The Global Long Duration Energy Storage (LDES) Market 2026-2046

0

cover

cover

 

The global Long Duration Energy Storage (LDES) market represents one of the most rapidly evolving and strategically critical segments within the broader energy transition landscape. Defined as storage systems capable of discharging electricity for four or more hours, LDES technologies are emerging as essential infrastructure components for enabling high penetration levels of variable renewable energy sources while maintaining grid stability and reliability. Market growth is driven by accelerating renewable energy deployment, declining technology costs, and supportive policy frameworks across major markets. Total installed LDES capacity is expected to expand from 2.4 GW in 2024 to 18.5 GW by 2030, with project counts increasing from 145 to over 850 installations globally.

 Pumped hydro storage currently dominates, however, emerging technologies are rapidly gaining traction, including compressed air energy storage, flow batteries, iron-air batteries, and liquid air energy storage. Gravity storage systems, green hydrogen, and thermal storage represent innovative approaches addressing specific market niches and duration requirements.

The LDES sector has attracted substantial investment flows, with $2.1 billion in venture capital, $1.8 billion in corporate investment, and $1.2 billion in government funding during 2024. This capital is fueling rapid technological advancement and commercial deployment across multiple technology pathways. Notable developments include Form Energy's iron-air systems achieving 100-hour duration capabilities, Energy Vault's gravity storage reaching commercial scale, and Highview Power's liquid air systems demonstrating utility-scale viability. Despite strong growth prospects, the LDES market faces significant challenges including high upfront capital costs, technology scalability concerns, and regulatory frameworks that inadequately compensate long-duration storage services. However, accelerating learning curves, improving economics of scale, and evolving market designs are progressively addressing these barriers. The sector's evolution toward technology hybridization and system integration is creating new opportunities for optimized performance across multiple grid services and applications.

The LDES market stands at an inflection point where technological maturation converges with urgent decarbonization imperatives, positioning it as a cornerstone technology for the global energy transition.

The Global Long Duration Energy Storage Market 2026-2046 provides an authoritative analysis of the LDES landscape from 2026 to 2046, examining market dynamics, technology evolution, competitive positioning, and investment opportunities across nine primary storage technologies. As variable renewable energy penetration increases globally, LDES solutions are becoming indispensable for maintaining grid stability, enabling seasonal energy storage, and supporting the integration of solar and wind power at unprecedented scales.

Contents include: 

