The Global Market for Bio-based Materials 2023-2033

0

Published January 2023 | 1191 pages, 333 figures, 232 tables | Download table of contents

With the need to supplement global plastics production with sustainable alternatives, and the dearth of available recycled plastic (~9% of the world's plastic is recycled), many producers are turning to bio-based alternatives. Bio-based materials refer to products that mainly consist of a substance (or substances) derived from living matter (biomass) and either occur naturally or are synthesized, or it may refer to products made by processes that use biomass. Materials from biomass sources include bulk chemicals, platform chemicals, solvents, polymers, and biocomposites. The many processes to convert biomass components to value-added products and fuels can be classified broadly as biochemical or thermochemical. In addition, biotechnological processes that rely mainly on plant breeding, fermentation, and conventional enzyme isolation also are used. New bio-based materials that may compete with conventional materials are emerging continually, and the opportunities to use them in existing and novel products are explored in this publication. 

There is growing consumer demand and regulatory push for bio-based chemicals, materials, polymers, plastics, paints, coatings and fuels with high performance, good recyclability and biodegradable properties to underpin transition towards more sustainable manufacturing and products.

The Global Market for Bio-based Materials to 2033 presents a complete picture of the current market and future outlooks, covering bio-based chemicals and feedstocks, materials, polymers, bio-plastics, bio-fuels and bio-based paints and coatings. Contents include:

  • In depth market analysis of bio-based chemical feedstocks, biopolymers, bioplastics, natural fibers and lignin, biofuels and bio-based coatings and paints. 
  • Global production capacities, market volumes and trends, current and forecast to 2033. 
  • Analysis of bio-based chemical including 11-Aminoundecanoic acid (11-AA), 1,4-Butanediol (1,4-BDO), Dodecanedioic acid (DDDA), Epichlorohydrin (ECH), Ethylene, Furan derivatives, 5-Chloromethylfurfural (5-CMF), 2,5-Furandicarboxylic acid (2,5-FDCA), Furandicarboxylic methyl ester (FDME), Isosorbide,  Itaconic acid, 5 Hydroxymethyl furfural (HMF), Lactic acid (D-LA), Lactic acid – L-lactic acid (L-LA), Lactide, Levoglucosenone, Levulinic acid, Monoethylene glycol (MEG), Monopropylene glycol (MPG), Muconic acid, Naphtha, 1,5-Pentametylenediamine (DN5), 1,3-Propanediol (1,3-PDO), Sebacic acid and Succinic acid.
  • Analysis of synthetic bio-polymers and bio-plastics market including Polylactic acid (Bio-PLA), Polyethylene terephthalate (Bio-PET), Polytrimethylene terephthalate (Bio-PTT), Polyethylene furanoate (Bio-PEF), Polyamides (Bio-PA), Poly(butylene adipate-co-terephthalate) (Bio-PBAT), Polybutylene succinate (PBS) and copolymers, Polyethylene (Bio-PE), Polypropylene (Bio-PP)
  • Analysis of naturally produced bio-based polymers including Polyhydroxyalkanoates (PHA), Polysaccharides, Microfibrillated cellulose (MFC), Cellulose nanocrystals, Cellulose nanofibers,  Protein-based bioplastics, Algal and fungal materials. 
  • Analysis of market for bio-fuels. 
  • Analysis of types of natural fibers including plant fibers, animal fibers including alternative leather, wool, silk fiber and down and polysaccharides. 
  • Markets for natural fibers, including composites, aerospace, automotive, construction & building, sports & leisure, textiles, consumer products and packaging.
  • Production capacities of lignin producers. 
  • In depth analysis of biorefinery lignin production. 
  • Analysis of the market for bio-based, sustainable paints and coatings. 
  • Analysis of types of bio-coatings and paints market.  Including Alkyd coatings, Polyurethane coatings, Epoxy coatings, Acrylate resins, Polylactic acid (Bio-PLA), Polyhydroxyalkanoates (PHA), Cellulose, Rosins, Biobased carbon black, Lignin, Edible coatings, Protein-based biomaterials for coatings, Alginate etc. 
  • Profiles of over 800 companies. Companies profiled include NatureWorks, Total Corbion, Danimer Scientific, Novamont, Mitsubishi Chemicals, Indorama, Braskem, Avantium, Borealis, Cathay, Dupont, BASF, Arkema, DuPont, BASF, AMSilk GmbH,  Loliware, Bolt Threads, Ecovative, Bioform Technologies, Algal Bio, Kraig Biocraft Laboratories, Biotic Circular Technologies Ltd., Full Cycle Bioplastics, Stora Enso Oyj, Spiber, Traceless Materials GmbH, CJ Biomaterials, Natrify, Plastus, Humble Bee Bio, B’ZEOS, Ecovative, Notpla, Smartfiber, Keel Labs and  MycoWorks. 

 

 

1              RESEARCH METHODOLOGY         57

 

2              BIO-BASED CHEMICALS AND FEEDSTOCKS             59

  • 2.1          Types    59
  • 2.2          Production capacities     60
  • 2.3          Bio-based adipic acid      61
    • 2.3.1      Applications and production       61
  • 2.4          11-Aminoundecanoic acid (11-AA)            62
    • 2.4.1      Applications and production       62
  • 2.5          1,4-Butanediol (1,4-BDO)              63
    • 2.5.1      Applications and production       63
  • 2.6          Dodecanedioic acid (DDDA)         64
    • 2.6.1      Applications and production       65
  • 2.7          Epichlorohydrin (ECH)    66
    • 2.7.1      Applications and production       66
  • 2.8          Ethylene              67
    • 2.8.1      Applications and production       67
  • 2.9          Furfural 68
    • 2.9.1      Applications and production       69
  • 2.10        5-Hydroxymethylfurfural (HMF) 69
    • 2.10.1    Applications and production       69
  • 2.11        5-Chloromethylfurfural (5-CMF) 69
    • 2.11.1    Applications and production       70
  • 2.12        2,5-Furandicarboxylic acid (2,5-FDCA)     70
    • 2.12.1    Applications and production       70
  • 2.13        Furandicarboxylic methyl ester (FDME)  71
  • 2.14        Isosorbide           71
    • 2.14.1    Applications and production       71
  • 2.15        Itaconic acid       72
    • 2.15.1    Applications and production       72
  • 2.16        3-Hydroxypropionic acid (3-HP) 72
    • 2.16.1    Applications and production       72
  • 2.17        5 Hydroxymethyl furfural (HMF) 73
    • 2.17.1    Applications and production       73
  • 2.18        Lactic acid (D-LA)             74
    • 2.18.1    Applications and production       75
  • 2.19        Lactic acid – L-lactic acid (L-LA)   75
    • 2.19.1    Applications and production       75
  • 2.20        Lactide  76
    • 2.20.1    Applications and production       77
  • 2.21        Levoglucosenone             78
    • 2.21.1    Applications and production       78
  • 2.22        Levulinic acid      79
    • 2.22.1    Applications and production       79
  • 2.23        Monoethylene glycol (MEG)       79
    • 2.23.1    Applications and production       79
  • 2.24        Monopropylene glycol (MPG)    80
    • 2.24.1    Applications and production       81
  • 2.25        Muconic acid      81
    • 2.25.1    Applications and production       82
  • 2.26        Bio-Naphtha      82
    • 2.26.1    Applications and production       83
    • 2.26.2    Production capacities     83
    • 2.26.3    Bio-naptha producers    84
  • 2.27        Pentamethylene diisocyanate    85
    • 2.27.1    Applications and production       86
  • 2.28        1,3-Propanediol (1,3-PDO)           86
    • 2.28.1    Applications and production       86
  • 2.29        Sebacic acid        87
    • 2.29.1    Applications and production       88
  • 2.30        Succinic acid (SA)             88
    • 2.30.1    Applications and production       89

 

