The Global Market for Biobased and Sustainable Materials 2024-2035

0

Biobased materials, sustainable materials, biochemicals, biopolymers, natural fiber composites, sustainable construction, biobased packaging, sustainable textiles, biobased coatings, biofuels, sustainable electronics

  • Published: April 2024
  • Pages: 2,324
  • Tables: 513
  • Figures: 630
  • Companies profiled: 1,550
  • Series: Bio-economy

 

Advancements in science and technology are enabling companies to develop and design chemicals and materials for a more sustainable future. The global plastics industry is increasingly turning to biobased alternatives to supplement production and address sustainability concerns, as less than 10% of the world's plastic is currently recycled. Biobased materials are products primarily derived from living matter (biomass), either occurring naturally or synthesized. These materials can include bulk chemicals, platform chemicals, solvents, polymers, and biocomposites. Various processes are used to convert biomass components into value-added products and fuels, which can be broadly classified as biochemical or thermochemical. Additionally, biotechnological processes involving plant breeding, fermentation, and conventional enzyme isolation are employed. As new bio-based materials emerge, they have the potential to compete with conventional materials, and this publication explores the opportunities for their use in existing and novel products.

There is a growing demand from consumers and regulatory bodies for bio-based chemicals, materials, polymers, plastics, paints, coatings, and fuels that exhibit high performance, good recyclability, and biodegradable properties. This demand is driving the transition towards more sustainable manufacturing practices and products, as industries seek to reduce their environmental impact and meet evolving consumer preferences.

The Global Market for Bio-based and Sustainable Materials 2024-2035 offers a comprehensive overview of the rapidly growing field of biobased and sustainable materials. It provides in-depth insights into a wide array of innovative materials, such as biobased chemicals and intermediates sourced from plants, wastes, and microbial and mineral origins. The report presents a thorough analysis of the production processes, applications, and global market trends for essential biochemicals, including lysine, isosorbide, lactic acid, succinic acid, and many others. It also examines the current state and future prospects of the biobased chemicals market, highlighting key drivers, challenges, and opportunities.

The report offers a detailed assessment of the properties, production methods, and applications of synthetic biobased polymers, such as PLA, Bio-PET, and Bio-PP, as well as natural polymers like PHA and cellulose. The report analyzes the market dynamics, production capacities, and end-use markets for these sustainable alternatives to conventional plastics, providing valuable insights for manufacturers, suppliers, and investors.

Additionally, the report explores the potential of natural fiber plastics and composites, presenting a comprehensive analysis of various plant-based fibers, their properties, and applications across industries, including automotive, packaging, construction, and consumer goods. It evaluates the competitive landscape, market trends, and future outlook for this promising sector, enabling stakeholders to make informed decisions and capitalize on emerging opportunities.

Sustainable construction materials represent another key focus area of the report. It examines the latest trends and innovations in this field, such as hemp-based products, mycelium composites, green concrete, and advanced insulation solutions like aerogels. The report assesses the market drivers, challenges, and opportunities in the sustainable construction industry, providing valuable insights for companies looking to enhance their sustainability practices and gain a competitive edge.

The report also covers biobased packaging materials, sustainable textiles and apparel, biobased coatings and resins, biofuels, and sustainable electronics. It identifies key players, market trends, and growth potential across these industries, offering a comprehensive overview of the current market landscape and future prospects. 

The report also provides in-depth company profiles, detailed market data, and expert analysis, making it an indispensable resource for businesses, investors, and stakeholders seeking to understand and capitalize on the immense potential of biobased and sustainable materials. Companies profiled include Aduro Clean Technologies, Agilyx, Alt.Leather, Alterra, Amsty, APK AG, Aquafil, Arcus, Arda Biomaterials, Avantium, Axens, BASF Chemcycling, Beyond Leather Materials ApS, BiologiQ, Biome Bioplastics, Biophilica, Bpacks, Braskem, Bucha Bio, Byogy Renewables, Caphenia, Carbios, CJ CheilJedang, DePoly,  Dow, Earthodic, Eastman Chemical, Ecovative, Ensyn, EREMA Group GmbH, Evolved by Nature, Extracthive, ExxonMobil, FlexSea, FORGE Hydrocarbons Corporation, Fych Technologies, Garbo, Gozen Bioworks, gr3n SA, Hyundai Chemical, cytos, Ioniqa, Itero, Kelpi, Kvasir Technologies, Licella, LignoPure GmbH, MeduSoil, Modern Meadow, Mura Technology, MycoWorks, Natural Fiber Welding, Notpla, Origin Materials, Pack2Earth, PersiSKIN, Plastic Energy, Plastogaz SA, Polybion, ProjectEx,  Polystyvert, Pyrowave, Recyc'ELIT, RePEaT Co., Ltd., revalyu Resources GmbH, SA-Dynamics, Solugen, Stora Enso, Strong By Form, Sulapac, UBQ Materials, UNCAGED Innovations, Verde Bioresins, and ZymoChem.

Report contents include:

  • Biobased Chemicals and Intermediates
    • Biorefineries
    • Bio-based Feedstock and Land Use
    • Plant-based (Starch, Sugar Crops, Lignocellulosic Biomass, Plant Oils, Non-Edible Milk)
    • Waste (Food, Agricultural, Forestry, Aquaculture/Fishing, Municipal Solid, Industrial, Waste Oils)
    • Microbial & Mineral Sources (Microalgae, Macroalgae, Mineral)
    • Gaseous (Biogas, Syngas, Off Gases)
    • Company Profiles
  • Biobased Polymers and Plastics
    • Drop-in Bio-based Plastics
    • Novel Bio-based Plastics
    • Biodegradable and Compostable Plastics
    • Types and Key Market Players
    • Synthetic Biobased Polymers (PLA, PET, PTT, PEF, PA, PBAT, PBS, PE, PP)
    • Natural Biobased Polymers (PHA, Cellulose, Protein-based, Algal, Fungal, Chitosan)
    • Production by Region
    • End Use Markets (Packaging, Consumer Products, Automotive, Construction, Textiles, Electronics, Agriculture)
    • Lignin
    • Company Profiles
  • Natural Fiber Plastics and Composites
    • Introduction
    • Types of Natural Fibers (Plants, Animal, Wood-based)
    • Processing and Treatment
    • Interface and Compatibility
    • Manufacturing Processes
    • Global Market (Automotive, Packaging, Construction, Appliances, Consumer Electronics, Furniture)
    • Competitive Landscape
    • Future Outlook
    • Revenues (by End Use Market, Material Type, Plastic Type, Region)
    • Company Profiles
  • Sustainable Construction Materials
    • Market Overview
    • Types (Hemp-based, Mycelium-based, Sustainable Concrete, Natural Fiber Composites, Sustainable Insulation, Carbon Capture and Utilization, Green Steel, Aerogels)
    • Markets and Applications
    • Company Profiles
  • Biobased Packaging Materials
    • Market Overview
    • Materials (Synthetic Bio-based, Natural Bio-based)
    • Applications (Paper and Board, Food Packaging)
    • Biobased Films and Coatings
    • Carbon Capture Derived Materials
    • Global Markets (Flexible, Rigid, Coatings and Films)
    • Company Profiles
  • Sustainable Textiles and Apparel
    • Types of Bio-based Fibers (Natural, Man-made)
    • Bio-based Leather
    • Markets
    • Global Market Revenues (by Region, End Use Market)
    • Company Profiles
  • Biobased Coatings and Resins
    • Overview (Biobased Epoxy, Polyurethane, Others)
    • Types
    • Global Revenues (by Types, Market)
    • Company Profiles
  • Biofuels
    • Comparison to Fossil Fuels
    • Role in the Circular Economy
    • Market Drivers and Challenges
    • Liquid Biofuels Market
    • Global Biofuels Market (Diesel Substitutes, Gasoline Substitutes)
    • SWOT Analysis
    • Comparison of Biofuel Costs by Type
    • Types (Solid, Liquid, Gaseous, Conventional, Advanced)
    • Feedstocks (First to Fourth Generation)
    • Hydrocarbon Biofuels (Biodiesel, Renewable Diesel, Bio-aviation Fuel, Bio-naphtha)
    • Alcohol Fuels (Biomethanol, Ethanol, Biobutanol)
    • Biomass-based Gas (Biomethane, Biosyngas, Biohydrogen)
    • Chemical Recycling for Biofuels
    • Electrofuels
    • Algae-derived Biofuels
    • Green Ammonia
    • Biofuels from Carbon Capture (CO2 Capture, Direct Air Capture, Carbon Utilization)
    • Bio-oils
    • Refuse Derived Fuels
    • Company Profiles
  • Sustainable Electronics
    • Overview
    • Green Electronics Manufacturing
    • Global Market (PCB Manufacturing, Sustainable PCBs, Sustainable ICs)
    • Company Profiles
  • Biobased Adhesives and Sealants
    • Overview
    • Types
    • Global Revenues (by Types, Market)
    • Company Profiles

 

 

1             RESEARCH METHODOLOGY   104

 

