.5    Equipment Suppliers                122
    • 6.1.6    Substrate and PCB suppliers               122
    • 6.1.7    EDA Tools Suppliers   123
    • 6.1.8    Interposer Foundry    123
  • 6.2        Packaging trends by market 123
    • 6.2.1    Mobile Devices             124
    • 6.2.2    High-Performance Computing (HPC)             125
    • 6.2.3    Automotive      125
    • 6.2.4    Internet of Things (IoT)             125
    • 6.2.5    Consumer Electronics             126
    • 6.2.6    Aerospace and Defense         126
    • 6.2.7    Medical Devices           126
  • 6.3        Design requirements 127
  • 6.4        Artificial Intelligence (AI)        128
    • 6.4.1    Challenges in AI           128
    • 6.4.2    Advanced Packaging Solutions         128
      • 6.4.2.1 2.5D and 3D Integration          128
      • 6.4.2.2 Chiplet-based Packaging      129
      • 6.4.2.3 Wafer-Level Packaging (WLP)             129
    • 6.4.3    Addressing AI Challenges through Advanced Packaging  129
      • 6.4.3.1 Processing Power        129
      • 6.4.3.2 Memory Bandwidth   129
      • 6.4.3.3 Energy Efficiency         129
      • 6.4.3.4 Scalability        130
    • 6.4.4    Applications   130
      • 6.4.4.1 Data Center and Cloud Computing 130
      • 6.4.4.2 Edge Devices and IoT                130
      • 6.4.4.3 Healthcare and Medical Devices      130
      • 6.4.4.4 Autonomous Vehicles              130
  • 6.5        Mobile Devices             131
    • 6.5.1    Challenges      131
    • 6.5.2    Advanced Packaging Solutions         132
      • 6.5.2.1 System-in-Package (SiP)        132
      • 6.5.2.2 Fan-Out Wafer-Level Packaging (FOWLP)   132
      • 6.5.2.3 3D IC Packaging          132
      • 6.5.2.4 Wafer-Level Chip-Scale Packaging (WLCSP)            132
    • 6.5.3    Addressing Challenges through Advanced Packaging        132
      • 6.5.3.1 Power Consumption and Thermal Management    133
      • 6.5.3.2 Size Constraints          133
      • 6.5.3.3 Cost     133
    • 6.5.4    Applications   133
      • 6.5.4.1 Smartphones 133
      • 6.5.4.2 Tablets                133
      • 6.5.4.3 Wearables       134
      • 6.5.4.4 AR/VR Devices              134
    • 6.5.5    Future trends 134
  • 6.6        High Performance Computing (HPC)             135
    • 6.6.1    Challenges      135
    • 6.6.2    Advanced Packaging Solutions for HPC       136
      • 6.6.2.1 2.5D and 3D Integration          136
      • 6.6.2.2 Hybrid bonding             136
      • 6.6.2.3 Multi-Chip Modules (MCMs)               137
      • 6.6.2.4 Chiplet-based Architectures                137
      • 6.6.2.5 Advanced Interconnect Technologies           138
    • 6.6.3    Addressing HPC Challenges through Advanced Packaging            138
      • 6.6.3.1 Performance Scaling 138
      • 6.6.3.2 Power Consumption 138
      • 6.6.3.3 Interconnect Bandwidth        139
      • 6.6.3.4 Reliability         139
    • 6.6.4    Applications   139
      • 6.6.4.1 Supercomputers          140
      • 6.6.4.2 Data Center and Cloud Computing 140
      • 6.6.4.3 Artificial Intelligence and Machine Learning             140
      • 6.6.4.4 Scientific Computing and Simulation            140
      • 6.6.4.5 Co-Packaged Optics 140
        • 6.6.4.5.1           Network Switch            140
        • 6.6.4.5.2           Optical communication in data centers       141
        • 6.6.4.5.3           Thermal Management             141
        • 6.6.4.5.4           Challenges in CPO     141
        • 6.6.4.5.5           Package Structure       141
        • 6.6.4.5.6           Fan-Out Embedded Bridge (FOEB) structure            142