3              BIO-BASED MATERIALS, PLASTICS AND POLYMERS            91

  • 3.1          Bio-based or renewable plastics 91
    • 3.1.1      Drop-in bio-based plastics            91
    • 3.1.2      Novel bio-based plastics                92
  • 3.2          Biodegradable and compostable plastics                93
    • 3.2.1      Biodegradability               93
    • 3.2.2      Compostability  94
  • 3.3          Advantages and disadvantages  95
  • 3.4          Types of Bio-based and/or Biodegradable Plastics              96
  • 3.5          Market leaders by biobased and/or biodegradable plastic types  97
  • 3.6          Regional/country production capacities, by main types   98
    • 3.6.1      Bio-based Polyethylene (Bio-PE) production capacities, by country             100
    • 3.6.2      Bio-based Polyethylene terephthalate (Bio-PET) production capacities, by country              101
    • 3.6.3      Bio-based polyamides (Bio-PA) production capacities, by country               102
    • 3.6.4      Bio-based Polypropylene (Bio-PP) production capacities, by country          103
    • 3.6.5      Bio-based Polytrimethylene terephthalate (Bio-PTT) production capacities, by country     105
    • 3.6.6      Bio-based Poly(butylene adipate-co-terephthalate) (PBAT) production capacities, by country         106
    • 3.6.7      Bio-based Polybutylene succinate (PBS) production capacities, by country              107
    • 3.6.8      Bio-based Polylactic acid (PLA) production capacities, by country 108
    • 3.6.9      Polyhydroxyalkanoates (PHA) production capacities, by country  109
    • 3.6.10    Starch blends production capacities, by country 110
  • 3.7          SYNTHETIC BIO-BASED POLYMERS            111
    • 3.7.1      Polylactic acid (Bio-PLA) 111
      • 3.7.1.1   Market analysis 111
      • 3.7.1.2   Production          113
      • 3.7.1.3   Producers and production capacities, current and planned            113
        • 3.7.1.3.1               Lactic acid producers and production capacities  113
        • 3.7.1.3.2               PLA producers and production capacities               114
        • 3.7.1.3.3               Polylactic acid (Bio-PLA) production capacities 2019-2033 (1,000 tons)     115
    • 3.7.2      Polyethylene terephthalate (Bio-PET)     116
      • 3.7.2.1   Market analysis 116
      • 3.7.2.2   Producers and production capacities       117
      • 3.7.2.3   Polyethylene terephthalate (Bio-PET) production capacities 2019-2033 (1,000 tons)          118
    • 3.7.3      Polytrimethylene terephthalate (Bio-PTT)             119
      • 3.7.3.1   Market analysis 119
      • 3.7.3.2   Producers and production capacities       119
      • 3.7.3.3   Polytrimethylene terephthalate (PTT) production capacities 2019-2033 (1,000 tons)          120
    • 3.7.4      Polyethylene furanoate (Bio-PEF)             121
      • 3.7.4.1   Market analysis 121
      • 3.7.4.2   Comparative properties to PET   122
      • 3.7.4.3   Producers and production capacities       123
        • 3.7.4.3.1               FDCA and PEF producers and production capacities           123
        • 3.7.4.3.2               Polyethylene furanoate (Bio-PEF) production capacities 2019-2033 (1,000 tons). 124
    • 3.7.5      Polyamides (Bio-PA)       125
      • 3.7.5.1   Market analysis 125
      • 3.7.5.2   Producers and production capacities       126
      • 3.7.5.3   Polyamides (Bio-PA) production capacities 2019-2033 (1,000 tons)            127
    • 3.7.6      Poly(butylene adipate-co-terephthalate) (Bio-PBAT)        127
      • 3.7.6.1   Market analysis 127
      • 3.7.6.2   Producers and production capacities       128
      • 3.7.6.3   Poly(butylene adipate-co-terephthalate) (Bio-PBAT) production capacities 2019-2033 (1,000 tons)             129
    • 3.7.7      Polybutylene succinate (PBS) and copolymers     130
      • 3.7.7.1   Market analysis 130
      • 3.7.7.2   Producers and production capacities       131
      • 3.7.7.3   Polybutylene succinate (PBS) production capacities 2019-2033 (1,000 tons)           132
    • 3.7.8      Polyethylene (Bio-PE)    132
      • 3.7.8.1   Market analysis 132
      • 3.7.8.2   Producers and production capacities       133
      • 3.7.8.3   Polyethylene (Bio-PE) production capacities 2019-2033 (1,000 tons).        134
    • 3.7.9      Polypropylene (Bio-PP) 135
      • 3.7.9.1   Market analysis 135
      • 3.7.9.2   Producers and production capacities       135
      • 3.7.9.3   Polypropylene (Bio-PP) production capacities 2019-2033 (1,000 tons)      136
  • 3.8          NATURAL BIO-BASED POLYMERS               137
    • 3.8.1      Polyhydroxyalkanoates (PHA)     137
      • 3.8.1.1   Technology description 137
      • 3.8.1.2   Types    139
        • 3.8.1.2.1               PHB        141
        • 3.8.1.2.2               PHBV     141
      • 3.8.1.3   Synthesis and production processes        143
      • 3.8.1.4   Market analysis 146
      • 3.8.1.5   Commercially available PHAs      147
      • 3.8.1.6   Markets for PHAs             148
        • 3.8.1.6.1               Packaging            150
        • 3.8.1.6.2               Cosmetics           151
          • 3.8.1.6.2.1           PHA microspheres           151
        • 3.8.1.6.3               Medical 152
          • 3.8.1.6.3.1           Tissue engineering          152
          • 3.8.1.6.3.2           Drug delivery     152
        • 3.8.1.6.4               Agriculture          152
          • 3.8.1.6.4.1           Mulch film           152
          • 3.8.1.6.4.2           Grow bags           152
      • 3.8.1.7   Producers and production capacities       153
      • 3.8.1.8   PHA production capacities 2019-2033 (1,000 tons)            155
    • 3.8.2      Polysaccharides 156
      • 3.8.2.1   Microfibrillated cellulose (MFC) 156
        • 3.8.2.1.1               Market analysis 156
        • 3.8.2.1.2               Producers and production capacities       157
    • 3.8.2.2   Nanocellulose   157
      • 3.8.2.2.1               Cellulose nanocrystals    157
        • 3.8.2.2.1.1           Synthesis             158
        • 3.8.2.2.1.2           Properties           160
        • 3.8.2.2.1.3           Production          161
        • 3.8.2.2.1.4           Applications       161
        • 3.8.2.2.1.5           Market analysis 163
        • 3.8.2.2.1.6           Producers and production capacities       164
      • 3.8.2.2.2               Cellulose nanofibers       165
        • 3.8.2.2.2.1           Applications       165
        • 3.8.2.2.2.2           Market analysis 166
        • 3.8.2.2.2.3           Producers and production capacities       168
      • 3.8.2.2.3               Bacterial Nanocellulose (BNC)    169
        • 3.8.2.2.3.1           Production          169
        • 3.8.2.2.3.2           Applications       172
    • 3.8.3      Protein-based bioplastics             173
      • 3.8.3.1   Types, applications and producers            174
    • 3.8.4      Algal and fungal 175
      • 3.8.4.1   Algal      175
        • 3.8.4.1.1               Advantages        175
        • 3.8.4.1.2               Production          177
        • 3.8.4.1.3               Producers           177
      • 3.8.4.2   Mycelium            178
        • 3.8.4.2.1               Properties           178
        • 3.8.4.2.2               Applications       179
        • 3.8.4.2.3               Commercialization           180
    • 3.8.5      Chitosan              181
      • 3.8.5.1   Technology description 181
  • 3.9          PRODUCTION OF BIOBASED AND BIODEGRADABLE PLASTICS, BY REGION 182
    • 3.9.1      North America   183
    • 3.9.2      Europe 183
    • 3.9.3      Asia-Pacific         184
      • 3.9.3.1   China     184
      • 3.9.3.2   Japan    184
      • 3.9.3.3   Thailand               185
      • 3.9.3.4   Indonesia            185
    • 3.9.4      Latin America    186
  • 3.10        MARKET SEGMENTATION OF BIOPLASTICS           187
    • 3.10.1    Packaging            188
      • 3.10.1.1                Processes for bioplastics in packaging      188
      • 3.10.1.2                Applications       189
      • 3.10.1.3                Flexible packaging            189
        • 3.10.1.3.1             Production volumes 2019-2033   192
      • 3.10.1.4                Rigid packaging 192
        • 3.10.1.4.1             Production volumes 2019-2033   194
    • 3.10.2    Consumer products        195
      • 3.10.2.1                Applications       195
    • 3.10.3    Automotive        196
      • 3.10.3.1                Applications       196
      • 3.10.3.2                Production capacities     196
    • 3.10.4    Building & construction 197
      • 3.10.4.1                Applications       197
      • 3.10.4.2                Production capacities     197
    • 3.10.5    Textiles 198
      • 3.10.5.1                Apparel 198
      • 3.10.5.2                Footwear            199
      • 3.10.5.3                Medical textiles 201
      • 3.10.5.4                Production capacities     201
    • 3.10.6    Electronics          202
      • 3.10.6.1                Applications       202
      • 3.10.6.2                Production capacities     202
    • 3.10.7    Agriculture and horticulture        203
      • 3.10.7.1                Production capacities     204
  • 3.11        NATURAL FIBERS              204
    • 3.11.1    Manufacturing method, matrix materials and applications of natural fibers            208
    • 3.11.2    Advantages of natural fibers       209
    • 3.11.3    Commercially available next-gen natural fiber  products 210
    • 3.11.4    Market drivers for next-gen natural fibers             213
