The Global Carbon Capture, Utilization, and Storage (CCUS) Market 2026-2046

0

cover

cover

  • Published: September 2025
  • Pages: 764
  • Tables: 277
  • Figures: 160

 

The global carbon capture, utilization and storage (CCUS) market represents one of the most rapidly expanding sectors in the clean energy transition, driven by urgent climate commitments and technological advancement.  The market's expansion is fundamentally driven by stringent emission criteria and regulations coupled with significant investments to achieve decarbonization. Corporate commitments are equally significant, with corporate net-zero commitments driving private sector investment and strengthening carbon pricing mechanisms creating additional revenue streams for CCUS projects.

Power generation represents the largest application segment, followed by oil and gas operations. The oil and gas industry utilizes CCUS technologies increasingly for enhanced oil recovery (EOR) projects. Industrial applications span cement, steel, chemicals, and petrochemicals, representing hard-to-abate sectors where CCUS provides the primary decarbonization pathway.

Despite promising growth trajectories, the CCUS market faces substantial challenges. High upfront costs and operational expenses pose significant threats to economic viability, especially in industries facing financial constraints. Uncertain regulatory landscapes with rapidly evolving frameworks create barriers to investment and stable market development. Revenue streams are not well established, making business cases challenging, as most projects currently rely on specific policy enablement. The CCUS market stands at an inflection point where technological maturity, regulatory support, and climate urgency are converging to create unprecedented growth opportunities across multiple industrial sectors globally.

The Global Carbon Capture, Utilization and Storage (CCUS) Market 2026-2046 provides the definitive analysis of the CCUS industry. This comprehensive 750-page plus report features detailed market forecasts, technology assessments across direct air capture, post-combustion systems, and CO2 utilization pathways, plus strategic insights for energy executives, climate investors, and industrial decision-makers. Includes granular segmentation by application (power generation, oil & gas, cement, steel, chemicals), regional analysis covering North America, Europe, and Asia-Pacific markets, regulatory landscape evolution, carbon pricing mechanisms, and exclusive profiles of 370+ leading companies. Essential intelligence on project pipelines, investment opportunities, emerging technologies, and competitive positioning in the transformative CCUS sector driving global decarbonization through 2046.

Report contents include:

  • Main sources of carbon dioxide emissions and global impact analysis
  • CO2 as a commodity: market dynamics and value chain development
  • Climate targets alignment and CCUS role in net-zero commitments
  • Key market drivers, trends, and growth catalysts (2026-2046)
  • Current market status and comprehensive future outlook projections
  • Industry developments timeline and major milestones (2020-2025)
  • Investment landscape analysis including venture capital funding trends
  • Government initiatives and policy environment across key regions
  • Commercial CCUS facilities mapping: operational and under development
  • Economics of CCUS projects and cost-benefit analysis
  • Value chain structure and key market barriers identification
  • Carbon pricing mechanisms and business model frameworks
  • Global market forecasts with capacity and revenue projections
  • Carbon Dioxide Capture Technologies
    • Comprehensive analysis of 90%+ and 99% capture rate technologies
    • Point source capture from power plants, industrial facilities, and transportation
    • Blue hydrogen production pathways and market integration
    • Cement industry CCUS applications and sector-specific challenges
    • Maritime carbon capture solutions and implementation strategies
    • Post-combustion, oxy-fuel, and pre-combustion capture processes
    • Advanced separation technologies: absorption, adsorption, and membranes
    • Direct air capture (DAC) technologies, deployment scenarios, and cost analysis
    • Hybrid capture systems and AI integration opportunities
    • Mobile carbon capture solutions and retrofitting strategies
  • Carbon Dioxide Removal (CDR) Methods
    • Conventional land-based CDR: wetland restoration and agroforestry
    • Technological CDR solutions and deployment strategies
    • BECCS (Bioenergy with Carbon Capture and Storage) implementation
    • Mineralization-based CDR including enhanced weathering
    • Afforestation/reforestation programs and soil carbon sequestration
    • Biochar production, applications, and carbon credit generation
    • Ocean-based CDR methods and marine carbon management
    • Monitoring, reporting, and verification (MRV) frameworks
  • Carbon Dioxide Utilization Applications 
    • CO2 conversion to fuels: e-methanol, synthetic diesel, and aviation fuels
    • Chemical production pathways and polymer manufacturing
    • Construction materials: concrete carbonation and building applications
    • Biological yield-boosting in greenhouses and algae cultivation
    • Enhanced oil recovery (EOR) integration and optimization
    • Digital solutions, IoT integration, and blockchain applications
    • Novel applications: 3D printing materials and energy storage
  • Storage & Transportation Infrastructure
    • Geological storage site selection and capacity assessment
    • Pipeline networks, shipping solutions, and multimodal transport
    • Safety systems, monitoring technologies, and risk management
    • Cost analysis across different transportation methods
    • Smart infrastructure development and hub strategies
  • Regional Market Analysis
  • Company Profiles
    • Detailed analysis of 370+ companies across the CCUS value chain
    • Technology developers, equipment manufacturers, and service providers
    • Financial performance, strategic partnerships, and competitive positioning
    • Innovation pipelines, patent landscapes, and market strategies
 

This comprehensive report features detailed strategic analysis of over 370 leading companies spanning the entire CCUS ecosystem. The extensive company portfolio encompasses major industrial emitters and technology pioneers including 3R-BioPhosphate, Adaptavate, Again, Aeroborn B.V., Aether Diamonds, AirCapture LLC, Aircela Inc, Airco Process Technology, Air Company, Air Liquide S.A., Air Products and Chemicals Inc., Air Protein, Airex Energy, AirHive, Airovation Technologies, Algal Bio Co. Ltd., Algenol, Algiecel ApS, Andes Ag Inc., Aqualung Carbon Capture, Arborea, Arca, Arkeon Biotechnologies, Asahi Kasei, AspiraDAC Pty Ltd., Aspiring Materials, Atoco, Avantium N.V., Avnos Inc., Aymium, Axens SA, Azolla, Barton Blakeley Technologies Ltd., BASF Group, BC Biocarbon, BP PLC, Biochar Now, Bio-Logica Carbon Ltd., Biomacon GmbH, Biosorra, Blue Planet Systems Corporation, Blusink Ltd., Boomitra, Brineworks, BluSky Inc., Breathe Applied Sciences, Bright Renewables, Brilliant Planet Systems, bse Methanol GmbH, C-Capture, C4X Technologies Inc., C2CNT LLC, Calcin8 Technologies Limited, Cambridge Carbon Capture Ltd., Capchar Ltd., Captura Corporation, Captur Tower, Capture6, Carba, CarbiCrete, Carbfix, Carboclave, Carbo Culture, Carbofex Oy, Carbominer, Carbonade, Carbonaide Oy, Carbonaught Pty Ltd., CarbonFree, Carbonova, CarbonScape Ltd., Carbon8 Systems, Carbon Blade, Carbon Blue, CarbonBuilt, Carbon CANTONNE, Carbon Capture Inc., Carbon Capture Machine UK, Carbon Centric AS, Carbon Clean Solutions Limited, Carbon Collect Limited, CarbonCure Technologies Inc., Carbon Geocapture Corp, Carbon Engineering Ltd., Carbon Infinity Limited, Carbon Limit, Carbon Neutral Fuels, Carbon Recycling International, Carbon Re, Carbon Reform Inc., Carbon Ridge Inc., Carbon Sink LLC, CarbonStar Systems, Carbon Upcycling Technologies, Carbonfree Chemicals, CarbonMeta Research Ltd, CarbonOrO Products B.V., CarbonQuest, Carbon-Zero US LLC, Carbyon BV, Cella Mineral Storage, Cemvita Factory Inc., CERT Systems Inc., CFOAM Limited, Charm Industrial, Chevron Corporation, Chiyoda Corporation, China Energy Investment Corporation, Citroniq Chemicals LLC, Clairity Technology, Climeworks, CNF Biofuel AS, CO2 Capsol, CO280, CO2Rail Company, CO2CirculAir B.V., Compact Carbon Capture AS, Concrete4Change, Cool Planet Energy Systems, CORMETECH, Coval Energy B.V., Covestro AG, C-Quester Inc., C-Questra, Cquestr8 Limited, CREW Carbon, CyanoCapture, D-CRBN, Decarbontek LLC, Deep Branch Biotechnology, Deep Sky, Denbury Inc., Dimensional Energy, Dioxide Materials, Dioxycle, Drax, 8Rivers, Earth RepAIR, Ebb Carbon, Ecocera, ecoLocked GmbH, EDAC Labs, Eion Carbon, Econic Technologies Ltd, EcoClosure LLC, Electrochaea GmbH, Emerging Fuels Technology, Empower Materials Inc., Enerkem Inc., enaDyne GmbH, Entropy Inc., E-Quester, Equatic, Equinor ASA, Evonik Industries AG, Exomad Green, ExxonMobil, 44.01, Fairbrics, Fervo Energy, Fluor Corporation, Fortera Corporation, Framergy Inc., Freres Biochar, FuelCell Energy Inc., Funga, GE Gas Power, Giammarco Vetrocoke, GigaBlue, Giner Inc., Global Algae Innovations, Global Thermostat LLC, Graphyte, Grassroots Biochar AB, Graviky Labs, GreenCap Solutions AS, Greenlyte Carbon Technologies, Greeniron H2 AB, Green Sequest, Gulf Coast Sequestration, greenSand, Hago Energetics, Haldor Topsoe, Heimdal CCU, Heirloom Carbon Technologies, High Hopes Labs, Holcim Group, Holocene, Holy Grail Inc., Honeywell, Oy Hydrocell Ltd., Hyvegeo, 1point8, IHI Corporation, Immaterial Ltd, Ineratec GmbH, Infinitree LLC, Innovator Energy, InnoSepra LLC, Inplanet GmbH, InterEarth, ION Clean Energy Inc., Japan CCS Co. Ltd., Jupiter Oxygen Corporation, Kawasaki Heavy Industries Ltd., KC8 Capture Technologies, Krajete GmbH, LanzaJet Inc., Lanzatech, Lectrolyst LLC, Levidian Nanosystems, Limenet, The Linde Group, Liquid Wind AB, Lithos Carbon, Living Carbon, Loam Bio, Low Carbon Korea, Low Carbon Materials, Made of Air GmbH, Mango Materials Inc., Mantel Capture, Mars Materials, Mattershift, MCI Carbon, Mercurius Biorefining, Minera Systems, Mineral Carbonation International Carbon, Mission Zero Technologies, Mitsui Chemicals Inc., Mitsubishi Heavy Industries Ltd., MOFWORX, Molten Industries Inc., Mosaic Materials Inc., Mote, Myno Carbon, Nanyang Zhongju Tianguan Low Carbon Technology Company, NEG8 Carbon, NeoCarbon, Net Power LLC, NetZero, Neustark AG, Nevel AB, Newlight Technologies LLC, New Sky Energy, Njord Carbon, Norsk e-Fuel AS, Novocarbo GmbH, novoMOF AG and more.....