2             INTRODUCTION             105

  • 2.1         Definition of Biobased and Sustainable Materials         105
  • 2.2         Importance and Benefits of Biobased and Sustainable Materials         105

 

3             BIOBASED CHEMICALS AND INTERMEDIATES 107

  • 3.1         BIOREFINERIES              107
  • 3.2         BIO-BASED FEEDSTOCK AND LAND USE          108
  • 3.3         PLANT-BASED 110
    • 3.3.1     STARCH              110
    • 3.3.1.1 Overview            111
    • 3.3.1.2 Sources              111
    • 3.3.1.3 Global production          112
    • 3.3.1.4 Lysine  112
    • 3.3.1.4.1             Source 112
    • 3.3.1.4.2             Applications     113
    • 3.3.1.4.3             Global production          113
    • 3.3.1.5 Glucose              114
    • 3.3.1.5.1             HMDA  115
    • 3.3.1.5.1.1         Overview            115
    • 3.3.1.5.1.2         Sources              116
    • 3.3.1.5.1.3         Applications     116
    • 3.3.1.5.1.4         Global production          117
    • 3.3.1.5.2             1,5-diaminopentane (DA5)        117
    • 3.3.1.5.2.1         Overview            117
    • 3.3.1.5.2.2         Sources              117
    • 3.3.1.5.2.3         Applications     118
    • 3.3.1.5.2.4         Global production          118
    • 3.3.1.5.3             Sorbitol               119
    • 3.3.1.5.3.1         Isosorbide          119
    • 3.3.1.5.3.1.1     Overview            119
    • 3.3.1.5.3.1.2     Sources              119
    • 3.3.1.5.3.1.3     Applications     120
    • 3.3.1.5.3.1.4     Global production          120
    • 3.3.1.5.4             Lactic acid        121
    • 3.3.1.5.4.1         Overview            121
    • 3.3.1.5.4.2         D-lactic acid     121
    • 3.3.1.5.4.3         L-lactic acid     121
    • 3.3.1.5.4.4         Lactide 122
    • 3.3.1.5.5             Itaconic acid    124
    • 3.3.1.5.5.1         Overview            124
    • 3.3.1.5.5.2         Sources              124
    • 3.3.1.5.5.3         Applications     124
    • 3.3.1.5.5.4         Global production          125
    • 3.3.1.5.6             3-HP     125
    • 3.3.1.5.6.1         Overview            125
    • 3.3.1.5.6.2         Sources              125
    • 3.3.1.5.6.3         Applications     126
    • 3.3.1.5.6.4         Global production          126
    • 3.3.1.5.6.5         Acrylic acid       127
    • 3.3.1.5.6.5.1     Overview            127
    • 3.3.1.5.6.5.2     Applications     127
    • 3.3.1.5.6.5.3     Global production          128
    • 3.3.1.5.6.6         1,3-Propanediol (1,3-PDO)        128
    • 3.3.1.5.6.6.1     Overview            128
    • 3.3.1.5.6.6.2     Applications     129
    • 3.3.1.5.6.6.3     Global production          129
    • 3.3.1.5.7             Succinic Acid   130
    • 3.3.1.5.7.1         Overview            130
    • 3.3.1.5.7.2         Sources              130
    • 3.3.1.5.7.3         Applications     130
    • 3.3.1.5.7.4         Global production          131
    • 3.3.1.5.7.5         1,4-Butanediol (1,4-BDO)           131
    • 3.3.1.5.7.5.1     Overview            131
    • 3.3.1.5.7.5.2     Applications     132
    • 3.3.1.5.7.5.3     Gobal production           132
    • 3.3.1.5.7.6         Tetrahydrofuran (THF)  133
    • 3.3.1.5.7.6.1     Overview            133
    • 3.3.1.5.7.6.2     Applications     133
    • 3.3.1.5.7.6.3     Global production          133
    • 3.3.1.5.8             Adipic acid        134
    • 3.3.1.5.8.1         Overview            134
    • 3.3.1.5.8.2         Applications     135
    • 3.3.1.5.8.3         Caprolactame 135
    • 3.3.1.5.8.3.1     Overview            135
    • 3.3.1.5.8.3.2     Applications     135
    • 3.3.1.5.8.3.3     Global production          136
    • 3.3.1.5.9             Isobutanol         137
    • 3.3.1.5.9.1         Overview            137
    • 3.3.1.5.9.2         Sources              137
    • 3.3.1.5.9.3         Applications     138
    • 3.3.1.5.9.4         Global production          138
    • 3.3.1.5.9.5         p-Xylene             139
    • 3.3.1.5.9.5.1     Overview            139
    • 3.3.1.5.9.5.2     Sources              139
    • 3.3.1.5.9.5.3     Applications     140
    • 3.3.1.5.9.5.4     Global production          140
    • 3.3.1.5.9.5.5     Terephthalic acid           141
    • 3.3.1.5.9.5.6     Overview            141
    • 3.3.1.5.10           1,3 Proppanediol            142
    • 3.3.1.5.10.1.1   Overview            142
    • 3.3.1.5.10.2       Sources              142
    • 3.3.1.5.10.3       Applications     143
    • 3.3.1.5.10.4       Global production          143
    • 3.3.1.5.11           Monoethylene glycol (MEG)      144
    • 3.3.1.5.11.1       Overview            144
    • 3.3.1.5.11.2       Sources              144
    • 3.3.1.5.11.3       Applications     144
    • 3.3.1.5.11.4       Global production          145
    • 3.3.1.5.12           Ethanol                145
    • 3.3.1.5.12.1       Overview            145
    • 3.3.1.5.12.2       Sources              146
    • 3.3.1.5.12.3       Applications     146
    • 3.3.1.5.12.4       Global production          147
    • 3.3.1.5.12.5       Ethylene             147
    • 3.3.1.5.12.5.1   Overview            147
    • 3.3.1.5.12.5.2   Applications     147
    • 3.3.1.5.12.5.3   Global production          148
    • 3.3.1.5.12.5.4   Propylene          148
    • 3.3.1.5.12.5.5   Vinyl chloride   150
    • 3.3.1.5.12.6       Methly methacrylate    152
    • 3.3.2     SUGAR CROPS 153
    • 3.3.2.1 Saccharose      153
    • 3.3.2.1.1             Aniline 153
    • 3.3.2.1.1.1         Overview            153
    • 3.3.2.1.1.2         Applications     154
    • 3.3.2.1.1.3         Global production          154
    • 3.3.2.1.2             Fructose             155
    • 3.3.2.1.2.1         Overview            155
    • 3.3.2.1.2.2         Applications     155
    • 3.3.2.1.2.3         Global production          155
    • 3.3.2.1.2.4         5-Hydroxymethylfurfural (5-HMF)          156
    • 3.3.2.1.2.4.1     Overview            156
    • 3.3.2.1.2.4.2     Applications     156
    • 3.3.2.1.2.4.3     Global production          157
    • 3.3.2.1.2.5         5-Chloromethylfurfural (5-CMF)             157
    • 3.3.2.1.2.5.1     Overview            157
    • 3.3.2.1.2.5.2     Applications     157
    • 3.3.2.1.2.5.3     Global production          158
    • 3.3.2.1.2.6         Levulinic Acid  158
    • 3.3.2.1.2.6.1     Overview            158
    • 3.3.2.1.2.6.2     Applications     159
    • 3.3.2.1.2.6.3     Global production          159
    • 3.3.2.1.2.7         FDME   160
    • 3.3.2.1.2.7.1     Overview            160
    • 3.3.2.1.2.7.2     Applications     160
    • 3.3.2.1.2.7.3     Global production          160
    • 3.3.2.1.2.8         2,5-FDCA           161
    • 3.3.2.1.2.8.1     Overview            161
    • 3.3.2.1.2.8.2     Applications     161
    • 3.3.2.1.2.8.3     Global production          162
    • 3.3.3     LIGNOCELLULOSIC BIOMASS 162
    • 3.3.3.1 Levoglucosenone          162
    • 3.3.3.1.1             Overview            162
    • 3.3.3.1.2             Applications     162
    • 3.3.3.1.3             Global production          163
    • 3.3.3.2 Hemicellulose 163
    • 3.3.3.2.1             Overview            163
    • 3.3.3.2.2             Biochemicals from hemicellulose        164
    • 3.3.3.2.3             Global production          165
    • 3.3.3.2.4             Furfural               165
    • 3.3.3.2.4.1         Overview            165
    • 3.3.3.2.4.2         Applications     166
    • 3.3.3.2.4.3         Global production          166
    • 3.3.3.2.4.4         Furfuyl alcohol 166
    • 3.3.3.2.4.4.1     Overview            166
    • 3.3.3.2.4.4.2     Applications     167
    • 3.3.3.2.4.4.3     Global production          167
    • 3.3.3.3 Lignin   168
    • 3.3.3.3.1             Overview            168
    • 3.3.3.3.2             Sources              168
    • 3.3.3.3.3             Applications     169
    • 3.3.3.3.3.1         Aromatic compounds  169
    • 3.3.3.3.3.1.1     Benzene, toluene and xylene   170
    • 3.3.3.3.3.1.2     Phenol and phenolic resins       170
    • 3.3.3.3.3.1.3     Vanillin 171
    • 3.3.3.3.3.2         Polymers            171
    • 3.3.3.3.4             Global production          173
    • 3.3.4     PLANT OILS      174
    • 3.3.4.1 Overview            174
    • 3.3.4.2 Glycerol              174
    • 3.3.4.2.1             Overview            174
    • 3.3.4.2.2             Applications     175
    • 3.3.4.2.3             Global production          175
    • 3.3.4.2.4             MPG     175
    • 3.3.4.2.4.1         Overview            175
    • 3.3.4.2.4.2         Applications     176
    • 3.3.4.2.4.3         Global production          177
    • 3.3.4.2.5             ECH      177
    • 3.3.4.2.5.1         Overview            177
    • 3.3.4.2.5.2         Applications     177
    • 3.3.4.2.5.3         Global production          178
    • 3.3.4.3 Fatty acids         178
    • 3.3.4.3.1             Overview            178
    • 3.3.4.3.2             Applications     178
    • 3.3.4.3.3             Global production          179
    • 3.3.4.4 Castor oil           180
    • 3.3.4.4.1             Overview            180
    • 3.3.4.4.2             Sebacic acid    180
    • 3.3.4.4.2.1         Overview            180
    • 3.3.4.4.2.2         Applications     180
    • 3.3.4.4.2.3         Global production          181
    • 3.3.4.4.3             11-Aminoundecanoic acid (11-AA)       181
    • 3.3.4.4.3.1         Overview            181
    • 3.3.4.4.3.2         Applications     182
    • 3.3.4.4.3.3         Global production          182
    • 3.3.4.5 Dodecanedioic acid (DDDA)     183
    • 3.3.4.5.1             Overview            183
    • 3.3.4.5.2             Applications     183
    • 3.3.4.5.3             Global production          184
    • 3.3.4.6 Pentamethylene diisocyanate 184
    • 3.3.4.6.1             Overview            184
    • 3.3.4.6.2             Applications     185
    • 3.3.4.6.3             Global production          185
    • 3.3.5     NON-EDIBIBLE MILK    186
    • 3.3.5.1 Casein 186
    • 3.3.5.1.1             Overview            186
    • 3.3.5.1.2             Applications     186
    • 3.3.5.1.3             Global production          187
  • 3.4         WASTE 187
    • 3.4.1     Food waste       187
    • 3.4.1.1 Overview            187
    • 3.4.1.2 Products and applications        188
    • 3.4.1.2.1             Global production          188
    • 3.4.2     Agricultural waste         189
    • 3.4.2.1 Overview            189
    • 3.4.2.2 Products and applications        189
    • 3.4.2.3 Global production          190
    • 3.4.3     Forestry waste 190
    • 3.4.3.1 Overview            190
    • 3.4.3.2 Products and applications        190
    • 3.4.3.3 Global production          191
    • 3.4.4     Aquaculture/fishing waste        191
    • 3.4.4.1 Overview            191
    • 3.4.4.2 Products and applications        191
    • 3.4.4.3 Global production          192
    • 3.4.5     Municipal solid waste  192
    • 3.4.5.1 Overview            192
    • 3.4.5.2 Products and applications        192
    • 3.4.5.3 Global production          193
    • 3.4.6     Industrial waste              193
    • 3.4.6.1 Overview            193
    • 3.4.7     Waste oils          194
    • 3.4.7.1 Overview            194
    • 3.4.7.2 Products and applications        194
    • 3.4.7.3 Global production          194
  • 3.5         MICROBIAL & MINERAL SOURCES       195
    • 3.5.1     Microalgae        195
    • 3.5.1.1 Overview            195
    • 3.5.1.2 Products and applications        195
    • 3.5.1.3 Global production          195
    • 3.5.2     Macroalgae       196
    • 3.5.2.1 Overview            196
    • 3.5.2.2 Products and applications        197
    • 3.5.2.3 Global production          197
    • 3.5.3     Mineral sources              197
    • 3.5.3.1 Overview            197
    • 3.5.3.2 Products and applications        198
  • 3.6         GASEOUS          198
    • 3.6.1     Biogas  199
    • 3.6.1.1 Overview            199
    • 3.6.1.2 Products and applications        200
    • 3.6.1.3 Global production          200
    • 3.6.2     Syngas 201
    • 3.6.2.1 Overview            201
    • 3.6.2.2 Products and applications        202
    • 3.6.2.3 Global production          202
    • 3.6.3     Off gases - fermentation CO2, CO         203
    • 3.6.3.1 Overview            203
    • 3.6.3.2 Products and applications        203
  • 3.7         COMPANY PROFILES  204 (115 company profiles)