        • 6.6.4.5.7           Advancing Switching and AI Networks          142
    • 6.6.5    Future Trends 143
  • 6.7        Automotive Electronics           144
    • 6.7.1    Challenges      144
    • 6.7.2    Advanced Packaging Solutions for Automotive Electronics            145
      • 6.7.2.1 System-in-Package (SiP)        145
      • 6.7.2.2 Flip-Chip and Wafer-Level Packaging (WLP)             145
      • 6.7.2.3 3D Integration and Through-Silicon Vias (TSVs)      145
    • 6.7.3    Addressing Automotive Electronics Challenges through Advanced Packaging 146
      • 6.7.3.1 ADAS/Autonomous driving systems               146
      • 6.7.3.2 Harsh Environment Reliability            146
      • 6.7.3.3 Safety and Reliability 146
      • 6.7.3.4 Miniaturization and Integration          147
      • 6.7.3.5 High-Speed Communication              147
      • 6.7.3.6 Thermal Management             147
    • 6.7.4    Applications   147
      • 6.7.4.1 Advanced Driver Assistance Systems (ADAS) and Autonomous Driving 147
        • 6.7.4.1.1           Radar packaging         148
      • 6.7.4.2 Electric Vehicle (EV) Power Electronics        149
      • 6.7.4.3 Infotainment and Telematics               149
      • 6.7.4.4 Sensors and Actuators            149
    • 6.7.5    Future Trends 150
  • 6.8        Internet of Things (IoT) Devices           151
    • 6.8.1    Challenges      151
    • 6.8.2    Advanced Packaging Solutions for IoT Devices        152
      • 6.8.2.1 Wafer-Level Packaging (WLP)             152
      • 6.8.2.2 System-in-Package (SiP)        152
      • 6.8.2.3 Fan-Out Wafer-Level Packaging (FOWLP)   152
      • 6.8.2.4 3D Packaging and Through-Silicon Vias (TSVs)        152
    • 6.8.3    Addressing IoT Device Challenges through Advanced Packaging               153
      • 6.8.3.1 Size Constraints          153
      • 6.8.3.2 Power Consumption 153
      • 6.8.3.3 Cost Pressures             153
      • 6.8.3.4 Integration and Functionality              153
      • 6.8.3.5 Reliability and Robustness   153
    • 6.8.4    Applications   154
      • 6.8.4.1 Wearable Devices       154
      • 6.8.4.2 Smart Home Devices                154
      • 6.8.4.3 Industrial IoT Devices                154
      • 6.8.4.4 Medical IoT Devices   154
    • 6.8.5    Future Trends 155
  • 6.9        5G & 6G Communications Infrastructure    156
    • 6.9.1    Challenges      156
    • 6.9.2    Trends in 5G and 6G packaging         156
    • 6.9.3    Advanced Packaging Solutions for 5G and 6G Communications Infrastructure                157
      • 6.9.3.1 Antenna-in-Package (AiP)      157
      • 6.9.3.2 System-in-Package (SiP)        158
      • 6.9.3.3 3D Packaging and Through-Silicon Vias (TSVs)        158
      • 6.9.3.4 Fan-Out Wafer-Level Packaging (FOWLP)   158
    • 6.9.4    Addressing 5G and 6G Infrastructure Challenges through Advanced Packaging              159
      • 6.9.4.1 High-Frequency Operation   159
      • 6.9.4.2 Massive MIMO and Beamforming    160
      • 6.9.4.3 Energy Efficiency         160
      • 6.9.4.4 Cost and Scalability  160
      • 6.9.4.5 Thermal Management             161
    • 6.9.5    Applications   161
      • 6.9.5.1 Base Stations and Small Cells            161
      • 6.9.5.2 Backhaul and Fronthaul Networks  161
      • 6.9.5.3 Edge Computing and Network Slicing           161
      • 6.9.5.4 Satellite and Non-Terrestrial Networks          161
    • 6.9.6    Future Trends 162
  • 6.10     Aerospace and Defense Electronics               163
    • 6.10.1 Challenges      163
    • 6.10.2 Advanced Packaging Solutions for Aerospace and Defense Electronics                164