  • Market Definition and Technology Framework:
    • Comprehensive LDES definition with duration thresholds and technical specifications
    • Technology classification system covering nine primary LDES categories
    • Value proposition analysis and economic drivers for each application segment
    • Performance requirements mapping across grid-scale, commercial, and beyond-grid applications
    • Market development constraints, limitations, and risk factor assessment
  • LDES Market Analysis and VRE Integration:
  • Variable renewable energy penetration analysis and storage duration requirements
  • Global VRE generation trends with regional breakdown and integration challenges
  • Market timing analysis for LDES technology adoption based on renewable deployment
  • Comprehensive market sizing with growth projections and capacity deployment forecasts
  • Regional project distribution analysis covering commercial and demonstration scale projects
  • Applications and Grid Integration:
    • Energy storage applications across utility, behind-the-meter, and remote deployment scenarios
    • Grid services analysis including ancillary services and grid support functions
    • Supply-side and demand-side flexibility solutions with LDES integration strategies
    • Renewable curtailment mitigation and system overbuild management approaches
    • Vehicle-to-grid integration, smart charging, and distributed energy resource coordination
  • Hydrogen and Alternative Carriers:
    • Hydrogen economy overview with duration advantages for long-term storage
    • Salt cavern, subsea, and large-scale storage infrastructure analysis
    • Hydrogen loss mechanisms, mitigation strategies, and hybrid system integration
    • Alternative chemical carriers comparison (hydrogen vs methane vs ammonia)
    • Underground storage technologies, interconnector systems, and safety considerations
  • Pumped Hydro Energy Storage:
    • Conventional PHES analysis covering types, environmental impact, and global projects
    • Advanced pumped hydro technologies including pressurized underground systems
    • Mine storage applications, heavy liquid systems, and seawater pumped hydro
    • Underwater energy storage solutions and brine storage in salt caverns
    • Economic modeling, financial analysis, and SWOT assessment
  • Mechanical Energy Storage Technologies:
    • Compressed Air Energy Storage (CAES) technology overview and market positioning
    • CAES vs LAES comparison with thermodynamic cycle optimization analysis
    • Solid Gravity Energy Storage (SGES) applications and market potential
    • Liquefied Gas Energy Storage including liquid air and liquid CO₂ systems
    • Technology-specific SWOT analyses and competitive positioning assessment
  • Battery Technologies for LDES:
    • Advanced conventional construction batteries for beyond-grid applications
    • Metal-air battery technologies including iron-air, zinc-air, and aluminum-air systems
    • Rechargeable zinc batteries covering zinc-ion, zinc-bromine configurations
    • High-temperature battery systems and advanced metal-ion technologies
    • Redox Flow Batteries (RFB) market analysis with regular vs hybrid technology comparison
  • Thermal Energy Storage:
    • Electro-thermal energy storage (ETES) fundamentals and application analysis
    • Advanced ETES technologies with extreme temperature and photovoltaic conversion
    • Combined heat and electricity systems with performance optimization strategies
    • Technology SWOT analysis and market positioning assessment
  • Market Forecasts and Long-Term Evolution:
    • Global LDES market value forecasts with regional capacity installation projections
    • Grid vs beyond-grid market development analysis with technology-specific growth patterns
    • Annual demand and installation forecasts by country, state, and technology category
    • Long-term market evolution including technology convergence, hybridization trends
    • Cost competitiveness timelines, market saturation analysis, and emerging applications

 

The report features comprehensive profiles of 104 companies across the LDES ecosystem including 1414 Degrees, ALCAES, Ambri, Antora Energy, Augwind Energy, AZA Battery, BASF, Battolyser Systems, Brenmiller Energy, Cavern Energy, CellCube, CGDG, Cheesecake Energy, CMBlu, Corre Energy, Dalian Rongke Power, e-Zinc, Echogen Power Systems, Electrified Thermal Solutions, Elestor, Energy Dome, Energy Vault, EnergyNest, Enerpoly, Enervenue, Enlighten Innovations, EnerVenue, EOS Energy Enterprises, Equinor, ESS Inc., Fluence, Form Energy, Fourth Power, Gelion, Glaciem Cooling Technologies, Gravitricity, Green Gravity, H2 Inc., Highview Power, InLyte Energy and more.....

 
 
 

 

 

1             EXECUTIVE SUMMARY            19

  • 1.1        Technology Pathways               19
  • 1.2        Funding for LDES         19
  • 1.3        Capacity           20
  • 1.4        Roadmap 2026-2046               22
  • 1.5        Market Forecasts and Projections 2026-2046         24
    • 1.5.1    Total LDES Market Revenues               24
    • 1.5.2    Regional Market           27

 

2             INTRODUCTION          29

  • 2.1        Market Definition and Technology Classification   29
  • 2.2        What is Long Duration Energy Storage?        30
    • 2.2.1    Duration Thresholds and Technical Definitions      31
    • 2.2.2    LDES vs Short Duration Storage Comparison           33
    • 2.2.3    Value Proposition and Economic Drivers     35
    • 2.2.4    Technology Performance Requirements      36
    • 2.2.5    Maintaining Grid Stability       38
    • 2.2.6    Applications   39
    • 2.2.7    Market Segments: Grid-Scale, Commercial, Beyond-Grid              41
    • 2.2.8    Market Development Constraints and Limitations               42
    • 2.2.9    Technology Timeline 44

 