 

4             BIOBASED POLYMERS AND PLASTICS 278

  • 4.1         Overview            278
    • 4.1.1     Drop-in bio-based plastics        278
    • 4.1.2     Novel bio-based plastics            279
  • 4.2         Biodegradable and compostable plastics         279
    • 4.2.1     Biodegradability             280
    • 4.2.2     Compostability               281
  • 4.3         Types    281
  • 4.4         Key market players        283
  • 4.5         Synthetic biobased polymers  284
    • 4.5.1     Polylactic acid (Bio-PLA)            284
    • 4.5.1.1 Market analysis               284
    • 4.5.1.2 Production        286
    • 4.5.1.3 Producers and production capacities, current and planned     286
    • 4.5.1.3.1             Lactic acid producers and production capacities         286
    • 4.5.1.3.2             PLA producers and production capacities        286
    • 4.5.1.3.3             Polylactic acid (Bio-PLA) production 2019-2035 (1,000 tonnes)             288
    • 4.5.2     Polyethylene terephthalate (Bio-PET)  288
    • 4.5.2.1 Market analysis               288
    • 4.5.2.2 Producers and production capacities 289
    • 4.5.2.3 Polyethylene terephthalate (Bio-PET) production 2019-2035 (1,000 tonnes)    290
    • 4.5.3     Polytrimethylene terephthalate (Bio-PTT)          290
    • 4.5.3.1 Market analysis               290
    • 4.5.3.2 Producers and production capacities 291
    • 4.5.3.3 Polytrimethylene terephthalate (PTT) production 2019-2035 (1,000 tonnes)    291
    • 4.5.4     Polyethylene furanoate (Bio-PEF)          292
    • 4.5.4.1 Market analysis               292
    • 4.5.4.2 Comparative properties to PET                293
    • 4.5.4.3 Producers and production capacities 293
    • 4.5.4.3.1             FDCA and PEF producers and production capacities  293
    • 4.5.4.3.2             Polyethylene furanoate (Bio-PEF) production 2019-2035 (1,000 tonnes).          294
    • 4.5.5     Polyamides (Bio-PA)     295
    • 4.5.5.1 Market analysis               295
    • 4.5.5.2 Producers and production capacities 296
    • 4.5.5.3 Polyamides (Bio-PA) production 2019-2035 (1,000 tonnes)      296
    • 4.5.6     Poly(butylene adipate-co-terephthalate) (Bio-PBAT)   297
    • 4.5.6.1 Market analysis               297
    • 4.5.6.2 Producers and production capacities 297
    • 4.5.6.3 Poly(butylene adipate-co-terephthalate) (Bio-PBAT) production 2019-2035 (1,000 tonnes)     298
    • 4.5.7     Polybutylene succinate (PBS) and copolymers               299
    • 4.5.7.1 Market analysis               299
    • 4.5.7.2 Producers and production capacities 300
    • 4.5.7.3 Polybutylene succinate (PBS) production 2019-2035 (1,000 tonnes)   300
    • 4.5.8     Polyethylene (Bio-PE)  301
    • 4.5.8.1 Market analysis               301
    • 4.5.8.2 Producers and production capacities 301
    • 4.5.8.3 Polyethylene (Bio-PE) production 2019-2035 (1,000 tonnes).  302
    • 4.5.9     Polypropylene (Bio-PP)               302
    • 4.5.9.1 Market analysis               302
    • 4.5.9.2 Producers and production capacities 303
    • 4.5.9.3 Polypropylene (Bio-PP) production 2019-2035 (1,000 tonnes) 303
  • 4.6         Natural biobased polymers       304
    • 4.6.1     Polyhydroxyalkanoates (PHA) 304
    • 4.6.1.1 Technology description               304
    • 4.6.1.2 Types    305
    • 4.6.1.2.1             PHB      307
    • 4.6.1.2.2             PHBV   308
    • 4.6.1.3 Synthesis and production processes   309
    • 4.6.1.4 Market analysis               311
    • 4.6.1.5 Commercially available PHAs 312
    • 4.6.1.6 Markets for PHAs           313
    • 4.6.1.6.1             Packaging          314
    • 4.6.1.6.2             Cosmetics         316
    • 4.6.1.6.2.1         PHA microspheres        316
    • 4.6.1.6.3             Medical               316
    • 4.6.1.6.3.1         Tissue engineering        316
    • 4.6.1.6.3.2         Drug delivery    316
    • 4.6.1.6.4             Agriculture        316
    • 4.6.1.6.4.1         Mulch film         316
    • 4.6.1.6.4.2         Grow bags          317
    • 4.6.1.7 Producers and production capacities 317
    • 4.6.2     Cellulose            318
    • 4.6.2.1 Microfibrillated cellulose (MFC)             318
    • 4.6.2.1.1             Market analysis               318
    • 4.6.2.1.2             Producers and production capacities 319
    • 4.6.2.2 Nanocellulose 320
    • 4.6.2.2.1             Cellulose nanocrystals               320
    • 4.6.2.2.1.1         Synthesis           320
    • 4.6.2.2.1.2         Properties          322
    • 4.6.2.2.1.3         Production        323
    • 4.6.2.2.1.4         Applications     323
    • 4.6.2.2.1.5         Market analysis               324
    • 4.6.2.2.1.6         Producers and production capacities 325
    • 4.6.2.2.2             Cellulose nanofibers    326
    • 4.6.2.2.2.1         Applications     326
    • 4.6.2.2.2.2         Market analysis               327
    • 4.6.2.2.2.3         Producers and production capacities 329
    • 4.6.2.2.3             Bacterial Nanocellulose (BNC)               329
    • 4.6.2.2.3.1         Production        330
    • 4.6.2.2.3.2         Applications     332
    • 4.6.3     Protein-based bioplastics         333
    • 4.6.3.1 Types, applications and producers       333
    • 4.6.4     Algal and fungal              334
    • 4.6.4.1 Algal     334
    • 4.6.4.1.1             Advantages       335
    • 4.6.4.1.2             Production        336
    • 4.6.4.1.3             Producers          336
    • 4.6.4.2 Mycelium           337
    • 4.6.4.2.1             Properties          337
    • 4.6.4.2.2             Applications     338
    • 4.6.4.2.3             Commercialization       339
    • 4.6.5     Chitosan             340
    • 4.6.5.1 Technology description               340
  • 4.7         Production by region    341
    • 4.7.1     North America 342
    • 4.7.2     Europe 342
    • 4.7.3     Asia-Pacific      343
    • 4.7.3.1 China   343
    • 4.7.3.2 Japan    343
    • 4.7.3.3 Thailand              343
    • 4.7.3.4 Indonesia           343
    • 4.7.4     Latin America  344
  • 4.8         End use markets             345
    • 4.8.1     Packaging          346
    • 4.8.1.1 Processes for bioplastics in packaging               346
    • 4.8.1.2 Applications     347
    • 4.8.1.3 Flexible packaging         347
    • 4.8.1.3.1             Production volumes 2019-2035              350
    • 4.8.1.4 Rigid packaging               350
    • 4.8.1.4.1             Production volumes 2019-2035              352
    • 4.8.2     Consumer products      352
    • 4.8.2.1 Applications     352
    • 4.8.2.2 Production volumes 2019-2035              353
    • 4.8.3     Automotive       353
    • 4.8.3.1 Applications     353
    • 4.8.3.2 Production volumes 2019-2035              355
    • 4.8.4     Construction    355
    • 4.8.4.1 Applications     355
    • 4.8.4.2 Production volumes 2019-2035              356
    • 4.8.5     Textiles               356
    • 4.8.5.1 Apparel               356
    • 4.8.5.2 Footwear            357
    • 4.8.5.3 Medical textiles              358
