The Global Market for Advanced Chemical Recycling 2024-2040

0

  • Published: February 2024
  • Pages: 267
  • Tables: 58
  • Figures: 54
  • Companies profiled: 164
  • Series: Bio-Economy

 

Advanced recycling technologies that utilize heat or chemical solvents to recycle plastics into new plastics, fuels or chemicals are a key strategy for solving the global plastic problem, and are priority areas in government green initiatives.  Advanced chemical recycling technologies are now being developed by more than 150 companies worldwide, and capacities are increasing. Companies including ExxonMobil, New Hope Energy, Nexus Circular, Eastman, Encina are planning to build large plastics recycling plants. As well as complementing traditional mechanical recycling, advanced recycling offers benefits such as widening the range of recyclable plastic options, producing high value plastics (e.g. for flexible food packaging) and improving sustainability (using waste rather than fossil fuels for plastics production).

The Global Market for Advanced Chemical Recycling 2024-2040 provides a comprehensive analysis of the global advanced chemical recycling technologies market. The report covers market drivers, trends, industry developments, capacities, polymer demand forecasts segmented by recycling technology, regional demand forecasts, product examples, value chain analysis, life cycle assessments, yields, pricing, and challenges. 160 companies active in advanced recycling technologies such as pyrolysis, gasification, dissolution, depolymerization, and more are profiled. Detailed technology overviews, SWOT analyses, and company capacity details are also provided.

Regional market demand forecasts are broken down by recycling technology for Europe, North America, South America, Asia, Oceania, and Africa. Polymer-specific demand forecasts are provided globally and by region for PE, PP, PET, PS, nylon and other polymers. The report analyses how virgin plastic production, mechanical recycling, pyrolysis, monomer recycling and other technologies will shape polymer demand.

The report provides unique insights into the market future, current capacities, life cycle assessments, products, and opportunities in advanced chemical recycling. It is designed for companies in the plastics value chain seeking detailed analysis on growth opportunities, partnerships, investment, positioning, and challenges.

Report contents include:

  • Overview of the global plastics and bioplastics markets.
  • Market drivers and trends.
  • Advanced chemical recycling industry news, funding and developments 2020-2023.
  • Capacities by technology. 
  • Market maps and value chain. 
  • In-depth analysis of advanced chemical recycling technologies. 
  • Global polymer demand 2018-2040, segmented by technology, types and regions, million metric tons.
  • Global demand by recycling process, 2018-2040, million metric tons.
  • Advanced chemical recycling technologies covered include:
    • Pyrolysis
    • Gasification
    • Dissolution
    • Depolymerisation
    • Emerging technologies.
  • Profiles of 164 companies. Companies profiled include Agilyx, APK AG, Aquafil, Carbios, Eastman, Extracthive, Fych Technologies, Garbo, gr3n SA, Hyundai Chemical Ioniqa, Itero, Licella, Mura Technology, revalyu Resources GmbH, Plastogaz SA, Plastic Energy, Polystyvert, Pyrowave, RePEaT Co., Ltd., Synova and SABIC (full list of companies profiled in table of contents).

 

 

Download table of contents (PDF)

1              CLASSIFICATION OF RECYCLING TECHNOLOGIES 15

 

2              RESEARCH METHODOLOGY         16

 

3              INTRODUCTION 17

  • 3.1          Global production of plastics       17
  • 3.2          The importance of plastic              18
  • 3.3          Issues with plastics use  18
  • 3.4          Bio-based or renewable plastics 19
    • 3.4.1      Drop-in bio-based plastics            19
    • 3.4.2      Novel bio-based plastics                20
  • 3.5          Biodegradable and compostable plastics                21
    • 3.5.1      Biodegradability               21
    • 3.5.2      Compostability  22
  • 3.6          Plastic pollution 22
  • 3.7          Policy and regulations    23
  • 3.8          The circular economy     24
  • 3.9          Plastic recycling 26
    • 3.9.1      Mechanical recycling      29
      • 3.9.1.1   Closed-loop mechanical recycling              29
      • 3.9.1.2   Open-loop mechanical recycling 29
      • 3.9.1.3   Polymer types, use, and recovery             30
    • 3.9.2      Advanced recycling (molecular recycling, chemical recycling)        31
      • 3.9.2.1   Main streams of plastic waste    31
      • 3.9.2.2   Comparison of mechanical and advanced chemical recycling         32
  • 3.10        Life cycle assessment     32