 

The report includes these components:

  • PDF report download/by email. Print edition also available. 
  • Comprehensive Excel spreadsheet of all data.
  • Mid-year Update

 

The Global Carbon Capture, Utilization, and Storage (CCUS) Market 2026-2046
The Global Carbon Capture, Utilization, and Storage (CCUS) Market 2026-2046
Instant PDF download.

The Global Carbon Capture, Utilization, and Storage (CCUS) Market 2026-2046
The Global Carbon Capture, Utilization, and Storage (CCUS) Market 2026-2046
Instant PDF download and Print Edition (including tracked delivery).

Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer. To order by Bank Transfer (Invoice) select this option from the payment methods menu after adding to cart, or contact info@futuremarketsinc.com

 

1             EXECUTIVE SUMMARY            38

  • 1.1        Main sources of carbon dioxide emissions 38
  • 1.2        CO2 as a commodity                39
  • 1.3        Meeting climate targets          42
  • 1.4        Market drivers and trends      42
  • 1.5        The current market and future outlook         43
  • 1.6        CCUS Industry developments 2020-2025 44
  • 1.7        CCUS investments     50
    • 1.7.1    Venture Capital Funding         50
      • 1.7.1.1 2010-2024      51
      • 1.7.1.2 CCUS VC deals 2022-2025  52
  • 1.8        Government CCUS initiatives and policy environment       55
    • 1.8.1    North America              56
    • 1.8.2    Europe                56
    • 1.8.3    Asia      57
      • 1.8.3.1 Japan  57
      • 1.8.3.2 Singapore         57
      • 1.8.3.3 China  58
  • 1.9        Market map    60
  • 1.10     Commercial CCUS facilities and projects  63
    • 1.10.1 Facilities           63
      • 1.10.1.1            Operational     63
      • 1.10.1.2            Under development/construction    66
  • 1.11     Economics of CCUS projects              71
    • 1.11.1 CAPEX Reduction Strategies                71
    • 1.11.2 OPEX Reduction Approaches             71
    • 1.11.3 Emerging Technology Solutions         71
  • 1.12     CCUS Value Chain     72
  • 1.13     Key market barriers for CCUS             73
  • 1.14     CCUS and the energy trilemma         74
  • 1.15     Growth markets for CUS        75
  • 1.16     Carbon pricing              76
    • 1.16.1 Compliance Carbon Pricing Mechanisms  77
    • 1.16.2 Alternative to Carbon Pricing: 45Q Tax Credits        78
    • 1.16.3 Business models         79
      • 1.16.3.1            Full chain         80
      • 1.16.3.2            Networks and hub model      81
      • 1.16.3.3            Partial-chain  81
      • 1.16.3.4            Carbon dioxide utilization business model 82
    • 1.16.4 The European Union Emission Trading Scheme (EU ETS)  82
    • 1.16.5 Carbon Pricing in the US        83
    • 1.16.6 Carbon Pricing in China          84
    • 1.16.7 Voluntary Carbon Markets    84
    • 1.16.8 Challenges with Carbon Pricing        85
  • 1.17     Global market forecasts         86
    • 1.17.1 CCUS capture capacity forecast by end point         86
    • 1.17.2 Capture capacity by region to 2046, Mtpa  87
    • 1.17.3 Revenues          88
    • 1.17.4 CCUS capacity forecast by capture type     88
    • 1.17.5 Cost projections 2025-2046 89

 

2             INTRODUCTION          91

  • 2.1        What is CCUS?             91
    • 2.1.1    Carbon Capture           96
      • 2.1.1.1 Source Characterization        96
      • 2.1.1.2 Purification      96
      • 2.1.1.3 CO2 capture technologies    97
    • 2.1.2    Carbon Utilization      100
      • 2.1.2.1 CO2 utilization pathways       101
    • 2.1.3    Carbon storage            101
      • 2.1.3.1 Passive storage            101
      • 2.1.3.2 Enhanced oil recovery              102
  • 2.2        Transporting CO2        102
    • 2.2.1    Methods of CO2 transport    102
      • 2.2.1.1 Pipeline              104
      • 2.2.1.2 Ship      104
      • 2.2.1.3 Road    104
      • 2.2.1.4 Rail       104
    • 2.2.2    Safety  105
  • 2.3        Costs  106
    • 2.3.1    Cost of CO2 transport              107
  • 2.4        Carbon credits              109
  • 2.5        Life Cycle Assessment (LCA) of CCUS Technologies           110
  • 2.6        Environmental Impact Assessment                112
  • 2.7        Social acceptance and public perception  112
  • 2.8        Fate of CO2     113

 