    • 3.11.5    Challenges          215
    • 3.11.6    Plants (cellulose, lignocellulose) 216
      • 3.11.6.1                Seed fibers         216
        • 3.11.6.1.1             Cotton  216
          • 3.11.6.1.1.1         Production volumes 2018-2033   217
        • 3.11.6.1.2             Kapok   217
          • 3.11.6.1.2.1         Production volumes 2018-2033   218
        • 3.11.6.1.3             Luffa      219
      • 3.11.6.2                Bast fibers           220
        • 3.11.6.2.1             Jute       220
          • 3.11.6.2.2             Production volumes 2018-2033   221
        • 3.11.6.2.2.1         Hemp    222
        • 3.11.6.2.2.2         Production volumes 2018-2033   223
      • 3.11.6.2.3             Flax        223
        • 3.11.6.2.3.1         Production volumes 2018-2033   224
      • 3.11.6.2.4             Ramie   225
        • 3.11.6.2.4.1         Production volumes 2018-2033   226
      • 3.11.6.2.5             Kenaf    226
        • 3.11.6.2.5.1         Production volumes 2018-2033   227
      • 3.11.6.3                Leaf fibers           228
        • 3.11.6.3.1             Sisal       228
          • 3.11.6.3.1.1         Production volumes 2018-2033   229
        • 3.11.6.3.2             Abaca    229
          • 3.11.6.3.2.1         Production volumes 2018-2033   230
      • 3.11.6.4                Fruit fibers          231
        • 3.11.6.4.1             Coir        231
          • 3.11.6.4.1.1         Production volumes 2018-2033   231
        • 3.11.6.4.2             Banana 232
          • 3.11.6.4.2.1         Production volumes 2018-2033   233
        • 3.11.6.4.3             Pineapple            234
      • 3.11.6.5                Stalk fibers from agricultural residues     235
        • 3.11.6.5.1             Rice fiber             235
        • 3.11.6.5.2             Corn      236
      • 3.11.6.6                Cane, grasses and reed  237
        • 3.11.6.6.1             Switch grass       237
        • 3.11.6.6.2             Sugarcane (agricultural residues)              237
        • 3.11.6.6.3             Bamboo               238
          • 3.11.6.6.3.1         Production volumes 2018-2033   239
        • 3.11.6.6.4             Fresh grass (green biorefinery)  239
      • 3.11.6.7                Modified natural polymers          240
        • 3.11.6.7.1             Mycelium            240
        • 3.11.6.7.2             Chitosan              242
        • 3.11.6.7.3             Alginate               243
    • 3.11.7    Animal (fibrous protein) 245
      • 3.11.7.1                Wool     245
        • 3.11.7.1.1             Alternative wool materials           246
        • 3.11.7.1.2             Producers           246
      • 3.11.7.2                Silk fiber              246
        • 3.11.7.2.1             Alternative silk materials               247
          • 3.11.7.2.1.1         Producers           247
      • 3.11.7.3                Leather 248
        • 3.11.7.3.1             Alternative leather materials       249
          • 3.11.7.3.1.1         Producers           249
      • 3.11.7.4                Fur         251
        • 3.11.7.4.1             Producers           251
      • 3.11.7.5                Down    251
        • 3.11.7.5.1             Alternative down materials          251
          • 3.11.7.5.1.1         Producers           251
    • 3.11.8    MARKETS FOR NATURAL FIBERS 252
      • 3.11.8.1                Composites        252
      • 3.11.8.2                Applications       252
      • 3.11.8.3                Natural fiber injection moulding compounds       254
        • 3.11.8.3.1             Properties           254
        • 3.11.8.3.2             Applications       254
      • 3.11.8.4                Non-woven natural fiber mat composites              254
        • 3.11.8.4.1             Automotive        254
        • 3.11.8.4.2             Applications       255
      • 3.11.8.5                Aligned natural fiber-reinforced composites        255
      • 3.11.8.6                Natural fiber biobased polymer compounds         256
      • 3.11.8.7                Natural fiber biobased polymer non-woven mats              257
        • 3.11.8.7.1             Flax        257
        • 3.11.8.7.2             Kenaf    257
      • 3.11.8.8                Natural fiber thermoset bioresin composites       257
      • 3.11.8.9                Aerospace          258
        • 3.11.8.9.1             Market overview             258
      • 3.11.8.10              Automotive        258
        • 3.11.8.10.1          Market overview             258
        • 3.11.8.10.2          Applications of natural fibers      263
      • 3.11.8.11              Building/construction     263
        • 3.11.8.11.1          Market overview             264
        • 3.11.8.11.2          Applications of natural fibers      264
      • 3.11.8.12              Sports and leisure            265
        • 3.11.8.12.1          Market overview             265
      • 3.11.8.13              Textiles 265
        • 3.11.8.13.1          Market overview             265
        • 3.11.8.13.2          Consumer apparel           267
        • 3.11.8.13.3          Geotextiles        267
      • 3.11.8.14              Packaging            268
        • 3.11.8.14.1          Market overview             269
    • 3.11.9    NATURAL FIBERS GLOBAL PRODUCTION 271
      • 3.11.9.1                Overall global fibers market        271
      • 3.11.9.2                Plant-based fiber production      273
      • 3.11.9.3                Animal-based natural fiber production   274
  • 3.12        LIGNIN 275
    • 3.12.1    INTRODUCTION 275
      • 3.12.1.1                What is lignin?   275
        • 3.12.1.1.1             Lignin structure 276
      • 3.12.1.2                Types of lignin    277
        • 3.12.1.2.1             Sulfur containing lignin  279
        • 3.12.1.2.2             Sulfur-free lignin from biorefinery process            279
      • 3.12.1.3                Properties           280
      • 3.12.1.4                The lignocellulose biorefinery     282
      • 3.12.1.5                Markets and applications              283
      • 3.12.1.6                Challenges for using lignin            284
    • 3.12.2    LIGNIN PRODUCTON PROCESSES              285
      • 3.12.2.1                Lignosulphonates            287
      • 3.12.2.2                Kraft Lignin          287
        • 3.12.2.2.1             LignoBoost process         287
        • 3.12.2.2.2             LignoForce method         288
        • 3.12.2.2.3             Sequential Liquid Lignin Recovery and Purification             289
        • 3.12.2.2.4             A-Recovery+      290
      • 3.12.2.3                Soda lignin          291
      • 3.12.2.4                Biorefinery lignin              291
        • 3.12.2.4.1             Commercial and pre-commercial biorefinery lignin production facilities and  processes    292
      • 3.12.2.5                Organosolv lignins            294
      • 3.12.2.6                Hydrolytic lignin                295
    • 3.12.3    MARKETS FOR LIGNIN    296
      • 3.12.3.1                Market drivers and trends for lignin         296
      • 3.12.3.2                Production capacities     297
        • 3.12.3.2.1             Technical lignin availability (dry ton/y)    297
        • 3.12.3.2.2             Biomass conversion (Biorefinery)             298
      • 3.12.3.3                Estimated consumption of lignin                298
      • 3.12.3.4                Prices    300
      • 3.12.3.5                Heat and power energy 300
      • 3.12.3.6                Pyrolysis and syngas       300
      • 3.12.3.7                Aromatic compounds     300
        • 3.12.3.7.1             Benzene, toluene and xylene      301
        • 3.12.3.7.2             Phenol and phenolic resins          301
        • 3.12.3.7.3             Vanillin 302
      • 3.12.3.8                Plastics and polymers     302
      • 3.12.3.9                Hydrogels            303
      • 3.12.3.10              Carbon materials              304
        • 3.12.3.10.1          Carbon black      304
        • 3.12.3.10.2          Activated carbons            304
        • 3.12.3.10.3          Carbon fiber       305
        • 3.12.3.11              Concrete             306
      • 3.12.3.12              Rubber 307
      • 3.12.3.13              Biofuels 307
      • 3.12.3.14              Bitumen and Asphalt      307
      • 3.12.3.15              Oil and gas          308
      • 3.12.3.16              Energy storage  308
        • 3.12.3.16.1          Supercapacitors 309
        • 3.12.3.16.2          Anodes for lithium-ion batteries 309
        • 3.12.3.16.3          Gel electrolytes for lithium-ion batteries                310
        • 3.12.3.16.4          Binders for lithium-ion batteries 310
        • 3.12.3.16.5          Cathodes for lithium-ion batteries            310
        • 3.12.3.16.6          Sodium-ion batteries      311
      • 3.12.3.17              Binders, emulsifiers and dispersants        311
      • 3.12.3.18              Chelating agents              313
      • 3.12.3.19              Ceramics              314
      • 3.12.3.20              Automotive interiors      314
      • 3.12.3.21              Fire retardants  315
      • 3.12.3.22              Antioxidants      315
      • 3.12.3.23              Lubricants           315
      • 3.12.3.24              Dust control       316
  • 3.13        BIO-BASED MATERIALS, PLASTICS AND POLYMERS COMPANY PROFILES  317 (492 company profiles)