 

4              THE ADVANCED CHEMICAL RECYCLING MARKET 34

  • 4.1          Market drivers and trends            34
  • 4.2          Industry news, funding and developments 2020-2023      35
  • 4.3          Capacities            44
  • 4.4          Global polymer demand 2022-2040, segmented by recycling technology 47
    • 4.4.1      PE           47
    • 4.4.2      PP           48
    • 4.4.3      PET         50
    • 4.4.4      PS           51
    • 4.4.5      Nylon    52
    • 4.4.6      Others  54
  • 4.5          Global polymer demand 2022-2040, segmented by recycling technology, by region            55
    • 4.5.1      Europe 55
    • 4.5.2      North America   57
    • 4.5.3      South America   58
    • 4.5.4      Asia        60
    • 4.5.5      Oceania                61
    • 4.5.6      Africa    63
  • 4.6          Chemically recycled plastic products        65
  • 4.7          Market map       67
  • 4.8          Value chain         68
  • 4.9          Life Cycle Assessments (LCA) of advanced plastics recycling processes      69
    • 4.9.1      PE           70
    • 4.9.2      PP           70
    • 4.9.3      PET         71
  • 4.10        Recycled plastic yield and cost    71
    • 4.10.1    Plastic yield of each chemical recycling technologies        71
    • 4.10.2    Prices    72
  • 4.11        Market challenges           72

 

5              ADVANCED RECYCLING TECHNOLOGIES 74

  • 5.1          Applications       74
  • 5.2          Pyrolysis              75
    • 5.2.1      Non-catalytic     76
    • 5.2.2      Catalytic               77
      • 5.2.2.1   Polystyrene pyrolysis     79
      • 5.2.2.2   Pyrolysis for production of bio fuel           79
      • 5.2.2.3   Used tires pyrolysis         83
        • 5.2.2.3.1               Conversion to biofuel     84
      • 5.2.2.4   Co-pyrolysis of biomass and plastic wastes           85
    • 5.2.3      SWOT analysis   86
    • 5.2.4      Companies and capacities             87
  • 5.3          Gasification        89
    • 5.3.1      Technology overview     89
      • 5.3.1.1   Syngas conversion to methanol 90
      • 5.3.1.2   Biomass gasification and syngas fermentation    94
      • 5.3.1.3   Biomass gasification and syngas thermochemical conversion        94
    • 5.3.2      SWOT analysis   95
    • 5.3.3      Companies and capacities (current and planned)               96
  • 5.4          Dissolution          97
    • 5.4.1      Technology overview     97
    • 5.4.2      SWOT analysis   98
    • 5.4.3      Companies and capacities (current and planned)               99
  • 5.5          Depolymerisation            100
    • 5.5.1      Hydrolysis           102
      • 5.5.1.1   Technology overview     102
      • 5.5.1.2   SWOT analysis   103
    • 5.5.2      Enzymolysis        104
      • 5.5.2.1   Technology overview     104
      • 5.5.2.2   SWOT analysis   105
    • 5.5.3      Methanolysis     106
      • 5.5.3.1   Technology overview     106
      • 5.5.3.2   SWOT analysis   107
    • 5.5.4      Glycolysis            108
      • 5.5.4.1   Technology overview     108
      • 5.5.4.2   SWOT analysis   110
    • 5.5.5      Aminolysis          111
      • 5.5.5.1   Technology overview     111
      • 5.5.5.2   SWOT analysis   111
    • 5.5.6      Companies and capacities (current and planned)               112
  • 5.6          Other advanced chemical recycling technologies 113
    • 5.6.1      Hydrothermal cracking   113
    • 5.6.2      Pyrolysis with in-line reforming  114
    • 5.6.3      Microwave-assisted pyrolysis     114
    • 5.6.4      Plasma pyrolysis               115
    • 5.6.5      Plasma gasification          116
    • 5.6.6      Supercritical fluids           116
    • 5.6.7      Carbon fiber recycling    117
      • 5.6.7.1   Processes            117
      • 5.6.7.2   Companies         120

 