    • 4.8.5.4 Production volumes 2019-2035              359
    • 4.8.6     Electronics        359
    • 4.8.6.1 Applications     359
    • 4.8.6.2 Production volumes 2019-2035              360
    • 4.8.7     Agriculture and horticulture     360
    • 4.8.7.1 Production volumes 2019-2035              361
  • 4.9         Lignin   362
    • 4.9.1     Introduction      362
    • 4.9.1.1 What is lignin? 362
    • 4.9.1.1.1             Lignin structure               362
    • 4.9.1.2 Types of lignin  363
    • 4.9.1.2.1             Sulfur containing lignin               366
    • 4.9.1.2.2             Sulfur-free lignin from biorefinery process        366
    • 4.9.1.3 Properties          366
    • 4.9.1.4 The lignocellulose biorefinery 368
    • 4.9.1.5 Markets and applications          369
    • 4.9.1.6 Challenges for using lignin        370
    • 4.9.2     Lignin production processes    371
    • 4.9.2.1 Lignosulphonates          372
    • 4.9.2.2 Kraft Lignin        373
    • 4.9.2.2.1             LignoBoost process      373
    • 4.9.2.2.2             LignoForce method       374
    • 4.9.2.2.3             Sequential Liquid Lignin Recovery and Purification      374
    • 4.9.2.2.4             A-Recovery+     375
    • 4.9.2.3 Soda lignin         376
    • 4.9.2.4 Biorefinery lignin            376
    • 4.9.2.4.1             Commercial and pre-commercial biorefinery lignin production facilities and  processes         378
    • 4.9.2.5 Organosolv lignins         380
    • 4.9.2.6 Hydrolytic lignin             380
    • 4.9.3     Markets for lignin            381
    • 4.9.3.1 Market drivers and trends for lignin       381
    • 4.9.3.2 Production capacities 382
    • 4.9.3.2.1             Technical lignin availability (dry ton/y) 382
    • 4.9.3.2.2             Biomass conversion (Biorefinery)          383
    • 4.9.3.3 Estimated consumption of lignin            383
    • 4.9.3.4 Prices  385
    • 4.9.3.5 Heat and power energy               385
    • 4.9.3.6 Pyrolysis and syngas     385
    • 4.9.3.7 Aromatic compounds  385
    • 4.9.3.7.1             Benzene, toluene and xylene   385
    • 4.9.3.7.2             Phenol and phenolic resins       386
    • 4.9.3.7.3             Vanillin 386
    • 4.9.3.8 Plastics and polymers 386
  • 4.10       COMPANY PROFILES  388 (517 company profiles)

 

5             NATURAL FIBER PLASTICS AND COMPOSITES               757

  • 5.1         Introduction      757
    • 5.1.1     What are natural fiber materials?          757
    • 5.1.2     Benefits of natural fibers over synthetic             760
    • 5.1.3     Markets and applications for natural fibers       760
    • 5.1.4     Commercially available natural fiber products               762
    • 5.1.5     Market drivers for natural fibers              765
    • 5.1.6     Market challenges         766
    • 5.1.7     Wood flour as a plastic filler     767
  • 5.2         Types of natural fibers in plastic composites   767
    • 5.2.1     Plants  769
    • 5.2.1.1 Seed fibers        769
    • 5.2.1.1.1             Kapok   769
    • 5.2.1.1.2             Luffa     770
    • 5.2.1.2 Bast fibers         771
    • 5.2.1.2.1             Jute       771
    • 5.2.1.2.2             Hemp   772
    • 5.2.1.2.3             Flax       774
    • 5.2.1.2.4             Ramie  775
    • 5.2.1.2.5             Kenaf   776
    • 5.2.1.3 Leaf fibers         776
    • 5.2.1.3.1             Sisal     777
    • 5.2.1.3.2             Abaca  777
    • 5.2.1.4 Fruit fibers         778
    • 5.2.1.4.1             Coir       778
    • 5.2.1.4.2             Banana                779
    • 5.2.1.4.3             Pineapple          780
    • 5.2.1.5 Stalk fibers from agricultural residues 781
    • 5.2.1.5.1             Rice fiber            781
    • 5.2.1.5.2             Corn      782
    • 5.2.1.6 Cane, grasses and reed              783
    • 5.2.1.6.1             Switchgrass      783
    • 5.2.1.6.2             Sugarcane (agricultural residues)          784
    • 5.2.1.6.3             Bamboo              785
    • 5.2.1.6.4             Fresh grass (green biorefinery) 786
    • 5.2.1.7 Modified natural polymers        786
    • 5.2.1.7.1             Mycelium           786
    • 5.2.1.7.2             Chitosan             789
    • 5.2.1.7.3             Alginate              790
    • 5.2.2     Animal (fibrous protein)              791
    • 5.2.2.1 Silk fiber             791
    • 5.2.3     Wood-based natural fibers       792
    • 5.2.3.1 Cellulose fibers               792
    • 5.2.3.1.1             Market overview             792
    • 5.2.3.1.2             Producers          793
    • 5.2.3.2 Microfibrillated cellulose (MFC)             793
    • 5.2.3.2.1             Market overview             793
    • 5.2.3.2.2             Producers          795
    • 5.2.3.3 Cellulose nanocrystals               795
    • 5.2.3.3.1             Market overview             795
    • 5.2.3.3.2             Producers          797
    • 5.2.3.4 Cellulose nanofibers    797
    • 5.2.3.4.1             Market overview             797
    • 5.2.3.4.2             Producers          799
  • 5.3         Processing and Treatment of Natural Fibers    800
    • 5.4         Interface and Compatibility of Natural Fibers with Plastic Matrices     800
    • 5.4.1     Adhesion and Bonding 801
    • 5.4.2     Moisture Absorption and Dimensional Stability             801
    • 5.4.3     Thermal Expansion and Compatibility 801
    • 5.4.4     Dispersion and Distribution      801
    • 5.4.5     Matrix Selection             801
    • 5.4.6     Fiber Content and Alignment   801
    • 5.4.7     Manufacturing Techniques       801
  • 5.5         Manufacturing processes          802
    • 5.5.1     Injection molding           804
    • 5.5.2     Compression moulding              804
    • 5.5.3     Extrusion            805
    • 5.5.4     Thermoforming               806
    • 5.5.5     Thermoplastic pultrusion           806
    • 5.5.6     Additive manufacturing (3D printing)    807
  • 5.6         Global market for natural fibers              808
    • 5.6.1     Automotive       810
    • 5.6.1.1 Applications     810
    • 5.6.1.2 Commercial production             811
    • 5.6.1.3 SWOT analysis 813
    • 5.6.2     Packaging          814
    • 5.6.2.1 Applications     814
    • 5.6.2.2 SWOT analysis 817
    • 5.6.3     Construction    818
    • 5.6.3.1 Applications     818
    • 5.6.3.2 SWOT analysis 819
    • 5.6.4     Appliances        819
    • 5.6.4.1 Applications     819
    • 5.6.4.2 SWOT analysis 821
    • 5.6.5     Consumer electronics 822
    • 5.6.5.1 Applications     822
    • 5.6.5.2 SWOT analysis 824
    • 5.6.6     Furniture            826
    • 5.6.6.1 Applications     826
    • 5.6.6.2 SWOT analysis 826
  • 5.7         Competitive landscape              827
  • 5.8         Future outlook 827
  • 5.9         Revenues           828
    • 5.9.1     By end use market         828
    • 5.9.2     By Material Type             831
    • 5.9.3     By Plastic Type 832
    • 5.9.4     By region            834
  • 5.10       Company profiles          836 (67 company profiles)

