The Global Market for Advanced Chemical Recycling

0

Published January 2023 | 230 pages, 20 tables, 20 figures | Download table of contents

Advanced recycling technologies that utilize heat or chemical solvents to recycle plastics into new plastics, fuels or chemicals are a key strategy for solving the global plastic problem. 

Advanced chemical recycling technologies are now being developed by around 130 companies worldwide, and capacities are increasing. Companies including ExxonMobil, New Hope Energy, Nexus Circular, Eastman, Encina are planning to build large plastics recycling plants.

As well as complementing traditional mechanical recycling, advanced recycling offers benefits such as widening the range of recyclable plastic options, producing high value plastics (e.g. for flexible food packaging) and improving sustainability (using waste rather than fossil fuels for plastics production). 

Report contents include:

  • Overview of the global plastics and bioplastics markets.
  • Market drivers and trends.
  • Advanced chemical recycling industry developments 2020-2023.
  • Capacities by technology. 
  • Market maps and value chain. 
  • In-depth analysis of advanced chemical recycling technologies. 
  • Advanced recycling technologies covered include:
    • Pyrolysis
    • Gasification
    • Dissolution
    • Depolymerisation
    • Emerging technologies.
  • Profiles of 134 companies. Companies profiled include Agilyx, APK AG, Aquafil, Carbios, Eastman, Extracthive, Fych Technologies, Garbo, gr3n SA, Ioniqa, Itero, Licella, Mura Technology, revalyu Resources GmbH, Plastogaz SA, Plastic Energy, Polystyvert, Pyrowave, Synova and SABIC.

 

 

1              RESEARCH METHODOLOGY         11

 

2              CLASSIFICATION OF RECYCLING TECHNOLOGIES 12

 

3              INTRODUCTION 14

  • 3.1          Global production of plastics       14
  • 3.2          The importance of plastic              15
  • 3.3          Issues with plastics use  15
  • 3.4          Bio-based or renewable plastics 16
    • 3.4.1      Drop-in bio-based plastics            16
    • 3.4.2      Novel bio-based plastics                18
  • 3.5          Biodegradable and compostable plastics                18
  • 3.5.1      Biodegradability               19
  • 3.5.2      Compostability  20
  • 3.6          Plastic pollution 20
  • 3.7          Policy and regulations    22
  • 3.8          The circular economy     23
  • 3.9          Plastic recycling 25
    • 3.9.1      Mechanical recycling      27
    • 3.9.2      Advanced recycling         29

 

4              THE ADVANCED RECYCLING MARKET      31

  • 4.1          Market drivers and trends            32
  • 4.2          Industry developments 2020-2023            34
  • 4.3          Industry collaborations, partnerships and licensing agreements  37
  • 4.4          Capacities            39
  • 4.5          Global polymer demand 2022-2040, segmented by recycling technology 41
  • 4.6          Global market by recycling process          42
  • 4.7          Market map       43
  • 4.8          Value chain         45
  • 4.9          Life Cycle Assessments (LCA) of Advanced Recycling         47
  • 4.10        Market challenges           49

 

5              ADVANCED RECYCLING TECHNOLOGIES 51

  • 5.1          Applications       52
  • 5.2          Pyrolysis              55
    • 5.2.1      Technology overview     55
      • 5.2.1.1   Pyrolysis of plastic waste              57
      • 5.2.1.2   Thermal pyrolysis             58
      • 5.2.1.3   Catalytic pyrolysis            59
      • 5.2.1.4   Polystyrene pyrolysis     60
      • 5.2.1.5   Pyrolysis for production of diesel fuel      62
      • 5.2.1.6   Co-pyrolysis of biomass and plastic wastes           62
      • 5.2.1.7   Co-pyrolysis of biomass and plastic wastes           63
    • 5.2.2      Comparative analysis of pyrolysis processes         64
    • 5.2.3      SWOT analysis   65
    • 5.2.4      Pyrolysis plant capacities, current and planned   66
    • 5.2.5      Companies         69
  • 5.3          Gasification        72
    • 5.3.1      Technology overview     72
      • 5.3.1.1   Syngas conversion to methonol 73
      • 5.3.1.2   Integrated Fischer-Tropsch Synthesis      73
      • 5.3.1.3   Chemcycling of waste to hydrogen           74
    • 5.3.2      SWOT analysis   77
    • 5.3.3      Companies         77
  • 5.4          Dissolution          79
    • 5.4.1      Technology overview     79
      • 5.4.1.1   Processes            79
      • 5.4.1.2   Recycling of polypropylene         80
      • 5.4.1.3   Recycling of polystyrene               81
      • 5.4.1.4   Recycling of multilayer films        81
      • 5.4.1.5   Solid-liquid separation   81
      • 5.4.1.6   Solvent recovery              82
    • 5.4.2      SWOT analysis   82
    • 5.4.3      Dissolution plant capacities, current and planned              83
    • 5.4.4      Companies         85
  • 5.5          Depolymerisation            86
    • 5.5.1      Technology overview     86
    • 5.5.1.1   Hydrolysis           87
    • 5.5.1.2   Methanolysis     87
    • 5.5.1.3   Glycolysis            88
    • 5.5.1.4   Enzymolysis        89
    • 5.5.1.5   Depolymerisation methods summary     89
    • 5.5.1.6   Depolymerisation for the production of fuel         90
    • 5.5.1.7   Depolymerisation for the production of feedstock            91
    • 5.5.1.8   Depolymerisation for the production of plastic    92
    • 5.5.1.9   Microwave technology for depolymerisation       93
    • 5.5.1.10                Enzyme technology for depolymerisation              94
    • 5.5.1.11                Ionic liquids        95
    • 5..5.2             SWOT analysis   96
    • 5.5.3      Depolymerisation plant capacities, current and planned 97
    • 5.5.4      Companies         98
  • 5.6          Emerging advanced recycling technologies           100
    • 5.6.1      Microwave heating         100
    • 5.6.2      Plasma  101
    • 5.6.3      Supercritical fluids           102
    • 5.6.4      Biotechnology   103

