The Global Market for Bio-based Materials 2023-2033

0

Published March 2023 | 1220 pages, 338 figures, 234 tables | Download table of contents

With the need to supplement global plastics production with sustainable alternatives, and the dearth of available recycled plastic (~9% of the world's plastic is recycled), many producers are turning to bio-based alternatives. Bio-based materials refer to products that mainly consist of a substance (or substances) derived from living matter (biomass) and either occur naturally or are synthesized, or it may refer to products made by processes that use biomass. Materials from biomass sources include bulk chemicals, platform chemicals, solvents, polymers, and biocomposites. The many processes to convert biomass components to value-added products and fuels can be classified broadly as biochemical or thermochemical. In addition, biotechnological processes that rely mainly on plant breeding, fermentation, and conventional enzyme isolation also are used. New bio-based materials that may compete with conventional materials are emerging continually, and the opportunities to use them in existing and novel products are explored in this publication. 

There is growing consumer demand and regulatory push for bio-based chemicals, materials, polymers, plastics, paints, coatings and fuels with high performance, good recyclability and biodegradable properties to underpin transition towards more sustainable manufacturing and products.

The Global Market for Bio-based Materials 2023-2033 presents a complete picture of the current market and future outlooks, covering bio-based chemicals and feedstocks, materials, polymers, bio-plastics, bio-fuels and bio-based paints and coatings. Contents include:

  • In depth market analysis of bio-based chemical feedstocks, biopolymers, bioplastics, natural fibers and lignin, biofuels and bio-based coatings and paints. 
  • Global production capacities, market volumes and trends, current and forecast to 2033. 
  • Analysis of bio-based chemical including 11-Aminoundecanoic acid (11-AA), 1,4-Butanediol (1,4-BDO), Dodecanedioic acid (DDDA), Epichlorohydrin (ECH), Ethylene, Furan derivatives, 5-Chloromethylfurfural (5-CMF), 2,5-Furandicarboxylic acid (2,5-FDCA), Furandicarboxylic methyl ester (FDME), Isosorbide,  Itaconic acid, 5 Hydroxymethyl furfural (HMF), Lactic acid (D-LA), Lactic acid – L-lactic acid (L-LA), Lactide, Levoglucosenone, Levulinic acid, Monoethylene glycol (MEG), Monopropylene glycol (MPG), Muconic acid, Naphtha, 1,5-Pentametylenediamine (DN5), 1,3-Propanediol (1,3-PDO), Sebacic acid and Succinic acid.
  • Analysis of synthetic bio-polymers and bio-plastics market including Polylactic acid (Bio-PLA), Polyethylene terephthalate (Bio-PET), Polytrimethylene terephthalate (Bio-PTT), Polyethylene furanoate (Bio-PEF), Polyamides (Bio-PA), Poly(butylene adipate-co-terephthalate) (Bio-PBAT), Polybutylene succinate (PBS) and copolymers, Polyethylene (Bio-PE), Polypropylene (Bio-PP)
  • Analysis of naturally produced bio-based polymers including Polyhydroxyalkanoates (PHA), Polysaccharides, Microfibrillated cellulose (MFC), Cellulose nanocrystals, Cellulose nanofibers,  Protein-based bioplastics, Algal and fungal materials. 
  • Analysis of market for bio-fuels. 
  • Analysis of types of natural fibers including plant fibers, animal fibers including alternative leather, wool, silk fiber and down and polysaccharides. 
  • Markets for natural fibers, including composites, aerospace, automotive, construction & building, sports & leisure, textiles, consumer products and packaging.
  • Production capacities of lignin producers. 
  • In depth analysis of biorefinery lignin production. 
  • Analysis of the market for bio-based, sustainable paints and coatings. 
  • Analysis of types of bio-coatings and paints market.  Including Alkyd coatings, Polyurethane coatings, Epoxy coatings, Acrylate resins, Polylactic acid (Bio-PLA), Polyhydroxyalkanoates (PHA), Cellulose, Rosins, Biobased carbon black, Lignin, Edible coatings, Protein-based biomaterials for coatings, Alginate etc. 
  • Profiles of over 800 companies. Companies profiled include Algal Bio, AMSilk GmbH, Arkema, Avantium, BASF, Bioform Technologies, Bolt Threads, Borealis, Braskem, B’ZEOS, Cathay, CJ Biomaterials, Danimer Scientific, Dupont, Ecovative, Full Cycle Bioplastics, Genecis, Humble Bee Bio, Indorama, Loliware, Keel Labs, Kraig Biocraft Laboratories, Mitsubishi Chemicals, MycoWorks, Natrify, NatureWorks, Notpla, Novamont, PILI, Plastus, Smartfiber, Spiber, Stora Enso Oyj, Traceless Materials GmbH, Total Corbion and Venvirotech. 

 

 

1              RESEARCH METHODOLOGY         58

 

2              BIO-BASED CHEMICALS AND FEEDSTOCKS             60

  • 2.1          Types    60
  • 2.2          Production capacities     61
  • 2.3          Bio-based adipic acid      62
    • 2.3.1      Applications and production       63
  • 2.4          11-Aminoundecanoic acid (11-AA)            63
    • 2.4.1      Applications and production       64
  • 2.5          1,4-Butanediol (1,4-BDO)              65
    • 2.5.1      Applications and production       65
  • 2.6          Dodecanedioic acid (DDDA)         66
    • 2.6.1      Applications and production       66
  • 2.7          Epichlorohydrin (ECH)    67
    • 2.7.1      Applications and production       67
  • 2.8          Ethylene              68
    • 2.8.1      Applications and production       69
  • 2.9          Furfural 69
    • 2.9.1      Applications and production       70
  • 2.10        5-Hydroxymethylfurfural (HMF) 70
    • 2.10.1    Applications and production       71
  • 2.11        5-Chloromethylfurfural (5-CMF) 71
    • 2.11.1    Applications and production       71
  • 2.12        2,5-Furandicarboxylic acid (2,5-FDCA)     71
    • 2.12.1    Applications and production       72
  • 2.13        Furandicarboxylic methyl ester (FDME)  72
  • 2.14        Isosorbide           72
    • 2.14.1    Applications and production       73
  • 2.15        Itaconic acid       73
    • 2.15.1    Applications and production       73
  • 2.16        3-Hydroxypropionic acid (3-HP) 73
    • 2.16.1    Applications and production       74
  • 2.17        5 Hydroxymethyl furfural (HMF) 74
    • 2.17.1    Applications and production       75
  • 2.18        Lactic acid (D-LA)             75
    • 2.18.1    Applications and production       76
  • 2.19        Lactic acid – L-lactic acid (L-LA)   76
    • 2.19.1    Applications and production       76
  • 2.20        Lactide  77
    • 2.20.1    Applications and production       78
  • 2.21        Levoglucosenone             79
    • 2.21.1    Applications and production       80
  • 2.22        Levulinic acid      80
    • 2.22.1    Applications and production       80
  • 2.23        Monoethylene glycol (MEG)       80
    • 2.23.1    Applications and production       81
  • 2.24        Monopropylene glycol (MPG)    81
    • 2.24.1    Applications and production       82
  • 2.25        Muconic acid      82
    • 2.25.1    Applications and production       83
  • 2.26        Bio-Naphtha      83
    • 2.26.1    Applications and production       84
    • 2.26.2    Production capacities     84
    • 2.26.3    Bio-naptha producers    85
  • 2.27        Pentamethylene diisocyanate    86
    • 2.27.1    Applications and production       87
  • 2.28        1,3-Propanediol (1,3-PDO)           87
    • 2.28.1    Applications and production       87
  • 2.29        Sebacic acid        88
    • 2.29.1    Applications and production       88
  • 2.30        Succinic acid (SA)             89
    • 2.30.1    Applications and production       90

 