 

6             SUSTAINABLE CONSTRUCTION MATERIALS   907

  • 6.1         Market overview             907
    • 6.1.1     Benefits of Sustainable Construction  907
    • 6.1.2     Global Trends and Drivers         907
  • 6.2         Global revenues             908
    • 6.2.1     By materials type           908
    • 6.2.2     By market          911
  • 6.3         Types of sustainable construction materials   915
    • 6.3.1     Established bio-based construction materials               915
    • 6.3.2     Hemp-based Materials               917
    • 6.3.2.1 Hemp Concrete (Hempcrete)  917
    • 6.3.2.2 Hemp Fiberboard           917
    • 6.3.3     Hemp Insulation             918
    • 6.3.4     Mycelium-based Materials       918
    • 6.3.4.1 Insulation           920
    • 6.3.4.2 Structural Elements     920
    • 6.3.4.3 Acoustic Panels              920
    • 6.3.4.4 Decorative Elements   920
    • 6.3.5     Sustainable Concrete and Cement Alternatives            920
    • 6.3.5.1 Geopolymer Concrete 921
    • 6.3.5.2 Recycled Aggregate Concrete 921
    • 6.3.5.3 Lime-Based Materials 921
    • 6.3.5.4 Self-healing concrete  922
    • 6.3.5.4.1             Bioconcrete      923
    • 6.3.5.4.2             Fiber concrete 925
    • 6.3.5.5 Microalgae biocement 925
    • 6.3.5.6 Carbon-negative concrete        927
    • 6.3.5.7 Biomineral binders        927
    • 6.3.6     Natural Fiber Composites         928
    • 6.3.6.1 Types of Natural Fibers               928
    • 6.3.6.2 Properties          928
    • 6.3.6.3 Applications in Construction    929
    • 6.3.7     Cellulose nanofibers    930
    • 6.3.7.1 Sandwich composites 930
    • 6.3.7.2 Cement additives          930
    • 6.3.7.3 Pump primers  930
    • 6.3.7.4 Insulation materials     931
    • 6.3.7.5 Coatings and paints      931
    • 6.3.7.6 3D printing materials   931
    • 6.3.8     Sustainable Insulation Materials           932
    • 6.3.8.1 Types of sustainable insulation materials         932
    • 6.3.8.2 Aerogel Insulation          933
    • 6.3.8.2.1             Silica aerogels 935
    • 6.3.8.2.1.1         Properties          936
    • 6.3.8.2.1.2         Thermal conductivity   937
    • 6.3.8.2.1.3         Mechanical       937
    • 6.3.8.2.1.4         Silica aerogel precursors           937
    • 6.3.8.2.1.5         Products             937
    • 6.3.8.2.1.5.1     Monoliths           937
    • 6.3.8.2.1.5.2     Powder                938
    • 6.3.8.2.1.5.3     Granules            938
    • 6.3.8.2.1.5.4     Blankets             940
    • 6.3.8.2.1.5.5     Aerogel boards 941
    • 6.3.8.2.1.5.6     Aerogel renders               941
    • 6.3.8.2.1.6         3D printing of aerogels 942
    • 6.3.8.2.1.7         Silica aerogel from sustainable feedstocks      942
    • 6.3.8.2.1.8         Silica composite aerogels         943
    • 6.3.8.2.1.8.1     Organic crosslinkers    943
    • 6.3.8.2.1.9         Cost of silica aerogels 943
    • 6.3.8.2.1.10       Main players     944
    • 6.3.8.2.2             Aerogel-like foam materials     945
    • 6.3.8.2.2.1         Properties          945
    • 6.3.8.2.2.2         Applications     945
    • 6.3.8.2.3             Metal oxide aerogels    946
    • 6.3.8.2.4             Organic aerogels            946
    • 6.3.8.2.4.1         Polymer aerogels           947
    • 6.3.8.2.5             Biobased and sustainable aerogels (bio-aerogels)        948
    • 6.3.8.2.5.1         Cellulose aerogels         950
    • 6.3.8.2.5.1.1     Cellulose nanofiber (CNF) aerogels      950
    • 6.3.8.2.5.1.2     Cellulose nanocrystal aerogels               951
    • 6.3.8.2.5.1.3     Bacterial nanocellulose aerogels          951
    • 6.3.8.2.5.2         Lignin aerogels 951
    • 6.3.8.2.5.3         Alginate aerogels           952
    • 6.3.8.2.5.4         Starch aerogels               953
    • 6.3.8.2.5.5         Chitosan aerogels         954
    • 6.3.8.2.6             Carbon aerogels             954
    • 6.3.8.2.6.1         Carbon nanotube aerogels        956
    • 6.3.8.2.6.2         Graphene and graphite aerogels            956
    • 6.3.8.2.7             Additive manufacturing (3D printing)    957
    • 6.3.8.2.7.1         Carbon nitride 958
    • 6.3.8.2.7.2         Gold      958
    • 6.3.8.2.7.3         Cellulose            958
    • 6.3.8.2.7.4         Graphene oxide              959
    • 6.3.8.2.8             Hybrid aerogels               959
  • 6.4         Carbon capture and utilization               959
    • 6.4.1     Overview            960
    • 6.4.2     Market structure             962
    • 6.4.3     CCUS technologies in the cement industry      964
    • 6.4.4     Products             966
    • 6.4.4.1 Carbonated aggregates              966
    • 6.4.4.2 Additives during mixing               968
    • 6.4.4.3 Carbonates from natural minerals        968
    • 6.4.4.4 Carbonates from waste              969
    • 6.4.5     Concrete curing              970
    • 6.4.6     Costs    970
    • 6.4.7     Challenges        971
  • 6.5         Green steel       971
    • 6.5.1     Current Steelmaking processes             972
    • 6.5.2     Decarbonization target and policies     974
    • 6.5.2.1 EU Carbon Border Adjustment Mechanism (CBAM)     977
    • 6.5.3     Advances in clean production technologies     977
    • 6.5.4     Production technologies            978
    • 6.5.4.1 The role of hydrogen     978
    • 6.5.4.2 Comparative analysis  979
    • 6.5.4.3 Hydrogen Direct Reduced Iron (DRI)     980
    • 6.5.4.4 Electrolysis       981
    • 6.5.4.5 Carbon Capture, Utilization and Storage (CCUS)           982
    • 6.5.4.6 Biochar replacing coke                984
    • 6.5.4.7 Hydrogen Blast Furnace             985
    • 6.5.4.8 Renewable energy powered processes               986
    • 6.5.4.9 Flash ironmaking            987
    • 6.5.4.10               Hydrogen Plasma Iron Ore Reduction  988
    • 6.5.4.11               Ferrous Bioprocessing 989
    • 6.5.4.12               Microwave Processing 990
    • 6.5.4.13               Additive Manufacturing              990
    • 6.5.4.14               Technology readiness level (TRL)           991
    • 6.5.5     Properties          992
  • 6.6         Markets and applications          994
    • 6.6.1     Residential Buildings   995
    • 6.6.2     Commercial and Office Buildings          997
    • 6.6.3     Infrastructure  999
  • 6.7         Company profiles          1001 (136 company profiles)

 