3             CARBON DIOXIDE CAPTURE               115

  • 3.1        Historical CO2 capture           115
  • 3.2        CO₂ capture technologies     115
  • 3.3        Maturity of technologies         118
  • 3.4        Technology selection                119
  • 3.5        Capture Percentages                122
    • 3.5.1    >90% capture rate      122
    • 3.5.2    99% capture rate         124
  • 3.6        CO2 capture agent performance      126
  • 3.7        Energy Consumption               127
  • 3.8        TRL       128
  • 3.9        Global Pipeline of Carbon Capture Facilities-Current and PLanned         129
  • 3.10     CO2 capture from point sources      131
    • 3.10.1 Energy Availability and Costs              134
    • 3.10.2 Power plants with CCUS        134
    • 3.10.3 Transportation              135
    • 3.10.4 Global point source CO2 capture capacities           135
    • 3.10.5 By source          137
    • 3.10.6 Blue hydrogen               138
      • 3.10.6.1            Steam-methane reforming (SMR)    139
      • 3.10.6.2            Autothermal reforming (ATR)               139
      • 3.10.6.3            Partial oxidation (POX)             140
      • 3.10.6.4            Sorption Enhanced Steam Methane Reforming (SE-SMR)               141
      • 3.10.6.5            Pre-Combustion vs. Post-Combustion carbon capture     142
      • 3.10.6.6            Blue hydrogen projects            143
      • 3.10.6.7            Costs  143
      • 3.10.6.8            Market players               144
    • 3.10.7 Carbon capture in cement    145
      • 3.10.7.1            CCUS Projects              146
      • 3.10.7.2            Carbon capture technologies             147
      • 3.10.7.3            Costs  148
      • 3.10.7.4            Challenges      148
    • 3.10.8 Maritime carbon capture       149
  • 3.11     Main carbon capture processes        149
    • 3.11.1 Materials           149
    • 3.11.2 Natural Gas Sweetening         151
    • 3.11.3 Post-combustion        151
      • 3.11.3.1            Chemicals/Solvents  153
      • 3.11.3.2            Amine-based post-combustion CO₂ absorption    155
      • 3.11.3.3            Physical absorption solvents              157
      • 3.11.3.4            Emerging Solvents for Carbon Capture        160
      • 3.11.3.5            Chilled Ammonia Process (CAP)       160
      • 3.11.3.6            Molten Borates             161
      • 3.11.3.7            Costs  162
      • 3.11.3.8            Alternatives to Solvent-Based Carbon Capture       162
    • 3.11.4 Oxy-fuel combustion                163
      • 3.11.4.1            Oxyfuel CCUS cement projects         164
      • 3.11.4.2            Chemical Looping-Based Capture  165
    • 3.11.5 Liquid or supercritical CO2: Allam-Fetvedt Cycle  166
    • 3.11.6 Pre-combustion           167
  • 3.12     Carbon separation technologies       168
    • 3.12.1 Absorption capture    169
    • 3.12.2 Adsorption capture    173
      • 3.12.2.1            Solid sorbent-based CO₂ separation             174
      • 3.12.2.2            Metal organic framework (MOF) adsorbents             176
      • 3.12.2.3            Zeolite-based adsorbents     176
      • 3.12.2.4            Solid amine-based adsorbents         176
      • 3.12.2.5            Carbon-based adsorbents   177
      • 3.12.2.6            Polymer-based adsorbents  178
      • 3.12.2.7            Solid sorbents in pre-combustion   178
      • 3.12.2.8            Sorption Enhanced Water Gas Shift (SEWGS)          179
      • 3.12.2.9            Solid sorbents in post-combustion 180
    • 3.12.3 Membranes    182
      • 3.12.3.1            Membrane-based CO₂ separation   183
      • 3.12.3.2            Gas Separation Membranes 186
      • 3.12.3.3            Post-combustion CO₂ capture           187
      • 3.12.3.4            Facilitated transport membranes    187
      • 3.12.3.5            Pre-combustion capture        188
      • 3.12.3.6            Advanced membrane materials        189
        • 3.12.3.6.1        Graphene-based membranes            190
        • 3.12.3.6.2        Metal-organic framework (MOF) membranes          190
      • 3.12.3.7            Membranes for Direct Air Capture   191
    • 3.12.4 Liquid or supercritical CO2 (Cryogenic) capture    192
    • 3.12.5 Calcium Looping         195
      • 3.12.5.1            Calix Advanced Calciner        195
    • 3.12.6 Other technologies    196
      • 3.12.6.1            LEILAC process            196
      • 3.12.6.2            CO₂ capture with Solid Oxide Fuel Cells (SOFCs) 197
      • 3.12.6.3            CO₂ capture with Molten Carbonate Fuel Cells (MCFCs) 198
      • 3.12.6.4            Microalgae Carbon Capture 198
    • 3.12.7 Comparison of key separation technologies             200
    • 3.12.8 Technology readiness level (TRL) of gas separation technologies               201
  • 3.13     Opportunities and barriers   201
  • 3.14     Costs of CO2 capture               202
  • 3.15     CO2 capture capacity              204
  • 3.16     Direct air capture (DAC)         206
    • 3.16.1 Technology description           206
      • 3.16.1.1            Sorbent-based CO2 Capture               206
      • 3.16.1.2            Solvent-based CO2 Capture                206
      • 3.16.1.3            DAC Solid Sorbent Swing Adsorption Processes    207
      • 3.16.1.4            Electro-Swing Adsorption (ESA) of CO2 for DAC     207
      • 3.16.1.5            Solid and liquid DAC 208
    • 3.16.2 Advantages of DAC    209
    • 3.16.3 Deployment    210
    • 3.16.4 Point source carbon capture versus Direct Air Capture     211
    • 3.16.5 Technologies  212
      • 3.16.5.1            Solid sorbents               213
      • 3.16.5.2            Liquid sorbents            215
      • 3.16.5.3            Liquid solvents             216
      • 3.16.5.4            Airflow equipment integration            216
      • 3.16.5.5            Passive Direct Air Capture (PDAC)   216
      • 3.16.5.6            Direct conversion        217
      • 3.16.5.7            Co-product generation            217
      • 3.16.5.8            Low Temperature DAC             217
      • 3.16.5.9            Regeneration methods            217
    • 3.16.6 Electricity and Heat Sources               218
    • 3.16.7 Commercialization and plants           218
    • 3.16.8 Metal-organic frameworks (MOFs) in DAC  219
    • 3.16.9 DAC plants and projects-current and planned        219
    • 3.16.10              Capacity forecasts     222
    • 3.16.11              Costs  223
    • 3.16.12              Market challenges for DAC   229
    • 3.16.13              Market prospects for direct air capture        230
    • 3.16.14              Players and production           232
    • 3.16.15              Co2 utilization pathways        233
    • 3.16.16              Markets for Direct Air Capture and Storage (DACCS)          235
      • 3.16.16.1         Fuels    236
        • 3.16.16.1.1     Overview           236
        • 3.16.16.1.2     Production routes       238
        • 3.16.16.1.3     Methanol          238
        • 3.16.16.1.4     Algae based biofuels 240
        • 3.16.16.1.5     CO₂-fuels from solar 241
        • 3.16.16.1.6     Companies     243
        • 3.16.16.1.7     Challenges      245
      • 3.16.16.2         Chemicals, plastics and polymers  245
        • 3.16.16.2.1     Overview           245
        • 3.16.16.2.2     Scalability        246
        • 3.16.16.2.3     Plastics and polymers              247
          • 3.16.16.2.3.1 CO2 utilization products        248
        • 3.16.16.2.4     Urea production           249
        • 3.16.16.2.5     Inert gas in semiconductor manufacturing 249
        • 3.16.16.2.6     Carbon nanotubes     249
        • 3.16.16.2.7     Companies     249
      • 3.16.16.3         Construction materials           251
        • 3.16.16.3.1     Overview           251
        • 3.16.16.3.2     CCUS technologies   252
        • 3.16.16.3.3     Carbonated aggregates          254
        • 3.16.16.3.4     Additives during mixing           256
        • 3.16.16.3.5     Concrete curing           256
        • 3.16.16.3.6     Costs  256
        • 3.16.16.3.7     Companies     256
        • 3.16.16.3.8     Challenges      258
      • 3.16.16.4         CO2 Utilization in Biological Yield-Boosting              259
        • 3.16.16.4.1     Overview           259
        • 3.16.16.4.2     Applications   259
          • 3.16.16.4.2.1 Greenhouses 259
          • 3.16.16.4.2.2 Algae cultivation          259
          • 3.16.16.4.2.3 Microbial conversion 259
        • 3.16.16.4.3     Companies     261
      • 3.16.16.5         Food and feed production     262
      • 3.16.16.6         CO₂ Utilization in Enhanced Oil Recovery   262
        • 3.16.16.6.1     Overview           262
          • 3.16.16.6.1.1 Process              263
          • 3.16.16.6.1.2 CO₂ sources   264
        • 3.16.16.6.2     CO₂-EOR facilities and projects         264
  • 3.17     Hybrid Capture Systems        266
  • 3.18     Artificial Intelligence in Carbon Capture      266
  • 3.19     Integration with Renewable Energy Systems             267
  • 3.20     Mobile Carbon Capture Solutions   268
  • 3.21     Carbon Capture Retrofitting 269
  • 3.22     Carbon Capture in Industry  270
    • 3.22.1 Cement              270
    • 3.22.2 Iron and Steel 272
      • 3.22.2.1            Post-combustion capture for BF-BOF processes   273
      • 3.22.2.2            Pre-Combustion Carbon Capture for Ironmaking 274
      • 3.22.2.3            Gas Recycling and Oxyfuel Combustion for Ironmaking   275
      • 3.22.2.4            Direct reduced iron (DRI) production             275
    • 3.22.3 Power Generation       278
      • 3.22.3.1            Power plants with carbon capture systems               278
      • 3.22.3.2            Coal Power Generation            279
      • 3.22.3.3            Gas Power Generation             279
        • 3.22.3.3.1        Gas Power CCS for Data Centers      280
      • 3.22.3.4            Power sector CCUS cost        281

 