6              COMPANY PROFILES       121

  • 6.1          Aduro Clean Technologies, Inc.  121
  • 6.2          Agilyx    122
  • 6.3          Alpha Recyclage Composites       123
  • 6.4          Alterra Energy   124
  • 6.5          Ambercycle, Inc.               124
  • 6.6          Anellotech, Inc. 125
  • 6.7          Anhui Oursun Resource Technology Co., Ltd         126
  • 6.8          APChemi Pvt. Ltd.            127
  • 6.9          APK AG 128
  • 6.10        Aquafil S.p.A.     129
  • 6.11        ARCUS Greencycling GmbH         130
  • 6.12        Arkema 130
  • 6.13        Axens SA             131
  • 6.14        BASF      132
  • 6.15        Bcircular               134
  • 6.16        BioBTX B.V.         135
  • 6.17        Biofabrik Technologies GmbH     135
  • 6.18        Blest (Microengineer Co., Ltd.)   136
  • 6.19        Blue Cycle           137
  • 6.20        BlueAlp Technology        137
  • 6.21        Borealis AG         138
  • 6.22        Boston Materials LLC      139
  • 6.23        Braven Environmental, LLC           140
  • 6.24        Brightmark          141
  • 6.25        Cadel Deinking S.L.          142
  • 6.26        Carbios 142
  • 6.27        Carboliq GmbH 143
  • 6.28        Carbon Fiber Recycling LLC           144
  • 6.29        Cassandra Oil AB              145
  • 6.30        CIRC       146
  • 6.31        Chian Tianying   147
  • 6.32        Chevron Phillips Chemical             147
  • 6.33        Clariter 148
  • 6.34        Clean Planet Energy        149
  • 6.35        Corsair Group International         150
  • 6.36        Covestro              151
  • 6.37        CreaCycle GmbH              151
  • 6.38        CuRe Technology BV       152
  • 6.39        Cyclic Materials 154
  • 6.40        DePoly SA            154
  • 6.41        Dow Chemical Company               155
  • 6.42        DyeRecycle         156
  • 6.43        Eastman Chemical Company       157
  • 6.44        Eco Fuel Technology, Inc               158
  • 6.45        Ecopek S.A.         159
  • 6.46        Eeden GmbH     160
  • 6.47        Emery Oleochemicals     160
  • 6.48        Encina Development Group, LLC 161
  • 6.49        Enerkem, Inc.    161
  • 6.50        Enval Ltd.             163
  • 6.51        Environmental Solutions (Asia) Pte Ltd    164
  • 6.52        Epoch Biodesign               164
  • 6.53        Equipolymers GmbH       165
  • 6.54        Evonik Industries AG      165
  • 6.55        Evrnu    166
  • 6.56        Extracthive         167
  • 6.57        ExxonMobil        168
  • 6.58        Fairmat 168
  • 6.59        Fulcrum BioEnergy          169
  • 6.60        Futerro 170
  • 6.61        Fych Technologies           171
  • 6.62        Garbo S.r.l.          172
  • 6.63        GreenMantra Technologies         172
  • 6.64        Gr3n SA                173
  • 6.65        Handerek Technologies 174
  • 6.66        Hanwha Solutions            175
  • 6.67        Honeywell          176
  • 6.68        Hyundai Chemical            177
  • 6.69        Indaver nv           177
  • 6.70        InEnTec, Inc.       178
  • 6.71        INEOS Styrolution            179
  • 6.72        Infinited Fiber Company Oy         180
  • 6.73        Ioncell Oy            181
  • 6.74        Ioniqa Technologies B.V.               181
  • 6.75        Itero Technologies           182
  • 6.76        Jeplan, Inc.          183
  • 6.77        JFE Chemical Corporation             184
  • 6.78        Kaneka Corporation        185
  • 6.79        Khepra 185