7             BIOBASED PACKAGING MATERIALS    1112

  • 7.1         Market overview             1112
    • 7.1.1     Current global packaging market and materials             1112
    • 7.1.2     Market trends   1113
    • 7.1.3     Drivers for recent growth in bioplastics in packaging   1114
    • 7.1.4     Challenges for bio-based and sustainable packaging  1114
  • 7.2         Materials            1116
    • 7.2.1     Materials innovation    1116
    • 7.2.2     Active packaging            1116
    • 7.2.3     Monomaterial packaging           1116
    • 7.2.4     Conventional polymer materials used in packaging     1117
    • 7.2.4.1 Polyolefins: Polypropylene and polyethylene  1118
    • 7.2.4.2 PET and other polyester polymers         1120
    • 7.2.4.3 Renewable and bio-based polymers for packaging       1120
    • 7.2.4.4 Comparison of synthetic fossil-based and bio-based polymers             1123
    • 7.2.4.5 Processes for bioplastics in packaging               1123
    • 7.2.4.6 End-of-life treatment of bio-based and sustainable packaging               1125
  • 7.3         Synthetic bio-based packaging materials          1126
    • 7.3.1     Polylactic acid (Bio-PLA)            1126
    • 7.3.1.1 Market analysis               1126
    • 7.3.1.2 Producers and production capacities, current and planned     1128
    • 7.3.1.2.1             Lactic acid producers and production capacities         1128
    • 7.3.1.2.2             LA producers and production capacities           1128
    • 7.3.2     Polyethylene terephthalate (Bio-PET)  1130
    • 7.3.2.1 Market analysis               1130
    • 7.3.2.2 Producers and production capacities 1131
    • 7.3.3     Polytrimethylene terephthalate (Bio-PTT)          1131
    • 7.3.3.1 Market analysis               1131
    • 7.3.3.2 Producers and production capacities 1132
    • 7.3.4     Polyethylene furanoate (Bio-PEF)          1132
    • 7.3.4.1 Market analysis               1133
    • 7.3.4.2 Comparative properties to PET                1134
    • 7.3.4.3 Producers and production capacities 1134
    • 7.3.4.3.1             FDCA and PEF producers and production capacities  1134
    • 7.3.5     Polyamides (Bio-PA)     1135
    • 7.3.5.1 Market analysis               1135
    • 7.3.5.2 Producers and production capacities 1136
    • 7.3.6     Poly(butylene adipate-co-terephthalate) (Bio-PBAT)- Aliphatic aromatic copolyesters             1137
    • 7.3.6.1 Market analysis               1137
    • 7.3.6.2 Producers and production capacities 1138
    • 7.3.7     Polybutylene succinate (PBS) and copolymers               1138
    • 7.3.7.1 Market analysis               1139
    • 7.3.7.2 Producers and production capacities 1139
    • 7.3.8     Polyethylene furanoate (Bio-PEF)          1140
    • 7.3.8.1 Market analysis               1140
    • 7.3.8.2 Comparative properties to PET                1141
    • 7.3.8.3 Producers and production capacities 1142
    • 7.3.8.3.1             FDCA and PEF producers and production capacities  1142
    • 7.3.8.3.2             Polyethylene furanoate (Bio-PEF) production capacities 2019-2035 (1,000 tons).        1143
    • 7.3.9     Polyethylene (Bio-PE)  1144
    • 7.3.9.1 Market analysis               1145
    • 7.3.9.2 Producers and production capacities 1145
    • 7.3.10   Polypropylene (Bio-PP)               1146
    • 7.3.10.1               Market analysis               1146
    • 7.3.10.2               Producers and production capacities 1146
  • 7.4         Natural bio-based packaging materials              1147
    • 7.4.1     Polyhydroxyalkanoates (PHA) 1148
    • 7.4.1.1 Technology description               1148
    • 7.4.1.2 Types    1149
    • 7.4.1.2.1             PHB      1151
    • 7.4.1.2.2             PHBV   1152
    • 7.4.1.3 Synthesis and production processes   1153
    • 7.4.1.4 Market analysis               1155
    • 7.4.1.5 Commercially available PHAs 1156
    • 7.4.1.6 PHAS in packaging        1158
    • 7.4.1.7 PHA production capacities 2019-2035 (1,000 tons)      1161
    • 7.4.2     Starch-based blends    1162
    • 7.4.2.1 Properties          1162
    • 7.4.2.2 Applications in packaging          1162
    • 7.4.3     Cellulose            1162
    • 7.4.3.1 Feedstocks       1164
    • 7.4.3.1.1             Wood    1165
    • 7.4.3.1.2             Plant     1165
    • 7.4.3.1.3             Tunicate             1166
    • 7.4.3.1.4             Algae    1166
    • 7.4.3.1.5             Bacteria              1167
    • 7.4.3.2 Microfibrillated cellulose (MFC)             1168
    • 7.4.3.2.1             Properties          1168
    • 7.4.3.3 Nanocellulose 1169
    • 7.4.3.3.1             Cellulose nanocrystals               1169
    • 7.4.3.3.1.1         Applications in packaging          1169
    • 7.4.3.3.2             Cellulose nanofibers    1170
    • 7.4.3.3.2.1         Applications in packaging          1171
    • 7.4.3.3.2.1.1     Reinforcement and barrier        1176
    • 7.4.3.3.2.1.2     Biodegradable food packaging foil and films    1176
    • 7.4.3.3.2.1.3     Paperboard coatings    1176
    • 7.4.3.3.3             Bacterial Nanocellulose (BNC)               1177
    • 7.4.3.3.3.1         Applications in packaging          1179
    • 7.4.4     Protein-based bioplastics in packaging              1180
    • 7.4.5     Lipids and waxes for packaging               1182
    • 7.4.6     Seaweed-based packaging       1183
    • 7.4.6.1 Production        1184
    • 7.4.6.2 Applications in packaging          1184
    • 7.4.6.3 Producers          1185
    • 7.4.7     Mycelium           1185
    • 7.4.7.1 Applications in packaging          1186
    • 7.4.8     Chitosan             1188
    • 7.4.8.1 Applications in packaging          1188
    • 7.4.9     Bio-naphtha      1189
    • 7.4.9.1 Overview            1189
    • 7.4.9.2 Markets and applications          1190
  • 7.5         Applications     1191
    • 7.5.1     Paper and board packaging       1191
    • 7.5.2     Food packaging               1192
    • 7.5.2.1 Bio-Based films and trays          1193
    • 7.5.2.2 Bio-Based pouches and bags   1193
    • 7.5.2.3 Bio-Based textiles and nets       1193
    • 7.5.2.4 Bioadhesives   1194
    • 7.5.2.4.1             Starch  1194
    • 7.5.2.4.2             Cellulose            1195
    • 7.5.2.4.3             Protein-Based 1195
    • 7.5.2.5 Barrier coatings and films          1195
    • 7.5.2.5.1             Polysaccharides            1196
    • 7.5.2.5.1.1         Chitin   1197
    • 7.5.2.5.1.2         Chitosan             1197
    • 7.5.2.5.1.3         Starch  1197
    • 7.5.2.5.2             Poly(lactic acid) (PLA)  1197
    • 7.5.2.5.3             Poly(butylene Succinate)           1197
    • 7.5.2.5.4             Functional Lipid and Proteins Based Coatings 1197
    • 7.5.2.6 Active and Smart Food Packaging          1198
    • 7.5.2.6.1             Active Materials and Packaging Systems           1198
    • 7.5.2.6.2             Intelligent and Smart Food Packaging 1199
    • 7.5.2.7 Antimicrobial films and agents                1200
    • 7.5.2.7.1             Natural 1201
    • 7.5.2.7.2             Inorganic nanoparticles              1202
    • 7.5.2.7.3             Biopolymers     1202
    • 7.5.2.8 Bio-based Inks and Dyes            1202
    • 7.5.2.9 Edible films and coatings           1203
  • 7.6         Biobased films and coatings in packaging         1205
    • 7.6.1     Challenges using bio-based paints and coatings           1205
    • 7.6.2     Types of bio-based coatings and films in packaging     1208
    • 7.6.2.1 Polyurethane coatings 1208
    • 7.6.2.1.1             Properties          1208
    • 7.6.2.1.2             Bio-based polyurethane coatings          1208
    • 7.6.2.1.3             Products             1209
    • 7.6.2.2 Acrylate resins 1210
    • 7.6.2.2.1             Properties          1210
    • 7.6.2.2.2             Bio-based acrylates     1210
    • 7.6.2.2.3             Products             1211
    • 7.6.2.3 Polylactic acid (Bio-PLA)            1211
    • 7.6.2.3.1             Properties          1213
    • 7.6.2.3.2             Bio-PLA coatings and films       1213
    • 7.6.2.4 Polyhydroxyalkanoates (PHA) coatings              1214
    • 7.6.2.5 Cellulose coatings and films    1215
    • 7.6.2.5.1             Microfibrillated cellulose (MFC)             1215
    • 7.6.2.5.2             Cellulose nanofibers    1216
    • 7.6.2.5.2.1         Properties          1216
    • 7.6.2.5.2.2         Product developers       1217
    • 7.6.2.6 Lignin coatings 1219
    • 7.6.2.7 Protein-based biomaterials for coatings            1220
    • 7.6.2.7.1             Plant derived proteins  1220
    • 7.6.2.7.2             Animal origin proteins  1220
  • 7.7         Carbon capture derived materials for packaging           1222
    • 7.7.1     Benefits of carbon utilization for plastics feedstocks  1223
    • 7.7.2     CO₂-derived polymers and plastics      1225
    • 7.7.3     CO2 utilization products            1226
  • 7.8         Global biobased packaging markets    1228
    • 7.8.1     Flexible packaging         1228
    • 7.8.2     Rigid packaging               1231
    • 7.8.3     Coatings and films        1233
  • 7.9         Company profiles          1234 (203 company profiles)