3              BIO-BASED MATERIALS, PLASTICS AND POLYMERS            90

  • 3.1          Global production of plastics       90
  • 3.2          The importance of plastic              91
  • 3.3          Issues with plastics use  91
  • 3.4          Policy and regulations    92
  • 3.5          The circular economy     93
  • 3.6          Bio-based or renewable plastics 94
    • 3.6.1      Drop-in bio-based plastics            95
    • 3.6.2      Novel bio-based plastics                96
  • 3.7          Biodegradable and compostable plastics                97
    • 3.7.1      Biodegradability               97
    • 3.7.2      Compostability  98
  • 3.8          Advantages and disadvantages  98
  • 3.9          Types of Bio-based and/or Biodegradable Plastics              99
  • 3.10        Market leaders by biobased and/or biodegradable plastic types  101
  • 3.11        Regional/country production capacities, by main types   102
    • 3.11.1    Bio-based Polyethylene (Bio-PE) production capacities, by country             104
    • 3.11.2    Bio-based Polyethylene terephthalate (Bio-PET) production capacities, by country              105
    • 3.11.3    Bio-based polyamides (Bio-PA) production capacities, by country               106
    • 3.11.4    Bio-based Polypropylene (Bio-PP) production capacities, by country          107
    • 3.11.5    Bio-based Polytrimethylene terephthalate (Bio-PTT) production capacities, by country     108
    • 3.11.6    Bio-based Poly(butylene adipate-co-terephthalate) (PBAT) production capacities, by country         109
    • 3.11.7    Bio-based Polybutylene succinate (PBS) production capacities, by country              110
    • 3.11.8    Bio-based Polylactic acid (PLA) production capacities, by country 111
    • 3.11.9    Polyhydroxyalkanoates (PHA) production capacities, by country  112
    • 3.11.10  Starch blends production capacities, by country 113
  • 3.12        SYNTHETIC BIO-BASED POLYMERS            114
    • 3.12.1    Polylactic acid (Bio-PLA) 114
      • 3.12.1.1                Market analysis 114
      • 3.12.1.2                Production          116
      • 3.12.1.3                Producers and production capacities, current and planned            116
        • 3.12.1.3.1             Lactic acid producers and production capacities  116
        • 3.12.1.3.2             PLA producers and production capacities               117
        • 3.12.1.3.3             Polylactic acid (Bio-PLA) production capacities 2019-2033 (1,000 tons)     118
    • 3.12.2    Polyethylene terephthalate (Bio-PET)     119
      • 3.12.2.1                Market analysis 119
      • 3.12.2.2                Producers and production capacities       120
      • 3.12.2.3                Polyethylene terephthalate (Bio-PET) production capacities 2019-2033 (1,000 tons)          121
    • 3.12.3    Polytrimethylene terephthalate (Bio-PTT)             122
      • 3.12.3.1                Market analysis 122
      • 3.12.3.2                Producers and production capacities       122
      • 3.12.3.3                Polytrimethylene terephthalate (PTT) production capacities 2019-2033 (1,000 tons)          123
    • 3.12.4    Polyethylene furanoate (Bio-PEF)             124
      • 3.12.4.1                Market analysis 124
      • 3.12.4.2                Comparative properties to PET   125
      • 3.12.4.3                Producers and production capacities       126
        • 3.12.4.3.1             FDCA and PEF producers and production capacities           126
        • 3.12.4.3.2             Polyethylene furanoate (Bio-PEF) production capacities 2019-2033 (1,000 tons). 127
    • 3.12.5    Polyamides (Bio-PA)       128
      • 3.12.5.1                Market analysis 129
      • 3.12.5.2                Producers and production capacities       130
      • 3.12.5.3                Polyamides (Bio-PA) production capacities 2019-2033 (1,000 tons)            130
    • 3.12.6    Poly(butylene adipate-co-terephthalate) (Bio-PBAT)        131
      • 3.12.6.1                Market analysis 131
      • 3.12.6.2                Producers and production capacities       132
      • 3.12.6.3                Poly(butylene adipate-co-terephthalate) (Bio-PBAT) production capacities 2019-2033 (1,000 tons)                133
    • 3.12.7    Polybutylene succinate (PBS) and copolymers     134
      • 3.12.7.1                Market analysis 134
      • 3.12.7.2                Producers and production capacities       135
      • 3.12.7.3                Polybutylene succinate (PBS) production capacities 2019-2033 (1,000 tons)           135
    • 3.12.8    Polyethylene (Bio-PE)    136
      • 3.12.8.1                Market analysis 136
      • 3.12.8.2                Producers and production capacities       137
      • 3.12.8.3                Polyethylene (Bio-PE) production capacities 2019-2033 (1,000 tons).        137
    • 3.12.9    Polypropylene (Bio-PP) 138
      • 3.12.9.1                Market analysis 139
      • 3.12.9.2                Producers and production capacities       139
      • 3.12.9.3                Polypropylene (Bio-PP) production capacities 2019-2033 (1,000 tons)      139
  • 3.13        NATURAL BIO-BASED POLYMERS               141
    • 3.13.1    Polyhydroxyalkanoates (PHA)     141
      • 3.13.1.1                Technology description 141
      • 3.13.1.2                Types    143
        • 3.13.1.2.1             PHB        145
        • 3.13.1.2.2             PHBV     146
      • 3.13.1.3                Synthesis and production processes        147
      • 3.13.1.4                Market analysis 150
      • 3.13.1.5                Commercially available PHAs      151
      • 3.13.1.6                Markets for PHAs             152
        • 3.13.1.6.1             Packaging            154
        • 3.13.1.6.2             Cosmetics           155
          • 3.13.1.6.2.1         PHA microspheres           155
        • 3.13.1.6.3             Medical 156
          • 3.13.1.6.3.1         Tissue engineering          156
          • 3.13.1.6.3.2         Drug delivery     156
        • 3.13.1.6.4             Agriculture          156
          • 3.13.1.6.4.1         Mulch film           156
          • 3.13.1.6.4.2         Grow bags           156
      • 3.13.1.7                Producers and production capacities       157
      • 3.13.1.8                PHA production capacities 2019-2033 (1,000 tons)            159
    • 3.13.2    Cellulose              160
      • 3.13.2.1                Microfibrillated cellulose (MFC) 160
        • 3.13.2.1.1             Market analysis 160
        • 3.13.2.1.2             Producers and production capacities       161
      • 3.13.2.2                Nanocellulose   161
        • 3.13.2.2.1             Cellulose nanocrystals    161
          • 3.13.2.2.1.1         Synthesis             162
          • 3.13.2.2.1.2         Properties           164
          • 3.13.2.2.1.3         Production          165
          • 3.13.2.2.1.4         Applications       165
          • 3.13.2.2.1.5         Market analysis 167
          • 3.13.2.2.1.6         Producers and production capacities       168
        • 3.13.2.2.2             Cellulose nanofibers       169
          • 3.13.2.2.2.1         Applications       169
          • 3.13.2.2.2.2         Market analysis 170
          • 3.13.2.2.2.3         Producers and production capacities       172
        • 3.13.2.2.3             Bacterial Nanocellulose (BNC)    173
        • 3.13.2.2.3.1         Production          173
        • 3.13.2.2.3.2         Applications       176
    • 3.13.3    Protein-based bioplastics             177
      • 3.13.3.1                Types, applications and producers            178
    • 3.13.4    Algal and fungal 179
      • 3.13.4.1                Algal      179
        • 3.13.4.1.1             Advantages        179
        • 3.13.4.1.2             Production          181
        • 3.13.4.1.3             Producers           181
      • 3.13.4.2                Mycelium            182
        • 3.13.4.2.1             Properties           182
        • 3.13.4.2.2             Applications       183
        • 3.13.4.2.3             Commercialization           184
    • 3.13.5    Chitosan              185
      • 3.13.5.1                Technology description 185
  • 3.14        PRODUCTION OF BIOBASED AND BIODEGRADABLE PLASTICS, BY REGION 186
    • 3.14.1    North America   187
    • 3.14.2    Europe 188
    • 3.14.3    Asia-Pacific         188
      • 3.14.3.1                China     188
      • 3.14.3.2                Japan    189
      • 3.14.3.3                Thailand               189
      • 3.14.3.4                Indonesia            189
    • 3.14.4    Latin America    190
  • 3.15        MARKET SEGMENTATION OF BIOPLASTICS           191
    • 3.15.1    Packaging            192
      • 3.15.1.1                Processes for bioplastics in packaging      192
      • 3.15.1.2                Applications       193
      • 3.15.1.3                Flexible packaging            194
        • 3.15.1.3.1             Production volumes 2019-2033   196
      • 3.15.1.4                Rigid packaging 196
        • 3.15.1.4.1             Production volumes 2019-2033   198
    • 3.15.2    Consumer products        199
      • 3.15.2.1                Applications       199
    • 3.15.3    Automotive        200
      • 3.15.3.1                Applications       200
      • 3.15.3.2                Production capacities     200
    • 3.15.4    Building & construction 201
      • 3.15.4.1                Applications       201
      • 3.15.4.2                Production capacities     201
    • 3.15.5    Textiles 202
      • 3.15.5.1                Apparel 202
      • 3.15.5.2                Footwear            203
      • 3.15.5.3                Medical textiles 205
      • 3.15.5.4                Production capacities     205
    • 3.15.6    Electronics          206
      • 3.15.6.1                Applications       206
      • 3.15.6.2                Production capacities     206
    • 3.15.7    Agriculture and horticulture        207