3             LDES MARKET               45

  • 3.1        LDES and Variable Renewable Energy Integration 45
    • 3.1.1    Variable Renewable Energy (VRE) Penetration and Storage Duration Requirements      45
    • 3.1.2    Global VRE Generation Trends           48
    • 3.1.3    Storage Duration vs VRE Penetration              52
    • 3.1.4    Market Timing for LDES Technology Adoption          53
  • 3.2        Market Size      54
    • 3.2.1    Global LDES Market Size and Growth Projections 54
    • 3.2.2    Capacity Deployment by Technology             58
    • 3.2.3    Regional Project Distribution and Development     59
    • 3.2.4    Commercial vs Demonstration Scale Projects        60
  • 3.3        Applications   63
    • 3.3.1    Energy Storage Applications 63
    • 3.3.2    Grid Services and Utility         64
    • 3.3.3    Behind-the-Meter        66
    • 3.3.4    Beyond-Grid and Remote Applications        68
    • 3.3.5    Ancillary Services and Grid Support Functions       70
  • 3.4        Grid Stability, Flexibility and Integration       73
    • 3.4.1    Grid Flexibility Requirements and Solutions             73
    • 3.4.2    Supply-Side and Demand-Side Flexibility Options               74
    • 3.4.3    Renewable Curtailment and System Overbuild      76
    • 3.4.4    Interconnector Technologies               77
    • 3.4.5    Vehicle-to-Grid Integration and Smart Charging    79
    • 3.4.6    Distributed Energy Resources and Virtual Power Plants   80
    • 3.4.7    Hydrogen Production for Grid Flexibility       83

 

4             HYDROGEN AND ALTERNATIVE CARRIERS               86

  • 4.1        Hydrogen Economy Overview             86
  • 4.2        Duration Advantages for Long-Term Storage             88
  • 4.3        Salt Caverns, Subsea and Large-Scale Storage Options   89
  • 4.4        Hydrogen Loss Mechanisms and Mitigation Strategies      90
  • 4.5        Hybrid Systems: Combining Hydrogen with Other Storage             92
  • 4.6        Alternative Chemical Carriers             94
    • 4.6.1    Hydrogen vs Methane vs Ammonia for LDES            94
    • 4.6.2    Comparative Analysis of Chemical Storage Options           97
    • 4.6.3    Synthesis and Reconversion Efficiency        100
  • 4.7        Projects and Commercial Deployments      102
  • 4.8        Mining Industry             103
  • 4.9        Residential and Commercial Hydrogen        104
  • 4.10     Industrial Hydrogen LDES Integration            105
  • 4.11     Hydrogen Storage Technologies and Infrastructure              106
    • 4.11.1 Storage Technology Options Overview          106
    • 4.11.2 Underground Storage Choices for LDES Applications        111
    • 4.11.3 Hydrogen Interconnectors for Energy Transmission            113
    • 4.11.4 Surface Storage Systems and Safety Considerations         115
    • 4.11.5 Metal Hydride and Alternative Storage Methods    116
  • 4.12     Companies     119

 

5             PUMPED HYDRO ENERGY STORAGE TECHNOLOGIES      121

  • 5.1        Conventional Pumped Hydro Energy Storage (PHES)          121
    • 5.1.1    PHES Types and Development Timescales                124
    • 5.1.2    PHES Environmental Impact Mitigation Technologies         126
    • 5.1.3    Global Projects and Development   127
    • 5.1.4    Economics and Financial Modeling 129
    • 5.1.5    Large-Scale Pumped Hydro Schemes Worldwide 130
    • 5.1.6    SWOT Analysis             131
  • 5.2        Advanced Pumped Hydro Energy Storage (APHES)               134
    • 5.2.1    Technology Overview                134
    • 5.2.2    Technologies  135
      • 5.2.2.1 Pressurized Underground Systems 136
      • 5.2.2.2 Underground Mine Pumped Storage              137
      • 5.2.2.3 Heavy Liquid Systems              139
      • 5.2.2.4 Seawater Pumped Hydro (S-PHES) 141
      • 5.2.2.5 Underwater Energy Storage  142
      • 5.2.2.6 Brine Storage in Salt Caverns              144
    • 5.2.3    SWOT Analysis             145
    • 5.2.4    Companies     146