 

8             SUSTAINABLE TEXTILES AND APPAREL              1403

  • 8.1         Types of bio-based fibres           1403
    • 8.1.1     Natural fibres   1405
    • 8.1.2     Main-made bio-based fibres    1406
  • 8.2         Bio-based synthetics   1407
  • 8.3         Recyclability of bio-based fibres            1407
  • 8.4         Lyocell 1408
  • 8.5         Bacterial cellulose        1408
  • 8.6         Algae textiles   1409
  • 8.7         Bio-based leather          1410
    • 8.7.1     Properties of bio-based leathers            1413
    • 8.7.1.1 Tear strength.   1413
    • 8.7.1.2 Tensile strength              1414
    • 8.7.1.3 Bally flexing      1414
    • 8.7.2     Comparison with conventional leathers             1415
    • 8.7.3     Comparative analysis of bio-based leathers    1418
    • 8.7.4     Plant-based leather      1418
    • 8.7.4.1 Overview            1418
    • 8.7.4.2 Production processes  1419
    • 8.7.4.2.1             Feedstocks       1419
    • 8.7.4.2.1.1         Agriculture Residues    1419
    • 8.7.4.2.1.2         Food Processing Waste              1420
    • 8.7.4.2.1.3         Invasive Plants 1420
    • 8.7.4.2.1.4         Culture-Grown Inputs  1420
    • 8.7.4.2.2             Textile-Based   1420
    • 8.7.4.2.3             Bio-Composite 1421
    • 8.7.4.3 Products             1421
    • 8.7.4.4 Market players 1422
    • 8.7.5     Mycelium leather           1424
    • 8.7.5.1 Overview            1424
    • 8.7.5.2 Production process       1426
    • 8.7.5.2.1             Growth conditions         1426
    • 8.7.5.2.2             Tanning Mycelium Leather        1427
    • 8.7.5.2.3             Dyeing Mycelium Leather          1428
    • 8.7.5.3 Products             1428
    • 8.7.5.4 Market players 1429
    • 8.7.6     Microbial leather            1430
    • 8.7.6.1 Overview            1430
    • 8.7.6.2 Production process       1430
    • 8.7.6.3 Fermentation conditions           1430
    • 8.7.6.4 Harvesting         1431
    • 8.7.6.5 Products             1432
    • 8.7.6.6 Market players 1434
    • 8.7.7     Lab grown leather          1435
    • 8.7.7.1 Overview            1435
    • 8.7.7.2 Production process       1435
    • 8.7.7.3 Products             1436
    • 8.7.7.4 Market players 1437
    • 8.7.8     Protein-based leather  1437
    • 8.7.8.1 Overview            1438
    • 8.7.8.2 Production process       1438
    • 8.7.8.3 Commercial activity     1439
    • 8.7.9     Sustainable textiles coatings and dyes               1439
    • 8.7.9.1 Overview            1439
    • 8.7.9.1.1             Coatings             1440
    • 8.7.9.1.2             Dyes     1440
    • 8.7.9.2 Commercial activity     1441
  • 8.8         Markets               1442
    • 8.8.1     Footwear            1443
    • 8.8.2     Fashion & Accessories 1443
    • 8.8.3     Automotive & Transport              1444
    • 8.8.4     Furniture            1445
  • 8.9         Global market revenues             1447
    • 8.9.1     By region            1447
    • 8.9.2     By end use market         1450
  • 8.10       Company profiles          1452 (66 company profiles)

 

9             BIOBASED COATINGS AND RESINS     1507

  • 9.1         Drop-in replacements 1507
  • 9.2         Bio-based resins            1507
  • 9.3         Reducing carbon footprint in industrial and protective coatings            1508
  • 9.4         Market drivers  1508
  • 9.5         Challenges using bio-based coatings  1509
  • 9.6         Types    1510
    • 9.6.1     Eco-friendly coatings technologies       1510
    • 9.6.1.1 UV-cure              1511
    • 9.6.1.2 Waterborne coatings    1511
    • 9.6.1.3 Treatments with less or no solvents      1511
    • 9.6.1.4 Hyperbranched polymers for coatings 1512
    • 9.6.1.5 Powder coatings             1512
    • 9.6.1.6 High solid (HS) coatings              1513
    • 9.6.1.7 Use of bio-based materials in coatings               1514
    • 9.6.1.7.1             Biopolymers     1514
    • 9.6.1.7.2             Coatings based on agricultural waste 1514
    • 9.6.1.7.3             Vegetable oils and fatty acids  1515
    • 9.6.1.7.4             Proteins              1515
    • 9.6.1.7.5             Cellulose            1515
    • 9.6.1.7.6             Plant-Based wax coatings         1516
    • 9.6.2     Barrier coatings              1517
    • 9.6.2.1 Polysaccharides            1519
    • 9.6.2.1.1             Chitin   1519
    • 9.6.2.1.2             Chitosan             1519
    • 9.6.2.1.3             Starch  1519
    • 9.6.2.2 Poly(lactic acid) (PLA)  1520
    • 9.6.2.3 Poly(butylene Succinate            1520
    • 9.6.2.4 Functional Lipid and Proteins Based Coatings 1520
    • 9.6.3     Alkyd coatings 1521
    • 9.6.3.1 Alkyd resin properties  1521
    • 9.6.3.2 Bio-based alkyd coatings           1522
    • 9.6.3.3 Products             1523
    • 9.6.4     Polyurethane coatings 1524
    • 9.6.4.1 Properties          1524
    • 9.6.4.2 Bio-based polyurethane coatings          1525
    • 9.6.4.2.1             Bio-based polyols          1525
    • 9.6.4.2.2             Non-isocyanate polyurethane (NIPU)  1526
    • 9.6.4.3 Products             1526
    • 9.6.5     Epoxy coatings 1527
    • 9.6.5.1 Properties          1527
    • 9.6.5.2 Bio-based epoxy coatings          1528
    • 9.6.5.3 Products             1529
    • 9.6.6     Acrylate resins 1530
    • 9.6.6.1 Properties          1530
    • 9.6.6.2 Bio-based acrylates     1531
    • 9.6.6.3 Products             1531
    • 9.6.7     Polylactic acid (Bio-PLA)            1532
    • 9.6.7.1 Properties          1534
    • 9.6.7.2 Bio-PLA coatings and films       1534
    • 9.6.8     Polyhydroxyalkanoates (PHA) 1535
    • 9.6.8.1 Properties          1536
    • 9.6.8.2 PHA coatings   1539
    • 9.6.8.3 Commercially available PHAs 1539
    • 9.6.9     Cellulose            1541
    • 9.6.9.1 Microfibrillated cellulose (MFC)             1546
    • 9.6.9.1.1             Properties          1547
    • 9.6.9.1.2             Applications in coatings             1548
    • 9.6.9.2 Cellulose nanofibers    1549
    • 9.6.9.2.1             Properties          1549
    • 9.6.9.2.2             Applications in coatings             1551
    • 9.6.9.3 Cellulose nanocrystals               1554
    • 9.6.9.4 Bacterial Nanocellulose (BNC)               1556
    • 9.6.10   Rosins  1557
    • 9.6.11   Bio-based carbon black              1557
    • 9.6.11.1               Lignin-based    1557
    • 9.6.11.2               Algae-based     1558
    • 9.6.12   Lignin coatings 1558
    • 9.6.13   Edible films and coatings           1559
    • 9.6.14   Antimicrobial films and agents                1560
    • 9.6.14.1               Natural 1561
    • 9.6.14.2               Inorganic nanoparticles              1562
    • 9.6.14.3               Biopolymers     1562
    • 9.6.15   Nanocoatings  1562
    • 9.6.16   Protein-based biomaterials for coatings            1564
    • 9.6.16.1               Plant derived proteins  1564
    • 9.6.16.2               Animal origin proteins  1564
    • 9.6.17   Algal coatings  1566
    • 9.6.18   Polypeptides    1568
  • 9.7         Global revenues             1569
    • 9.7.1     By types              1569
    • 9.7.2     By market          1571
  • 9.8         Company profiles          1574 (167 company profiles)