      • 6.10.2.1            3D Packaging and Through-Silicon Vias (TSVs)        164
      • 6.10.2.2            Chip-Scale Packaging (CSP) and Wafer-Level Packaging (WLP)  164
      • 6.10.2.3            Flip-Chip and Ball Grid Array (BGA) Packaging        164
      • 6.10.2.4            Hermetic Packaging and Sealing      164
    • 6.10.3 Addressing Aerospace and Defense Electronics Challenges through Advanced Packaging     164
      • 6.10.3.1            Size, Weight, and Power (SWaP) Optimization         164
      • 6.10.3.2            Harsh Environment Reliability            165
      • 6.10.3.3            High Performance and Speed             165
      • 6.10.3.4            Long-Term Reliability and Maintainability   165
      • 6.10.3.5            Security and Anti-Tamper Features  165
    • 6.10.4 Applications   166
      • 6.10.4.1            Avionics and Flight Control Systems              166
      • 6.10.4.2            Radar and Electronic Warfare Systems        166
      • 6.10.4.3            Satellite Communications and Payload Electronics            166
      • 6.10.4.4            Missile Guidance and Control Electronics 166
    • 6.10.5 Future Trends 166
  • 6.11     Medical Electronics   168
    • 6.11.1 Challenges      168
    • 6.11.2 Advanced Packaging Solutions for Medical Electronics    168
      • 6.11.2.1            3D Packaging and Through-Silicon Vias (TSVs)        169
      • 6.11.2.2            Wafer-Level Packaging (WLP) and Chip-Scale Packaging (CSP)  169
      • 6.11.2.3            Flexible and Stretchable Packaging 169
      • 6.11.2.4            Microfluidic Packaging            169
    • 6.11.3 Addressing Medical Electronics Challenges through Advanced Packaging         169
      • 6.11.3.1            Miniaturization              169
      • 6.11.3.2            Biocompatibility          170
      • 6.11.3.3            Reliability         170
      • 6.11.3.4            Power Efficiency          170
      • 6.11.3.5            High Performance       170
    • 6.11.4 Applications   171
      • 6.11.4.1            Implantable Devices 171
      • 6.11.4.2            Wearable Health Monitors    171
      • 6.11.4.3            Diagnostic Imaging Equipment          171
      • 6.11.4.4            Surgical Robotics and Instruments 171
    • 6.11.5 Future Trends 172
  • 6.12     Consumer Electronics             173
    • 6.12.1 Challenges      173
    • 6.12.2 Advanced Packaging Solutions for Consumer Electronics              173
      • 6.12.2.1            System-in-Package (SiP)        173
      • 6.12.2.2            Fan-Out Wafer-Level Packaging (FOWLP)   174
      • 6.12.2.3            3D Packaging and Through-Silicon Vias (TSVs)        174
      • 6.12.2.4            Embedded Die Packaging     174
    • 6.12.3 Addressing Consumer Electronics Challenges through Advanced Packaging   174
      • 6.12.3.1            Miniaturization              174
      • 6.12.3.2            Power Efficiency          175
      • 6.12.3.3            High Performance       175
      • 6.12.3.4            Cost Reduction            175
      • 6.12.3.5            Time-to-Market             175
    • 6.12.4 Applications   175
      • 6.12.4.1            Smartphones and Tablets      175
      • 6.12.4.2            Wearables and IoT Devices   176
      • 6.12.4.3            Gaming Consoles and VR/AR Devices           176
      • 6.12.4.4            Smart Home Devices                176
    • 6.12.5 Future Trends 176
  • 6.13     Additive manufacturing for advanced packaging  177
  • 6.14     Silicon photonics        179