  • 6.80        Klean Industries 186
  • 6.81        Lanzatech            187
  • 6.82        Licella    189
  • 6.83        Loop Industries, Inc.       190
  • 6.84        LOTTE Chemical 191
  • 6.85        Lummus Technology LLC               192
  • 6.86        LyondellBasell Industries Holdings B.V.   192
  • 6.87        Metaspectral     194
  • 6.88        Mint Innovation               195
  • 6.89        Microwave Chemical Co. Ltd.      196
  • 6.90        Mitsubishi Chemical        197
  • 6.91        MolyWorks Materials     198
  • 6.92        Mote, Inc.           199
  • 6.93        Mura Technology             199
  • 6.94        Nanya Plastics Corporation          201
  • 6.95        NatureWorks     201
  • 6.96        Neste Oyj            202
  • 6.97        New Hope Energy            203
  • 6.98        Nexus Circular LLC            204
  • 6.99        Next Generation Group (NGR)   205
  • 6.100     Novoloop            206
  • 6.101     Olefy Technologies          207
  • 6.102     OMV AG              207
  • 6.103     Orlen Unipetrol Rpa S.r.o.            209
  • 6.104     Österreichische Mineralölverwaltung (OMV)       209
  • 6.105     PETRONAS Chemicals Group Berhad        210
  • 6.106     Plastic Back         211
  • 6.107     Plastic Energy Limited    212
  • 6.108     Plastic2Oil, Inc.  213
  • 6.109     Plastogaz SA       214
  • 6.110     Poliloop                215
  • 6.111     Polycycl 215
  • 6.112     Polynate              216
  • 6.113     PolyStyreneLoop             216
  • 6.114     Polystyvert, Inc. 217
  • 6.115     Poseidon Plastics              218
  • 6.116     Premirr Plastics, Inc.       218
  • 6.117     Protein Evolution             219
  • 6.118     Pryme BV            220
  • 6.119     PureCycle Technologies 221
  • 6.120     Pyrowave            222
  • 6.121     Qairos Energies 223
  • 6.122     QuantaFuel ASA               223
  • 6.123     Recenso GmbH 224
  • 6.124     Recyc’ELIT           225
  • 6.125     ReNew ELP         226
  • 6.126     Re:newcell          227
  • 6.127     Renew One        228
  • 6.128     RePEaT Co., Ltd.                228
  • 6.129     Repsol  229
  • 6.130     Resiclo Oy           230
  • 6.131     revalyu Resources GmbH              231
  • 6.132     ReVital Polymers, Inc.    232
  • 6.133     Rittec Umwelttechnik GmbH      232
  • 6.134     Sabic      233
  • 6.135     Samsara Eco Pty Ltd.       234
  • 6.136     Saperatec GmbH              235
  • 6.137     Scindo   236
  • 6.138     SCG Chemicals   236
  • 6.139     Sekisui Chemical Co., Ltd.             237
  • 6.140     Shell      238
  • 6.141     Showa Denko K.K.            239
  • 6.142     Shuye Environmental Technology             240
  • 6.143     Sierra Energy     240
  • 6.144     SK Geo Centric (SKGC)   241
  • 6.145     SK Global Chemical Co., Ltd.        241
  • 6.146     Sulzer Chemtech AG       242
  • 6.147     Sumitomo Chemical        243
  • 6.148     Sweet Gazoil      244
  • 6.149     Synova 245
  • 6.150     Synpet Technologies      246
  • 6.151     Technisoil Industrial        247
  • 6.152     Teijin Frontier Co., Ltd.  248
  • 6.153     TotalEnergies     249
  • 6.154     Toyo Styrene Co., Ltd.    250
  • 6.155     Trinseo 251
  • 6.156     Triple Helix          252
  • 6.157     Uflex     252
  • 6.158     Valoren 253
  • 6.159     Vartega Inc.        253
  • 6.160     Velocys 254
  • 6.161     Versalis SpA        255
  • 6.162     Wastefront         257
  • 6.163     Worn Again Technologies             257
  • 6.164     Xycle     258