4             CARBON DIOXIDE REMOVAL              283

  • 4.1        Conventional CDR on land   284
    • 4.1.1    Wetland and peatland restoration   284
    • 4.1.2    Cropland, grassland, and agroforestry         285
  • 4.2        Technological CDR Solutions              285
  • 4.3        Main CDR methods   286
  • 4.4        Novel CDR methods 287
  • 4.5        Value chain     289
  • 4.6        Deployment of carbon dioxide removal technologies         291
  • 4.7        Technology Readiness Level (TRL): Carbon Dioxide Removal Methods   292
  • 4.8        Carbon Credits             293
    • 4.8.1    Description     293
    • 4.8.2    Carbon pricing              293
    • 4.8.3    Carbon Removal vs Carbon Avoidance Offsetting 295
    • 4.8.4    Carbon credit certification    295
    • 4.8.5    Carbon registries         296
    • 4.8.6    Carbon credit quality                297
    • 4.8.7    Voluntary Carbon Credits      297
      • 4.8.7.1 Definition         297
      • 4.8.7.2 Purchasing      299
      • 4.8.7.3 Key Market Players and Projects        301
      • 4.8.7.4 Pricing 302
    • 4.8.8    Compliance Carbon Credits                304
      • 4.8.8.1 Definition         304
      • 4.8.8.2 Market players               305
      • 4.8.8.3 Pricing 305
    • 4.8.9    Durable carbon dioxide removal (CDR) credits        306
    • 4.8.10 Corporate commitments       308
    • 4.8.11 Increasing government support and regulations    308
    • 4.8.12 Advancements in carbon offset project verification and monitoring        309
    • 4.8.13 Potential for blockchain technology in carbon credit trading         309
    • 4.8.14 Buying and Selling Carbon Credits  310
      • 4.8.14.1            Carbon credit exchanges and trading platforms     310
      • 4.8.14.2            Over-the-counter (OTC) transactions            311
      • 4.8.14.3            Pricing mechanisms and factors affecting carbon credit prices  311
    • 4.8.15 Certification    312
    • 4.8.16 Challenges and risks 312
  • 4.9        Monitoring, reporting, and verification          314
  • 4.10     Government policies 314
  • 4.11     Bioenergy with Carbon Removal and Storage (BiCRS)       315
    • 4.11.1 Feedstocks      316
    • 4.11.2 BiCRS Conversion Pathways                317
  • 4.12     BECCS               319
    • 4.12.1 Technology overview 320
      • 4.12.1.1            Point Source Capture Technologies for BECCS       322
      • 4.12.1.2            Energy efficiency         322
      • 4.12.1.3            Heat generation           322
      • 4.12.1.4            Waste-to-Energy          323
      • 4.12.1.5            Blue Hydrogen Production    323
    • 4.12.2 Biomass conversion 323
    • 4.12.3 CO₂ capture technologies     324
    • 4.12.4 BECCS facilities           325
    • 4.12.5 Cost analysis 326
    • 4.12.6 BECCS carbon credits             327
    • 4.12.7 Sustainability 327
    • 4.12.8 Challenges      328
  • 4.13     Mineralization-based CDR    329
    • 4.13.1 Overview           329
    • 4.13.2 Storage in CO₂-Derived Concrete     331
    • 4.13.3 Oxide Looping               333
    • 4.13.4 Enhanced Weathering              333
      • 4.13.4.1            Overview           333
      • 4.13.4.2            Benefits             334
      • 4.13.4.3            Monitoring, Reporting, and Verification (MRV)         334
      • 4.13.4.4            Applications   334
      • 4.13.4.5            Commercial activity and companies             335
      • 4.13.4.6            Challenges and Risks               337
    • 4.13.5 Cost analysis 338
    • 4.13.6 SWOT analysis              338
  • 4.14     Afforestation/Reforestation  339
    • 4.14.1 Overview           339
    • 4.14.2 Carbon dioxide removal methods    340
      • 4.14.2.1            Nature-based CDR     340
      • 4.14.2.2            Land-based CDR         341
    • 4.14.3 Technologies  342
      • 4.14.3.1            Remote Sensing           342
      • 4.14.3.2            Drone technology and robotics         342
      • 4.14.3.3            Automated forest fire detection systems    343
      • 4.14.3.4            AI/ML   343
      • 4.14.3.5            Genetics            344
    • 4.14.4 Trends and Opportunities      344
    • 4.14.5 Challenges and Risks               345
      • 4.14.5.1            SWOT analysis              345
      • 4.14.5.2            Soil carbon sequestration (SCS)       346
        • 4.14.5.2.1        Overview           346
        • 4.14.5.2.2        Practices           347
        • 4.14.5.2.3        Measuring and Verifying         348
        • 4.14.5.2.4        Trends and Opportunities      349
        • 4.14.5.2.5        Carbon credits              350
        • 4.14.5.2.6        Challenges and Risks               350
        • 4.14.5.2.7        SWOT analysis              351
    • 4.14.5.3            Biochar              353
      • 4.14.5.3.1        What is biochar?         353
      • 4.14.5.3.2        Carbon sequestration              355
      • 4.14.5.3.3        Properties of biochar 355
      • 4.14.5.3.4        Feedstocks      358
      • 4.14.5.3.5        Production processes              358
        • 4.14.5.3.5.1   Sustainable production          359
        • 4.14.5.3.5.2   Pyrolysis            360
          • 4.14.5.3.5.2.1 Slow pyrolysis               360
          • 4.14.5.3.5.2.2 Fast pyrolysis 361
        • 4.14.5.3.5.3   Gasification    362
        • 4.14.5.3.5.4   Hydrothermal carbonization (HTC)  362
        • 4.14.5.3.5.5   Torrefaction     362
        • 4.14.5.3.5.6   Equipment manufacturers   363
      • 4.14.5.3.6        Biochar pricing             364
      • 4.14.5.3.7        Biochar carbon credits            364
        • 4.14.5.3.7.1   Overview           364
        • 4.14.5.3.7.2   Removal and reduction credits          365
        • 4.14.5.3.7.3   The advantage of biochar      365
        • 4.14.5.3.7.4   Prices  365
        • 4.14.5.3.7.5   Buyers of biochar credits       366
        • 4.14.5.3.7.6   Competitive materials and technologies    366
      • 4.14.5.3.8        Bio-oil based CDR      367
      • 4.14.5.3.9        Biomass burial for CO₂ removal        368
      • 4.14.5.3.10     Bio-based construction materials for CDR 369
      • 4.14.5.3.11     SWOT analysis              370
  • 4.15     Ocean-based CDR     371
    • 4.15.1 Overview           371
    • 4.15.2 CO₂ capture from seawater  372
    • 4.15.3 Ocean fertilisation      372
      • 4.15.3.1            Biotic Methods             373
      • 4.15.3.2            Coastal blue carbon ecosystems     373
      • 4.15.3.3            Algal Cultivation           374
      • 4.15.3.4            Artificial Upwelling     374
    • 4.15.4 Ocean alkalinisation 374
      • 4.15.4.1            Electrochemical ocean alkalinity enhancement    375
      • 4.15.4.2            Direct Ocean Capture              375
      • 4.15.4.3            Artificial Downwelling              376
    • 4.15.5 Monitoring, Reporting, and Verification (MRV)         376
    • 4.15.6 Ocean-based CDR Carbon Credits 376
    • 4.15.7 Trends and Opportunities      377
    • 4.15.8 Ocean-based carbon credits               377
    • 4.15.9 Cost analysis 377
    • 4.15.10              Challenges and Risks               377
    • 4.15.11              SWOT analysis              378
    • 4.15.12              Companies     379

 

5             CARBON DIOXIDE UTILIZATION        380

  • 5.1        Overview           380
    • 5.1.1    Current market status              380
  • 5.2        Competition with other low carbon technologies  385
  • 5.3        Carbon utilization business models               387
    • 5.3.1    Benefits of carbon utilization              388
    • 5.3.2    Market challenges      390
  • 5.4        Co2 utilization pathways        390
  • 5.5        Conversion processes             393
    • 5.5.1    Thermochemical         393
      • 5.5.1.1 Process overview        393
      • 5.5.1.2 Plasma-assisted CO2 conversion    395
    • 5.5.2    Electrochemical conversion of CO2               396
      • 5.5.2.1 Process overview        397
    • 5.5.3    Photocatalytic and photothermal catalytic conversion of CO2    399
    • 5.5.4    Catalytic conversion of CO2                399
    • 5.5.5    Biological conversion of CO2              399
    • 5.5.6    Copolymerization of CO2      402
    • 5.5.7    Mineral carbonation  404
  • 5.6        CO2-Utilization in Fuels          407
    • 5.6.1    Overview           407
    • 5.6.2    Production routes       410
    • 5.6.3    CO₂ -fuels in road vehicles    414
    • 5.6.4    CO₂ -fuels in shipping              414
    • 5.6.5    CO₂ -fuels in aviation                414
    • 5.6.6    Costs of e-fuel               415
    • 5.6.7    Power-to-methane     416
      • 5.6.7.1 Thermocatalytic pathway to e-methane      416
      • 5.6.7.2 Biological fermentation           417
      • 5.6.7.3 Costs  417
    • 5.6.8    Algae based biofuels 421
    • 5.6.9    DAC for e-fuels              422
    • 5.6.10 Syngas Production Options 423
    • 5.6.11 CO₂-fuels from solar 424
    • 5.6.12 Companies     426
    • 5.6.13 Challenges      428
    • 5.6.14 Global market forecasts 2025-2046              428
  • 5.7        CO2-Utilization in Chemicals             429
    • 5.7.1    Overview           429
    • 5.7.2    Carbon nanostructures          429
    • 5.7.3    Scalability        431
  • 5.7.4    Pathways          432
    • 5.7.4.1 Thermochemical         432
    • 5.7.4.2 Electrochemical           434
      • 5.7.4.2.1           Low-Temperature Electrochemical CO₂ Reduction              435
      • 5.7.4.2.2           High-Temperature Solid Oxide Electrolyzers              435
      • 5.7.4.2.3           Coupling H2 and Electrochemical CO₂ Reduction                436
    • 5.7.4.3 Microbial conversion 437
    • 5.7.4.4 Other   438
      • 5.7.4.4.1           Photocatalytic               438
      • 5.7.4.4.2           Plasma technology    439
  • 5.7.5    Applications   439
    • 5.7.5.1 Urea production           439
    • 5.7.5.2 CO₂-derived polymers             439
      • 5.7.5.2.1           Pathways          439
      • 5.7.5.2.2           Polycarbonate from CO₂         440
      • 5.7.5.2.3           Methanol to olefins (polypropylene production)     441
      • 5.7.5.2.4           Ethanol to polymers  441
    • 5.7.5.3 Inert gas in semiconductor manufacturing 441
  • 5.7.6    Companies     442
  • 5.7.7    Global market forecasts 2025-2046              444
  • 5.8        CO2-Utilization in Construction and Building Materials    445
    • 5.8.1    Overview           445
    • 5.8.2    Market drivers                445
    • 5.8.3    Key CO₂ utilization technologies in construction   448
    • 5.8.4    Carbonated aggregates          450
    • 5.8.5    Additives during mixing           451
    • 5.8.6    Concrete curing           453
    • 5.8.7    Costs  453
    • 5.8.8    Market trends and business models              453
    • 5.8.9    Carbon credits              456
    • 5.8.10 Companies     457
    • 5.8.11 Challenges      458
    • 5.8.12 Global market forecasts         459
  • 5.9        CO2-Utilization in Biological Yield-Boosting             460
    • 5.9.1    Overview           460
    • 5.9.2    CO₂ utilization in biological processes         460
    • 5.9.3    Applications   460
      • 5.9.3.1 Greenhouses 460
        • 5.9.3.1.1           CO₂ enrichment           460
      • 5.9.3.2 Algae cultivation          461
        • 5.9.3.2.1           CO₂-enhanced algae cultivation: open systems    461
        • 5.9.3.2.2           CO₂-enhanced algae cultivation: closed systems 462
      • 5.9.3.3 Microbial conversion 463
      • 5.9.3.4 Food and feed production     464
    • 5.9.4    Companies     465
    • 5.9.5    Global market forecasts 2025-2046              466
  • 5.10     CO₂ Utilization in Enhanced Oil Recovery   467
    • 5.10.1 Overview           467
      • 5.10.1.1            Process              467
      • 5.10.1.2            CO₂ sources   468
    • 5.10.2 CO₂-EOR facilities and projects         468
    • 5.10.3 Challenges      469
    • 5.10.4 Global market forecasts 2025-2046              470
  • 5.11     Enhanced mineralization       470
    • 5.11.1 Advantages     470
    • 5.11.2 In situ and ex-situ mineralization      471
    • 5.11.3 Enhanced mineralization pathways                472
    • 5.11.4 Challenges      472
  • 5.12     Digital Solutions and IoT in Carbon Utilization         473
  • 5.13     Blockchain Applications in Carbon Trading               474
  • 5.14     Carbon Utilization in Data Centers  475
  • 5.15     Integration with Smart City Infrastructure   475
  • 5.16     Novel Applications     476
    • 5.16.1 3D Printing with CO2-derived Materials       476
    • 5.16.2 CO2 in Energy Storage             477
    • 5.16.3 CO2 in Electronics Manufacturing  478