      • 3.15.7.1                Production capacities     208
  • 3.16        NATURAL FIBERS              208
    • 3.16.1    Manufacturing method, matrix materials and applications of natural fibers            212
    • 3.16.2    Advantages of natural fibers       213
    • 3.16.3    Commercially available next-gen natural fiber  products 214
    • 3.16.4    Market drivers for next-gen natural fibers             217
    • 3.16.5    Challenges          219
    • 3.16.6    Plants (cellulose, lignocellulose) 220
      • 3.16.6.1                Seed fibers         220
        • 3.16.6.1.1             Cotton  220
          • 3.16.6.1.1.1         Production volumes 2018-2033   221
        • 3.16.6.1.2             Kapok   221
          • 3.16.6.1.2.1         Production volumes 2018-2033   222
        • 3.16.6.1.3             Luffa      223
      • 3.16.6.2                Bast fibers           224
        • 3.16.6.2.1             Jute       224
        • 3.16.6.2.2             Production volumes 2018-2033   225
          • 3.16.6.2.2.1         Hemp    226
          • 3.16.6.2.2.2         Production volumes 2018-2033   226
        • 3.16.6.2.3             Flax        227
          • 3.16.6.2.3.1         Production volumes 2018-2033   228
        • 3.16.6.2.4             Ramie   229
          • 3.16.6.2.4.1         Production volumes 2018-2033   229
        • 3.16.6.2.5             Kenaf    230
          • 3.16.6.2.5.1         Production volumes 2018-2033   231
      • 3.16.6.3                Leaf fibers           232
        • 3.16.6.3.1             Sisal       232
          • 3.16.6.3.1.1         Production volumes 2018-2033   233
        • 3.16.6.3.2             Abaca    233
          • 3.16.6.3.2.1         Production volumes 2018-2033   234
      • 3.16.6.4                Fruit fibers          235
        • 3.16.6.4.1             Coir        235
          • 3.16.6.4.1.1         Production volumes 2018-2033   235
        • 3.16.6.4.2             Banana 236
          • 3.16.6.4.2.1         Production volumes 2018-2033   237
        • 3.16.6.4.3             Pineapple            238
      • 3.16.6.5                Stalk fibers from agricultural residues     239
        • 3.16.6.5.1             Rice fiber             239
        • 3.16.6.5.2             Corn      240
      • 3.16.6.6                Cane, grasses and reed  241
        • 3.16.6.6.1             Switch grass       241
        • 3.16.6.6.2             Sugarcane (agricultural residues)              241
        • 3.16.6.6.3             Bamboo               242
          • 3.16.6.6.3.1         Production volumes 2018-2033   243
        • 3.16.6.6.4             Fresh grass (green biorefinery)  243
      • 3.16.6.7                Modified natural polymers          244
        • 3.16.6.7.1             Mycelium            244
        • 3.16.6.7.2             Chitosan              246
        • 3.16.6.7.3             Alginate               247
    • 3.16.7    Animal (fibrous protein) 249
      • 3.16.7.1                Wool     249
        • 3.16.7.1.1             Alternative wool materials           250
        • 3.16.7.1.2             Producers           250
      • 3.16.7.2                Silk fiber              250
        • 3.16.7.2.1             Alternative silk materials               251
          • 3.16.7.2.1.1         Producers           251
      • 3.16.7.3                Leather 252
        • 3.16.7.3.1             Alternative leather materials       253
          • 3.16.7.3.1.1         Producers           253
      • 3.16.7.4                Fur         255
        • 3.16.7.4.1             Producers           255
      • 3.16.7.5                Down    255
        • 3.16.7.5.1             Alternative down materials          255
          • 3.16.7.5.1.1         Producers           255
    • 3.16.8    MARKETS FOR NATURAL FIBERS 256
      • 3.16.8.1                Composites        256
      • 3.16.8.2                Applications       256
      • 3.16.8.3                Natural fiber injection moulding compounds       257
        • 3.16.8.3.1             Properties           258
        • 3.16.8.3.2             Applications       258
      • 3.16.8.4                Non-woven natural fiber mat composites              258
        • 3.16.8.4.1             Automotive        258
        • 3.16.8.4.2             Applications       259
      • 3.16.8.5                Aligned natural fiber-reinforced composites        259
      • 3.16.8.6                Natural fiber biobased polymer compounds         260
      • 3.16.8.7                Natural fiber biobased polymer non-woven mats              261
        • 3.16.8.7.1             Flax        261
        • 3.16.8.7.2             Kenaf    261
      • 3.16.8.8                Natural fiber thermoset bioresin composites       261
      • 3.16.8.9                Aerospace          262
        • 3.16.8.9.1             Market overview             262
      • 3.16.8.10              Automotive        262
        • 3.16.8.10.1          Market overview             262
        • 3.16.8.10.2          Applications of natural fibers      267
      • 3.16.8.11              Building/construction     268
        • 3.16.8.11.1          Market overview             268
        • 3.16.8.11.2          Applications of natural fibers      268
      • 3.16.8.12              Sports and leisure            269
        • 3.16.8.12.1          Market overview             269
      • 3.16.8.13              Textiles 270
        • 3.16.8.13.1          Market overview             270
        • 3.16.8.13.2          Consumer apparel           271
        • 3.16.8.13.3          Geotextiles        271
      • 3.16.8.14              Packaging            272
        • 3.16.8.14.1          Market overview             273
    • 3.16.9    NATURAL FIBERS GLOBAL PRODUCTION 275
      • 3.16.9.1                Overall global fibers market        275
      • 3.16.9.2                Plant-based fiber production      277
      • 3.16.9.3                Animal-based natural fiber production   278
  • 3.17        LIGNIN 279
    • 3.17.1    INTRODUCTION 279
      • 3.17.1.1                What is lignin?   279
        • 3.17.1.1.1             Lignin structure 280
      • 3.17.1.2                Types of lignin    281
        • 3.17.1.2.1             Sulfur containing lignin  283
        • 3.17.1.2.2             Sulfur-free lignin from biorefinery process            283
      • 3.17.1.3                Properties           284
      • 3.17.1.4                The lignocellulose biorefinery     286
      • 3.17.1.5                Markets and applications              287
      • 3.17.1.6                Challenges for using lignin            289
    • 3.17.2    LIGNIN PRODUCTON PROCESSES              289
      • 3.17.2.1                Lignosulphonates            291
      • 3.17.2.2                Kraft Lignin          291
        • 3.17.2.2.1             LignoBoost process         292
        • 3.17.2.2.2             LignoForce method         292
        • 3.17.2.2.3             Sequential Liquid Lignin Recovery and Purification             293
        • 3.17.2.2.4             A-Recovery+      294
      • 3.17.2.3                Soda lignin          295
      • 3.17.2.4                Biorefinery lignin              295
        • 3.17.2.4.1             Commercial and pre-commercial biorefinery lignin production facilities and  processes    296
      • 3.17.2.5                Organosolv lignins            298
      • 3.17.2.6                Hydrolytic lignin                299
    • 3.17.3    MARKETS FOR LIGNIN    300
      • 3.17.3.1                Market drivers and trends for lignin         300
      • 3.17.3.2                Production capacities     301
        • 3.17.3.2.1             Technical lignin availability (dry ton/y)    301
        • 3.17.3.2.2             Biomass conversion (Biorefinery)             302
      • 3.17.3.3                Estimated consumption of lignin                302
      • 3.17.3.4                Prices    304
      • 3.17.3.5                Heat and power energy 304
      • 3.17.3.6                Pyrolysis and syngas       304
      • 3.17.3.7                Aromatic compounds     305
        • 3.17.3.7.1             Benzene, toluene and xylene      305
        • 3.17.3.7.2             Phenol and phenolic resins          305
        • 3.17.3.7.3             Vanillin 306
      • 3.17.3.8                Plastics and polymers     306
      • 3.17.3.9                Hydrogels            307
      • 3.17.3.10              Carbon materials              308
        • 3.17.3.10.1          Carbon black      308
        • 3.17.3.10.2          Activated carbons            308
        • 3.17.3.10.3          Carbon fiber       309
      • 3.17.3.11              Concrete             310
      • 3.17.3.12              Rubber 311
      • 3.17.3.13              Biofuels 311
      • 3.17.3.14              Bitumen and Asphalt      311
      • 3.17.3.15              Oil and gas          312
      • 3.17.3.16              Energy storage  313
        • 3.17.3.16.1          Supercapacitors 313
        • 3.17.3.16.2          Anodes for lithium-ion batteries 313
        • 3.17.3.16.3          Gel electrolytes for lithium-ion batteries                314
        • 3.17.3.16.4          Binders for lithium-ion batteries 314
        • 3.17.3.16.5          Cathodes for lithium-ion batteries            314
        • 3.17.3.16.6          Sodium-ion batteries      315
      • 3.17.3.17              Binders, emulsifiers and dispersants        315
      • 3.17.3.18              Chelating agents              317
      • 3.17.3.19              Ceramics              318
      • 3.17.3.20              Automotive interiors      318
      • 3.17.3.21              Fire retardants  319
      • 3.17.3.22              Antioxidants      319
      • 3.17.3.23              Lubricants           319
      • 3.17.3.24              Dust control       320
  • 3.18        BIO-BASED MATERIALS, PLASTICS AND POLYMERS COMPANY PROFILES  321 (519 company profiles)

