The Global Market for Advanced Chemical Recycling 2025-2040

0

cover

  • Published: July 2024
  • Pages: 283
  • Tables: 60
  • Figures: 54
  • Series: Bio-Economy

 

The global plastics industry is facing a growing challenge - the need to address the environmental impact of plastic waste. As traditional waste management methods struggle to keep pace, advanced chemical recycling and dissolution technologies have emerged as a crucial solution to transform the industry towards a more sustainable, circular model. This The Global Market for Advanced Chemical Recycling 2025-2040 provides an in-depth analysis of the rapidly evolving landscape of chemical recycling and dissolution.

Report contents include: 

  • Market Forecasts and Capacity Projections (2025-2040)
  • Detailed global and regional market size projections
  • Capacity forecasts by technology type (pyrolysis, gasification, depolymerization, dissolution)
  • Polymer-specific demand forecasts for PE, PP, PET, PS, Nylon, and others
  • Analysis of market penetration rates and adoption curves
  • Comprehensive overview of advanced chemical recycling processes
    • In-depth analysis of pyrolysis (catalytic and non-catalytic)
    • Gasification technologies and syngas utilization pathways
    • Depolymerization methods (hydrolysis, glycolysis, methanolysis, aminolysis)
    • Dissolution and solvent-based purification techniques
    • Emerging technologies: hydrothermal cracking, microwave-assisted pyrolysis, plasma processes
    • Carbon fiber recycling technologies and market
  • Regional Market Analysis
  • Industry Developments and Competitive Landscape:
    • Comprehensive overview of industry news, partnerships, and acquisitions (2020-2024)
    • Analysis of funding trends and investment patterns
    • Profiles of 170+ companies shaping the advanced chemical recycling landscape. Companies profiled include Agilyx, APK AG, Aquafil, Carbios, Eastman, Extracthive, Fych Technologies, Garbo, gr3n SA, Hyundai Chemical Ioniqa, Itero, Licella, Mura Technology, revalyu Resources GmbH, Plastogaz SA, Plastic Energy, Polystyvert, Pyrowave, RePEaT Co., Ltd., Synova and SABIC. 
    • Assessment of competitive strategies and market positioning
  • Value Chain Analysis:
    • Detailed examination of the advanced chemical recycling value chain
    • Key players at each stage: waste collection, sorting, pre-treatment, recycling, and end-use markets
    • Analysis of integration strategies and emerging business models
  • End-Use Markets and Applications
  • Sustainability Metrics and Life Cycle Assessments:
    • Comparative LCAs of advanced chemical recycling vs. mechanical recycling and virgin plastic production
    • Environmental impact analysis: energy use, greenhouse gas emissions, and resource efficiency
    • Discussion of carbon footprint reduction potential and circular economy benefits
  • Insights into recycling yields for different technologies and polymer types
  • Cost structures and economies of scale in advanced recycling processes
  • Market pricing trends for chemically recycled plastics and competitive positioning
  • Regulatory Landscape and Policy Drivers
  • Market Drivers and Challenges

 

This comprehensive report is an indispensable tool for:

  • Plastic manufacturers and processors looking to incorporate recycled content
  • Waste management companies exploring advanced recycling opportunities
  • Chemical and petrochemical companies entering the circular economy space
  • Technology developers and equipment manufacturers in the recycling sector
  • Investors and financial institutions assessing market potential and risks
  • Policymakers and regulators shaping the future of plastic waste management
  • Sustainability professionals and environmental organizations tracking industry progress
  • Researchers and academics studying circular economy solutions

 

 

1             CLASSIFICATION OF RECYCLING TECHNOLOGIES             16

 

2             RESEARCH METHODOLOGY              17

 