 

6             CARBON DIOXIDE STORAGE               479

  • 6.1        Introduction    479
  • 6.2        CO2 storage sites       481
    • 6.2.1    Storage types for geologic CO2 storage       482
    • 6.2.2    Oil and gas fields         483
    • 6.2.3    Saline formations       484
    • 6.2.4    Coal seams and shale             487
    • 6.2.5    Basalts and ultra-mafic rocks             487
  • 6.3        CO₂ leakage    488
  • 6.4        Global CO2 storage capacity              489
  • 6.5        CO₂ Storage Projects 494
  • 6.6        CO₂ -EOR          496
    • 6.6.1    Description     496
    • 6.6.2    Injected CO₂   496
    • 6.6.3    CO₂ capture with CO₂ -EOR facilities             497
    • 6.6.4    Companies     498
    • 6.6.5    Economics      499
  • 6.7        Costs  500
  • 6.8        Challenges      501
  • 6.9        Storage Monitoring Technologies      501
  • 6.10     Underground Hydrogen Storage Synergies 502
  • 6.11     Advanced Modelling and Simulation              502
  • 6.12     Storage Site Selection Criteria            503
  • 6.13     Risk Assessment and Management               504

 

7             CARBON DIOXIDE TRANSPORTATION          506

  • 7.1        Introduction    506
  • 7.2        CO₂ transportation methods and conditions           506
  • 7.3        CO₂ transportation by pipeline           507
  • 7.4        CO₂ transportation by ship   508
  • 7.5        CO₂ transportation by rail and truck               509
  • 7.6        Cost analysis of different methods 509
  • 7.7        Smart Pipeline Networks        510
  • 7.8        Transportation Hubs and Infrastructure       511
  • 7.9        Safety Systems and Monitoring         511
  • 7.10     Future Transportation Technologies               512
  • 7.11     Companies     513

 

8             COMPANY PROFILES                515 (374 company profiles)

 

9             APPENDICES  750

  • 9.1        Abbreviations 750
  • 9.2        Research Methodology           751
  • 9.3        Definition of Carbon Capture, Utilisation and Storage (CCUS)     751
  • 9.4        Technology Readiness Level (TRL)   752

 

10          REFERENCES 754

 