 

4              BIO-BASED FUELS             753

  • 4.1          The global biofuels market           754
    • 4.1.1      Diesel substitutes and alternatives           754
    • 4.1.2      Gasoline substitutes and alternatives      755
  • 4.2          Comparison of biofuel costs 2022, by type            756
  • 4.3          Types    757
    • 4.3.1      Solid Biofuels     757
    • 4.3.2      Liquid Biofuels  757
    • 4.3.3      Gaseous Biofuels             758
    • 4.3.4      Conventional Biofuels    758
    • 4.3.5      Advanced Biofuels           759
  • 4.4          Feedstocks         760
    • 4.4.1      First-generation (1-G)    761
    • 4.4.2      Second-generation (2-G)              763
      • 4.4.2.1   Lignocellulosic wastes and residues         764
      • 4.4.2.2   Biorefinery lignin              765
    • 4.4.3      Third-generation (3-G)  769
      • 4.4.3.1   Algal biofuels     769
        • 4.4.3.1.1               Properties           770
        • 4.4.3.1.2               Advantages        770
    • 4.4.4      Fourth-generation (4-G) 772
    • 4.4.5      Advantages and disadvantages, by generation    772
  • 4.5          HYDROCARBON BIOFUELS            774
    • 4.5.1      Biodiesel              774
      • 4.5.1.1   Biodiesel by generation 775
      • 4.5.1.2   Production of biodiesel and other biofuels            776
        • 4.5.1.2.1               Pyrolysis of biomass        777
        • 4.5.1.2.2               Vegetable oil transesterification 780
        • 4.5.1.2.3               Vegetable oil hydrogenation (HVO)         781
          • 4.5.1.2.3.1           Production process         782
        • 4.5.1.2.4               Biodiesel from tall oil      783
        • 4.5.1.2.5               Fischer-Tropsch BioDiesel             783
        • 4.5.1.2.6               Hydrothermal liquefaction of biomass    785
        • 4.5.1.2.7               CO2 capture and Fischer-Tropsch (FT)     786
        • 4.5.1.2.8               Dymethyl ether (DME)   786
      • 4.5.1.3   Global production and consumption        787
    • 4.5.2      Renewable diesel            789
      • 4.5.2.1   Production          789
      • 4.5.2.2   Global consumption       790
    • 4.5.3      Bio-jet (bio-aviation) fuels            792
      • 4.5.3.1   Description         792
      • 4.5.3.2   Global market   793
      • 4.5.3.3   Production pathways     793
    • 4.5.4      Costs     796
      • 4.5.4.1   Biojet fuel production capacities                796
      • 4.5.4.2   Challenges          797
      • 4.5.4.3   Global consumption       797
    • 4.5.5      Syngas  798
      • 4.5.6      Biogas and biomethane 799
      • 4.5.6.1   Feedstocks         802
    • 4.5.7      Bio-naphtha       803
      • 4.5.7.1   Overview            803
      • 4.5.7.2   Markets and applications              804
      • 4.5.7.3   Production capacities, by producer, current and planned               805
      • 4.5.7.4   Production capacities, total (tonnes), historical, current and planned        807
  • 4.6          ALCOHOL FUELS               808
    • 4.6.1      Biomethanol      808
      • 4.6.1.1   Methanol-to gasoline technology             808
        • 4.6.1.1.1               Production processes     809
          • 4.6.1.1.1.1           Anaerobic digestion        810
          • 4.6.1.1.1.2           Biomass gasification        810
          • 4.6.1.1.1.3           Power to Methane          811
    • 4.6.2      Bioethanol          812
      • 4.6.2.1   Technology description 812
      • 4.6.2.2   1G Bio-Ethanol  813
      • 4.6.2.3   Ethanol to jet fuel technology     813
      • 4.6.2.4   Methanol from pulp & paper production               814
      • 4.6.2.5   Sulfite spent liquor fermentation              814
      • 4.6.2.6   Gasification        815
        • 4.6.2.6.1               Biomass gasification and syngas fermentation    815
      • 4.6.2.7   Biomass gasification and syngas thermochemical conversion        815
      • 4.6.2.8   CO2 capture and alcohol synthesis           816
      • 4.6.2.9   Biomass hydrolysis and fermentation     816
        • 4.6.2.9.1               Separate hydrolysis and fermentation    816
        • 4.6.2.9.2               Simultaneous saccharification and fermentation (SSF)     817
        • 4.6.2.9.3               Pre-hydrolysis and simultaneous saccharification and fermentation (PSSF)             817
        • 4.6.2.9.4               Simultaneous saccharification and co-fermentation (SSCF)            818
        • 4.6.2.9.5               Direct conversion (consolidated bioprocessing) (CBP)      818
      • 4.6.2.10                Global ethanol consumption       819
    • 4.6.3      Biobutanol          820
      • 4.6.3.1   Production          822
  • 4.7          BIOFUEL FROM PLASTIC WASTE AND USED TIRES               823
    • 4.7.1      Plastic pyrolysis 823
    • 4.7.2      Used tires pyrolysis         824
      • 4.7.2.1   Conversion to biofuel     825
  • 4.8          ELECTROFUELS (E-FUELS)             827
    • 4.8.1      Introduction       827
      • 4.8.1.1   Benefits of e-fuels           829
    • 4.8.2      Feedstocks         830
      • 4.8.2.1   Hydrogen electrolysis     830
      • 4.8.2.2   CO2 capture       831
    • 4.8.3      Production          831
      • 4.8.3.1   eFuel production facilities, current and planned 834
    • 4.8.4      Electrolysers      835
      • 4.8.4.1   Commercial alkaline electrolyser cells (AECs)       836
      • 4.8.4.2   PEM electrolysers (PEMEC)         836
      • 4.8.4.3   High-temperature solid oxide electrolyser cells (SOECs)  837
    • 4.8.5      Costs     837
    • 4.8.6      Market challenges           840
    • 4.8.7      Companies         841
  • 4.9          ALGAE-DERIVED BIOFUELS           842
    • 4.9.1      Technology description 842
    • 4.9.2      Production          842
  • 4.10        GREEN AMMONIA           844
    • 4.10.1    Production          844
      • 4.10.1.1                Decarbonisation of ammonia production               846
      • 4.10.1.2                Green ammonia projects              847
    • 4.10.2    Green ammonia synthesis methods         847
      • 4.10.2.1                Haber-Bosch process      847
      • 4.10.2.2                Biological nitrogen fixation          848
      • 4.10.2.3                Electrochemical production         849
        • 4.10.2.3.1             Chemical looping processes        849
    • 4.10.3    Blue ammonia   849
      • 4.10.3.1                Blue ammonia projects  849
    • 4.10.4    Markets and applications              850
      • 4.10.4.1                Chemical energy storage              850
        • 4.10.4.1.1             Ammonia fuel cells          850
      • 4.10.4.2                Marine fuel         851
    • 4.10.5    Costs     853
    • 4.10.6    Estimated market demand           855
    • 4.10.7    Companies and projects 855
  • 4.11        BIOFUELS FROM CARBON CAPTURE         857
    • 4.11.1    Overview            858
    • 4.11.2    CO2 capture from point sources 860
    • 4.11.3    Production routes            861
    • 4.11.4    Direct air capture (DAC) 862
      • 4.11.4.1                Description         862
      • 4.11.4.2                Deployment       864
      • 4.11.4.3                Point source carbon capture versus Direct Air Capture     865
      • 4.11.4.4                Technologies     866
        • 4.11.4.4.1             Solid sorbents   867
        • 4.11.4.4.2             Liquid sorbents 869
        • 4.11.4.4.3             Liquid solvents  870
        • 4.11.4.4.4             Airflow equipment integration   871
        • 4.11.4.4.5             Passive Direct Air Capture (PDAC)             871
      • 4.11.4.5                Direct conversion             872
        • 4.11.4.5.1             Co-product generation  872
        • 4.11.4.5.2             Low Temperature DAC  872
        • 4.11.4.5.3             Regeneration methods 872
      • 4.11.4.6                Commercialization and plants     873
      • 4.11.4.7                Metal-organic frameworks (MOFs) in DAC             874
      • 4.11.4.8                DAC plants and projects-current and planned      874
      • 4.11.4.9                Markets for DAC               881
      • 4.11.4.10              Costs     882
      • 4.11.4.11              Challenges          887
      • 4.11.4.12              Players and production  888
    • 4.11.5    Methanol            888
    • 4.11.6    Algae based biofuels       889
    • 4.11.7    CO₂-fuels from solar        890
    • 4.11.8    Companies         892
    • 4.11.9    Challenges          894
  • 4.12        BIO-BASED FUELS COMPANY PROFILES   895 (164 company profiles)

 

5              BIO-BASED PAINTS AND COATINGS          1027

  • 5.1          The global paints and coatings market    1027
  • 5.2          Bio-based paints and coatings     1027
  • 5.3          Challenges using bio-based paints and coatings   1028
  • 5.4          Types of bio-based coatings and materials             1029
    • 5.4.1      Alkyd coatings   1029
      • 5.4.1.1   Alkyd resin properties    1029
      • 5.4.1.2   Biobased alkyd coatings 1030
      • 5.4.1.3   Products              1031
    • 5.4.2      Polyurethane coatings   1032
      • 5.4.2.1   Properties           1032
      • 5.4.2.2   Biobased polyurethane coatings 1033
      • 5.4.2.3   Products              1034
    • 5.4.3      Epoxy coatings  1035
      • 5.4.3.1   Properties           1035
      • 5.4.3.2   Biobased epoxy coatings               1036
      • 5.4.3.3   Products              1037
    • 5.4.4      Acrylate resins   1038
      • 5.4.4.1   Properties           1039
      • 5.4.4.2   Biobased acrylates           1039
      • 5.4.4.3   Products              1039
    • 5.4.5      Polylactic acid (Bio-PLA) 1040
      • 5.4.5.1   Properties           1042
      • 5.4.5.2   Bio-PLA coatings and films            1043
    • 5.4.6      Polyhydroxyalkanoates (PHA)     1043
      • 5.4.6.1   Properties           1045
      • 5.4.6.2   PHA coatings      1047
      • 5.4.6.3   Commercially available PHAs      1048
    • 5.4.7      Cellulose              1050
      • 5.4.7.1   Microfibrillated cellulose (MFC) 1056
        • 5.4.7.1.1               Properties           1056
        • 5.4.7.1.2               Applications in paints and coatings           1057
      • 5.4.7.2   Cellulose nanofibers       1058
        • 5.4.7.2.1               Properties           1058
        • 5.4.7.2.2               Product developers        1060
      • 5.4.7.3   Cellulose nanocrystals    1062
      • 5.4.7.4   Bacterial Nanocellulose (BNC)    1064
    • 5.4.8      Rosins   1064
    • 5.4.9      Biobased carbon black   1065
      • 5.4.9.1   Lignin-based      1065
      • 5.4.9.2   Algae-based       1065
    • 5.4.10    Lignin    1065
      • 5.4.10.1                Application in coatings   1066
    • 5.4.11    Edible coatings  1066
    • 5.4.12    Protein-based biomaterials for coatings 1068
      • 5.4.12.1                Plant derived proteins   1068
      • 5.4.12.2                Animal origin proteins   1068
    • 5.4.13    Alginate               1070
  • 5.5          Market for bio-based paints and coatings              1072
    • 5.5.1      Global market revenues to 2033, total    1072
    • 5.5.2      Global market revenues to 2033, by market         1073
  • 5.6          BIO-BASED PAINTS AND COATINGS COMPANY PROFILES 1077 (130 company profiles)

 

6              REFERENCES       1198

 