3             INTRODUCTION          18

  • 3.1        Global production of plastics             18
  • 3.2        The importance of plastic      19
  • 3.3        Issues with plastics use          19
  • 3.4        Bio-based or renewable plastics      20
    • 3.4.1    Drop-in bio-based plastics   20
    • 3.4.2    Novel bio-based plastics       21
  • 3.5        Biodegradable and compostable plastics  22
    • 3.5.1    Biodegradability          22
    • 3.5.2    Compostability            23
  • 3.6        Plastic pollution           23
  • 3.7        Policy and regulations              24
  • 3.8        The circular economy               25
  • 3.9        Plastic recycling           27
    • 3.9.1    Mechanical recycling                30
      • 3.9.1.1 Closed-loop mechanical recycling  30
      • 3.9.1.2 Open-loop mechanical recycling      30
      • 3.9.1.3 Polymer types, use, and recovery     31
    • 3.9.2    Advanced recycling (molecular recycling, chemical recycling)     32
    • 3.9.2.1 Main streams of plastic waste            32
    • 3.9.2.2 Comparison of mechanical and advanced chemical recycling    33
  • 3.10     Life cycle assessment             33

 

4             THE ADVANCED CHEMICAL RECYCLING MARKET               35

  • 4.1        Market drivers and trends      35
  • 4.2        Industry news, funding and developments 2020-2024      36
  • 4.3        Capacities       46
  • 4.4        Global polymer demand 2022-2040, segmented by recycling technology            49
    • 4.4.1    PE          49
    • 4.4.2    PP          50
    • 4.4.3    PET       52
    • 4.4.4    PS          53
    • 4.4.5    Nylon   54
    • 4.4.6    Others 56
  • 4.5        Global polymer demand 2022-2040, segmented by recycling technology, by region     57
    • 4.5.1    Europe                57
    • 4.5.2    North America              59
    • 4.5.3    South America              60
    • 4.5.4    Asia      62
    • 4.5.5    Oceania            63
    • 4.5.6    Africa   65
  • 4.6        Chemically recycled plastic products           67
  • 4.7        Market map    69
  • 4.8        Value chain     70
  • 4.9        Life Cycle Assessments (LCA) of advanced plastics recycling processes             71
    • 4.9.1    PE          72
    • 4.9.2    PP          72
    • 4.9.3    PET       73
  • 4.10     Recycled plastic yield and cost         73
    • 4.10.1 Plastic yield of each chemical recycling technologies        73
    • 4.10.2 Prices  74
  • 4.11     Market challenges      74

 

5             ADVANCED RECYCLING TECHNOLOGIES 76

  • 5.1        Applications   76
  • 5.2        Pyrolysis            77
    • 5.2.1    Non-catalytic 78
    • 5.2.2    Catalytic            79
      • 5.2.2.1 Polystyrene pyrolysis 81