 

4              BIO-BASED FUELS             733

  • 4.1          The global biofuels market           733
    • 4.1.1      Diesel substitutes and alternatives           733
    • 4.1.2      Gasoline substitutes and alternatives      735
  • 4.2          Comparison of biofuel costs 2022, by type            735
  • 4.3          Types    736
    • 4.3.1      Solid Biofuels     736
    • 4.3.2      Liquid Biofuels  737
    • 4.3.3      Gaseous Biofuels             737
    • 4.3.4      Conventional Biofuels    738
    • 4.3.5      Advanced Biofuels           738
  • 4.4          Feedstocks         739
    • 4.4.1      First-generation (1-G)    741
    • 4.4.2      Second-generation (2-G)              742
      • 4.4.2.1   Lignocellulosic wastes and residues         743
      • 4.4.2.2   Biorefinery lignin              744
    • 4.4.3      Third-generation (3-G)  748
      • 4.4.3.1   Algal biofuels     748
        • 4.4.3.1.1               Properties           749
        • 4.4.3.1.2               Advantages        750
    • 4.4.4      Fourth-generation (4-G) 751
    • 4.4.5      Advantages and disadvantages, by generation    751
  • 4.5          HYDROCARBON BIOFUELS            754
    • 4.5.1      Biodiesel              754
      • 4.5.1.1   Biodiesel by generation 755
      • 4.5.1.2   Production of biodiesel and other biofuels            756
        • 4.5.1.2.1               Pyrolysis of biomass        757
        • 4.5.1.2.2               Vegetable oil transesterification 760
        • 4.5.1.2.3               Vegetable oil hydrogenation (HVO)         761
          • 4.5.1.2.3.1           Production process         762
        • 4.5.1.2.4               Biodiesel from tall oil      763
        • 4.5.1.2.5               Fischer-Tropsch BioDiesel             763
        • 4.5.1.2.6               Hydrothermal liquefaction of biomass    765
        • 4.5.1.2.7               CO2 capture and Fischer-Tropsch (FT)     766
        • 4.5.1.2.8               Dymethyl ether (DME)   766
      • 4.5.1.3   Global production and consumption        767
    • 4.5.2      Renewable diesel            769
      • 4.5.2.1   Production          769
      • 4.5.2.2   Global consumption       770
    • 4.5.3      Bio-jet (bio-aviation) fuels            772
      • 4.5.3.1   Description         772
      • 4.5.3.2   Global market   773
      • 4.5.3.3   Production pathways     773
    • 4.5.4      Costs     775
      • 4.5.4.1   Biojet fuel production capacities                776
      • 4.5.4.2   Challenges          777
      • 4.5.4.3   Global consumption       777
    • 4.5.5      Syngas  778
    • 4.5.6      Biogas and biomethane 779
      • 4.5.6.1   Feedstocks         782
    • 4.5.7      Bio-naphtha       783
      • 4.5.7.1   Overview            783
      • 4.5.7.2   Markets and applications              784
      • 4.5.7.3   Production capacities, by producer, current and planned               785
      • 4.5.7.4   Production capacities, total (tonnes), historical, current and planned        787
  • 4.6          ALCOHOL FUELS               788
    • 4.6.1      Biomethanol      788
      • 4.6.1.1   Methanol-to gasoline technology             788
      • 4.6.1.1.1               Production processes     789
        • 4.6.1.1.1.1           Anaerobic digestion        790
        • 4.6.1.1.1.2           Biomass gasification        790
        • 4.6.1.1.1.3           Power to Methane          791
    • 4.6.2      Bioethanol          792
      • 4.6.2.1   Technology description 792
      • 4.6.2.2   1G Bio-Ethanol  793
      • 4.6.2.3   Ethanol to jet fuel technology     793
      • 4.6.2.4   Methanol from pulp & paper production               794
      • 4.6.2.5   Sulfite spent liquor fermentation              794
      • 4.6.2.6   Gasification        795
        • 4.6.2.6.1               Biomass gasification and syngas fermentation    795
      • 4.6.2.7   Biomass gasification and syngas thermochemical conversion        795
      • 4.6.2.8   CO2 capture and alcohol synthesis           796
      • 4.6.2.9   Biomass hydrolysis and fermentation     796
        • 4.6.2.9.1               Separate hydrolysis and fermentation    796
        • 4.6.2.9.2               Simultaneous saccharification and fermentation (SSF)     797
        • 4.6.2.9.3               Pre-hydrolysis and simultaneous saccharification and fermentation (PSSF)             797
        • 4.6.2.9.4               Simultaneous saccharification and co-fermentation (SSCF)            798
        • 4.6.2.9.5               Direct conversion (consolidated bioprocessing) (CBP)      798
      • 4.6.2.10                Global ethanol consumption       799
    • 4.6.3      Biobutanol          800
    • 4.6.3.1   Production          802
  • 4.7          BIOFUEL FROM PLASTIC WASTE AND USED TIRES               803
    • 4.7.1      Plastic pyrolysis 803
    • 4.7.2      Used tires pyrolysis         804
    • 4.7.2.1   Conversion to biofuel     805
  • 4.8          ELECTROFUELS (E-FUELS)             807
    • 4.8.1      Introduction       807
      • 4.8.1.1   Benefits of e-fuels           809
    • 4.8.2      Feedstocks         810
      • 4.8.2.1   Hydrogen electrolysis     810
      • 4.8.2.2   CO2 capture       811
    • 4.8.3      Production          811
    • 4.8.4      Electrolysers      814
      • 4.8.4.1   Commercial alkaline electrolyser cells (AECs)       815
      • 4.8.4.2   PEM electrolysers (PEMEC)         815
      • 4.8.4.3   High-temperature solid oxide electrolyser cells (SOECs)  816
    • 4.8.5      Costs     816
    • 4.8.6      Market challenges           819
    • 4.8.7      Companies         820
  • 4.9          ALGAE-DERIVED BIOFUELS           821
    • 4.9.1      Technology description 821
    • 4.9.2      Production          821
  • 4.10        GREEN AMMONIA           823
    • 4.10.1    Production          823
      • 4.10.1.1                Decarbonisation of ammonia production               825
      • 4.10.1.2                Green ammonia projects              826
    • 4.10.2    Green ammonia synthesis methods         826
      • 4.10.2.1                Haber-Bosch process      826
      • 4.10.2.2                Biological nitrogen fixation          827
      • 4.10.2.3                Electrochemical production         828
        • 4.10.2.3.1             Chemical looping processes        828
    • 4.10.3    Blue ammonia   828
      • 4.10.3.1                Blue ammonia projects  828
    • 4.10.4    Markets and applications              829
      • 4.10.4.1                Chemical energy storage              829
        • 4.10.4.1.1             Ammonia fuel cells          829
      • 4.10.4.2                Marine fuel         830
    • 4.10.5    Costs     832
    • 4.10.6    Estimated market demand           834
    • 4.10.7    Companies and projects 834
  • 4.11        BIOFUELS FROM CARBON CAPTURE         836
    • 4.11.1    Overview            837
    • 4.11.2    CO2 capture from point sources 839
    • 4.11.3    Production routes            840
    • 4.11.4    Direct air capture (DAC) 841
      • 4.11.4.1                Description         841
      • 4.11.4.2                Deployment       843
      • 4.11.4.3                Point source carbon capture versus Direct Air Capture     844
      • 4.11.4.4                Technologies     845
        • 4.11.4.4.1             Solid sorbents   846
        • 4.11.4.4.2             Liquid sorbents 848
        • 4.11.4.4.3             Liquid solvents  849
        • 4.11.4.4.4             Airflow equipment integration   850
        • 4.11.4.4.5             Passive Direct Air Capture (PDAC)             850
      • 4.11.4.5                Direct conversion             850
        • 4.11.4.5.1             Co-product generation  851
        • 4.11.4.5.2             Low Temperature DAC  851
        • 4.11.4.5.3             Regeneration methods 851
      • 4.11.4.6                Commercialization and plants     852
      • 4.11.4.7                Metal-organic frameworks (MOFs) in DAC             853
      • 4.11.4.8                DAC plants and projects-current and planned      853
      • 4.11.4.9                Markets for DAC               860
      • 4.11.4.10              Costs     861
      • 4.11.4.11              Challenges          866
      • 4.11.4.12              Players and production  867
    • 4.11.5    Methanol            867
    • 4.11.6    Algae based biofuels       868
    • 4.11.7    CO₂-fuels from solar        869
    • 4.11.8    Companies         871
    • 4.11.9    Challenges          873
  • 4.12        BIO-BASED FUELS COMPANY PROFILES   874 (151 company profiles)

 

5              BIO-BASED PAINTS AND COATINGS          998

  • 5.1          The global paints and coatings market    998
  • 5.2          Bio-based paints and coatings     999
  • 5.3          Challenges using bio-based paints and coatings   999
  • 5.4          Types of bio-based coatings and materials             1000
    • 5.4.1      Alkyd coatings   1000
      • 5.4.1.1   Alkyd resin properties    1001
      • 5.4.1.2   Biobased alkyd coatings 1002
      • 5.4.1.3   Products              1003
    • 5.4.2      Polyurethane coatings   1004
      • 5.4.2.1   Properties           1004
      • 5.4.2.2   Biobased polyurethane coatings 1005
      • 5.4.2.3   Products              1006
    • 5.4.3      Epoxy coatings  1007
      • 5.4.3.1   Properties           1007
      • 5.4.3.2   Biobased epoxy coatings               1008
      • 5.4.3.3   Products              1009
    • 5.4.4      Acrylate resins   1010
      • 5.4.4.1   Properties           1010
      • 5.4.4.2   Biobased acrylates           1011
      • 5.4.4.3   Products              1011
    • 5.4.5      Polylactic acid (Bio-PLA) 1012
      • 5.4.5.1   Properties           1014
      • 5.4.5.2   Bio-PLA coatings and films            1015
    • 5.4.6      Polyhydroxyalkanoates (PHA)     1015
      • 5.4.6.1   Properties           1017
      • 5.4.6.2   PHA coatings      1019
      • 5.4.6.3   Commercially available PHAs      1019
    • 5.4.7      Cellulose              1022
      • 5.4.7.1   Microfibrillated cellulose (MFC) 1027
        • 5.4.7.1.1               Properties           1028
        • 5.4.7.1.2               Applications in paints and coatings           1028
      • 5.4.7.2   Cellulose nanofibers       1029
        • 5.4.7.2.1               Properties           1029
        • 5.4.7.2.2               Product developers        1031
      • 5.4.7.3   Cellulose nanocrystals    1033
      • 5.4.7.4   Bacterial Nanocellulose (BNC)    1035
    • 5.4.8      Rosins   1035
    • 5.4.9      Biobased carbon black   1036
      • 5.4.9.1   Lignin-based      1036
      • 5.4.9.2   Algae-based       1036
    • 5.4.10    Lignin    1036
      • 5.4.10.1                Application in coatings   1037
    • 5.4.11    Edible coatings  1037
    • 5.4.12    Protein-based biomaterials for coatings 1039
      • 5.4.12.1                Plant derived proteins   1039
      • 5.4.12.2                Animal origin proteins   1039
    • 5.4.13    Alginate               1041
  • 5.5          Market for bio-based paints and coatings              1043
    • 5.5.1      Global market revenues to 2033, total    1043
    • 5.5.2      Global market revenues to 2033, by market         1044
  • 5.6          BIO-BASED PAINTS AND COATINGS COMPANY PROFILES 1048 (130 companies)

 

6              REFERENCES       1169

 