List of Tables

  • Table 1. Carbon Capture, Utilisation and Storage (CCUS) market drivers and trends.   42
  • Table 2. Carbon capture, usage, and storage (CCUS) industry developments 2020-2025.        44
  • Table 3. Global Investment in Carbon Capture Technologies (2010-2024)           51
  • Table 4. CCUS VC deals 2022-2025.              52
  • Table 5. CCUS government funding and investment-10 year outlook.      55
  • Table 6. Demonstration and commercial CCUS facilities in China.           58
  • Table 7. Global commercial CCUS facilities-in operation.               63
  • Table 8. Global commercial CCUS facilities-under development/construction.               66
  • Table 9. Cost Reduction Using Proven and Emerging Technologies.          72
  • Table 10. Key market barriers for CCUS.      74
  • Table 11. Key compliance carbon pricing initiatives around the world.   77
  • Table 12. CCUS business models: full chain, part chain, and hubs and clusters.            79
  • Table 13. CCUS capture capacity forecast by CO₂ endpoint, Mtpa of CO₂, to 2046.      87
  • Table 14. Capture capacity by region to 2046, Mtpa.          88
  • Table 15. CCUS revenue potential for captured CO₂ offtaker, billion US $ to 2046.        88
  • Table 16. CCUS capacity forecast by capture type, Mtpa of CO₂, to 2046.           88
  • Table 17. Point-source CCUS capture capacity forecast by CO₂ source sector, Mtpa of CO₂, to 2046.                88
  • Table 18. CCUS Cost Projections 2025-2046.         90
  • Table 19. CO2 utilization and removal pathways    92
  • Table 20. Approaches for capturing carbon dioxide (CO2) from point sources. 96
  • Table 21. CO2 capture technologies.             97
  • Table 22. Advantages and challenges of carbon capture technologies. 98
  • Table 23. Overview of commercial materials and processes utilized in carbon capture.             98
  • Table 24. Methods of CO2 transport.             103
  • Table 25. Comparison of CO2 Transportation Methods.   105
  • Table 26. Estimated capital costs for commercial-scale carbon capture.             106
  • Table 27. Key Milestones in Carbon Market Development                109
  • Table 28.Carbon Credit Prices by Market.   109
  • Table 29. Carbon Credit Project Types.         110
  • Table 30. Life Cycle Assessment of CCUS Technologies   111
  • Table 31. Environmental Impact Assessment for CCUS Technologies.   112
  • Table 32. Comparison of CO₂ capture technologies.           115
  • Table 33. Typical conditions and performance for different capture technologies.         118
  • Table 34. Conditions and Performance for Capture Technologies              119
  • Table 35. Carbon Capture Technology Providers for Existing Large-Scale Projects.        121
  • Table 36.Capture Percentages by technology.         123
  • Table 37. Metrics for CO2 Capture Agents. 127
  • Table 38. Energy consumption by technology.         128
  • Table 39. Technology Readiness of Carbon capture Technologies.            128
  • Table 40. Global CCUS Facilities Pipeline   130
  • Table 41. PSCC technologies.             131
  • Table 42. Point source examples.     132
  • Table 43. Comparison of point-source CO₂ capture systems        132
  • Table 44. Blue hydrogen projects.    143
  • Table 45. Commercial CO₂ capture systems for blue H2. 144
  • Table 46. Market players in blue hydrogen. 144
  • Table 47. CCUS Projects in the Cement Sector.      146
  • Table 48. Carbon capture technologies in the cement sector.      147
  • Table 49. Cost and technological status of carbon capture in the cement sector.           148
  • Table 50. Assessment of carbon capture materials              150
  • Table 51. Chemical solvents used in post-combustion.   153
  • Table 52. Comparison of key chemical solvent-based systems. 154
  • Table 53. Chemical absorption solvents used in current operational CCUS point-source projects.    156
  • Table 54.Amine Solvent Carbon Capture Technology Providers for Post-Combustion Capture              156
  • Table 55.Comparison of key physical absorption solvents.             157
  • Table 56.Physical solvents used in current operational CCUS point-source projects.  158
  • Table 57. Emerging solvents for carbon capture     159
  • Table 58. Emerging Solvents for Carbon Capture. 160
  • Table 59. Oxygen separation technologies for oxy-fuel combustion.        163
  • Table 60. Large-scale oxyfuel CCUS cement projects.       165
  • Table 61. Commercially available physical solvents for pre-combustion carbon capture.        168
  • Table 62. Main capture processes and their separation technologies.    168
  • Table 63. Absorption methods for CO2 capture overview.               169
  • Table 64. Commercially available physical solvents used in CO2 absorption.  171
  • Table 65. Adsorption methods for CO2 capture overview.               173
  • Table 66. Solid sorbents explored for carbon capture.       175
  • Table 67. Carbon-based adsorbents for CO₂ capture.        177
  • Table 68. Polymer-based adsorbents.           178
  • Table 69. Solid sorbents for post-combustion CO₂ capture.          180
  • Table 70. Emerging Solid Sorbent Systems.               180
  • Table 71. Membrane-based methods for CO2 capture overview.               182
  • Table 72. Comparison of membrane materials for CCUS 184
  • Table 73. Commercial status of membranes in carbon capture   185
  • Table 74. Membranes for pre-combustion capture.             189
  • Table 75. Status of cryogenic CO₂ capture technologies. 193
  • Table 76. Cryogenic Direct Air Capture Companies             194
  • Table 77. Benefits and drawbacks of microalgae carbon capture.             199
  • Table 78. Comparison of main separation technologies.  200
  • Table 79. Technology readiness level (TRL) of gas separation technologies          201
  • Table 80. Opportunities and Barriers by sector.      201
  • Table 81. DAC technologies.                206
  • Table 82. Advantages and disadvantages of DAC. 209
  • Table 83. Advantages of DAC as a CO2 removal strategy. 209
  • Table 84. Potential for DAC removal versus other carbon removal methods.      210
  • Table 85. Companies developing airflow equipment integration with DAC.         216
  • Table 86. Companies developing Passive Direct Air Capture (PDAC) technologies.       216
  • Table 87. Companies developing regeneration methods for DAC technologies.               217
  • Table 88. DAC companies and technologies.           219
  • Table 89. Global capacity of direct air capture facilities.  220
  • Table 90. DAC technology developers and production.     220
  • Table 91. DAC projects in development.      222
  • Table 92. DACCS carbon removal capacity forecast (million metric tons of CO₂ per year), 2024-2046, base case.       222
  • Table 93. DACCS carbon removal capacity forecast (million metric tons of CO₂ per year), 2030-2046, optimistic case.           223
  • Table 94. Costs summary for DAC.  223
  • Table 95. Typical cost contributions of the main components of a DACCS system.       225
  • Table 96. Cost estimates of DAC.     228
  • Table 97. Challenges for DAC technology.  229
  • Table 98. DAC companies and technologies.           232
  • Table 99. Example CO2 utilization pathways.           233
  • Table 100. Markets for Direct Air Capture and Storage (DACCS). 235
  • Table 101. Market overview for CO2 derived fuels.               236
  • Table 102. Compnaies in Methanol Production from CO2.             239
  • Table 103. Microalgae products and prices.              240
  • Table 104. Main Solar-Driven CO2 Conversion Approaches.         242
  • Table 105. Companies in CO2-derived fuel products.        243
  • Table 106. Commodity chemicals and fuels manufactured from CO2.  246
  • Table 107. CO2 utilization products developed by chemical and plastic producers.     248
  • Table 108. Companies in CO2-derived chemicals products.         249
  • Table 109. Carbon capture technologies and projects in the cement sector       252
  • Table 110. Companies in CO2 derived building materials.              256
  • Table 111. Market challenges for CO2 utilization in construction materials.       258
  • Table 112. Companies in CO2 Utilization in Biological Yield-Boosting.   261
  • Table 113. CO2 sequestering technologies and their use in food.              262
  • Table 114. Applications of CCS in oil and gas production.               262
  • Table 115. AI Applications in Carbon Capture.        267
  • Table 116. Renewable Energy Integration in Carbon Capture.       267
  • Table 117. Mobile Carbon Capture Applications.  268
  • Table 118. Carbon Capture Retrofitting.      269
  • Table 119. CCUS Projects in the Cement Sector    270
  • Table 120. Benchmarking Carbon Capture Technologies in the Cement Sector.               272
  • Table 121. Post-combustion capture for BF-BOF processes          273
  • Table 122. CCUS Project Pipeline for the Steel Sector.       276
  • Table 123.Market Drivers for Carbon Dioxide Removal (CDR).      283
  • Table 124. CDR versus CCUS              284
  • Table 125. Status and Potential of CDR Technologies.       285
  • Table 126. Main CDR methods.         286
  • Table 127. Novel CDR Methods         287
  • Table 128.Carbon Dioxide Removal Technology Benchmarking  288
  • Table 129. CDR Value Chain.              289
  • Table 130. Engineered Carbon Dioxide Removal Value Chain       290
  • Table 131. Carbon pricing and carbon markets       294
  • Table 132. Carbon Removal vs Emission Reduction Offsets.         295
  • Table 133. Carbon Crediting Programs.       296
  • Table 134. Channels for Purchasing Voluntary Carbon Credits    299
  • Table 135. Voluntary Carbon Credits Trading Platforms and Exchanges.               300
  • Table 136. Voluntary Carbon Credits Key Market Players and Projects.  301
  • Table 137. Nature-Based Solutions Market Dynamics.      302
  • Table 138. Voluntary Carbon Credits Pricing by Category and Project Type.        303
  • Table 139. Price Range Analysis by Project Quality and Type:        304
  • Table 140. Compliance Carbon Credits Key Market Players and Projects.            305
  • Table 141. Comparison of Voluntary and Compliance Carbon Credits.  305