      • 5.2.2.2 Pyrolysis for production of bio fuel  81
      • 5.2.2.3 Used tires pyrolysis   85
        • 5.2.2.3.1           Conversion to biofuel               86
      • 5.2.2.4 Co-pyrolysis of biomass and plastic wastes             87
    • 5.2.3    SWOT analysis              88
    • 5.2.4    Companies and capacities  89
  • 5.3        Gasification    91
    • 5.3.1    Technology overview 91
      • 5.3.1.1 Syngas conversion to methanol        92
      • 5.3.1.2 Biomass gasification and syngas fermentation       96
      • 5.3.1.3 Biomass gasification and syngas thermochemical conversion    96
    • 5.3.2    SWOT analysis              97
    • 5.3.3    Companies and capacities (current and planned)                98
  • 5.4        Dissolution     99
    • 5.4.1    Technology overview 99
    • 5.4.2    SWOT analysis              100
    • 5.4.3    Companies and capacities (current and planned)                101
  • 5.5        Depolymerisation       102
    • 5.5.1    Hydrolysis        104
      • 5.5.1.1 Technology overview 104
      • 5.5.1.2 SWOT analysis              105
    • 5.5.2    Enzymolysis   106
      • 5.5.2.1 Technology overview 106
      • 5.5.2.2 SWOT analysis              107
    • 5.5.3    Methanolysis 108
      • 5.5.3.1 Technology overview 108
      • 5.5.3.2 SWOT analysis              109
    • 5.5.4    Glycolysis         110
      • 5.5.4.1 Technology overview 110
      • 5.5.4.2 SWOT analysis              112
    • 5.5.5    Aminolysis      113
      • 5.5.5.1 Technology overview 113
      • 5.5.5.2 SWOT analysis              113
    • 5.5.6    Companies and capacities (current and planned)                114
  • 5.6        Other advanced chemical recycling technologies 115
    • 5.6.1    Hydrothermal cracking           115
    • 5.6.2    Pyrolysis with in-line reforming          116
    • 5.6.3    Microwave-assisted pyrolysis             116
    • 5.6.4    Plasma pyrolysis         117
    • 5.6.5    Plasma gasification   118
    • 5.6.6    Supercritical fluids     118
    • 5.6.7    Carbon fiber recycling              119
      • 5.6.7.1 Processes        119
      • 5.6.7.2 Companies     122
  • 5.7        Advanced recycling of thermoset materials              123
    • 5.7.1    Thermal recycling        124
      • 5.7.1.1 Energy Recovery Combustion            124
      • 5.7.1.2 Anaerobic Digestion 124
      • 5.7.1.3 Pyrolysis Processing 125
      • 5.7.1.4 Microwave Pyrolysis  126
  • 5.7.2    Solvolysis         127
  • 5.7.3    Catalyzed Glycolysis 128
  • 5.7.4    Alcoholysis and Hydrolysis   129
  • 5.7.5    Ionic liquids    130
  • 5.7.6    Supercritical fluids     130
  • 5.7.7    Plasma              131
  • 5.7.8    Companies     132