List of Tables

  • Table 1. List of Bio-based chemicals.        59
  • Table 2. Lactide applications.      77
  • Table 3. Biobased MEG producers capacities.       79
  • Table 4. Bio-naphtha market value chain.              82
  • Table 5. Bio-naptha producers and production capacities.              84
  • Table 6. Type of biodegradation.               94
  • Table 7. Advantages and disadvantages of biobased plastics compared to conventional plastics.   95
  • Table 8. Types of Bio-based and/or Biodegradable Plastics, applications. 96
  • Table 9. Market leader by Bio-based and/or Biodegradable Plastic types. 97
  • Table 10. Bioplastics regional production capacities, 1,000 tons, 2019-2033.           98
  • Table 11. Polylactic acid (PLA) market analysis-manufacture, advantages, disadvantages and applications.               111
  • Table 12. Lactic acid producers and production capacities.             113
  • Table 13. PLA producers and production capacities.          114
  • Table 14. Planned PLA capacity expansions in China.         114
  • Table 15. Bio-based Polyethylene terephthalate (Bio-PET) market analysis- manufacture, advantages, disadvantages and applications.              116
  • Table 16. Bio-based Polyethylene terephthalate (PET) producers and production capacities,           117
  • Table 17. Polytrimethylene terephthalate (PTT) market analysis-manufacture, advantages, disadvantages and applications.       119
  • Table 18. Production capacities of Polytrimethylene terephthalate (PTT), by leading producers.   119
  • Table 19. Polyethylene furanoate (PEF) market analysis-manufacture, advantages, disadvantages and applications.                121
  • Table 20. PEF vs. PET.     122
  • Table 21. FDCA and PEF producers.          123
  • Table 22. Bio-based polyamides (Bio-PA) market analysis - manufacture, advantages, disadvantages and applications.                125
  • Table 23. Leading Bio-PA producers production capacities.            126
  • Table 24. Poly(butylene adipate-co-terephthalate) (PBAT) market analysis- manufacture, advantages, disadvantages and applications.              127
  • Table 25. Leading PBAT producers, production capacities and brands.      128
  • Table 26. Bio-PBS market analysis-manufacture, advantages, disadvantages and applications.       130
  • Table 27. Leading PBS producers and production capacities.          131
  • Table 28. Bio-based Polyethylene (Bio-PE) market analysis- manufacture, advantages, disadvantages and applications.                132
  • Table 29. Leading Bio-PE producers.        133
  • Table 30. Bio-PP market analysis- manufacture, advantages, disadvantages and applications.        135
  • Table 31. Leading Bio-PP producers and capacities.           135
  • Table 32.Types of PHAs and properties. 140
  • Table 33. Comparison of the physical properties of different PHAs with conventional petroleum-based polymers. 142
  • Table 34. Polyhydroxyalkanoate (PHA) extraction methods.          144
  • Table 35. Polyhydroxyalkanoates (PHA) market analysis. 146
  • Table 36. Commercially available PHAs.  147
  • Table 37. Markets and applications for PHAs.       149
  • Table 38. Applications, advantages and disadvantages of PHAs in packaging.         150
  • Table 39. Polyhydroxyalkanoates (PHA) producers.           153
  • Table 40. Microfibrillated cellulose (MFC) market analysis-manufacture, advantages, disadvantages and applications.                156
  • Table 41. Leading MFC producers and capacities.               157
  • Table 42. Synthesis methods for cellulose nanocrystals (CNC).     158
  • Table 43. CNC sources, size and yield.      159
  • Table 44. CNC properties.             160
  • Table 45. Mechanical properties of CNC and other reinforcement materials.         161
  • Table 46. Applications of nanocrystalline cellulose (NCC).               162
  • Table 47. Cellulose nanocrystals analysis.               163
  • Table 48: Cellulose nanocrystal production capacities and production process, by producer.          164
  • Table 49. Applications of cellulose nanofibers (CNF).        165
  • Table 50. Cellulose nanofibers market analysis.   166
  • Table 51. CNF production capacities (by type, wet or dry) and production process, by producer, metric tonnes.    168
  • Table 52. Applications of bacterial nanocellulose (BNC). 172
  • Table 53. Types of protein based-bioplastics, applications and companies.             174
  • Table 54. Types of algal and fungal based-bioplastics, applications and companies.             175
  • Table 55. Overview of alginate-description, properties, application and market size.          176
  • Table 56. Companies developing algal-based bioplastics. 177
  • Table 57. Overview of mycelium fibers-description, properties, drawbacks and applications.          178
  • Table 58. Companies developing mycelium-based bioplastics.      180
  • Table 59. Overview of chitosan-description, properties, drawbacks and applications.         181
  • Table 60. Global production capacities of biobased and sustainable plastics in 2019-2033, by region, tons.              182
  • Table 61. Biobased and sustainable plastics producers in North America. 183
  • Table 62. Biobased and sustainable plastics producers in Europe.               184
  • Table 63. Biobased and sustainable plastics producers in Asia-Pacific.       185
  • Table 64. Biobased and sustainable plastics producers in Latin America.  186
  • Table 65. Processes for bioplastics in packaging. 188
  • Table 66. Comparison of bioplastics’ (PLA and PHAs) properties to other common polymers used in product packaging.                190
  • Table 67. Typical applications for bioplastics in flexible packaging.              191
  • Table 68. Typical applications for bioplastics in rigid packaging.   193
  • Table 69. Types of next-gen natural fibers.            205
  • Table 70. Application, manufacturing method, and matrix materials of natural fibers.        208
  • Table 71. Typical properties of natural fibers.      210
  • Table 72. Commercially available next-gen natural fiber products.              210
  • Table 73. Market drivers for natural fibers.           213
  • Table 74. Overview of cotton fibers-description, properties, drawbacks and applications. 216
  • Table 75. Overview of kapok fibers-description, properties, drawbacks and applications. 217
  • Table 76. Overview of luffa fibers-description, properties, drawbacks and applications.    219
  • Table 77. Overview of jute fibers-description, properties, drawbacks and applications.     220
  • Table 78. Overview of hemp fibers-description, properties, drawbacks and applications.  222
  • Table 79. Overview of flax fibers-description, properties, drawbacks and applications.      223
  • Table 80. Overview of ramie fibers- description, properties, drawbacks and applications. 225
  • Table 81. Overview of kenaf fibers-description, properties, drawbacks and applications.  226
  • Table 82. Overview of sisal leaf fibers-description, properties, drawbacks and applications.            228
  • Table 83. Overview of abaca fibers-description, properties, drawbacks and applications.  229
  • Table 84. Overview of coir fibers-description, properties, drawbacks and applications.      231
  • Table 85. Overview of banana fibers-description, properties, drawbacks and applications.               232
  • Table 86. Overview of pineapple fibers-description, properties, drawbacks and applications.         234
  • Table 87. Overview of rice fibers-description, properties, drawbacks and applications.      235
  • Table 88. Overview of corn fibers-description, properties, drawbacks and applications.    236
  • Table 89. Overview of switch grass fibers-description, properties and applications.             237
  • Table 90. Overview of sugarcane fibers-description, properties, drawbacks and application and market size.           237
  • Table 91. Overview of bamboo fibers-description, properties, drawbacks and applications.             238
  • Table 92. Overview of mycelium fibers-description, properties, drawbacks and applications.          242
  • Table 93. Overview of chitosan fibers-description, properties, drawbacks and applications.            243
  • Table 94. Overview of alginate-description, properties, application and market size.          244
  • Table 95. Overview of wool fibers-description, properties, drawbacks and applications.   245
  • Table 96. Alternative wool materials producers. 246
  • Table 97. Overview of silk fibers-description, properties, application and market size.       247
  • Table 98. Alternative silk materials producers.    248
  • Table 99. Alternative leather materials producers.            249
  • Table 100. Next-gen fur producers.          251
  • Table 101. Alternative down materials producers.             251
  • Table 102. Applications of natural fiber composites.         252
  • Table 103. Typical properties of short natural fiber-thermoplastic composites.     254
  • Table 104. Properties of non-woven natural fiber mat composites.            255
  • Table 105. Properties of aligned natural fiber composites.             256
  • Table 106. Properties of natural fiber-bio-based polymer compounds.     256
  • Table 107. Properties of natural fiber-bio-based polymer non-woven mats.           257