List of Tables

  • Table 1. List of Bio-based chemicals.        60
  • Table 2. Lactide applications.      78
  • Table 3. Biobased MEG producers capacities.       81
  • Table 4. Bio-naphtha market value chain.              83
  • Table 5. Bio-naptha producers and production capacities.              85
  • Table 6. Issues related to the use of plastics.        92
  • Table 7. Type of biodegradation.               97
  • Table 8. Advantages and disadvantages of biobased plastics compared to conventional plastics.   98
  • Table 9. Types of Bio-based and/or Biodegradable Plastics, applications. 99
  • Table 10. Market leader by Bio-based and/or Biodegradable Plastic types.             101
  • Table 11. Bioplastics regional production capacities, 1,000 tons, 2019-2033.           102
  • Table 12. Polylactic acid (PLA) market analysis-manufacture, advantages, disadvantages and applications.               114
  • Table 13. Lactic acid producers and production capacities.             116
  • Table 14. PLA producers and production capacities.          117
  • Table 15. Planned PLA capacity expansions in China.         117
  • Table 16. Bio-based Polyethylene terephthalate (Bio-PET) market analysis- manufacture, advantages, disadvantages and applications.              119
  • Table 17. Bio-based Polyethylene terephthalate (PET) producers and production capacities (tons).             120
  • Table 18. Polytrimethylene terephthalate (PTT) market analysis-manufacture, advantages, disadvantages and applications.       122
  • Table 19. Production capacities of Polytrimethylene terephthalate (PTT), by leading producers.   122
  • Table 20. Polyethylene furanoate (PEF) market analysis-manufacture, advantages, disadvantages and applications.                124
  • Table 21. PEF vs. PET.     125
  • Table 22. FDCA and PEF producers.          126
  • Table 23. Bio-based polyamides (Bio-PA) market analysis - manufacture, advantages, disadvantages and applications.                129
  • Table 24. Leading Bio-PA producers production capacities.            130
  • Table 25. Poly(butylene adipate-co-terephthalate) (PBAT) market analysis- manufacture, advantages, disadvantages and applications.              131
  • Table 26. Leading PBAT producers, production capacities and brands.      132
  • Table 27. Bio-PBS market analysis-manufacture, advantages, disadvantages and applications.       134
  • Table 28. Leading PBS producers and production capacities.          135
  • Table 29. Bio-based Polyethylene (Bio-PE) market analysis- manufacture, advantages, disadvantages and applications.                136
  • Table 30. Leading Bio-PE producers.        137
  • Table 31. Bio-PP market analysis- manufacture, advantages, disadvantages and applications.        139
  • Table 32. Leading Bio-PP producers and capacities.           139
  • Table 33.Types of PHAs and properties. 144
  • Table 34. Comparison of the physical properties of different PHAs with conventional petroleum-based polymers. 146
  • Table 35. Polyhydroxyalkanoate (PHA) extraction methods.          148
  • Table 36. Polyhydroxyalkanoates (PHA) market analysis. 150
  • Table 37. Commercially available PHAs.  151
  • Table 38. Markets and applications for PHAs.       153
  • Table 39. Applications, advantages and disadvantages of PHAs in packaging.         154
  • Table 40. Polyhydroxyalkanoates (PHA) producers.           157
  • Table 41. Microfibrillated cellulose (MFC) market analysis-manufacture, advantages, disadvantages and applications.                160
  • Table 42. Leading MFC producers and capacities.               161
  • Table 43. Synthesis methods for cellulose nanocrystals (CNC).     162
  • Table 44. CNC sources, size and yield.      163
  • Table 45. CNC properties.             164
  • Table 46. Mechanical properties of CNC and other reinforcement materials.         165
  • Table 47. Applications of nanocrystalline cellulose (NCC).               166
  • Table 48. Cellulose nanocrystals analysis.               167
  • Table 49: Cellulose nanocrystal production capacities and production process, by producer.          168
  • Table 50. Applications of cellulose nanofibers (CNF).        169
  • Table 51. Cellulose nanofibers market analysis.   170
  • Table 52. CNF production capacities (by type, wet or dry) and production process, by producer, metric tonnes.    172
  • Table 53. Applications of bacterial nanocellulose (BNC). 176
  • Table 54. Types of protein based-bioplastics, applications and companies.             178
  • Table 55. Types of algal and fungal based-bioplastics, applications and companies.             179
  • Table 56. Overview of alginate-description, properties, application and market size.          180
  • Table 57. Companies developing algal-based bioplastics. 181
  • Table 58. Overview of mycelium fibers-description, properties, drawbacks and applications.          182
  • Table 59. Companies developing mycelium-based bioplastics.      184
  • Table 60. Overview of chitosan-description, properties, drawbacks and applications.         185
  • Table 61. Global production capacities of biobased and sustainable plastics in 2019-2033, by region, tons.              186
  • Table 62. Biobased and sustainable plastics producers in North America. 187
  • Table 63. Biobased and sustainable plastics producers in Europe.               188
  • Table 64. Biobased and sustainable plastics producers in Asia-Pacific.       189
  • Table 65. Biobased and sustainable plastics producers in Latin America.  190
  • Table 66. Processes for bioplastics in packaging. 192
  • Table 67. Comparison of bioplastics’ (PLA and PHAs) properties to other common polymers used in product packaging.                194
  • Table 68. Typical applications for bioplastics in flexible packaging.              195
  • Table 69. Typical applications for bioplastics in rigid packaging.   197
  • Table 70. Types of next-gen natural fibers.            209
  • Table 71. Application, manufacturing method, and matrix materials of natural fibers.        212
  • Table 72. Typical properties of natural fibers.      214
  • Table 73. Commercially available next-gen natural fiber products.              214
  • Table 74. Market drivers for natural fibers.           217
  • Table 75. Overview of cotton fibers-description, properties, drawbacks and applications. 220
  • Table 76. Overview of kapok fibers-description, properties, drawbacks and applications. 221
  • Table 77. Overview of luffa fibers-description, properties, drawbacks and applications.    223
  • Table 78. Overview of jute fibers-description, properties, drawbacks and applications.     224
  • Table 79. Overview of hemp fibers-description, properties, drawbacks and applications.  226
  • Table 80. Overview of flax fibers-description, properties, drawbacks and applications.      227
  • Table 81. Overview of ramie fibers- description, properties, drawbacks and applications. 229
  • Table 82. Overview of kenaf fibers-description, properties, drawbacks and applications.  230
  • Table 83. Overview of sisal leaf fibers-description, properties, drawbacks and applications.            232
  • Table 84. Overview of abaca fibers-description, properties, drawbacks and applications.  233
  • Table 85. Overview of coir fibers-description, properties, drawbacks and applications.      235
  • Table 86. Overview of banana fibers-description, properties, drawbacks and applications.               236
  • Table 87. Overview of pineapple fibers-description, properties, drawbacks and applications.         238
  • Table 88. Overview of rice fibers-description, properties, drawbacks and applications.      239
  • Table 89. Overview of corn fibers-description, properties, drawbacks and applications.    240
  • Table 90. Overview of switch grass fibers-description, properties and applications.             241
  • Table 91. Overview of sugarcane fibers-description, properties, drawbacks and application and market size.           241
  • Table 92. Overview of bamboo fibers-description, properties, drawbacks and applications.             242
  • Table 93. Overview of mycelium fibers-description, properties, drawbacks and applications.          246
  • Table 94. Overview of chitosan fibers-description, properties, drawbacks and applications.            247
  • Table 95. Overview of alginate-description, properties, application and market size.          248
  • Table 96. Overview of wool fibers-description, properties, drawbacks and applications.   249
  • Table 97. Alternative wool materials producers. 250
  • Table 98. Overview of silk fibers-description, properties, application and market size.       251
  • Table 99. Alternative silk materials producers.    252
  • Table 100. Alternative leather materials producers.          253
  • Table 101. Next-gen fur producers.          255
  • Table 102. Alternative down materials producers.             255
  • Table 103. Applications of natural fiber composites.         256
  • Table 104. Typical properties of short natural fiber-thermoplastic composites.     258
  • Table 105. Properties of non-woven natural fiber mat composites.            259
  • Table 106. Properties of aligned natural fiber composites.             260
  • Table 107. Properties of natural fiber-bio-based polymer compounds.     260
  • Table 108. Properties of natural fiber-bio-based polymer non-woven mats.           261