 

7             GLOBAL MARKET FORECASTS            181

  • 7.1        By type                181
  • 7.2        By Units & Wafers       184
  • 7.3        By market         184
  • 7.4        By region           188
  • 7.5        3D SoC               191
  • 7.6        3D Stacked memory 191
  • 7.7        UHD FO / RDL Interposer       192
  • 7.8        2.5D Interposers          193
  • 7.9        Embedded Si bridge  193

 

8             MARKET TRENDS        194

  • 8.1        Data center      194
  • 8.2        AI and Graphics            195
  • 8.3        CPU      196
  • 8.4        Autonomous vehicles               198
  • 8.5        Roadmap         199
    • 8.5.1    Interconnect technology trend           199
    • 8.5.2    By interconnect density and technology node         199
    • 8.5.3    By reticle size 200
    • 8.5.4    By front-end vs back-end       200
    • 8.5.5    By 2.5D and 3D Technology Trends  201
    • 8.5.6    By I/O density, I/O pitch and package size  202
  • 8.6        Commercialized Products    203
    • 8.6.1    3D Memory     203
    • 8.6.2    GPU      204
      • 8.6.2.1 Nvidia Hopper and Blackwell              204
      • 8.6.2.2 AMD Instinct MI300 series    205
      • 8.6.2.3 Intel Jaguar Shores     206
    • 8.6.3    AI ASICs             206
      • 8.6.3.1 Intel Gaudi 2 & 3          206
      • 8.6.3.2 Google TPU     207
      • 8.6.3.3 Amazon Trainium & Inferentia             208
      • 8.6.3.4 Microsoft Azure Maia 100      209
      • 8.6.3.5 Huawei Ascend Series             209
    • 8.6.4    CPU      210
      • 8.6.4.1 AMD Ryzen AI Max Pro 300   210
      • 8.6.4.2 AMD Ryzen & EPYC    211
      • 8.6.4.3 AWS Graviton 212
      • 8.6.4.4 Intel Emerald Rapids 213
      • 8.6.4.5 Intel Meteor Lake         214
      • 8.6.4.6 Intel Arrow Lake & Lunar Lake             215

 

9             MARKET PLAYERS       216

  • 9.1        Integrated Device Manufacturers     217
  • 9.2        Outsourced Semiconductor Assembly and Test (OSAT) Companies        218
  • 9.3        Foundries         220
  • 9.4        Electronics OEMs       223
  • 9.5        Packaging Equipment and Materials Companies  225

 

10          MARKET CHALLENGES            226

 

11          COMPANY PROFILES                227 (128 company profiles)

 

12          RESEARCH METHODOLOGY              322

 

13          REFERENCES 322

 

List of Tables

  • Table 1. Evolution of semiconductor packaging.   21
  • Table 2. Summary of key advanced semiconductor packaging approaches.      25
  • Table 3. Key Technology Trends in Advanced Semiconductor Packaging.             27
  • Table 4. Market Growth Drivers for advanced semiconductor packaging.            28
  • Table 5. Challenges Facing Advanced Packaging Adoption.           29
  • Table 6. Challenges in transistor scaling.    38
  • Table 7. Use cases and benefits of using chiplets in semiconductor design.      42
  • Table 8.  Specifications of interconnection methods.         45
  • Table 9. Interconnection technique in semiconductor packaging              45
  • Table 10. Passive vs active interposer.          47
  • Table 11. TSMC Interposer comparison.      47
  • Table 12. Comparative benchmark overview table of key semiconductor interconnection technologies                49
  • Table 13. Fan-out packaging process overview.      53
  • Table 14. Comparison between mainstream silicon dioxide (SiO2) and leading organic dielectrics for electronic interconnect substrates.               56
  • Table 15. Benefits of glass in 2.5D glass-based packaging.            58
  • Table 16. Comparison between key properties of glass and polymer molding compounds commonly used in semiconductor packaging applications.   62
  • Table 17. Challenges of glass semiconductor packaging.               64
  • Table 18. Comparison between silicon, organic laminates and glass as packaging substrates.            64
  • Table 19. 2.5D vs. 3D packaging.      65
  • Table 20. 2.5D packaging challenges.           66
  • Table 21. Market players in 2.5D packaging.             67
  • Table 22. Advantages and disadvantages of 3D packaging.           69
  • Table 23. Comparison between 2.5D, 3D micro bump, and 3D hybrid bonding.               72
  • Table 24. Challenges in 3D Hybrid Bonding.             72
  • Table 25. Challenges in scaling bumps.       74
  • Table 26. Key methods for enabling copper-to-copper (Cu-Cu) hybrid bonding in advanced semiconductor packaging:  75
  • Table 27. Micro bumps vs Cu-Cu bumpless hybrid bonding.         75
  • Table 28. W2W vs D2W vs collective D2W – process and comparison.  78
  • Table 29. Comparison of WLP and PLP for large package size.     79
  • Table 30. Benefits of Wafer-Level Packaging.           79
  • Table 31. Types of wafer level packaging.   80
  • Table 32. Key trends shaping wafer level packaging.           95
  • Table 33. Packaging approaches utilized for assembling System-in-Package modules.              101
  • Table 34. Considerations for integrating key component categories into system-in-package (SiP) modules/          104
  • Table 35. Key factors driving adoption of heterogeneous integration through SiPs and multi-die packages.        105
  • Table 36. Key trends influencing adoption of System-in-Package modules.        105
  • Table 37.  System-in-package (SiP) module applications.               107
  • Table 38. Comparison between heterogeneous 3D integration and monolithic 3D integration.              116
  • Table 39.  Key 2D materials in monolithic 3D integrated circuits. 116
  • Table 40. Benefits of monolithic 3D ICs.      118
  • Table 41. Challenges of monolithic 3D ICs.               118
  • Table 42. Advanced semiconductor packaging trends by market.              123
  • Table 43. Design requirements in advanced packaging, by market.          127
  • Table 44. Global market for Advanced semiconductor packaging, 2020-2035, by packaging type, (billions USD).               181
  • Table 45. Global market for Advanced semiconductor packaging, 2020-2035, by Units & Wafers, (billions USD).               184
  • Table 46. Global market for Advanced semiconductor packaging, 2020-2035, by end use market (billions USD).               185
  • Table 47. Recent expansion activities by companies in Malaysia.              188
  • Table 48. Global market for Advanced semiconductor packaging, 2020-2035, by region (billions USD).                189
  • Table 49. Main Global Wafer Foundry Companies 2023.  221
  • Table 50. Market challenges for advanced semiconductor packaging.   226
  • Table 51. AMD AI chip range.               231
  • Table 52.  Intel's products that adopt 3D FOVEROS.            274