  • Table 108. Natural fibers in the aerospace sector-market drivers, applications and challenges for NF use. 258
  • Table 109. Natural fiber-reinforced polymer composite in the automotive market.             260
  • Table 110. Natural fibers in the aerospace sector- market drivers, applications and challenges for NF use. 261
  • Table 111. Applications of natural fibers in the automotive industry.         263
  • Table 112. Natural fibers in the building/construction sector- market drivers, applications and challenges for NF use.                264
  • Table 113. Applications of natural fibers in the building/construction sector.         264
  • Table 114. Natural fibers in the sports and leisure sector-market drivers, applications and challenges for NF use.  265
  • Table 115. Natural fibers in the textiles sector- market drivers, applications and challenges for NF use.     266
  • Table 116. Natural fibers in the packaging sector-market drivers, applications and challenges for NF use. 269
  • Table 117. Technical lignin types and applications.             277
  • Table 118. Classification of technical lignins.         279
  • Table 119. Lignin content of selected biomass.   280
  • Table 120. Properties of lignins and their applications.     281
  • Table 121. Example markets and applications for lignin.  283
  • Table 122. Processes for lignin production.           285
  • Table 123. Biorefinery feedstocks.           291
  • Table 124. Comparison of pulping and biorefinery lignins.              291
  • Table 125. Commercial and pre-commercial biorefinery lignin production facilities and  processes              292
  • Table 126. Market drivers and trends for lignin.  296
  • Table 127. Production capacities of technical lignin producers.    297
  • Table 128. Production capacities of biorefinery lignin producers. 298
  • Table 129. Estimated consumption of lignin, 2019-2033 (000 MT).             298
  • Table 130. Prices of benzene, toluene, xylene and their derivatives.          301
  • Table 131. Application of lignin in plastics and polymers. 302
  • Table 132. Lignin-derived anodes in lithium batteries.     309
  • Table 133. Application of lignin in binders, emulsifiers and dispersants.   311
  • Table 134. Lactips plastic pellets.              525
  • Table 135. Oji Holdings CNF products.     597
  • Table 136. Comparison of biofuel costs (USD/liter) 2022, by type.              735
  • Table 137. Categories and examples of solid biofuel.        736
  • Table 138. Comparison of biofuels and e-fuels to fossil and electricity.      738
  • Table 139. Classification of biomass feedstock.   739
  • Table 140. Biorefinery feedstocks.           740
  • Table 141. Feedstock conversion pathways.         740
  • Table 142. First-Generation Feedstocks. 741
  • Table 143.  Lignocellulosic ethanol plants and capacities.                743
  • Table 144. Comparison of pulping and biorefinery lignins.              744
  • Table 145. Commercial and pre-commercial biorefinery lignin production facilities and  processes              745
  • Table 146. Operating and planned lignocellulosic biorefineries and industrial flue gas-to-ethanol. 747
  • Table 147. Properties of microalgae and macroalgae.       749
  • Table 148. Yield of algae and other biodiesel crops.           750
  • Table 149. Advantages and disadvantages of biofuels, by generation.       751
  • Table 150. Biodiesel by generation.         755
  • Table 151. Biodiesel production techniques.        757
  • Table 152. Summary of pyrolysis technique under different operating conditions.              757
  • Table 153. Biomass materials and their bio-oil yield.         759
  • Table 154. Biofuel production cost from the biomass pyrolysis process.   759
  • Table 155. Properties of vegetable oils in comparison to diesel.   761
  • Table 156. Main producers of HVO and capacities.             762
  • Table 157. Example commercial Development of BtL processes. 763
  • Table 158. Pilot or demo projects for biomass to liquid (BtL) processes.   764
  • Table 159. Global biodiesel consumption, 2010-2033 (M litres/year).       768
  • Table 160. Global renewable diesel consumption, to 2033 (M litres/year).              771
  • Table 161. Advantages and disadvantages of biojet fuel  772
  • Table 162. Production pathways for bio-jet fuel. 774
  • Table 163. Current and announced biojet fuel facilities and capacities.     776
  • Table 164. Global bio-jet fuel consumption to 2033 (Million litres/year). 777
  • Table 165. Biogas feedstocks.     782
  • Table 166. Bio-based naphtha markets and applications. 784
  • Table 167. Bio-naphtha market value chain.         784
  • Table 168. Bio-based Naphtha production capacities, by producer.            785
  • Table 169. Comparison of biogas, biomethane and natural gas.   790
  • Table 170.  Processes in bioethanol production. 797
  • Table 171. Microorganisms used in CBP for ethanol production from biomass lignocellulosic.         798
  • Table 172. Ethanol consumption 2010-2033 (million litres).           799
  • Table 173. Applications of e-fuels, by type.           808
  • Table 174. Overview of e-fuels. 809
  • Table 175. Benefits of e-fuels.    809
  • Table 176. Main characteristics of different electrolyzer technologies.     814
  • Table 177. Market challenges for e-fuels.              819
  • Table 178. E-fuels companies.    820
  • Table 179. Green ammonia projects (current and planned).          826
  • Table 180. Blue ammonia projects.          828
  • Table 181. Ammonia fuel cell technologies.          829
  • Table 182. Market overview of green ammonia in marine fuel.    830
  • Table 183. Summary of marine alternative fuels. 831
  • Table 184. Estimated costs for different types of ammonia.           833
  • Table 185. Main players in green ammonia.          834
  • Table 186. Market overview for CO2 derived fuels.           837
  • Table 187. Point source examples.           840
  • Table 188. Advantages and disadvantages of DAC.             843
  • Table 189. Companies developing airflow equipment integration with DAC.           850
  • Table 190. Companies developing Passive Direct Air Capture (PDAC) technologies.             850
  • Table 191. Companies developing regeneration methods for DAC technologies.  851
  • Table 192. DAC companies and technologies.      852
  • Table 193. DAC technology developers and production.  854
  • Table 194. DAC projects in development.              859
  • Table 195. Markets for DAC.        860
  • Table 196. Costs summary for DAC.          861
  • Table 197. Cost estimates of DAC.             864
  • Table 198. Challenges for DAC technology.           866
  • Table 199. DAC companies and technologies.      867
  • Table 200. Microalgae products and prices.          869
  • Table 201. Main Solar-Driven CO2 Conversion Approaches.          870
  • Table 202. Companies in CO2-derived fuel products.        871
  • Table 203. Granbio Nanocellulose Processes.      926
  • Table 204. Types of alkyd resins and properties. 1001
  • Table 205. Market summary for biobased alkyd coatings-raw materials, advantages, disadvantages, applications and producers.          1002
  • Table 206. Biobased alkyd coating products.        1003
  • Table 207. Types of polyols.         1004
  • Table 208. Polyol producers.       1005
  • Table 209. Biobased polyurethane coating products.        1006
  • Table 210. Market summary for biobased epoxy resins.  1008
  • Table 211. Biobased polyurethane coating products.        1009
  • Table 212. Biobased acrylate resin products.        1011
  • Table 213. Polylactic acid (PLA) market analysis. 1012
  • Table 214. PLA producers and production capacities.        1013
  • Table 215. Polyhydroxyalkanoates (PHA) market analysis.              1016
  • Table 216.Types of PHAs and properties.               1018
  • Table 217. Polyhydroxyalkanoates (PHA) producers.        1020
  • Table 218. Commercially available PHAs.               1021
  • Table 219. Properties of micro/nanocellulose, by type.    1023
  • Table 220. Types of nanocellulose.           1026
  • Table 221: MFC production capacities (by type, wet or dry) and production process, by producer, metric tonnes. 1028
  • Table 222. Market overview for cellulose nanofibers in paints and coatings.           1029
  • Table 223. Companies developing cellulose nanofibers products in paints and coatings.   1031
  • Table 224. CNC properties.          1033
  • Table 225: Cellulose nanocrystal capacities (by type, wet or dry) and production process, by producer, metric tonnes.                1034
  • Table 226. Edible coatings market summary.       1038
  • Table 227. Types of protein based-biomaterials, applications and companies.       1040
  • Table 228. Overview of alginate-description, properties, application and market size.        1041
  • Table 229. Global market revenues for biobased paints and coatings, 2018-2033 (billions USD).    1043
  • Table 230. Market revenues for biobased paints and coatings, 2018-2033(billions USD), conservative estimate.    1044
  • Table 231. Market revenues for biobased paints and coatings, 2018-2033 (billions USD), high estimate.    1046
  • Table 232. Oji Holdings CNF products.     1133
  •  