 

7              GLOSSARY OF TERMS      260

 

8              REFERENCES       262

 

 

List of Tables

  • Table 1. Types of recycling.          15
  • Table 2. Issues related to the use of plastics.        18
  • Table 3. Type of biodegradation.               22
  • Table 4. Overview of the recycling technologies. 28
  • Table 5. Polymer types, use, and recovery.           30
  • Table 6. Composition of plastic waste streams.   31
  • Table 7. Comparison of mechanical and advanced chemical recycling.       32
  • Table 8. Life cycle assessment of virgin plastic production, mechanical recycling and chemical recycling.   32
  • Table 9. Life cycle assessment of chemical recycling technologies (pyrolysis, gasification, depolymerization and dissolution).       33
  • Table 10. Market drivers and trends in the advanced chemical recycling market. 34
  • Table 11. Advanced chemical recycling industry news, funding and developments 2020-2023.       35
  • Table 12. Advanced plastics recycling capacities, by technology. 44
  • Table 13. Global polymer demand 2022-2040, segmented by recycling technology for PE (million tonnes).              47
  • Table 14. Global polymer demand 2022-2040, segmented by recycling technology for PP (million tonnes).              48
  • Table 15. Global polymer demand 2022-2040, segmented by recycling technology for PET (million tonnes).            50
  • Table 16. Global polymer demand 2022-2040, segmented by recycling technology for PS (million tonnes).              51
  • Table 17. Global polymer demand 2022-2040, segmented by recycling technology for Nylon (million tonnes).       52
  • Table 18. Global polymer demand 2022-2040, segmented by recycling technology for Other types (million tonnes).*                54
  • Table 19. Global polymer demand in Europe, by recycling technology 2022-2040 (million tonnes).              55
  • Table 20. Global polymer demand in North America, by recycling technology 2022-2040 (million tonnes). 57
  • Table 21. Global polymer demand in South America, by recycling technology 2022-2040 (million tonnes). 58
  • Table 22. Global polymer demand in Asia, by recycling technology 2022-2040 (million tonnes).    60
  • Table 23. Global polymer demand in Oceania, by recycling technology 2022-2040 (million tonnes).            61
  • Table 24. Global polymer demand in Africa, by recycling technology 2022-2040 (million tonnes). 63
  • Table 25. Example chemically recycled plastic products.  65
  • Table 26. Life Cycle Assessments (LCA) of Advanced Chemical Recycling Processes.            69
  • Table 27. Life cycle assessment of mechanically versus chemically recycling polyethylene (PE).     70
  • Table 28. Life cycle assessment of mechanically versus chemically recycling polypropylene (PP).  70
  • Table 29. Life cycle assessment of mechanically versus chemically recycling polyethylene terephthalate (PET).      71
  • Table 30. Plastic yield of each chemical recycling technologies.    71
  • Table 31. Chemically recycled plastics prices in USD.         72
  • Table 32. Challenges in the advanced chemical recycling market. 72
  • Table 33. Applications of chemically recycled materials.  74
  • Table 34. Summary of non-catalytic pyrolysis technologies.           76
  • Table 35. Summary of catalytic pyrolysis technologies.    77
  • Table 36. Summary of pyrolysis technique under different operating conditions. 81
  • Table 37. Biomass materials and their bio-oil yield.            82
  • Table 38. Biofuel production cost from the biomass pyrolysis process.      83
  • Table 39. Pyrolysis companies and plant capacities, current and planned.               87
  • Table 40. Summary of gasification technologies. 89
  • Table 41. Advanced recycling (Gasification) companies.  96
  • Table 42. Summary of dissolution technologies. 97
  • Table 43. Advanced recycling (Dissolution) companies     99
  • Table 44. Depolymerisation processes for PET, PU, PC and PA, products and yields.            101
  • Table 45. Summary of hydrolysis technologies-feedstocks, process, outputs, commercial maturity and technology developers.        102
  • Table 46. Summary of Enzymolysis technologies-feedstocks, process, outputs, commercial maturity and technology developers.        104
  • Table 47. Summary of methanolysis technologies-feedstocks, process, outputs, commercial maturity and technology developers.        106
  • Table 48. Summary of glycolysis technologies-feedstocks, process, outputs, commercial maturity and technology developers.        108
  • Table 49. Summary of aminolysis technologies.  111
  • Table 50. Advanced recycling (Depolymerisation) companies and capacities (current and planned).            112
  • Table 51. Overview of hydrothermal cracking for advanced chemical recycling.     113
  • Table 52. Overview of Pyrolysis with in-line reforming for advanced chemical recycling.    114
  • Table 53. Overview of microwave-assisted pyrolysis for advanced chemical recycling.        114
  • Table 54. Overview of plasma pyrolysis for advanced chemical recycling. 115
  • Table 55. Overview of plasma gasification for advanced chemical recycling.            116
  • Table 56. Summary of carbon fiber (CF) recycling technologies. Advantages and disadvantages.   118
  • Table 57. Retention rate of tensile properties of recovered carbon fibres by different recycling processes.              119
  • Table 58. Recycled carbon fiber producers, technology and capacity.         120

 