  • Table 109. Natural fibers in the aerospace sector-market drivers, applications and challenges for NF use. 262
  • Table 110. Natural fiber-reinforced polymer composite in the automotive market.             264
  • Table 111. Natural fibers in the aerospace sector- market drivers, applications and challenges for NF use. 265
  • Table 112. Applications of natural fibers in the automotive industry.         267
  • Table 113. Natural fibers in the building/construction sector- market drivers, applications and challenges for NF use.                268
  • Table 114. Applications of natural fibers in the building/construction sector.         268
  • Table 115. Natural fibers in the sports and leisure sector-market drivers, applications and challenges for NF use.  269
  • Table 116. Natural fibers in the textiles sector- market drivers, applications and challenges for NF use.     270
  • Table 117. Natural fibers in the packaging sector-market drivers, applications and challenges for NF use. 273
  • Table 118. Technical lignin types and applications.             281
  • Table 119. Classification of technical lignins.         283
  • Table 120. Lignin content of selected biomass.   284
  • Table 121. Properties of lignins and their applications.     285
  • Table 122. Example markets and applications for lignin.  287
  • Table 123. Processes for lignin production.           289
  • Table 124. Biorefinery feedstocks.           295
  • Table 125. Comparison of pulping and biorefinery lignins.              295
  • Table 126. Commercial and pre-commercial biorefinery lignin production facilities and  processes              296
  • Table 127. Market drivers and trends for lignin.  300
  • Table 128. Production capacities of technical lignin producers.    301
  • Table 129. Production capacities of biorefinery lignin producers. 302
  • Table 130. Estimated consumption of lignin, 2019-2033 (000 MT).             303
  • Table 131. Prices of benzene, toluene, xylene and their derivatives.          305
  • Table 132. Application of lignin in plastics and polymers. 306
  • Table 133. Lignin-derived anodes in lithium batteries.     313
  • Table 134. Application of lignin in binders, emulsifiers and dispersants.   315
  • Table 135. Lactips plastic pellets.              539
  • Table 136. Oji Holdings CNF products.     614
  • Table 137. Comparison of biofuel costs (USD/liter) 2022, by type.              756
  • Table 138. Categories and examples of solid biofuel.        757
  • Table 139. Comparison of biofuels and e-fuels to fossil and electricity.      759
  • Table 140. Classification of biomass feedstock.   760
  • Table 141. Biorefinery feedstocks.           760
  • Table 142. Feedstock conversion pathways.         761
  • Table 143. First-Generation Feedstocks. 761
  • Table 144.  Lignocellulosic ethanol plants and capacities.                764
  • Table 145. Comparison of pulping and biorefinery lignins.              765
  • Table 146. Commercial and pre-commercial biorefinery lignin production facilities and  processes              766
  • Table 147. Operating and planned lignocellulosic biorefineries and industrial flue gas-to-ethanol. 768
  • Table 148. Properties of microalgae and macroalgae.       770
  • Table 149. Yield of algae and other biodiesel crops.           771
  • Table 150. Advantages and disadvantages of biofuels, by generation.       772
  • Table 151. Biodiesel by generation.         775
  • Table 152. Biodiesel production techniques.        777
  • Table 153. Summary of pyrolysis technique under different operating conditions.              777
  • Table 154. Biomass materials and their bio-oil yield.         779
  • Table 155. Biofuel production cost from the biomass pyrolysis process.   779
  • Table 156. Properties of vegetable oils in comparison to diesel.   781
  • Table 157. Main producers of HVO and capacities.             782
  • Table 158. Example commercial Development of BtL processes. 783
  • Table 159. Pilot or demo projects for biomass to liquid (BtL) processes.   784
  • Table 160. Global biodiesel consumption, 2010-2033 (M litres/year).       788
  • Table 161. Global renewable diesel consumption, to 2033 (M litres/year).              791
  • Table 162. Advantages and disadvantages of biojet fuel  792
  • Table 163. Production pathways for bio-jet fuel. 794
  • Table 164. Current and announced biojet fuel facilities and capacities.     796
  • Table 165. Global bio-jet fuel consumption to 2033 (Million litres/year). 798
  • Table 166. Biogas feedstocks.     802
  • Table 167. Bio-based naphtha markets and applications. 804
  • Table 168. Bio-naphtha market value chain.         804
  • Table 169. Bio-based Naphtha production capacities, by producer.            805
  • Table 170. Comparison of biogas, biomethane and natural gas.   809
  • Table 171.  Processes in bioethanol production. 817
  • Table 172. Microorganisms used in CBP for ethanol production from biomass lignocellulosic.         818
  • Table 173. Ethanol consumption 2010-2033 (million litres).           819
  • Table 174. Applications of e-fuels, by type.           828
  • Table 175. Overview of e-fuels. 829
  • Table 176. Benefits of e-fuels.    829
  • Table 177. eFuel production facilities, current and planned.          834
  • Table 178. Main characteristics of different electrolyzer technologies.     835
  • Table 179. Market challenges for e-fuels.              840
  • Table 180. E-fuels companies.    841
  • Table 181. Green ammonia projects (current and planned).          847
  • Table 182. Blue ammonia projects.          849
  • Table 183. Ammonia fuel cell technologies.          850
  • Table 184. Market overview of green ammonia in marine fuel.    851
  • Table 185. Summary of marine alternative fuels. 852
  • Table 186. Estimated costs for different types of ammonia.           854
  • Table 187. Main players in green ammonia.          855
  • Table 188. Market overview for CO2 derived fuels.           858
  • Table 189. Point source examples.           861
  • Table 190. Advantages and disadvantages of DAC.             864
  • Table 191. Companies developing airflow equipment integration with DAC.           871
  • Table 192. Companies developing Passive Direct Air Capture (PDAC) technologies.             871
  • Table 193. Companies developing regeneration methods for DAC technologies.  872
  • Table 194. DAC companies and technologies.      873
  • Table 195. DAC technology developers and production.  875
  • Table 196. DAC projects in development.              880
  • Table 197. Markets for DAC.        881
  • Table 198. Costs summary for DAC.          882
  • Table 199. Cost estimates of DAC.             885
  • Table 200. Challenges for DAC technology.           887
  • Table 201. DAC companies and technologies.      888
  • Table 202. Microalgae products and prices.          890
  • Table 203. Main Solar-Driven CO2 Conversion Approaches.          891
  • Table 204. Companies in CO2-derived fuel products.        892
  • Table 205. Granbio Nanocellulose Processes.      948
  • Table 206. Types of alkyd resins and properties. 1029
  • Table 207. Market summary for biobased alkyd coatings-raw materials, advantages, disadvantages, applications and producers.          1031
  • Table 208. Biobased alkyd coating products.        1031
  • Table 209. Types of polyols.         1033
  • Table 210. Polyol producers.       1034
  • Table 211. Biobased polyurethane coating products.        1034
  • Table 212. Market summary for biobased epoxy resins.  1036
  • Table 213. Biobased polyurethane coating products.        1038
  • Table 214. Biobased acrylate resin products.        1039
  • Table 215. Polylactic acid (PLA) market analysis. 1040
  • Table 216. PLA producers and production capacities.        1042
  • Table 217. Polyhydroxyalkanoates (PHA) market analysis.              1044
  • Table 218.Types of PHAs and properties.               1047
  • Table 219. Polyhydroxyalkanoates (PHA) producers.        1048
  • Table 220. Commercially available PHAs.               1049
  • Table 221. Properties of micro/nanocellulose, by type.    1052
  • Table 222. Types of nanocellulose.           1055
  • Table 223: MFC production capacities (by type, wet or dry) and production process, by producer, metric tonnes. 1057
  • Table 224. Market overview for cellulose nanofibers in paints and coatings.           1058
  • Table 225. Companies developing cellulose nanofibers products in paints and coatings.   1060
  • Table 226. CNC properties.          1062
  • Table 227: Cellulose nanocrystal capacities (by type, wet or dry) and production process, by producer, metric tonnes.                1063
  • Table 228. Edible coatings market summary.       1067
  • Table 229. Types of protein based-biomaterials, applications and companies.       1069
  • Table 230. Overview of alginate-description, properties, application and market size.        1070
  • Table 231. Global market revenues for biobased paints and coatings, 2018-2033 (billions USD).    1072
  • Table 232. Market revenues for biobased paints and coatings, 2018-2033(billions USD), conservative estimate.    1073
  • Table 233. Market revenues for biobased paints and coatings, 2018-2033 (billions USD), high estimate.    1075
  • Table 234. Oji Holdings CNF products.     1162