 

6             MECHANICAL ENERGY STORAGE TECHNOLOGIES            149

  • 6.1        Compressed Air Energy Storage (CAES)       149
    • 6.1.1    Technology Overview                151
    • 6.1.2    CAES vs LAES 153
    • 6.1.3    Technology Options  154
    • 6.1.4    Thermodynamic Cycles and Performance Optimization  155
    • 6.1.5    Isochoric vs Isobaric Storage Systems          157
    • 6.1.6    Adiabatic Systems and Cooling Options     157
    • 6.1.7    Supercritical CAES     159
    • 6.1.8    Companies     161
    • 6.1.9    SWOT Analysis             163
  • 6.2        Solid Gravity Energy Storage (SGES)               165
    • 6.2.1    Technology Overview                165
    • 6.2.2    Applications   167
    • 6.2.3    SWOT Analysis             168
  • 6.3        Liquefied Gas Energy Storage (LGES)            169
    • 6.3.1    Technology Overview                169
    • 6.3.2    Liquid Air Energy Storage (LAES)       170
      • 6.3.2.1 SWOT Analysis             172
    • 6.3.3    Liquid Carbon Dioxide Energy Storage          173
      • 6.3.3.1 SWOT Analysis             174
  • 6.4        Flywheel Energy Storage (FES)           176
    • 6.4.1    Overview           176

 

7             BATTERY TECHNOLOGIES FOR LDES            177

  • 7.1        Advanced Conventional Construction Batteries (ACCB)  178
    • 7.1.1    Technology Overview and Beyond-Grid Applications          178
    • 7.1.2    SWOT Analysis             179
  • 7.2        Metal-Air Battery Technologies          182
    • 7.2.1    Air cathodes   182
    • 7.2.2    Iron-Air Batteries          183
  • 7.3        Rechargeable zinc batteries 185
    • 7.3.1    Zinc-air (Zn-air)             186
      • 7.3.1.1 Overview           186
      • 7.3.1.2 Companies     187
    • 7.3.2    Zn-ion 188
      • 7.3.2.1 Overview           188
      • 7.3.2.2 Companies     189
    • 7.3.3    Zn-Br    190
      • 7.3.3.1 Overview           190
      • 7.3.3.2 Companies     191
  • 7.4        High-Temperature Battery Systems 192
  • 7.5        Sodium-Ion     196
    • 7.5.1    Overview           196
    • 7.5.2    Cathode materials     196
      • 7.5.2.1 Layered transition metal oxides        197
    • 7.5.3    Anode materials          200
      • 7.5.3.1 Hard carbons 201
      • 7.5.3.2 Carbon black 202
      • 7.5.3.3 Graphite            203
      • 7.5.3.4 Carbon nanotubes     206
      • 7.5.3.5 Graphene         207
      • 7.5.3.6 Alloying materials       208
      • 7.5.3.7 Sodium Titanates        208
      • 7.5.3.8 Sodium Metal 209
    • 7.5.4    Electrolytes     209
    • 7.5.5    Comparative analysis with other battery types        210
    • 7.5.6    Application in LDES   211
    • 7.5.7    Large-scale lithium-sodium hybrid energy storage station              212
    • 7.5.8    Companies     214
  • 7.6        Sodium-sulfur (Na-S) batteries          215
    • 7.6.1    Technology description           215
    • 7.6.2    Applications   216
  • 7.7        Redox Flow Batteries (RFB)  217
    • 7.7.1    Market Overview          217
    • 7.7.2    RFB for LDES Applications    221
    • 7.7.3    Companies     224
    • 7.7.4    Regular vs Hybrid RFB Technologies and Chemistries        226
  • 7.8        Specialty Battery Technologies          228
    • 7.8.1    Nickel Hydrogen Batteries     229

 

8             THERMAL ENERGY STORAGE              231

  • 8.1        Technology Overview                232
  • 8.2        ETES Fundamentals and Applications          233
  • 8.3        Technology approaches         236
  • 8.4        Advanced ETES Technologies             237
    • 8.4.1    Extreme Temperature and Photovoltaic Conversion            237
    • 8.4.2    Combined Heat and Electricity Systems     238
  • 8.5        SWOT Analysis             239
  • 8.6        Companies     242