 

6             COMPANY PROFILES                134 (170 company profiles)

 

7             GLOSSARY OF TERMS             276

 

8             REFERENCES 278

 

List of Tables

  • Table 1. Types of recycling.   16
  • Table 2. Issues related to the use of plastics.           19
  • Table 3. Type of biodegradation.       23
  • Table 4. Overview of the recycling technologies.    29
  • Table 5. Polymer types, use, and recovery. 31
  • Table 6. Composition of plastic waste streams.     32
  • Table 7. Comparison of mechanical and advanced chemical recycling.                33
  • Table 8. Life cycle assessment of virgin plastic production, mechanical recycling and chemical recycling.          33
  • Table 9. Life cycle assessment of chemical recycling technologies (pyrolysis, gasification, depolymerization and dissolution). 34
  • Table 10. Market drivers and trends in the advanced chemical recycling market.            35
  • Table 11. Advanced chemical recycling industry news, funding and developments 2020-2024.           36
  • Table 12. Advanced plastics recycling capacities, by technology.              46
  • Table 13. Global polymer demand 2022-2040, segmented by recycling technology for PE (million tonnes).             49
  • Table 14. Global polymer demand 2022-2040, segmented by recycling technology for PP (million tonnes).             50
  • Table 15. Global polymer demand 2022-2040, segmented by recycling technology for PET (million tonnes).             52
  • Table 16. Global polymer demand 2022-2040, segmented by recycling technology for PS (million tonnes).             53
  • Table 17. Global polymer demand 2022-2040, segmented by recycling technology for Nylon (million tonnes).             54
  • Table 18. Global polymer demand 2022-2040, segmented by recycling technology for Other types (million tonnes).*         56
  • Table 19. Global polymer demand in Europe, by recycling technology 2022-2040 (million tonnes).   57
  • Table 20. Global polymer demand in North America, by recycling technology 2022-2040 (million tonnes).             59
  • Table 21. Global polymer demand in South America, by recycling technology 2022-2040 (million tonnes).             60
  • Table 22. Global polymer demand in Asia, by recycling technology 2022-2040 (million tonnes).         62
  • Table 23. Global polymer demand in Oceania, by recycling technology 2022-2040 (million tonnes). 63
  • Table 24. Global polymer demand in Africa, by recycling technology 2022-2040 (million tonnes).      65
  • Table 25. Example chemically recycled plastic products.                67
  • Table 26. Life Cycle Assessments (LCA) of Advanced Chemical Recycling Processes. 71
  • Table 27. Life cycle assessment of mechanically versus chemically recycling polyethylene (PE).        72
  • Table 28. Life cycle assessment of mechanically versus chemically recycling polypropylene (PP).     72
  • Table 29. Life cycle assessment of mechanically versus chemically recycling polyethylene terephthalate (PET).  73
  • Table 30. Plastic yield of each chemical recycling technologies. 73
  • Table 31. Chemically recycled plastics prices in USD.       74
  • Table 32. Challenges in the advanced chemical recycling market.            74
  • Table 33. Applications of chemically recycled materials. 76
  • Table 34. Summary of non-catalytic pyrolysis technologies.         78
  • Table 35. Summary of catalytic pyrolysis technologies.    79
  • Table 36. Summary of pyrolysis technique under different operating conditions.            83
  • Table 37. Biomass materials and their bio-oil yield.             84
  • Table 38. Biofuel production cost from the biomass pyrolysis process. 85
  • Table 39. Pyrolysis companies and plant capacities, current and planned.         89
  • Table 40. Summary of gasification technologies.  91
  • Table 41. Advanced recycling (Gasification) companies. 98
  • Table 42. Summary of dissolution technologies.   99
  • Table 43. Advanced recycling (Dissolution) companies    101
  • Table 44. Depolymerisation processes for PET, PU, PC and PA, products and yields.    103
  • Table 45. Summary of hydrolysis technologies-feedstocks, process, outputs, commercial maturity and technology developers.           104
  • Table 46. Summary of Enzymolysis technologies-feedstocks, process, outputs, commercial maturity and technology developers. 106
  • Table 47. Summary of methanolysis technologies-feedstocks, process, outputs, commercial maturity and technology developers. 108
  • Table 48. Summary of glycolysis technologies-feedstocks, process, outputs, commercial maturity and technology developers.           110
  • Table 49. Summary of aminolysis technologies.    113
  • Table 50. Advanced recycling (Depolymerisation) companies and capacities (current and planned).                114
  • Table 51. Overview of hydrothermal cracking for advanced chemical recycling.              115
  • Table 52. Overview of Pyrolysis with in-line reforming for advanced chemical recycling.            116
  • Table 53. Overview of microwave-assisted pyrolysis for advanced chemical recycling.              116
  • Table 54. Overview of plasma pyrolysis for advanced chemical recycling.           117
  • Table 55. Overview of plasma gasification for advanced chemical recycling.     118
  • Table 56. Summary of carbon fiber (CF) recycling technologies. Advantages and disadvantages.       120
  • Table 57. Retention rate of tensile properties of recovered carbon fibres by different recycling processes.       121
  • Table 58. Recycled carbon fiber producers, technology and capacity.    122
  • Table 59.  Current thermoset recycling routes.        123
  • Table 60. Companies developing advanced thermoset recycing routes.               132

 