  • Table 142. Durable Carbon Removal Buyers.           306
  • Table 143. Prices of CDR Credits.     307
  • Table 144. Major Corporate Carbon Credit Commitments.            308
  • Table 145. Key Carbon Market Regulations and Support Mechanisms.  308
  • Table 146. Carbon credit prices by company and technology.      309
  • Table 147. Carbon Credit Exchanges and Trading Platforms.         310
  • Table 148. OTC Carbon Market Characteristics.    311
  • Table 149. Challenges and Risks.    313
  • Table 150. TRL of Biomass Conversion Processes and Products by Feedstock.                315
  • Table 151. BiCRS feedstocks.             316
  • Table 152. BiCRS conversion pathways.      317
  • Table 153. BiCRS Technological Challenges.            319
  • Table 154. CO₂ capture technologies for BECCS.  324
  • Table 155. Existing and planned capacity for sequestration of biogenic carbon.              326
  • Table 156. Existing facilities with capture and/or geologic sequestration of biogenic CO2.       326
  • Table 157. Challenges of BECCS      328
  • Table 158. Ex Situ Mineralization CDR Methods.    330
  • Table 159. Source Materials for Ex Situ Mineralization.      330
  • Table 160. Companies in CO₂-derived Concrete.   332
  • Table 161. Enhanced Weathering Applications.     334
  • Table 162. Enhanced Weathering Materials and Processes.          336
  • Table 163. Enhanced Weathering Companies         336
  • Table 164. Trends and Opportunities in Enhanced Weathering.   337
  • Table 165. Challenges and Risks in Enhanced Weathering.            337
  • Table 166. Cost analysis of enhanced weathering.               338
  • Table 167. Nature-based CDR approaches.              340
  • Table 168. Comparison of A/R and BECCS.               341
  • Table 169. Forest Carbon Removal Projects.            341
  • Table 170. Companies in Robotics in A/R.  343
  • Table 171. Trends and Opportunities in Afforestation/Reforestation.       344
  • Table 172.Challenges and Risks in Afforestation/Reforestation. 345
  • Table 173. Soil carbon sequestration practices.     347
  • Table 174. Soil sampling and analysis methods.   348
  • Table 175. Remote sensing and modeling techniques.      348
  • Table 176. Carbon credit protocols and standards.             349
  • Table 177. Trends and opportunities in soil carbon sequestration (SCS).              349
  • Table 178. Key aspects of soil carbon credits.         350
  • Table 179. Challenges and Risks in SCS.     350
  • Table 180. Summary of key properties of biochar. 356
  • Table 181. Biochar physicochemical and morphological properties         356
  • Table 182. Biochar feedstocks-source, carbon content, and characteristics.    358
  • Table 183. Biochar production technologies, description, advantages and disadvantages.    359
  • Table 184. Comparison of slow and fast pyrolysis for biomass.  361
  • Table 185. Comparison of thermochemical processes for biochar production.                363
  • Table 186. Biochar production equipment manufacturers.            363
  • Table 187. Competitive materials and technologies that can also earn carbon credits.              366
  • Table 188. Bio-oil-based CDR pros and cons.          367
  • Table 189. Ocean-based CDR methods.     371
  • Table 190. Technology Readiness Level (TRL) Chart for Ocean-based CDR.        371
  • Table 191. Benchmarking of Ocean-based CDR Methods.              372
  • Table 192. Ocean-based CDR: Biotic Methods.      373
  • Table 193. Market Players in Ocean-based CDR.   379
  • Table 194. Carbon utilization revenue forecast by product (US$).              383
  • Table 195. Comparison of Low Carbon CO2 vs Incumbent Low Carbon Technologies.               386
  • Table 196. Carbon utilization business models.     387
  • Table 197. CO2 utilization and removal pathways.                388
  • Table 198. Market challenges for CO2 utilization. 390
  • Table 199. Example CO2 utilization pathways.        391
  • Table 200. CO2 derived products via Thermochemical conversion-applications, advantages and disadvantages.            393
  • Table 201. CO2 derived products via electrochemical conversion-applications, advantages and disadvantages.            397
  • Table 202. CO2 derived products via biological conversion-applications, advantages and disadvantages.            401
  • Table 203. Companies developing and producing CO2-based polymers.             403
  • Table 204. Companies developing mineral carbonation technologies.   405
  • Table 205. Comparison of emerging CO₂ utilization applications.              406
  • Table 206. Main routes to CO₂-fuels.              408
  • Table 207. Market overview for CO2 derived fuels.               408
  • Table 208. Main routes to CO₂ -fuels              411
  • Table 209.Comparison of e-fuels to fossil and biofuels.   412
  • Table 210. Existing and future CO₂-derived synfuels (kerosene, diesel, and gasoline) projects.. :         413
  • Table 211. CO2-Derived Methane Projects.               416
  • Table 212. Power-to-Methane projects worldwide.               417
  • Table 213. Power-to-Methane projects.        419
  • Table 214. Microalgae products and prices.              422
  • Table 215. Syngas Production Options for E-fuels.               423
  • Table 216. Main Solar-Driven CO2 Conversion Approaches.         425
  • Table 217. Companies in CO2-derived fuel products.        426
  • Table 218. CO₂ utilization forecast for fuels by fuel type (million tonnes of CO₂/year), 2025-2046.     428
  • Table 219. Global revenue forecast for CO₂-derived fuels by fuel type (million US$), 2025-2046.        428
  • Table 220. Commodity chemicals and fuels manufactured from CO2.  432
  • Table 221.CO₂-derived Chemicals: Thermochemical Pathways. 432
  • Table 222. Thermochemical Methods: CO₂-derived Methanol.    433
  • Table 223. CO₂-derived Methanol Projects.               433
  • Table 224. CO₂-Derived Methanol: Economic and Market Analysis (Next 5-10 Years).  434
  • Table 225. Electrochemical CO₂ Reduction Technologies.              434
  • Table 226. Comparison of RWGS and SOEC Co-electrolysis Routes.      435
  • Table 227. Cost Comparison of CO₂ Electrochemical Technologies.        436
  • Table 228. Technology Readiness Level (TRL): CO₂U Chemicals.               442
  • Table 229. Companies in CO2-derived chemicals products.         442
  • Table 230. CO₂ utilization forecast in chemicals by end-use (million tonnes of CO₂/year), 2025-2046.                444
  • Table 231. Global revenue forecast for CO₂-derived chemicals by end-use (million US$), 2025-2046.                444
  • Table 232. Carbon capture technologies and projects in the cement sector       448
  • Table 233. Prefabricated versus ready-mixed concrete markets .               451
  • Table 234. CO₂ utilization in concrete curing or mixing.    452
  • Table 235. CO₂ utilization business models in building materials.             454
  • Table 236. Companies in CO2 derived building materials.              457
  • Table 237. Market challenges for CO2 utilization in construction materials.       458
  • Table 238. CO₂ utilization forecast in building materials by end-use (million tonnes of CO₂/year), 2025-2046.  459
  • Table 239. Global revenue forecast for CO₂-derived building materials by product (million US$), 2025-2046.  459
  • Table 240. Enrichment Technology. 460
  • Table 241. Food and Feed Production from CO₂.   465
  • Table 242. Companies in CO2 Utilization in Biological Yield-Boosting.   465
  • Table 243. CO₂ utilization forecast in biological yield-boosting by end-use (million tonnes of CO₂ per year), 2025-2046.       466
  • Table 244. Global revenue forecast for CO₂ use in biological yield-boosting by end-use (million US$), 2025-2046.     466
  • Table 245. Applications of CCS in oil and gas production.               467
  • Table 246. CO₂ utilization forecast in enhanced oil recovery (million tonnes of CO₂/year), 2025-2046                470
  • Table 247. Global revenue forecast for CO₂-enhanced oil recovery (billion US$), 2025-2046. 470
  • Table 248. CO2 EOR/Storage Challenges.  473
  • Table 249. Digital and IoT Applications in Carbon Utilization.        473
  • Table 250. Blockchain Applications in Carbon Trading.     474
  • Table 251. Carbon Utilization Strategies in Data Centers.                475
  • Table 252. CCU Integration in Smart City Infrastructure.  476
  • Table 253. CO2-derived Materials in 3D Printing.   477
  • Table 254. CO2 Applications in Energy Storage.     478
  • Table 255. CO2 Applications in Electronics Manufacturing.          478
  • Table 256. Storage and utilization of CO2.  479
  • Table 257. Mechanisms of subsurface CO₂ trapping.         481
  • Table 258. Global depleted reservoir storage projects.      482
  • Table 259. Global CO2 ECBM storage projects.      482
  • Table 260. CO2 EOR/storage projects.          483
  • Table 261. Global storage sites-saline aquifer projects.    485
  • Table 262. Global storage capacity estimates, by region. 490
  • Table 263. MRV Technologies and Costs in CO₂ Storage. 492
  • Table 264.  Carbon storage challenges.       493
  • Table 265. Status of CO₂ Storage Projects. 494
  • Table 266. Types of CO₂ -EOR designs.         497
  • Table 267. CO₂ capture with CO₂ -EOR facilities.   497
  • Table 268. CO₂ -EOR companies.    498
  • Table 269. Carbon Capture Storage Monitoring Technologies.      502
  • Table 270. Storage Site Selection Criteria.  504
  • Table 271. Phases of CO₂ for transportation.            506
  • Table 272. CO₂ transportation methods and conditions. 506
  • Table 273. Status of CO₂ transportation methods in CCS projects.           507
  • Table 274. CO₂ pipelines Technical challenges.     507
  • Table 275. Cost comparison of CO₂ transportation methods        509
  • Table 276. Components of Smart Pipeline Networks.         510
  • Table 277. Components of CO2 Transportation Hubs.       511
  • Table 278. CO2 Pipeline Safety Systems and Monitoring. 512
  • Table 279. Emerging CO2 Transportation Technologies.   513
  • Table 280. CO₂ transport operators.               513
  • Table 281. List of abbreviations.        750
  • Table 282. Technology Readiness Level (TRL) Examples. 752