 

List of Figures

  • Figure 1. Bio-based chemicals and feedstocks production capacities, 2018-2033.  62
  • Figure 2. Overview of Toray process. Overview of process             63
  • Figure 3. Production capacities for 11-Aminoundecanoic acid (11-AA)      64
  • Figure 4. 1,4-Butanediol (BDO) production capacities, 2018-2033 (tonnes).            66
  • Figure 5. Dodecanedioic acid (DDDA) production capacities, 2018-2033 (tonnes). 67
  • Figure 6. Epichlorohydrin production capacities, 2018-2033 (tonnes).      68
  • Figure 7. Ethylene production capacities, 2018-2033 (tonnes).     69
  • Figure 8. Potential industrial uses of 3-hydroxypropanoic acid.     74
  • Figure 9. L-lactic acid (L-LA) production capacities, 2018-2033 (tonnes).  77
  • Figure 10. Lactide production capacities, 2018-2033 (tonnes).     79
  • Figure 11. Bio-MEG production capacities, 2018-2033.      81
  • Figure 12. Bio-MPG production capacities, 2018-2033 (tonnes).  82
  • Figure 13. Biobased naphtha production capacities, 2018-2033 (tonnes). 85
  • Figure 14. 1,3-Propanediol (1,3-PDO) production capacities, 2018-2033 (tonnes). 88
  • Figure 15. Sebacic acid production capacities, 2018-2033 (tonnes).           89
  • Figure 16. Global plastics production 1950-2020, million metric tons.       91
  • Figure 17. The circular plastic economy. 94
  • Figure 18.  Coca-Cola PlantBottle®.           96
  • Figure 19. Interrelationship between conventional, bio-based and biodegradable plastics.              96
  • Figure 20. Bioplastics regional production capacities, 1,000 tons, 2019-2033.         103
  • Figure 21. Bio-based Polyethylene (Bio-PE), 1,000 tons, 2019-2033.            104
  • Figure 22. Bio-based Polyethylene terephthalate (Bio-PET) production capacities, 1,000 tons, 2019-2033   105
  • Figure 23. Bio-based polyamides (Bio-PA) production capacities, 1,000 tons, 2019-2033.   106
  • Figure 24. Bio-based Polypropylene (Bio-PP) production capacities, 1,000 tons, 2019-2033.             107
  • Figure 25. Bio-based Polytrimethylene terephthalate (Bio-PTT) production capacities, 1,000 tons, 2019-2033.         108
  • Figure 26. Bio-based Poly(butylene adipate-co-terephthalate) (PBAT) production capacities, 1,000 tons, 2019-2033.                109
  • Figure 27. Bio-based Polybutylene succinate (PBS) production capacities, 1,000 tons, 2019-2033.  110
  • Figure 28. Bio-based Polylactic acid (PLA) production capacities, 1,000 tons, 2019-2033.    111
  • Figure 29. PHA production capacities, 1,000 tons, 2019-2033.        112
  • Figure 30. Starch blends production capacities, 1,000 tons, 2019-2033.     113
  • Figure 31. Polylactic acid (Bio-PLA) production capacities 2019-2033 (1,000 tons).              119
  • Figure 32. Polyethylene terephthalate (Bio-PET) production capacities 2019-2033 (1,000 tons)     121
  • Figure 33. Polytrimethylene terephthalate (PTT) production capacities 2019-2033 (1,000 tons).   123
  • Figure 34. Production capacities of Polyethylene furanoate (PEF) to 2025.               126
  • Figure 35. Polyethylene furanoate (Bio-PEF) production capacities 2019-2033 (1,000 tons).            128
  • Figure 36. Polyamides (Bio-PA) production capacities 2019-2033 (1,000 tons).      131
  • Figure 37. Poly(butylene adipate-co-terephthalate) (Bio-PBAT) production capacities 2019-2033 (1,000 tons).       133
  • Figure 38. Polybutylene succinate (PBS) production capacities 2019-2033 (1,000 tons).    136
  • Figure 39. Polyethylene (Bio-PE) production capacities 2019-2033 (1,000 tons).   138
  • Figure 40. Polypropylene (Bio-PP) production capacities 2019-2033 (1,000 tons). 140
  • Figure 41. PHA family.    144
  • Figure 42. PHA production capacities 2019-2033 (1,000 tons).     159
  • Figure 43. TEM image of cellulose nanocrystals. 162
  • Figure 44. CNC preparation.        162
  • Figure 45. Extracting CNC from trees.      163
  • Figure 46. CNC slurry.     166
  • Figure 47. CNF gel.           169
  • Figure 48. Bacterial nanocellulose shapes              175
  • Figure 49. BLOOM masterbatch from Algix.           181
  • Figure 50. Typical structure of mycelium-based foam.     183
  • Figure 51. Commercial mycelium composite construction materials.          184
  • Figure 52. Global production capacities of biobased and sustainable plastics 2020.              186
  • Figure 53. Global production capacities of biobased and sustainable plastics 2025.              187
  • Figure 54. Global production capacities for biobased and sustainable plastics by end user market 2019-2033, 1,000 tons.      191
  • Figure 55. PHA bioplastics products.        193
  • Figure 56. The global market for biobased and biodegradable plastics for flexible packaging 2019–2033 (‘000 tonnes).                196
  • Figure 57. Bioplastics for rigid packaging, 2019–2033 (‘000 tonnes).          198
  • Figure 58. Global production capacities for biobased and biodegradable plastics in consumer products 2019-2033, in 1,000 tons.         199
  • Figure 59. Global production capacities for biobased and biodegradable plastics in automotive 2019-2033, in 1,000 tons.      200
  • Figure 60. Global production capacities for biobased and biodegradable plastics in building and construction 2019-2033, in 1,000 tons.        201
  • Figure 61. AlgiKicks sneaker, made with the Algiknit biopolymer gel.         203
  • Figure 62. Reebok's [REE]GROW running shoes. 203
  • Figure 63. Camper Runner K21.  205
  • Figure 64. Global production capacities for biobased and biodegradable plastics in textiles 2019-2033, in 1,000 tons.                205
  • Figure 65. Global production capacities for biobased and biodegradable plastics in electronics 2019-2033, in 1,000 tons.      206
  • Figure 66. Biodegradable mulch films.     207
  • Figure 67. Global production capacities for biobased and biodegradable plastics in agriculture 2019-2033, in 1,000 tons.      208
  • Figure 68. Types of natural fibers.             212
  • Figure 69. Absolut natural based fiber bottle cap.              215
  • Figure 70. Adidas algae-ink tees.               215
  • Figure 71. Carlsberg natural fiber beer bottle.     215
  • Figure 72. Miratex watch bands. 215
  • Figure 73. Adidas Made with Nature Ultraboost 22.           215
  • Figure 74. PUMA RE:SUEDE sneaker        216
  • Figure 75. Cotton production volume 2018-2033 (Million MT).     221
  • Figure 76. Kapok production volume 2018-2033 (MT).     222
  • Figure 77.  Luffa cylindrica fiber. 223
  • Figure 78. Jute production volume 2018-2033 (Million MT).          225
  • Figure 79. Hemp fiber production volume 2018-2033 ( MT).          227
  • Figure 80. Flax fiber production volume 2018-2033 (MT).               228
  • Figure 81. Ramie fiber production volume 2018-2033 (MT).          230
  • Figure 82. Kenaf fiber production volume 2018-2033 (MT).           231
  • Figure 83. Sisal fiber production volume 2018-2033 (MT).              233
  • Figure 84. Abaca fiber production volume 2018-2033 (MT).          234
  • Figure 85. Coir fiber production volume 2018-2033 (MILLION MT).            236
  • Figure 86. Banana fiber production volume 2018-2033 (MT).        237
  • Figure 87. Pineapple fiber.           238
  • Figure 88. A bag made with pineapple biomaterial from the H&M Conscious Collection 2019.         239
  • Figure 89. Bamboo fiber production volume 2018-2033 (MILLION MT).    243
  • Figure 90. Typical structure of mycelium-based foam.     244
  • Figure 91. Commercial mycelium composite construction materials.          245
  • Figure 92. Frayme Mylo™️.            245
  • Figure 93. BLOOM masterbatch from Algix.           249
  • Figure 94. Conceptual landscape of next-gen leather materials.   253
  • Figure 95. Hemp fibers combined with PP in car door panel.         262
  • Figure 96. Car door produced from Hemp fiber.  263
  • Figure 97. Mercedes-Benz components containing natural fibers.               264
  • Figure 98. AlgiKicks sneaker, made with the Algiknit biopolymer gel.         271
  • Figure 99. Coir mats for erosion control. 272
  • Figure 100. Global fiber production in 2021, by fiber type, million MT and %.        275
  • Figure 101. Global fiber production (million MT) to 2020-2033.     276
  • Figure 102. Plant-based fiber production 2018-2033, by fiber type, MT.   277
  • Figure 103. Animal based fiber production 2018-2033, by fiber type, million MT. 278
  • Figure 104. High purity lignin.     280
  • Figure 105. Lignocellulose architecture. 280
  • Figure 106. Extraction processes to separate lignin from lignocellulosic biomass and corresponding technical lignins.                281
  • Figure 107. The lignocellulose biorefinery.            287
  • Figure 108. LignoBoost process. 292
  • Figure 109. LignoForce system for lignin recovery from black liquor.          293
  • Figure 110. Sequential liquid-lignin recovery and purification (SLPR) system.         293
  • Figure 111. A-Recovery+ chemical recovery concept.       295
  • Figure 112.  Schematic of a biorefinery for production of carriers and chemicals. 296
  • Figure 113. Organosolv lignin.     299
  • Figure 114. Hydrolytic lignin powder.      299
  • Figure 115. Estimated consumption of lignin, 2019-2033 (000 MT).            304
  • Figure 116. Schematic of WISA plywood home.   306
  • Figure 117. Lignin based activated carbon.            308
  • Figure 118. Lignin/celluose precursor.     310
  • Figure 119. Pluumo.        325
  • Figure 120. ANDRITZ Lignin Recovery process.    336
  • Figure 121. Anpoly cellulose nanofiber hydrogel.               339
  • Figure 122. MEDICELLU™.            339
  • Figure 123. Asahi Kasei CNF fabric sheet.               349
  • Figure 124. Properties of Asahi Kasei cellulose nanofiber nonwoven fabric.            350
  • Figure 125. CNF nonwoven fabric.            351
  • Figure 126. Roof frame made of natural fiber.     361
  • Figure 127. Beyond Leather Materials product.   365
  • Figure 128. BIOLO e-commerce mailer bag made from PHA.          372
  • Figure 129. Reusable and recyclable foodservice cups, lids, and straws from Joinease Hong Kong Ltd., made with plant-based NuPlastiQ BioPolymer from BioLogiQ, Inc. 373
  • Figure 130. Fiber-based screw cap.           386
  • Figure 131. formicobio™ technology.      408
  • Figure 132. nanoforest-S.             411
  • Figure 133. nanoforest-PDP.       411
  • Figure 134. nanoforest-MB.        412
  • Figure 135. sunliquid® production process.           420
  • Figure 136. CuanSave film.           424
  • Figure 137. Celish.           424
  • Figure 138. Trunk lid incorporating CNF. 426
  • Figure 139. ELLEX products.         428
  • Figure 140. CNF-reinforced PP compounds.          428
  • Figure 141. Kirekira! toilet wipes.              429
  • Figure 142. Color CNF.   430
  • Figure 143. Rheocrysta spray.     436
  • Figure 144. DKS CNF products.   437
  • Figure 145. Domsjö process.       439
  • Figure 146. Mushroom leather. 449
  • Figure 147. CNF based on citrus peel.      451
  • Figure 148. Citrus cellulose nanofiber.    451
  • Figure 149. Cosmetics packaging from barley dregs form beer production.             460
  • Figure 150. Filler Bank CNC products.      465
  • Figure 151. Fibers on kapok tree and after processing.     468
  • Figure 152.  TMP-Bio Process.    470
  • Figure 153. Flow chart of the lignocellulose biorefinery pilot plant in Leuna.          471
  • Figure 154. Water-repellent cellulose.    473
  • Figure 155. Cellulose Nanofiber (CNF) composite with polyethylene (PE). 475
  • Figure 156. PHA production process.       477
  • Figure 157. CNF products from Furukawa Electric.              478
  • Figure 158. AVAPTM process.     489
  • Figure 159. GreenPower+™ process.       489
  • Figure 160. Cutlery samples (spoon, knife, fork) made of nano cellulose and biodegradable plastic composite materials.            493
  • Figure 161. Non-aqueous CNF dispersion "Senaf" (Photo shows 5% of plasticizer).              496
  • Figure 162. CNF gel.        504
  • Figure 163. Block nanocellulose material.              504
  • Figure 164. CNF products developed by Hokuetsu.            505
  • Figure 165. Marine leather products.      508