List of Figures

  • Figure 1. Global plastics production 1950-2021, millions of tonnes.       18
  • Figure 2.  Coca-Cola PlantBottle®.   21
  • Figure 3. Interrelationship between conventional, bio-based and biodegradable plastics.       21
  • Figure 4. Global production, use, and fate of polymer resins, synthetic fibers, and additives. 24
  • Figure 5. The circular plastic economy.        26
  • Figure 6. Current management systems for waste plastics.           27
  • Figure 7. Overview of the different circular pathways for plastics.             29
  • Figure 8. Global polymer demand 2022-2040, segmented by recycling technology for PE (million tonnes).             50
  • Figure 9. Global polymer demand 2022-2040, segmented by recycling technology for PP (million tonnes).             51
  • Figure 10. Global polymer demand 2022-2040, segmented by recycling technology for PET (million tonnes).             53
  • Figure 11. Global polymer demand 2022-2040, segmented by recycling technology for PS (million tonnes).             54
  • Figure 12. Global polymer demand 2022-2040, segmented by recycling technology for Nylon (million tonnes).             55
  • Figure 13. Global polymer demand 2022-2040, segmented by recycling technology for Other types (million tonnes).          57
  • Figure 14. Global polymer demand in Europe, by recycling technology 2022-2040 (million tonnes). 58
  • Figure 15. Global polymer demand in North America, by recycling technology 2022-2040 (million tonnes).             60
  • Figure 16. Global polymer demand in South America, by recycling technology 2022-2040 (million tonnes).             61
  • Figure 17. Global polymer demand in Asia, by recycling technology 2022-2040 (million tonnes).        63
  • Figure 18. Global polymer demand in Oceania, by recycling technology 2022-2040 (million tonnes).                64
  • Figure 19. Global polymer demand in Africa, by recycling technology 2022-2040 (million tonnes).    66
  • Figure 20. Market map for advanced plastics recycling.    70
  • Figure 21. Value chain for advanced plastics recycling market.   71
  • Figure 22. Schematic layout of a pyrolysis plant.   77
  • Figure 23. Waste plastic production pathways to (A) diesel and (B) gasoline      82
  • Figure 24. Schematic for Pyrolysis of Scrap Tires. 86
  • Figure 25. Used tires conversion process.  87
  • Figure 26. SWOT analysis-pyrolysis for advanced recycling.          88
  • Figure 27. Total syngas market by product in MM Nm³/h of Syngas, 2021.           92
  • Figure 28. Overview of biogas utilization.    94
  • Figure 29. Biogas and biomethane pathways.          95
  • Figure 30. SWOT analysis-gasification for advanced recycling.    97
  • Figure 31. SWOT analysis-dissoluton for advanced recycling.      100
  • Figure 32. Products obtained through the different solvolysis pathways of PET, PU, and PA.    102
  • Figure 33. SWOT analysis-Hydrolysis for advanced chemical recycling. 105
  • Figure 34. SWOT analysis-Enzymolysis for advanced chemical recycling.            107
  • Figure 35. SWOT analysis-Methanolysis for advanced chemical recycling.          109
  • Figure 36. SWOT analysis-Glycolysis for advanced chemical recycling. 112
  • Figure 37. SWOT analysis-Aminolysis for advanced chemical recycling.               113
  • Figure 38. NewCycling process.        142
  • Figure 39. ChemCyclingTM prototypes.       146
  • Figure 40. ChemCycling circle by BASF.       146
  • Figure 41. Recycled carbon fibers obtained through the R3FIBER process.         148
  • Figure 42. Cassandra Oil  process.  159
  • Figure 43. CuRe Technology process.            167
  • Figure 44. MoReTec.   208
  • Figure 45. Chemical decomposition process of polyurethane foam.       211
  • Figure 46. OMV ReOil process.           223
  • Figure 47. Schematic Process of Plastic Energy’s TAC Chemical Recycling.        227
  • Figure 48. Easy-tear film material from recycled material.              245
  • Figure 49. Polyester fabric made from recycled monomers.          249
  • Figure 50. A sheet of acrylic resin made from conventional, fossil resource-derived MMA monomer (left) and a sheet of acrylic resin made from chemically recycled MMA monomer (right).     260
  • Figure 51. Teijin Frontier Co., Ltd. Depolymerisation process.      265
  • Figure 52. The Velocys process.        271
  • Figure 53. The Proesa® Process.        272
  • Figure 54. Worn Again products.       274

 

 

 

 

 

The Global Market for Advanced Chemical Recycling 2025-2040
The Global Market for Advanced Chemical Recycling 2025-2040
PDF download/by email.

The Global Market for Advanced Chemical Recycling 2025-2040
The Global Market for Advanced Chemical Recycling 2025-2040
PDF and Print Edition (including delivery).

Payment methods: Visa, Mastercard, American Express, Paypal. 

To purchase by invoice (bank transfer) or in an alternative currency please contact info@futuremarketsinc.com or select Bank Transfer (Invoice) as a payment method at checkout.