List of Figures

  • Figure 1. Global plastics production 1950-2021, millions of tonnes.            17
  • Figure 2.  Coca-Cola PlantBottle®.             20
  • Figure 3. Interrelationship between conventional, bio-based and biodegradable plastics. 20
  • Figure 4. Global production, use, and fate of polymer resins, synthetic fibers, and additives.          23
  • Figure 5. The circular plastic economy.   25
  • Figure 6. Current management systems for waste plastics.            26
  • Figure 7. Overview of the different circular pathways for plastics.               28
  • Figure 8. Global polymer demand 2022-2040, segmented by recycling technology for PE (million tonnes).               48
  • Figure 9. Global polymer demand 2022-2040, segmented by recycling technology for PP (million tonnes).               49
  • Figure 10. Global polymer demand 2022-2040, segmented by recycling technology for PET (million tonnes).          51
  • Figure 11. Global polymer demand 2022-2040, segmented by recycling technology for PS (million tonnes).             52
  • Figure 12. Global polymer demand 2022-2040, segmented by recycling technology for Nylon (million tonnes).      53
  • Figure 13. Global polymer demand 2022-2040, segmented by recycling technology for Other types (million tonnes).                55
  • Figure 14. Global polymer demand in Europe, by recycling technology 2022-2040 (million tonnes).             56
  • Figure 15. Global polymer demand in North America, by recycling technology 2022-2040 (million tonnes).              58
  • Figure 16. Global polymer demand in South America, by recycling technology 2022-2040 (million tonnes).              59
  • Figure 17. Global polymer demand in Asia, by recycling technology 2022-2040 (million tonnes).   61
  • Figure 18. Global polymer demand in Oceania, by recycling technology 2022-2040 (million tonnes).           62
  • Figure 19. Global polymer demand in Africa, by recycling technology 2022-2040 (million tonnes). 64
  • Figure 20. Market map for advanced plastics recycling.    68
  • Figure 21. Value chain for advanced plastics recycling market.     69
  • Figure 22. Schematic layout of a pyrolysis plant. 75
  • Figure 23. Waste plastic production pathways to (A) diesel and (B) gasoline           80
  • Figure 24. Schematic for Pyrolysis of Scrap Tires. 84
  • Figure 25. Used tires conversion process.              85
  • Figure 26. SWOT analysis-pyrolysis for advanced recycling.            86
  • Figure 27. Total syngas market by product in MM Nm³/h of Syngas, 2021.               90
  • Figure 28. Overview of biogas utilization.               92
  • Figure 29. Biogas and biomethane pathways.      93
  • Figure 30. SWOT analysis-gasification for advanced recycling.       95
  • Figure 31. SWOT analysis-dissoluton for advanced recycling.         98
  • Figure 32. Products obtained through the different solvolysis pathways of PET, PU, and PA.            100
  • Figure 33. SWOT analysis-Hydrolysis for advanced chemical recycling.      103
  • Figure 34. SWOT analysis-Enzymolysis for advanced chemical recycling.   105
  • Figure 35. SWOT analysis-Methanolysis for advanced chemical recycling. 107
  • Figure 36. SWOT analysis-Glycolysis for advanced chemical recycling.       110
  • Figure 37. SWOT analysis-Aminolysis for advanced chemical recycling.     111
  • Figure 38. NewCycling process.  128
  • Figure 39. ChemCyclingTM prototypes.  132
  • Figure 40. ChemCycling circle by BASF.   133
  • Figure 41. Recycled carbon fibers obtained through the R3FIBER process.               134
  • Figure 42. Cassandra Oil  process.             145
  • Figure 43. CuRe Technology process.       153
  • Figure 44. MoReTec.      193
  • Figure 45. Chemical decomposition process of polyurethane foam.           196
  • Figure 46. OMV ReOil process.   208
  • Figure 47. Schematic Process of Plastic Energy’s TAC Chemical Recycling. 212
  • Figure 48. Easy-tear film material from recycled material.              230
  • Figure 49. Polyester fabric made from recycled monomers.          233
  • Figure 50. A sheet of acrylic resin made from conventional, fossil resource-derived MMA monomer (left) and a sheet of acrylic resin made from chemically recycled MMA monomer (right).    244
  • Figure 51. Teijin Frontier Co., Ltd. Depolymerisation process.       248
  • Figure 52. The Velocys process. 255
  • Figure 53. The Proesa® Process. 256
  • Figure 54. Worn Again products.               258

 

 

 

The Global Market for Advanced Chemical Recycling 2024-2040
The Global Market for Advanced Chemical Recycling 2024-2040
PDF download/by email.

The Global Market for Advanced Plastics Recycling
The Global Market for Advanced Plastics Recycling
PDF and print edition.

Payment methods: Visa, Mastercard, American Express, Paypal. 

To purchase by invoice (bank transfer) or in an alternative currency please contact info@futuremarketsinc.com or select Bank Transfer (Invoice) as a payment method at checkout.