  • Figure 166. Inner Mettle Milk products. 512
  • Figure 167. Kami Shoji CNF products.      526
  • Figure 168. Dual Graft System.   528
  • Figure 169. Engine cover utilizing Kao CNF composite resins.        529
  • Figure 170. Acrylic resin blended with modified CNF (fluid) and its molded product (transparent film), and image obtained with AFM (CNF 10wt% blended).           530
  • Figure 171. Kel Labs yarn.             531
  • Figure 172. 0.3% aqueous dispersion of sulfated esterified CNF and dried transparent film (front side).     535
  • Figure 173. Lignin gel.    546
  • Figure 174. BioFlex process.        550
  • Figure 175. Nike Algae Ink graphic tee.   551
  • Figure 176. LX Process.  555
  • Figure 177. Made of Air's HexChar panels.            557
  • Figure 178. TransLeather.             558
  • Figure 179. Chitin nanofiber product.      564
  • Figure 180. Marusumi Paper cellulose nanofiber products.            565
  • Figure 181. FibriMa cellulose nanofiber powder. 566
  • Figure 182. METNIN™ Lignin refining technology.              570
  • Figure 183. IPA synthesis method.            573
  • Figure 184. MOGU-Wave panels.              577
  • Figure 185. CNF slurries.                578
  • Figure 186. Range of CNF products.          578
  • Figure 187. Reishi.           582
  • Figure 188. Compostable water pod.       602
  • Figure 189. Leather made from leaves.   603
  • Figure 190. Nike shoe with beLEAF™.      604
  • Figure 191. CNF clear sheets.      614
  • Figure 192. Oji Holdings CNF polycarbonate product.       615
  • Figure 193. Enfinity cellulosic ethanol technology process.            631
  • Figure 194. Fabric consisting of 70 per cent wool and 30 per cent Qmilk. 636
  • Figure 195. XCNF.            644
  • Figure 196: Plantrose process.    646
  • Figure 197. LOVR hemp leather. 650
  • Figure 198. CNF insulation flat plates.     652
  • Figure 199. Hansa lignin.               659
  • Figure 200. Manufacturing process for STARCEL. 663
  • Figure 201. Manufacturing process for STARCEL. 667
  • Figure 202. 3D printed cellulose shoe.    676
  • Figure 203. Lyocell process.         679
  • Figure 204. North Face Spiber Moon Parka.          684
  • Figure 205. PANGAIA LAB NXT GEN Hoodie.         685
  • Figure 206. Spider silk production.            686
  • Figure 207. Stora Enso lignin battery materials.   691
  • Figure 208. 2 wt.% CNF suspension.       692
  • Figure 209. BiNFi-s Dry Powder. 693
  • Figure 210. BiNFi-s Dry Powder and Propylene (PP) Complex Pellet.          693
  • Figure 211. Silk nanofiber (right) and cocoon of raw material.       694
  • Figure 212. Sulapac cosmetics containers.             696
  • Figure 213.  Sulzer equipment for PLA polymerization processing.              697
  • Figure 214. Solid Novolac Type lignin modified phenolic resins.    698
  • Figure 215. Teijin bioplastic film for door handles.             707
  • Figure 216. Corbion FDCA production process.    715
  • Figure 217. Comparison of weight reduction effect using CNF.     717
  • Figure 218. CNF resin products. 721
  • Figure 219. UPM biorefinery process.     723
  • Figure 220. Vegea production process.   728
  • Figure 221. The Proesa® Process.              729
  • Figure 222. Goldilocks process and applications. 731
  • Figure 223. Visolis’ Hybrid Bio-Thermocatalytic Process. 735
  • Figure 224. HefCel-coated wood (left) and untreated wood (right) after 30 seconds flame test.     738
  • Figure 225. Worn Again products.             743
  • Figure 226. Zelfo Technology GmbH CNF production process.       748
  • Figure 227. Diesel and gasoline alternatives and blends. 755
  • Figure 228.  Schematic of a biorefinery for production of carriers and chemicals. 766
  • Figure 229. Hydrolytic lignin powder.      769
  • Figure 230. Regional production of biodiesel (billion litres).           775
  • Figure 231. Flow chart for biodiesel production. 780
  • Figure 232. Global biodiesel consumption, 2010-2033 (M litres/year).      788
  • Figure 233. Global renewable diesel consumption, to 2033 (M litres/year).            791
  • Figure 234. Global bio-jet fuel consumption to 2033 (Million litres/year). 797
  • Figure 235. Total syngas market by product in MM Nm³/h of Syngas, 2021.             799
  • Figure 236. Overview of biogas utilization.             800
  • Figure 237. Biogas and biomethane pathways.   801
  • Figure 238. Bio-based naphtha production capacities, 2018-2033 (tonnes).            807
  • Figure 239. Renewable Methanol Production Processes from Different Feedstocks.           809
  • Figure 240. Production of biomethane through anaerobic digestion and upgrading.           810
  • Figure 241. Production of biomethane through biomass gasification and methanation.    811
  • Figure 242. Production of biomethane through the Power to methane process.   812
  • Figure 243. Ethanol consumption 2010-2033 (million litres).         819
  • Figure 244. Properties of petrol and biobutanol. 821
  • Figure 245. Biobutanol production route.              821
  • Figure 246. Waste plastic production pathways to (A) diesel and (B) gasoline         823
  • Figure 247. Schematic for Pyrolysis of Scrap Tires.              825
  • Figure 248. Used tires conversion process.            826
  • Figure 249. Process steps in the production of electrofuels.          827
  • Figure 250. Mapping storage technologies according to performance characteristics.        828
  • Figure 251. Production process for green hydrogen.         831
  • Figure 252. E-liquids production routes. 832
  • Figure 253. Fischer-Tropsch liquid e-fuel products.            833
  • Figure 254. Resources required for liquid e-fuel production.         833
  • Figure 255. Levelized cost and fuel-switching CO2 prices of e-fuels.           838
  • Figure 256. Cost breakdown for e-fuels. 840
  • Figure 257.  Pathways for algal biomass conversion to biofuels.   842
  • Figure 258. Algal biomass conversion process for biofuel production.        843
  • Figure 259. Classification and process technology according to carbon emission in ammonia production.  844
  • Figure 260. Green ammonia production and use.               846
  • Figure 261. Schematic of the Haber Bosch ammonia synthesis reaction.  848
  • Figure 262. Schematic of hydrogen production via steam methane reformation. 848
  • Figure 263. Estimated production cost of green ammonia.             854
  • Figure 264. Projected annual ammonia production, million tons. 855
  • Figure 265. CO2 capture and separation technology.        858
  • Figure 266. Conversion route for CO2-derived fuels and chemical intermediates. 859
  • Figure 267.  Conversion pathways for CO2-derived methane, methanol and diesel.            860
  • Figure 268. CO2 captured from air using liquid and solid sorbent DAC plants, storage, and reuse. 863
  • Figure 269. Global CO2 capture from biomass and DAC in the Net Zero Scenario. 864
  • Figure 270.  DAC technologies.   866
  • Figure 271. Schematic of Climeworks DAC system.            867
  • Figure 272. Climeworks’ first commercial direct air capture (DAC) plant, based in Hinwil, Switzerland.        868
  • Figure 273.  Flow diagram for solid sorbent DAC.                869
  • Figure 274. Direct air capture based on high temperature liquid sorbent by Carbon Engineering.  870
  • Figure 275. Global capacity of direct air capture facilities.               875
  • Figure 276. Global map of DAC and CCS plants.   881
  • Figure 277. Schematic of costs of DAC technologies.         883
  • Figure 278. DAC cost breakdown and comparison.            884
  • Figure 279. Operating costs of generic liquid and solid-based DAC systems.           886
  • Figure 280. CO2 feedstock for the production of e-methanol.      889
  • Figure 281. Schematic illustration of (a) biophotosynthetic, (b) photothermal, (c) microbial-photoelectrochemical, (d) photosynthetic and photocatalytic (PS/PC), (e) photoelectrochemical (PEC), and (f) photovoltaic plus electrochemical (PV+EC) approaches for CO2 c     891
  • Figure 282. Audi synthetic fuels. 892
  • Figure 283. ANDRITZ Lignin Recovery process.    901
  • Figure 284. FBPO process             914
  • Figure 285. Direct Air Capture Process.   918
  • Figure 286. CRI process. 920
  • Figure 287. Colyser process.        927
  • Figure 288. ECFORM electrolysis reactor schematic.          931
  • Figure 289. Dioxycle modular electrolyzer.            932
  • Figure 290. Domsjö process.       933
  • Figure 291. FuelPositive system. 942
  • Figure 292. INERATEC unit.           957
  • Figure 293. Infinitree swing method.       958
  • Figure 294. Enfinity cellulosic ethanol technology process.            988
  • Figure 295: Plantrose process.    995
  • Figure 296. O12 Reactor.              1013
  • Figure 297. Sunglasses with lenses made from CO2-derived materials.     1014
  • Figure 298. CO2 made car part.  1014
  • Figure 299. The Velocys process.               1017
  • Figure 300. The Proesa® Process.              1019
  • Figure 301. Goldilocks process and applications. 1021
  • Figure 302. Paints and coatings industry by market segmentation 2019-2020.        1027
  • Figure 303. PHA family. 1046
  • Figure 304: Schematic diagram of partial molecular structure of cellulose chain with numbering for carbon atoms and n= number of cellobiose repeating unit. 1051
  • Figure 305: Scale of cellulose materials.  1052
  • Figure 306. Nanocellulose preparation methods and resulting materials. 1053
  • Figure 307: Relationship between different kinds of nanocelluloses.         1055
  • Figure 308. Hefcel-coated wood (left) and untreated wood (right) after 30 seconds flame test.     1062
  • Figure 309: CNC slurry.  1063
  • Figure 310. High purity lignin.     1066
  • Figure 311. BLOOM masterbatch from Algix.        1071
  • Figure 312. Global market revenues for biobased paints and coatings, 2018-2033 (billions USD).  1073
  • Figure 313. Market revenues for biobased paints and coatings, 2018-2033 (billions USD), conservative estimate. 1074
  • Figure 314. Market revenues for biobased paints and coatings, 2018-2033 (billions USD), high      1076
  • Figure 315. Dulux Better Living Air Clean Biobased.           1078
  • Figure 316: NCCTM Process.        1100
  • Figure 317: CNC produced at Tech Futures’ pilot plant; cloudy suspension (1 wt.%), gel-like (10 wt.%), flake-like crystals, and very fine powder. Product advantages include:         1100
  • Figure 318. Cellugy materials.     1102
  • Figure 319. EcoLine® 3690 (left) vs Solvent-Based Competitor Coating (right).       1106
  • Figure 320. Rheocrysta spray.     1112
  • Figure 321. DKS CNF products.   1113
  • Figure 322. Domsjö process.       1114
  • Figure 323. CNF gel.        1130
  • Figure 324. Block nanocellulose material.              1130
  • Figure 325. CNF products developed by Hokuetsu.            1131
  • Figure 326. BioFlex process.        1144
  • Figure 327. Marusumi Paper cellulose nanofiber products.            1147
  • Figure 328: Fluorene cellulose ® powder.              1166
  • Figure 329. XCNF.            1171
  • Figure 330. Spider silk production.            1180
  • Figure 331. CNF dispersion and powder from Starlite.      1182
  • Figure 332. 2 wt.% CNF suspension.       1186
  • Figure 333. BiNFi-s Dry Powder. 1186
  • Figure 334. BiNFi-s Dry Powder and Propylene (PP) Complex Pellet.          1187
  • Figure 335. Silk nanofiber (right) and cocoon of raw material.       1187
  • Figure 336. HefCel-coated wood (left) and untreated wood (right) after 30 seconds flame test.     1192
  • Figure 337. Bio-based barrier bags prepared from Tempo-CNF coated bio-HDPE film.        1193
  • Figure 338. Bioalkyd products.   1197

 

 

 

 

 

 

The Global Market for Bio-based Materials 2023-2033
The Global Market for Bio-based Materials 2023-2033
PDF download.

The Global Market for Bio-based Materials 2023-2033
The Global Market for Bio-based Materials 2023-2033
PDF and Print Edition (3 volume), including tracked delivery.

Payment methods: Visa, Mastercard, American Express, Paypal. 

To purchase by invoice (bank transfer) contact info@futuremarketsinc.com