 

6              COMPANY PROFILES       105 (130 company profiles)

 

7              REFERENCES       228

 

List of Tables

  • Table 1. Types of recycling.          12
  • Table 2. Issues related to the use of plastics.        15
  • Table 3. Type of biodegradation.               19
  • Table 4.Advanced recycling processes.   29
  • Table 5. Market drivers and trends in the advanced recycling market.       32
  • Table 6. Advanced recycling industry developments 2020-2023.  34
  • Table 7. Industry collaborations, partnerships and licensing agreements. 37
  • Table 8. Challenges in the advanced recycling market.     49
  • Table 9. Applications of recycled materials.           52
  • Table 10. Advanced recycling technologies overview.      53
  • Table 11. Comparative analysis of pyrolysis processes.    64
  • Table 12. Pyrolysis plant capacities, current and planned.              66
  • Table 13. Advanced recycling-pyrolysis companies and type used.              69
  • Table 14. Advanced recycling (Gasification) companies    78
  • Table 15. Summary of dissolution processes.       79
  • Table 16. Pyrolysis plant capacities, current and planned.              83
  • Table 17. Advanced recycling (Dissolution) companies     85
  • Table 18. Depolymerisation methods.    90
  • Table 19. Depolymerisation plant capacities, current and planned.            97
  • Table 20. Advanced recycling (Depolymerisation) companies       98
  •  

List of Figures

  • Figure 1. Global plastics production 1950-2020, millions of tons. 15
  • Figure 2.  Coca-Cola PlantBottle®.             17
  • Figure 3. Interrelationship between conventional, bio-based and biodegradable plastics. 18
  • Figure 4. Global production, use, and fate of polymer resins, synthetic fibers, and additives.          21
  • Figure 5. The circular plastic economy.   24
  • Figure 6. Conventional and new technology for plastics waste management.        25
  • Figure 7. Plastic recycling and recovery schematic.            26
  • Figure 8. Advanced recycling capacities 2022, by technology.       39
  • Figure 9. Global polymer demand 2022-2040, segmented by recycling technology, million metric tons.     41
  • Figure 10. Global market by recycling process, 2020-2033, millions USD. 42
  • Figure 11. Market map for advanced recycling.   43
  • Figure 12. Value chain for advanced recycling market.     45
  • Figure 13. Schematic layout of a pyrolysis plant. 56
  • Figure 14. SWOT analysis-pyrolysis for advanced recycling.            65
  • Figure 15. SWOT analysis-gasification for advanced recycling.       77
  • Figure 16. PureCycleTM process.              79
  • Figure 17. SWOT analysis-dissoluiton for advanced recycling.        82
  • Figure 18. Products obtained through the different solvolysis pathways of PET, PU, and PA.            90
  • Figure 19. SWOT analysis-Depolymerisation for advanced recycling.          96
  • Figure 20. NewCycling process.  113
  • Figure 21. ChemCyclingTM prototypes.  117
  • Figure 22. ChemCycling circle by BASF.   117
  • Figure 23.  CreaSolv® process.    144
  • Figure 24. MoReTec.      164
  • Figure 25. Repsol Reciclex® Circular Polyolefins. 200
  • Figure 26. Easy-tear film material from recycled material.              200

 

 

The Global Market for Advanced Chemical Recycling
The Global Market for Advanced Chemical Recycling
PDF download/by email.

Payment methods: Visa, Mastercard, American Express, Paypal. 

To purchase by invoice (bank transfer) or in an alternative currency please contact info@futuremarketsinc.com