 

List of Figures

  • Figure 1. Carbon emissions by sector.          38
  • Figure 2. Overview of CCUS market 39
  • Figure 3. CCUS business model.      41
  • Figure 4. Pathways for CO2 use.        41
  • Figure 5. Regional capacity share 2025-2035.         44
  • Figure 6. Global investment in carbon capture 2010-2024, millions USD.            52
  • Figure 7. Carbon Capture, Utilization, & Storage (CCUS) Market Map.    62
  • Figure 8. CCS deployment projects, historical and to 2035.          63
  • Figure 9. Existing and planned CCS projects.           71
  • Figure 10. CCUS Value Chain.            73
  • Figure 11. Schematic of CCUS process.      91
  • Figure 12. Pathways for CO2 utilization and removal.         92
  • Figure 13. A pre-combustion capture system.         97
  • Figure 14. Carbon dioxide utilization and removal cycle.  100
  • Figure 15. Various pathways for CO2 utilization.    101
  • Figure 16. Example of underground carbon dioxide storage.         102
  • Figure 17. Transport of CCS technologies. 103
  • Figure 18. Railroad car for liquid CO₂ transport       105
  • Figure 19. Estimated costs of capture of one metric ton of carbon dioxide (Co2) by sector.     107
  • Figure 20. Cost of CO2 transported at different flowrates 108
  • Figure 21. Cost estimates for long-distance CO2 transport.          109
  • Figure 22. CO2 capture and separation technology.            116
  • Figure 23. Global capacity of point-source carbon capture and storage facilities.          136
  • Figure 24. Global carbon capture capacity by CO2 source, 2024.             137
  • Figure 25. Global carbon capture capacity by CO2 source, 2046.             138
  • Figure 26. SMR process flow diagram of steam methane reforming with carbon capture and storage (SMR-CCS).    139
  • Figure 27. Process flow diagram of autothermal reforming with a carbon capture and storage (ATR-CCS) plant.  140
  • Figure 28. POX process flow diagram.          141
  • Figure 29. Process flow diagram for a typical SE-SMR.       142
  • Figure 30. Post-combustion carbon capture process.        152
  • Figure 31. Post-combustion CO2 Capture in a Coal-Fired Power Plant. 153
  • Figure 32. Oxy-combustion carbon capture process.         164
  • Figure 33. Process schematic of chemical looping.             166
  • Figure 34. Liquid or supercritical CO2 carbon capture process.  167
  • Figure 35. Pre-combustion carbon capture process.          168
  • Figure 36. Amine-based absorption technology.    171
  • Figure 37. Pressure swing absorption technology. 175
  • Figure 38. Membrane separation technology.           183
  • Figure 39. Liquid or supercritical CO2 (cryogenic) distillation.      192
  • Figure 40. Cryocap™ process.             194
  • Figure 41. Calix advanced calcination reactor.        196
  • Figure 42. LEILAC process.   197
  • Figure 43. Fuel Cell CO2 Capture diagram.               198
  • Figure 44. Microalgal carbon capture.           199
  • Figure 45. Cost of carbon capture.  203
  • Figure 46. CO2 capture capacity to 2030, MtCO2.               204
  • Figure 47. Capacity of large-scale CO2 capture projects, current and planned vs. the Net Zero Scenario, 2020-2030.              205
  • Figure 48. CO2 captured from air using liquid and solid sorbent DAC plants, storage, and reuse.        208
  • Figure 49. Global CO2 capture from biomass and DAC in the Net Zero Scenario.            209
  • Figure 50.  DAC technologies.             212
  • Figure 51. Schematic of Climeworks DAC system.               213
  • Figure 52. Climeworks’ first commercial direct air capture (DAC) plant, based in Hinwil, Switzerland.                214
  • Figure 53.  Flow diagram for solid sorbent DAC.     214
  • Figure 54. Direct air capture based on high temperature liquid sorbent by Carbon Engineering.           215
  • Figure 55. Schematic of costs of DAC technologies.           226
  • Figure 56. DAC cost breakdown and comparison. 227
  • Figure 57. Operating costs of generic liquid and solid-based DAC systems.       229
  • Figure 58. Co2 utilization pathways and products.               235
  • Figure 59. Conversion route for CO2-derived fuels and chemical intermediates.            237
  • Figure 60.  Conversion pathways for CO2-derived methane, methanol and diesel.        238
  • Figure 61. CO2 feedstock for the production of e-methanol.         239
  • Figure 62. Schematic illustration of (a) biophotosynthetic, (b) photothermal, (c) microbial-photoelectrochemical, (d) photosynthetic and photocatalytic (PS/PC), (e) photoelectrochemical (PEC), and (f) photovoltaic plus electrochemical (PV+EC) approaches for CO2 c           242
  • Figure 63. Audi synthetic fuels.          243
  • Figure 64.  Conversion of CO2 into chemicals and fuels via different pathways.              246
  • Figure 65.  Conversion pathways for CO2-derived polymeric materials  247
  • Figure 66. Conversion pathway for CO2-derived building materials.        251
  • Figure 67. Schematic of CCUS in cement sector.  252
  • Figure 68. Carbon8 Systems’ ACT process.               255
  • Figure 69. CO2 utilization in the Carbon Cure process.     255
  • Figure 70. Algal cultivation in the desert.     259
  • Figure 71. Example pathways for products from cyanobacteria. 260
  • Figure 72. Typical Flow Diagram for CO2 EOR.        263
  • Figure 73. Large CO2-EOR projects in different project stages by industry.          265
  • Figure 74. Process Flow of Carbon Trading: Total Carbon Credits (CCs), amounting to CCB (MtCO2e) = (c) – EB, are issued to firm with CHG emissions below the allowance. These credits can be subsequently sold to firm with emissions exceeding the allowance. In the representation, the latter firm must purchase total credits equivalent to CCA (MtCO2e) = EA – (c).        298
  • Figure 75. BiCRS Value Chain.           316
  • Figure 76. Bioenergy with carbon capture and storage (BECCS) process.             321
  • Figure 77. Capture of carbon dioxide from the atmosphere using bricks of calcium hydroxide.             332
  • Figure 78. Carbon capture using mineral carbonation.      333
  • Figure 79. SWOT analysis: enhanced weathering. 339
  • Figure 80. SWOT analysis: afforestation/reforestation.     346
  • Figure 81. SWOT analysis: SCS.        352
  • Figure 82. Schematic of biochar production.           353
  • Figure 83. Biochars from different sources, and by pyrolyzation at different temperatures.      354
  • Figure 84. Compressed biochar.       357
  • Figure 85. Biochar production diagram.      359
  • Figure 86. Pyrolysis process and by-products in agriculture.         361
  • Figure 87. SWOT analysis: Biochar for CDR.             370
  • Figure 88. SWOT analysis: Ocean-based CDR.       378
  • Figure 89. CO2 non-conversion and conversion technology, advantages and disadvantages.               380
  • Figure 90. Applications for CO2.       382
  • Figure 91. Cost to capture one metric ton of carbon, by sector.   383
  • Figure 92. Life cycle of CO2-derived products and services.          389
  • Figure 93. Co2 utilization pathways and products.               392
  • Figure 94. Plasma technology configurations and their advantages and disadvantages for CO2 conversion.     396
  • Figure 95. Electrochemical CO₂ reduction products.          397
  • Figure 96. LanzaTech gas-fermentation process.   400
  • Figure 97. Schematic of biological CO2 conversion into e-fuels. 401
  • Figure 98. Econic catalyst systems.                403
  • Figure 99. Mineral carbonation processes. 405
  • Figure 100. Conversion route for CO2-derived fuels and chemical intermediates.         409
  • Figure 101.  Conversion pathways for CO2-derived methane, methanol and diesel.     410
  • Figure 102. SWOT analysis: e-fuels.                415
  • Figure 103. CO2 feedstock for the production of e-methanol.      421
  • Figure 104. Schematic illustration of (a) biophotosynthetic, (b) photothermal, (c) microbial-photoelectrochemical, (d) photosynthetic and photocatalytic (PS/PC), (e) photoelectrochemical (PEC), and (f) photovoltaic plus electrochemical (PV+EC) approaches for CO2 c           425
  • Figure 105. Audi synthetic fuels.       426
  • Figure 106.  Conversion of CO2 into chemicals and fuels via different pathways.            431
  • Figure 107.  Conversion pathways for CO2-derived polymeric materials               440
  • Figure 108. Conversion pathway for CO2-derived building materials.     445
  • Figure 109. Schematic of CCUS in cement sector.                446
  • Figure 110. Carbon8 Systems’ ACT process.             450
  • Figure 111. CO2 utilization in the Carbon Cure process.  451
  • Figure 112. Algal cultivation in the desert.  461
  • Figure 113. Example pathways for products from cyanobacteria.              464
  • Figure 114. Typical Flow Diagram for CO2 EOR.     468
  • Figure 115. Large CO2-EOR projects in different project stages by industry.       469
  • Figure 116. Carbon mineralization pathways.          472
  • Figure 117. CO2 Storage Overview - Site Options  481
  • Figure 118.  CO2 injection into a saline formation while producing brine for beneficial use.    485
  • Figure 119. Subsurface storage cost estimation.   500
  • Figure 120. Air Products production process.          522
  • Figure 121. ALGIECEL PhotoBioReactor.     527
  • Figure 122. Schematic of carbon capture solar project.    533
  • Figure 123. Aspiring Materials method.        534
  • Figure 124. Aymium’s Biocarbon production.          536
  • Figure 125. Capchar prototype pyrolysis kiln.          554
  • Figure 126. Carbonminer technology.           561
  • Figure 127. Carbon Blade system.   566
  • Figure 128. CarbonCure Technology.             572
  • Figure 129. Direct Air Capture Process.        574
  • Figure 130. CRI process.        578
  • Figure 131. PCCSD Project in China.             592
  • Figure 132. Orca facility.         593
  • Figure 133. Process flow scheme of Compact Carbon Capture Plant.    598
  • Figure 134. Colyser process.               600
  • Figure 135. ECFORM electrolysis reactor schematic.         608
  • Figure 136. Dioxycle modular electrolyzer. 609
  • Figure 137. Fuel Cell Carbon Capture.          629
  • Figure 138. Topsoe's SynCORTM autothermal reforming technology.      639
  • Figure 139. Heirloom DAC facilities.              641
  • Figure 140. Carbon Capture balloon.            642
  • Figure 141. Holy Grail DAC system. 644
  • Figure 142. INERATEC unit.   650
  • Figure 143. Infinitree swing method.              651
  • Figure 144. Audi/Krajete unit.              657
  • Figure 145. Made of Air's HexChar panels. 666
  • Figure 146. Mosaic Materials MOFs.              675
  • Figure 147. Neustark modular plant.             680
  • Figure 148. OCOchem’s Carbon Flux Electrolyzer.                688
  • Figure 149. ZerCaL™ process.              690
  • Figure 150. CCS project at Arthit offshore gas field.             701
  • Figure 151. RepAir technology.           706
  • Figure 152. Aker (SLB Capturi) carbon capture system.    719
  • Figure 153. Soletair Power unit.         721
  • Figure 154. Sunfire process for Blue Crude production.    728
  • Figure 155. CALF-20 has been integrated into a rotating CO2 capture machine (left), which operates inside a CO2 plant module (right).   730
  • Figure 156. Takavator.               732
  • Figure 157. O12 Reactor.        737
  • Figure 158. Sunglasses with lenses made from CO2-derived materials.               737
  • Figure 159. CO2 made car part.        737
  • Figure 160. Molecular sieving membrane.  740

 

 

 

 

The report includes these components:

  • PDF report download/by email. Print edition also available. 
  • Comprehensive Excel spreadsheet of all data.
  • Mid-year Update

 

The Global Carbon Capture, Utilization, and Storage (CCUS) Market 2026-2046
The Global Carbon Capture, Utilization, and Storage (CCUS) Market 2026-2046
Instant PDF download.

The Global Carbon Capture, Utilization, and Storage (CCUS) Market 2026-2046
The Global Carbon Capture, Utilization, and Storage (CCUS) Market 2026-2046
Instant PDF download and Print Edition (including tracked delivery).

Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer. To order by Bank Transfer (Invoice) select this option from the payment methods menu after adding to cart, or contact info@futuremarketsinc.com