List of Figures

  • Figure 1. Bio-based chemicals and feedstocks production capacities, 2018-2033.  61
  • Figure 2. Overview of Toray process. Overview of process             61
  • Figure 3. Production capacities for 11-Aminoundecanoic acid (11-AA)      63
  • Figure 4. 1,4-Butanediol (BDO) production capacities, 2018-2033 (tonnes).            64
  • Figure 5. Dodecanedioic acid (DDDA) production capacities, 2018-2033 (tonnes). 65
  • Figure 6. Epichlorohydrin production capacities, 2018-2033 (tonnes).      67
  • Figure 7. Ethylene production capacities, 2018-2033 (tonnes).     68
  • Figure 8. Potential industrial uses of 3-hydroxypropanoic acid.     73
  • Figure 9. L-lactic acid (L-LA) production capacities, 2018-2033 (tonnes).  76
  • Figure 10. Lactide production capacities, 2018-2033 (tonnes).     78
  • Figure 11. Bio-MEG production capacities, 2018-2033.      80
  • Figure 12. Bio-MPG production capacities, 2018-2033 (tonnes).  81
  • Figure 13. Biobased naphtha production capacities, 2018-2033 (tonnes). 84
  • Figure 14. 1,3-Propanediol (1,3-PDO) production capacities, 2018-2033 (tonnes). 87
  • Figure 15. Sebacic acid production capacities, 2018-2033 (tonnes).           88
  • Figure 16.  Coca-Cola PlantBottle®.           92
  • Figure 17. Interrelationship between conventional, bio-based and biodegradable plastics.              93
  • Figure 18. Bioplastics regional production capacities, 1,000 tons, 2019-2033.         99
  • Figure 19. Bio-based Polyethylene (Bio-PE), 1,000 tons, 2019-2033.            100
  • Figure 20. Bio-based Polyethylene terephthalate (Bio-PET) production capacities, 1,000 tons, 2019-2033   102
  • Figure 21. Bio-based polyamides (Bio-PA) production capacities, 1,000 tons, 2019-2033.   103
  • Figure 22. Bio-based Polypropylene (Bio-PP) production capacities, 1,000 tons, 2019-2033.             104
  • Figure 23. Bio-based Polytrimethylene terephthalate (Bio-PTT) production capacities, 1,000 tons, 2019-2033.         105
  • Figure 24. Bio-based Poly(butylene adipate-co-terephthalate) (PBAT) production capacities, 1,000 tons, 2019-2033.                106
  • Figure 25. Bio-based Polybutylene succinate (PBS) production capacities, 1,000 tons, 2019-2033.  107
  • Figure 26. Bio-based Polylactic acid (PLA) production capacities, 1,000 tons, 2019-2033.    108
  • Figure 27. PHA production capacities, 1,000 tons, 2019-2033.        109
  • Figure 28. Starch blends production capacities, 1,000 tons, 2019-2033.     110
  • Figure 29. Polylactic acid (Bio-PLA) production capacities 2019-2033 (1,000 tons).              116
  • Figure 30. Polyethylene terephthalate (Bio-PET) production capacities 2019-2033 (1,000 tons)     118
  • Figure 31. Polytrimethylene terephthalate (PTT) production capacities 2019-2033 (1,000 tons).   120
  • Figure 32. Production capacities of Polyethylene furanoate (PEF) to 2025.               123
  • Figure 33. Polyethylene furanoate (Bio-PEF) production capacities 2019-2033 (1,000 tons).            124
  • Figure 34. Polyamides (Bio-PA) production capacities 2019-2033 (1,000 tons).      127
  • Figure 35. Poly(butylene adipate-co-terephthalate) (Bio-PBAT) production capacities 2019-2033 (1,000 tons).       130
  • Figure 36. Polybutylene succinate (PBS) production capacities 2019-2033 (1,000 tons).    132
  • Figure 37. Polyethylene (Bio-PE) production capacities 2019-2033 (1,000 tons).   134
  • Figure 38. Polypropylene (Bio-PP) production capacities 2019-2033 (1,000 tons). 136
  • Figure 39. PHA family.    140
  • Figure 40. PHA production capacities 2019-2033 (1,000 tons).     155
  • Figure 41. TEM image of cellulose nanocrystals. 158
  • Figure 42. CNC preparation.        158
  • Figure 43. Extracting CNC from trees.      159
  • Figure 44. CNC slurry.     162
  • Figure 45. CNF gel.           165
  • Figure 46. Bacterial nanocellulose shapes              171
  • Figure 47. BLOOM masterbatch from Algix.           177
  • Figure 48. Typical structure of mycelium-based foam.     179
  • Figure 49. Commercial mycelium composite construction materials.          180
  • Figure 50. Global production capacities of biobased and sustainable plastics 2020.              182
  • Figure 51. Global production capacities of biobased and sustainable plastics 2025.              183
  • Figure 52. Global production capacities for biobased and sustainable plastics by end user market 2019-2033, 1,000 tons.      187
  • Figure 53. PHA bioplastics products.        189
  • Figure 54. The global market for biobased and biodegradable plastics for flexible packaging 2019–2033 (‘000 tonnes).                192
  • Figure 55. Bioplastics for rigid packaging, 2019–2033 (‘000 tonnes).          194
  • Figure 56. Global production capacities for biobased and biodegradable plastics in consumer products 2019-2033, in 1,000 tons.         195
  • Figure 57. Global production capacities for biobased and biodegradable plastics in automotive 2019-2033, in 1,000 tons.      196
  • Figure 58. Global production capacities for biobased and biodegradable plastics in building and construction 2019-2033, in 1,000 tons.        197
  • Figure 59. AlgiKicks sneaker, made with the Algiknit biopolymer gel.         199
  • Figure 60. Reebok's [REE]GROW running shoes. 199
  • Figure 61. Camper Runner K21.  201
  • Figure 62. Global production capacities for biobased and biodegradable plastics in textiles 2019-2033, in 1,000 tons.                201
  • Figure 63. Global production capacities for biobased and biodegradable plastics in electronics 2019-2033, in 1,000 tons.      203
  • Figure 64. Biodegradable mulch films.     203
  • Figure 65. Global production capacities for biobased and biodegradable plastics in agriculture 2019-2033, in 1,000 tons.      204
  • Figure 66. Types of natural fibers.             208
  • Figure 67. Absolut natural based fiber bottle cap.              211
  • Figure 68. Adidas algae-ink tees.               211
  • Figure 69. Carlsberg natural fiber beer bottle.     211
  • Figure 70. Miratex watch bands. 211
  • Figure 71. Adidas Made with Nature Ultraboost 22.           211
  • Figure 72. PUMA RE:SUEDE sneaker        212
  • Figure 73. Cotton production volume 2018-2033 (Million MT).     217
  • Figure 74. Kapok production volume 2018-2033 (MT).     218
  • Figure 75.  Luffa cylindrica fiber. 219
  • Figure 76. Jute production volume 2018-2033 (Million MT).          221
  • Figure 77. Hemp fiber production volume 2018-2033 ( MT).          223
  • Figure 78. Flax fiber production volume 2018-2033 (MT).               224
  • Figure 79. Ramie fiber production volume 2018-2033 (MT).          226
  • Figure 80. Kenaf fiber production volume 2018-2033 (MT).           227
  • Figure 81. Sisal fiber production volume 2018-2033 (MT).              229
  • Figure 82. Abaca fiber production volume 2018-2033 (MT).          231
  • Figure 83. Coir fiber production volume 2018-2033 (MILLION MT).            232
  • Figure 84. Banana fiber production volume 2018-2033 (MT).        233
  • Figure 85. Pineapple fiber.           234
  • Figure 86. A bag made with pineapple biomaterial from the H&M Conscious Collection 2019.         235
  • Figure 87. Bamboo fiber production volume 2018-2033 (MILLION MT).    239
  • Figure 88. Typical structure of mycelium-based foam.     240
  • Figure 89. Commercial mycelium composite construction materials.          241
  • Figure 90. Frayme Mylo™️.            241
  • Figure 91. BLOOM masterbatch from Algix.           245
  • Figure 92. Conceptual landscape of next-gen leather materials.   249
  • Figure 93. Hemp fibers combined with PP in car door panel.         258
  • Figure 94. Car door produced from Hemp fiber.  259
  • Figure 95. Mercedes-Benz components containing natural fibers.               260
  • Figure 96. AlgiKicks sneaker, made with the Algiknit biopolymer gel.         267
  • Figure 97. Coir mats for erosion control. 268
  • Figure 98. Global fiber production in 2021, by fiber type, million MT and %.           271
  • Figure 99. Global fiber production (million MT) to 2020-2033.       272
  • Figure 100. Plant-based fiber production 2018-2033, by fiber type, MT.   273
  • Figure 101. Animal based fiber production 2018-2033, by fiber type, million MT. 274
  • Figure 102. High purity lignin.     276
  • Figure 103. Lignocellulose architecture. 276
  • Figure 104. Extraction processes to separate lignin from lignocellulosic biomass and corresponding technical lignins.                277
  • Figure 105. The lignocellulose biorefinery.            283
  • Figure 106. LignoBoost process. 288
  • Figure 107. LignoForce system for lignin recovery from black liquor.          289
  • Figure 108. Sequential liquid-lignin recovery and purification (SLPR) system.         289
  • Figure 109. A-Recovery+ chemical recovery concept.       291
  • Figure 110.  Schematic of a biorefinery for production of carriers and chemicals. 292
  • Figure 111. Organosolv lignin.     295
  • Figure 112. Hydrolytic lignin powder.      295
  • Figure 113. Estimated consumption of lignin, 2019-2033 (000 MT).            299
  • Figure 114. Schematic of WISA plywood home.   302
  • Figure 115. Lignin based activated carbon.            304
  • Figure 116. Lignin/celluose precursor.     306
  • Figure 117. Pluumo.        321
  • Figure 118. ANDRITZ Lignin Recovery process.    331
  • Figure 119. Anpoly cellulose nanofiber hydrogel.               334
  • Figure 120. MEDICELLU™.            334
  • Figure 121. Asahi Kasei CNF fabric sheet.               344
  • Figure 122. Properties of Asahi Kasei cellulose nanofiber nonwoven fabric.            345
  • Figure 123. CNF nonwoven fabric.            346
  • Figure 124. Roof frame made of natural fiber.     354
  • Figure 125. Beyond Leather Materials product.   358
  • Figure 126. BIOLO e-commerce mailer bag made from PHA.          365
  • Figure 127. Reusable and recyclable foodservice cups, lids, and straws from Joinease Hong Kong Ltd., made with plant-based NuPlastiQ BioPolymer from BioLogiQ, Inc. 366
  • Figure 128. Fiber-based screw cap.           379
  • Figure 129. formicobio™ technology.      400
  • Figure 130. nanoforest-S.             402
  • Figure 131. nanoforest-PDP.       402
  • Figure 132. nanoforest-MB.        403
  • Figure 133. sunliquid® production process.           411
  • Figure 134. CuanSave film.           415
  • Figure 135. Celish.           416
  • Figure 136. Trunk lid incorporating CNF. 418
  • Figure 137. ELLEX products.         419
  • Figure 138. CNF-reinforced PP compounds.          420
  • Figure 139. Kirekira! toilet wipes.              420
  • Figure 140. Color CNF.   421
  • Figure 141. Rheocrysta spray.     428
  • Figure 142. DKS CNF products.   428
  • Figure 143. Domsjö process.       430
  • Figure 144. Mushroom leather. 440
  • Figure 145. CNF based on citrus peel.      442
  • Figure 146. Citrus cellulose nanofiber.    442
  • Figure 147. Filler Bank CNC products.      455
  • Figure 148. Fibers on kapok tree and after processing.     458
  • Figure 149.  TMP-Bio Process.    460
  • Figure 150. Flow chart of the lignocellulose biorefinery pilot plant in Leuna.          461
  • Figure 151. Water-repellent cellulose.    463
  • Figure 152. Cellulose Nanofiber (CNF) composite with polyethylene (PE). 465
  • Figure 153. PHA production process.       467
  • Figure 154. CNF products from Furukawa Electric.              468
  • Figure 155. AVAPTM process.     478
  • Figure 156. GreenPower+™ process.       479
  • Figure 157. Cutlery samples (spoon, knife, fork) made of nano cellulose and biodegradable plastic composite materials.            482
  • Figure 158. Non-aqueous CNF dispersion "Senaf" (Photo shows 5% of plasticizer).              485
  • Figure 159. CNF gel.        491
  • Figure 160. Block nanocellulose material.              492
  • Figure 161. CNF products developed by Hokuetsu.            492
  • Figure 162. Marine leather products.      496
  • Figure 163. Inner Mettle Milk products. 500