 

9             MARKET FORECASTS AND TECHNOLOGY ROADMAPS 2026-2046          244

  • 9.1        Global LDES Market Value Forecasts (2026-2046)               245
  • 9.2        Capacity Installation Forecasts by Region 247
  • 9.3        Grid vs Beyond-Grid Market Development 249
  • 9.4        Annual Demand by Country/State (GWh) 2022-2046         252
  • 9.5        Annual Installations by Technology (GWh) 2022-2046       253
  • 9.6        Market Value by Technology ($B) 2026-2046            254
  • 9.7        Regional Market Share Analysis        256
  • 9.8        Duration Segment Growth Projections         256
  • 9.9        Long-Term Market Evolution 258
    • 9.9.1    Technology Convergence and Hybridization             258
    • 9.9.2    Cost Competitiveness Timelines      260
    • 9.9.3    Market Saturation and Replacement Cycles             261
    • 9.9.4    Emerging Applications and Use Cases         263

 

10          COMPANY PROFILES                265

 

11          REFERENCES 351

 

List of Tables

  • Table 1. Global LDES Market Size, Capacity, and Growth (2024-2046)   21
  • Table 2. LDES Technology Market Share by Capacity (2024).        21
  • Table 3. LDES Technology Roadmap Timeline 2026-2046.              22
  • Table 4. Total LDES Market Value by Size Categories (% and $B) 2025-2045       25
  • Table 5. LDES Market Size Evolution by Application Segment.      26
  • Table 6. Regional LDES Market Share Analysis (Four Key Regions) 2025-2045. 27
  • Table 7. Storage Duration Categories and Technology Suitability.               31
  • Table 8. LDES vs Short Duration Storage Technical Comparison Matrix. 34
  • Table 9. LDES Value Proposition Framework by Application.         35
  • Table 10. LDES Performance Requirements by Application Segment.     38
  • Table 11. LDES Application Categories and Use Case Matrix.       39
  • Table 12. Market Segment Definitions: Grid-Scale, Commercial, Beyond-Grid.               41
  • Table 13. Market Development Constraints and Risk Factors.      42
  • Table 14. VRE Penetration vs Storage Duration Requirements by Region.             45
  • Table 15. Storage Duration Needs vs VRE Penetration Levels.       46
  • Table 16. Global VRE Generation Trends.    48
  • Table 17. Regional VRE Integration Challenges.      50
  • Table 18. Solar and Wind Deployment Targets by Country 2025-2035.   51
  • Table 19. Required Storage Duration by VRE Penetration Level     52
  • Table 20. LDES Market Timing vs Global VRE Penetration.               53
  • Table 21. Global LDES Market Size ($B) 2025-2046.            54
  • Table 22. LDES Market Size by Technology Segment 2024-2046. 56
  • Table 23. LDES Capacity Deployment by Technology (GWh).        58
  • Table 24. Regional LDES Project Distribution and Development Status. 59
  • Table 25. Commercial vs Demonstration Scale Projects. 60
  • Table 26. LDES Applications Across Grid Services.              63
  • Table 27. BTM Commercial LDES Applications.      66
  • Table 28. Beyond-Grid LDES Applications by Sector and Technology.      68
  • Table 29. LDES Suitability for Ancillary Services by Technology.  70
  • Table 30. Grid Flexibility Requirements by Technology Solution. 73
  • Table 31. V2G Market Potential by Region and Technology Readiness.   79
  • Table 32. DER and VPP Integration with LDES Technologies.          80
  • Table 33. Hydrogen Production for Grid Flexibility Applications. 83
  • Table 34. Storage Duration vs Technology Cost Crossover Analysis.        88
  • Table 35. Underground Hydrogen Storage Options Comparison Matrix  89
  • Table 36. Hydrogen Loss Mechanisms and Mitigation Technologies.        90
  • Table 37. Hybrid Hydrogen-Battery Systems Performance Analysis.        92
  • Table 38. Chemical Carrier LDES Comparison: H2 vs CH4 vs NH3 .         94
  • Table 39. Chemical Storage Options Technology Readiness vs Market Potential.            97