 

List of Figures

  • Figure 1. Timeline of different packaging technologies.     22
  • Figure 2. Evolution roadmap for semiconductor packaging.          24
  • Figure 3. Semiconductor Supply Chain.      26
  • Figure 4. Advanced packaging supply chain.            27
  • Figure 5. Scaling technology roadmap.        38
  • Figure 6. Wafer-level chip scale packaging (WLCSP)           39
  • Figure 7. Embedded wafer-level ball grid array (eWLB).     40
  • Figure 8. Fan-out wafer-level packaging (FOWLP).               41
  • Figure 9. Chiplet design.         42
  • Figure 10. Chiplet SoC.           44
  • Figure 11. 2D chip packaging.            50
  • Figure 12. Typical structure of 2.5D IC package utilizing interposer.          51
  • Figure 13. Fan-out chip-first process flow and Fan-out chip-last process flow. 55
  • Figure 14. Manufacturing process for glass interposers.   60
  • Figure 15. 3D Glass Panel Embedding (GPE) package.      62
  • Figure 16. Typical FOWLP structure.               83
  • Figure 17. System-in-Package (SiP) for HI.  99
  • Figure 18. 2.5D chiplet integration. 102
  • Figure 19. Advanced packaging supply chain.         121
  • Figure 20. Packaging of sensors used in advanced driver assistance systems (ADAS) and autonomous driving.               150
  • Figure 21. Global market for Advanced semiconductor packaging, 2020-2035, by packaging type, (billions USD).               183
  • Figure 22. Global market for Advanced semiconductor packaging, 2020-2035, by Units & Wafers, (billions USD).               184
  • Figure 23. Global market for Advanced semiconductor packaging, 2020-2035, by end use market (billions USD).               187
  • Figure 24. Global market for Advanced semiconductor packaging, 2020-2035, by region (billions USD).                190
  • Figure 25. Absolic glass substrate.  229
  • Figure 26. AMD Radeon Instinct.       231
  • Figure 27. AMD Ryzen 7040. 231
  • Figure 28. Alveo V70. 231
  • Figure 29. Versal Adaptive SOC.        232
  • Figure 30. AMD’s MI300 chip.              232
  • Figure 31. 12-layer HBM3.     305

 

 

 

The Global Advanced Semiconductor Packaging Market 2025-2035
The Global Advanced Semiconductor Packaging Market 2025-2035
PDF download/by email.

The Global Advanced Semiconductor Packaging Market 2025-2035
The Global Advanced Semiconductor Packaging Market 2025-2035
PDF and Print Edition (including tracked delivery).

Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer. To order by Bank Transfer (Invoice) select this option from the payment methods menu after adding to cart, or contact info@futuremarketsinc.com