  • Figure 164. Kami Shoji CNF products.      513
  • Figure 165. Dual Graft System.   515
  • Figure 166. Engine cover utilizing Kao CNF composite resins.        516
  • Figure 167. Acrylic resin blended with modified CNF (fluid) and its molded product (transparent film), and image obtained with AFM (CNF 10wt% blended).           517
  • Figure 168. Kel Labs yarn.             518
  • Figure 169. 0.3% aqueous dispersion of sulfated esterified CNF and dried transparent film (front side).     522
  • Figure 170. BioFlex process.        534
  • Figure 171. Nike Algae Ink graphic tee.   536
  • Figure 172. LX Process.  540
  • Figure 173. Made of Air's HexChar panels.            542
  • Figure 174. TransLeather.             543
  • Figure 175. Chitin nanofiber product.      548
  • Figure 176. Marusumi Paper cellulose nanofiber products.            550
  • Figure 177. FibriMa cellulose nanofiber powder. 551
  • Figure 178. METNIN™ Lignin refining technology.              555
  • Figure 179. IPA synthesis method.            558
  • Figure 180. MOGU-Wave panels.              562
  • Figure 181. CNF slurries.                563
  • Figure 182. Range of CNF products.          563
  • Figure 183. Reishi.           567
  • Figure 184. Compostable water pod.       586
  • Figure 185. Leather made from leaves.   587
  • Figure 186. Nike shoe with beLEAF™.      587
  • Figure 187. CNF clear sheets.      597
  • Figure 188. Oji Holdings CNF polycarbonate product.       599
  • Figure 189. Enfinity cellulosic ethanol technology process.            612
  • Figure 190. Fabric consisting of 70 per cent wool and 30 per cent Qmilk. 617
  • Figure 191. XCNF.            625
  • Figure 192: Plantrose process.    627
  • Figure 193. LOVR hemp leather. 631
  • Figure 194. CNF insulation flat plates.     633
  • Figure 195. Hansa lignin.               640
  • Figure 196. Manufacturing process for STARCEL. 644
  • Figure 197. Manufacturing process for STARCEL. 648
  • Figure 198. 3D printed cellulose shoe.    657
  • Figure 199. Lyocell process.         660
  • Figure 200. North Face Spiber Moon Parka.          665
  • Figure 201. PANGAIA LAB NXT GEN Hoodie.         666
  • Figure 202. Spider silk production.            667
  • Figure 203. Stora Enso lignin battery materials.   672
  • Figure 204. 2 wt.% CNF suspension.       673
  • Figure 205. BiNFi-s Dry Powder. 674
  • Figure 206. BiNFi-s Dry Powder and Propylene (PP) Complex Pellet.          674
  • Figure 207. Silk nanofiber (right) and cocoon of raw material.       675
  • Figure 208. Sulapac cosmetics containers.             677
  • Figure 209.  Sulzer equipment for PLA polymerization processing.              678
  • Figure 210. Teijin bioplastic film for door handles.             688
  • Figure 211. Corbion FDCA production process.    696
  • Figure 212. Comparison of weight reduction effect using CNF.     697
  • Figure 213. CNF resin products. 701
  • Figure 214. UPM biorefinery process.     703
  • Figure 215. Vegea production process.   708
  • Figure 216. The Proesa® Process.              709
  • Figure 217. Goldilocks process and applications. 711
  • Figure 218. Visolis’ Hybrid Bio-Thermocatalytic Process. 715
  • Figure 219. HefCel-coated wood (left) and untreated wood (right) after 30 seconds flame test.     718
  • Figure 220. Worn Again products.             722
  • Figure 221. Zelfo Technology GmbH CNF production process.       727
  • Figure 222. Diesel and gasoline alternatives and blends. 734
  • Figure 223.  Schematic of a biorefinery for production of carriers and chemicals. 745
  • Figure 224. Hydrolytic lignin powder.      748
  • Figure 225. Regional production of biodiesel (billion litres).           755
  • Figure 226. Flow chart for biodiesel production. 760
  • Figure 227. Global biodiesel consumption, 2010-2033 (M litres/year).      768
  • Figure 228. Global renewable diesel consumption, to 2033 (M litres/year).            771
  • Figure 229. Global bio-jet fuel consumption to 2033 (Million litres/year). 777
  • Figure 230. Total syngas market by product in MM Nm³/h of Syngas, 2021.             779
  • Figure 231. Overview of biogas utilization.             780
  • Figure 232. Biogas and biomethane pathways.   781
  • Figure 233. Bio-based naphtha production capacities, 2018-2033 (tonnes).            787
  • Figure 234. Renewable Methanol Production Processes from Different Feedstocks.           789
  • Figure 235. Production of biomethane through anaerobic digestion and upgrading.           790
  • Figure 236. Production of biomethane through biomass gasification and methanation.    791
  • Figure 237. Production of biomethane through the Power to methane process.   792
  • Figure 238. Ethanol consumption 2010-2033 (million litres).         799
  • Figure 239. Properties of petrol and biobutanol. 801
  • Figure 240. Biobutanol production route.              801
  • Figure 241. Waste plastic production pathways to (A) diesel and (B) gasoline         803
  • Figure 242. Schematic for Pyrolysis of Scrap Tires.              805
  • Figure 243. Used tires conversion process.            806
  • Figure 244. Process steps in the production of electrofuels.          807
  • Figure 245. Mapping storage technologies according to performance characteristics.        808
  • Figure 246. Production process for green hydrogen.         811
  • Figure 247. E-liquids production routes. 812
  • Figure 248. Fischer-Tropsch liquid e-fuel products.            813
  • Figure 249. Resources required for liquid e-fuel production.         813
  • Figure 250. Levelized cost and fuel-switching CO2 prices of e-fuels.           817
  • Figure 251. Cost breakdown for e-fuels. 819
  • Figure 252.  Pathways for algal biomass conversion to biofuels.   821
  • Figure 253. Algal biomass conversion process for biofuel production.        822
  • Figure 254. Classification and process technology according to carbon emission in ammonia production.  823
  • Figure 255. Green ammonia production and use.               825
  • Figure 256. Schematic of the Haber Bosch ammonia synthesis reaction.  827
  • Figure 257. Schematic of hydrogen production via steam methane reformation. 827
  • Figure 258. Estimated production cost of green ammonia.             833
  • Figure 259. Projected annual ammonia production, million tons. 834
  • Figure 260. CO2 capture and separation technology.        837
  • Figure 261. Conversion route for CO2-derived fuels and chemical intermediates. 838
  • Figure 262.  Conversion pathways for CO2-derived methane, methanol and diesel.            839
  • Figure 263. CO2 captured from air using liquid and solid sorbent DAC plants, storage, and reuse. 842
  • Figure 264. Global CO2 capture from biomass and DAC in the Net Zero Scenario. 843
  • Figure 265.  DAC technologies.   845
  • Figure 266. Schematic of Climeworks DAC system.            846
  • Figure 267. Climeworks’ first commercial direct air capture (DAC) plant, based in Hinwil, Switzerland.        847
  • Figure 268.  Flow diagram for solid sorbent DAC.                848
  • Figure 269. Direct air capture based on high temperature liquid sorbent by Carbon Engineering.  849
  • Figure 270. Global capacity of direct air capture facilities.               854
  • Figure 271. Global map of DAC and CCS plants.   860
  • Figure 272. Schematic of costs of DAC technologies.         862
  • Figure 273. DAC cost breakdown and comparison.            863
  • Figure 274. Operating costs of generic liquid and solid-based DAC systems.           865
  • Figure 275. CO2 feedstock for the production of e-methanol.      868
  • Figure 276. Schematic illustration of (a) biophotosynthetic, (b) photothermal, (c) microbial-photoelectrochemical, (d) photosynthetic and photocatalytic (PS/PC), (e) photoelectrochemical (PEC), and (f) photovoltaic plus electrochemical (PV+EC) approaches for CO2 c     870
  • Figure 277. Audi synthetic fuels. 871
  • Figure 278. ANDRITZ Lignin Recovery process.    879
  • Figure 279. FBPO process             892
  • Figure 280. Direct Air Capture Process.   896
  • Figure 281. CRI process. 898
  • Figure 282. Colyser process.        904
  • Figure 283. ECFORM electrolysis reactor schematic.          908
  • Figure 284. Dioxycle modular electrolyzer.            909
  • Figure 285. Domsjö process.       911
  • Figure 286. FuelPositive system. 920
  • Figure 287. INERATEC unit.           935
  • Figure 288. Infinitree swing method.       936
  • Figure 289. Enfinity cellulosic ethanol technology process.            962
  • Figure 290: Plantrose process.    968
  • Figure 291. O12 Reactor.              985
  • Figure 292. Sunglasses with lenses made from CO2-derived materials.     985
  • Figure 293. CO2 made car part.  986
  • Figure 294. The Velocys process.               988
  • Figure 295. The Proesa® Process.              990
  • Figure 296. Goldilocks process and applications. 993
  • Figure 297. Paints and coatings industry by market segmentation 2019-2020.        999
  • Figure 298. PHA family. 1018
  • Figure 299: Schematic diagram of partial molecular structure of cellulose chain with numbering for carbon atoms and n= number of cellobiose repeating unit. 1022
  • Figure 300: Scale of cellulose materials.  1023
  • Figure 301. Nanocellulose preparation methods and resulting materials. 1024
  • Figure 302: Relationship between different kinds of nanocelluloses.         1026
  • Figure 303. Hefcel-coated wood (left) and untreated wood (right) after 30 seconds flame test.     1033
  • Figure 304: CNC slurry.  1034
  • Figure 305. High purity lignin.     1037
  • Figure 306. BLOOM masterbatch from Algix.        1042
  • Figure 307. Global market revenues for biobased paints and coatings, 2018-2033 (billions USD).  1044
  • Figure 308. Market revenues for biobased paints and coatings, 2018-2033 (billions USD), conservative estimate. 1045
  • Figure 309. Market revenues for biobased paints and coatings, 2018-2033 (billions USD), high      1047
  • Figure 310. Dulux Better Living Air Clean Biobased.           1050
  • Figure 311: NCCTM Process.        1071
  • Figure 312: CNC produced at Tech Futures’ pilot plant; cloudy suspension (1 wt.%), gel-like (10 wt.%), flake-like crystals, and very fine powder. Product advantages include:         1072
  • Figure 313. Cellugy materials.     1073
  • Figure 314. EcoLine® 3690 (left) vs Solvent-Based Competitor Coating (right).       1077
  • Figure 315. Rheocrysta spray.     1083
  • Figure 316. DKS CNF products.   1084
  • Figure 317. Domsjö process.       1085
  • Figure 318. CNF gel.        1101
  • Figure 319. Block nanocellulose material.              1101
  • Figure 320. CNF products developed by Hokuetsu.            1102
  • Figure 321. BioFlex process.        1115
  • Figure 322. Marusumi Paper cellulose nanofiber products.            1118
  • Figure 323: Fluorene cellulose ® powder.              1137
  • Figure 324. XCNF.            1142
  • Figure 325. Spider silk production.            1151
  • Figure 326. CNF dispersion and powder from Starlite.      1153
  • Figure 327. 2 wt.% CNF suspension.       1157
  • Figure 328. BiNFi-s Dry Powder. 1157
  • Figure 329. BiNFi-s Dry Powder and Propylene (PP) Complex Pellet.          1158
  • Figure 330. Silk nanofiber (right) and cocoon of raw material.       1158
  • Figure 331. HefCel-coated wood (left) and untreated wood (right) after 30 seconds flame test.     1163
  • Figure 332. Bio-based barrier bags prepared from Tempo-CNF coated bio-HDPE film.        1164
  • Figure 333. Bioalkyd products.   1168

 

 

 

 

The Global Market for Bio-based Materials 2023-2033
The Global Market for Bio-based Materials 2023-2033
PDF download.

The Global Market for Bio-based Materials 2023-2033
The Global Market for Bio-based Materials 2023-2033
PDF and Print Edition (3 volume), including tracked delivery.

Payment methods: Visa, Mastercard, American Express, Paypal. 

To purchase by invoice (bank transfer) contact info@futuremarketsinc.com