  • Table 40. Power-to-X Round-Trip Efficiency by Chemical Carrier.                100
  • Table 41. Projects and Commercial Deployments.               102
  • Table 42. Mining Industry LDES Applications by Technology ,        103
  • Table 43. Residential and Commercial Hydrogen .               104
  • Table 44. Hydrogen Storage Technology Options . 107
  • Table 45. Underground Hydrogen Storage Method Comparison. 111
  • Table 46. Surface Hydrogen Storage Safety Requirements by Application.           115
  • Table 47. Metal Hydride vs Compressed vs Liquid Storage Comparison.              116
  • Table 48. PHES Type Classification and Development Timeline Comparison.   124
  • Table 49. PHES Environmental Impact Mitigation Technologies 2024.    126
  • Table 50.Global PHES Project Pipeline by Region and Status.       127
  • Table 51. PHES Capital Cost vs Capacity Analysis.              129
  • Table 52. PHES Capital Cost vs Capacity Analysis               131
  • Table 53. Underwater Energy Storage Technology Comparison.  142
  • Table 54. CAES vs LAES Technical and Economic Comparison.  153
  • Table 55. CAES Technology Classification and Performance Matrix.         154
  • Table 56. Isochoric vs Isobaric CAES System Comparison.            157
  • Table 57. Alternative Gravity Storage Technologies.             167
  • Table 58. Liquefied Gas Storage Technology Classification.          169
  • Table 59. LAES Technology Fundamentals and System Components.    172
  • Table 60. Metal-air battery options for LDES.            182
  • Table 61. Multi-Metal Air Battery Technology Comparison.            185
  • Table 62. High-Temperature Battery Technology Performance Matrix.     192
  • Table 63. Comparison of cathode materials.            196
  • Table 64.  Layered transition metal oxide cathode materials for sodium-ion batteries. 197
  • Table 65. General cycling performance characteristics of common layered transition metal oxide cathode materials.     198
  • Table 66. Comparison of Na-ion battery anode materials.              200
  • Table 67. Hard Carbon producers for sodium-ion battery anodes.            201
  • Table 68. Comparison of carbon materials in sodium-ion battery anodes.          202
  • Table 69. Comparison between Natural and Synthetic Graphite.               204
  • Table 70. Properties of graphene, properties of competing materials, applications thereof.     207
  • Table 71. Comparison of carbon based anodes.    208
  • Table 72.  Alloying materials used in sodium-ion batteries.             208
  • Table 73. Na-ion electrolyte formulations. 209
  • Table 74. Pros and cons compared to other battery types.              210
  • Table 75. Summary of main flow battery types.       218
  • Table 76. RFB Companies.   224
  • Table 77. Regular vs Hybrid RFB Technology.            227
  • Table 78. ETES Technology Applications.    233
  • Table 79. Extreme Temperature ETES Technology Comparison.  237
  • Table 80. Global LDES Market Value Evolution ($B) 2026-2046.  245
  • Table 81. Regional LDES Capacity Installation Forecasts (GWh) 2026-2046.     247
  • Table 82. Grid vs Beyond-Grid LDES Market Development Forecasts.     249
  • Table 83. Annual LDES Demand Forecasts by Key Country/State (GWh).              252
  • Table 84. Annual LDES Installation Forecasts by Technology (GWh).       253
  • Table 85. LDES Market Value Forecasts by Technology ($B) 2026-2046. 254
  • Table 86. Regional LDES Market Share Evolution 2026-2046.       256
  • Table 87. LDES Duration Segment Growth Projections by Technology.    256
  • Table 88. LDES Technology Cost Competitiveness Timeline Matrix.          260
  • Table 89. LDES Market Saturation and Technology Replacement Cycles.             261
  • Table 90. Emerging LDES Applications and Market Potential Assessment.          263

 

List of Figures

  • Figure 1. LDES Technology Pathways.            19
  • Figure 2. Cumulative funding and annual deal count by LDES technology (2018-2025 YTD).  20
  • Figure 3. Technology Commercialization Timeline by LDES Category.     45
  • Figure 4. Global LDES Market Size ($B) 2025-2046..           55
  • Figure 5. LDES Market Size by Technology Segment 2024-2046. 57
  • Figure 6. Hydrogen Economy Evolution.      88
  • Figure 7. Schematic diagram of a pumped hydro storage system.             122
  • Figure 8. PHES Environmental Impact Assessment Framework. 123
  • Figure 9. Conventional PHES SWOT Analysis Matrix.           132
  • Figure 10. Quidnet Geomechanical Pumped Storage Technology Diagram.        136
  • Figure 11. Underground Mine Pumped Storage Concept and Implementation. 139
  • Figure 12. Seawater Pumped Hydro Configuration .             142
  • Figure 13. Advanced Pumped Hydro SWOT Analysis by Technology Type.             145
  • Figure 14;. Schematic of Compressed Air Energy Storage (CAES) operation.      150
  • Figure 15. CAES Thermodynamic Cycle Efficiency Analysis.         156
  • Figure 16. Adiabatic CAES System Design and Heat Management.          158
  • Figure 17. Schematic diagram of SC-CAES system, where air is pressurized into a supercritical state at high temperature and pressure, and then expanded when required.        160
  • Figure 18. Supercritical CAES operation.     160
  • Figure 19. CAES Technology SWOT Analysis for LDES.       163
  • Figure 20. Gravity Storage SWOT Analysis. 168
  • Figure 21. Schematic diagram of liquid air energy storage (LAES) system, where air is liquefied under pressure and stored at low temperature, and then expanded into gaseous form again at high temperature . 171
  • Figure 22. LAES Technology SWOT Analysis for LDES.        173
  • Figure 23. Liquid CO₂ SWOT Analysis for LDES Applications.        174
  • Figure 24. (a) Flywheel energy storage system where energy is stored as rotational kinetic energy of a cylinder in vacuum; (b) schematic diagram of flywheel energy storage (FES), also called accumulator.                177
  • Figure 25. ACCB SWOT Analysis for Beyond-Grid LDES Applications.     180
  • Figure 26. Iron-Air Battery Technology Roadmap and Performance Metrics.       183
  • Figure 27. Form Energy USA Iron-Air Technology Architecture.     184
  • Figure 28. Comparison of SEM micrographs of sphere-shaped natural graphite (NG; after several processing steps) and synthetic graphite (SG).       203
  • Figure 29. Overview of graphite production, processing and applications.          205
  • Figure 30. Schematic diagram of a multi-walled carbon nanotube (MWCNT).   206
  • Figure 31.  Schematic of a Na–S battery.      215
  • Figure 32. Scheme of a redox flow battery. 218
  • Figure 33. Combined Heat and Electricity ETES System Architectures.  239
  • Figure 34. ETES Technology SWOT Analysis for LDES Applications.          239
  • Figure 35. Global LDES Market Value Evolution ($B) 2026-2046. 247
  • Figure 36. Market Map for LDES companies.            265
  • Figure 37. Ambri’s Liquid Metal Battery.       272
  • Figure 38. ESS Iron Flow Chemistry.               298
  • Figure 39. Form Energy's iron-air batteries.                300
  • Figure 40. Highview Power- Liquid Air Energy Storage Technology.             310

 

 

 

The Global Long Duration Energy Storage Market 2026-2046
The Global Long Duration Energy Storage Market 2026-2046
PDF download/by email.

The Global Long Duration Energy Storage Market 2026-2046
The Global Long Duration Energy Storage Market 2026-2046
PDF and Print Edition (including tracked delivery).

Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer. To order by Bank Transfer (Invoice) select this option from the payment methods menu after adding to cart, or contact info@futuremarketsinc.com