10           BIOFUELS          1713

  • 10.1       Comparison to fossil fuels         1713
  • 10.2       Role in the circular economy   1713
  • 10.3       Market drivers  1714
  • 10.4       Market challenges         1715
  • 10.5       Liquid biofuels market 1715
    • 10.5.1   Liquid biofuel production and consumption (in thousands of m3), 2000-2022               1715
    • 10.5.2   Liquid biofuels market 2020-2035, by type and production.     1717
  • 10.6       The global biofuels market        1720
    • 10.6.1   Diesel substitutes and alternatives      1721
    • 10.6.2   Gasoline substitutes and alternatives 1722
  • 10.7       SWOT analysis: Biofuels market             1722
  • 10.8       Comparison of biofuel costs 2023, by type       1724
  • 10.9       Types    1724
    • 10.9.1   Solid Biofuels   1724
    • 10.9.2   Liquid Biofuels 1725
    • 10.9.3   Gaseous Biofuels           1726
    • 10.9.4   Conventional Biofuels 1727
    • 10.9.5   Advanced Biofuels        1727
  • 10.10    Feedstocks       1729
    • 10.10.1 First-generation (1-G)  1730
    • 10.10.2 Second-generation (2-G)            1731
    • 10.10.2.1            Lignocellulosic wastes and residues    1732
    • 10.10.2.2            Biorefinery lignin            1733
    • 10.10.3 Third-generation (3-G) 1737
    • 10.10.3.1            Algal biofuels   1737
    • 10.10.3.1.1        Properties          1738
    • 10.10.3.1.2        Advantages       1738
    • 10.10.4 Fourth-generation (4-G)              1740
    • 10.10.5 Advantages and disadvantages, by generation               1740
    • 10.10.6 Energy crops     1741
    • 10.10.6.1            Feedstocks       1741
    • 10.10.6.2            SWOT analysis 1742
    • 10.10.7 Agricultural residues    1743
    • 10.10.7.1            Feedstocks       1743
    • 10.10.7.2            SWOT analysis 1743
    • 10.10.8 Manure, sewage sludge and organic waste       1744
    • 10.10.8.1            Processing pathways   1744
    • 10.10.8.2            SWOT analysis 1745
    • 10.10.9 Forestry and wood waste           1746
    • 10.10.9.1            Feedstocks       1746
    • 10.10.9.2            SWOT analysis 1747
    • 10.10.10             Feedstock costs             1748
  • 10.11    Hydrocarbon biofuels  1748
    • 10.11.1 Biodiesel            1748
    • 10.11.1.1            Biodiesel by generation               1750
    • 10.11.1.2            SWOT analysis 1751
    • 10.11.1.3            Production of biodiesel and other biofuels        1752
    • 10.11.1.3.1        Pyrolysis of biomass     1753
    • 10.11.1.3.2        Vegetable oil transesterification            1755
    • 10.11.1.3.3        Vegetable oil hydrogenation (HVO)       1757
    • 10.11.1.3.3.1    Production process       1757
    • 10.11.1.3.4        Biodiesel from tall oil   1758
    • 10.11.1.3.5        Fischer-Tropsch BioDiesel        1758
    • 10.11.1.3.6        Hydrothermal liquefaction of biomass 1760
    • 10.11.1.3.7        CO2 capture and Fischer-Tropsch (FT)                1761
    • 10.11.1.3.8        Dymethyl ether (DME)  1761
    • 10.11.1.4            Prices  1762
    • 10.11.1.5            Global production and consumption   1762
    • 10.11.2 Renewable diesel          1765
    • 10.11.2.1            Production        1765
    • 10.11.2.2            SWOT analysis 1766
    • 10.11.2.3            Global consumption     1767
    • 10.11.2.4            Prices  1769
    • 10.11.3 Bio-aviation fuel (bio-jet fuel, sustainable aviation fuel, renewable jet fuel or aviation biofuel)              1770
    • 10.11.3.1            Description       1770
    • 10.11.3.2            SWOT analysis 1770
    • 10.11.3.3            Global production and consumption   1771
    • 10.11.3.4            Production pathways   1771
    • 10.11.3.5            Prices  1773
    • 10.11.3.6            Bio-aviation fuel production capacities              1774
    • 10.11.3.7            Market challenges         1774
    • 10.11.3.8            Global consumption     1775
    • 10.11.4 Bio-naphtha      1777
    • 10.11.4.1            Overview            1777
    • 10.11.4.2            SWOT analysis 1778
    • 10.11.4.3            Markets and applications          1779
    • 10.11.4.4            Prices  1780
    • 10.11.4.5            Production capacities, by producer, current and planned         1781
    • 10.11.4.6            Production capacities, total (tonnes), historical, current and planned                1782
  • 10.12    Alcohol fuels    1782
    • 10.12.1 Biomethanol    1782
    • 10.12.1.1            SWOT analysis 1783
    • 10.12.1.2            Methanol-to gasoline technology           1783
    • 10.12.1.2.1        Production processes  1784
    • 10.12.1.2.1.1    Anaerobic digestion      1785
    • 10.12.1.2.1.2    Biomass gasification   1786
    • 10.12.1.2.1.3    Power to Methane         1787
    • 10.12.2 Ethanol                1787
    • 10.12.2.1            Technology description               1787
    • 10.12.2.2            1G Bio-Ethanol 1788
    • 10.12.2.3            SWOT analysis 1788
    • 10.12.2.4            Ethanol to jet fuel technology  1789
    • 10.12.2.5            Methanol from pulp & paper production             1790
    • 10.12.2.6            Sulfite spent liquor fermentation           1790
    • 10.12.2.7            Gasification     1790
    • 10.12.2.7.1        Biomass gasification and syngas fermentation              1791
    • 10.12.2.7.2        Biomass gasification and syngas thermochemical conversion              1791
    • 10.12.2.8            CO2 capture and alcohol synthesis      1791
    • 10.12.2.9            Biomass hydrolysis and fermentation 1792
    • 10.12.2.9.1        Separate hydrolysis and fermentation 1792
    • 10.12.2.9.2        Simultaneous saccharification and fermentation (SSF)             1793
    • 10.12.2.9.3        Pre-hydrolysis and simultaneous saccharification and fermentation (PSSF)   1793
    • 10.12.2.9.4        Simultaneous saccharification and co-fermentation (SSCF)   1793
    • 10.12.2.9.5        Direct conversion (consolidated bioprocessing) (CBP)               1793
    • 10.12.2.10         Global ethanol consumption    1794
    • 10.12.3 Biobutanol         1795
    • 10.12.3.1            Production        1797
    • 10.12.3.2            Prices  1797
  • 10.13    Biomass-based Gas     1798
    • 10.13.1 Feedstocks       1799
    • 10.13.1.1            Biomethane      1800
    • 10.13.1.2            Production pathways   1802
    • 10.13.1.2.1        Landfill gas recovery    1802
    • 10.13.1.2.2        Anaerobic digestion      1803
    • 10.13.1.2.3        Thermal gasification    1804
    • 10.13.1.3            SWOT analysis 1804
    • 10.13.1.4            Global production          1805
    • 10.13.1.5            Prices  1805
    • 10.13.1.5.1        Raw Biogas        1805
    • 10.13.1.5.2        Upgraded Biomethane 1806
    • 10.13.1.6            Bio-LNG             1806
    • 10.13.1.6.1        Markets               1806
    • 10.13.1.6.1.1    Trucks  1806
    • 10.13.1.6.1.2    Marine 1806
    • 10.13.1.6.2        Production        1806
    • 10.13.1.6.3        Plants  1807
    • 10.13.1.7            bio-CNG (compressed natural gas derived from biogas)            1807
    • 10.13.1.8            Carbon capture from biogas     1808
    • 10.13.2 Biosyngas          1808
    • 10.13.2.1            Production        1808
    • 10.13.2.2            Prices  1809
    • 10.13.3 Biohydrogen     1810
    • 10.13.3.1            Description       1810
    • 10.13.3.2            SWOT analysis 1811
    • 10.13.3.3            Production of biohydrogen from biomass          1811
    • 10.13.3.3.1        Biological Conversion Routes  1812
    • 10.13.3.3.1.1    Bio-photochemical Reaction   1812
    • 10.13.3.3.1.2    Fermentation and Anaerobic Digestion              1812
    • 10.13.3.3.2        Thermochemical conversion routes     1813
    • 10.13.3.3.2.1    Biomass Gasification  1813
    • 10.13.3.3.2.2    Biomass Pyrolysis         1813
    • 10.13.3.3.2.3    Biomethane Reforming               1814
    • 10.13.3.4            Applications     1814
    • 10.13.3.5            Prices  1815
    • 10.13.4 Biochar in biogas production    1815
    • 10.13.5 Bio-DME             1815
  • 10.14    Chemical recycling for biofuels              1816
    • 10.14.1 Plastic pyrolysis             1816
    • 10.14.2 Used tires pyrolysis       1817
    • 10.14.2.1            Conversion to biofuel   1818
    • 10.14.3 Co-pyrolysis of biomass and plastic wastes     1819
    • 10.14.4 Gasification     1820
    • 10.14.4.1            Syngas conversion to methanol              1821
    • 10.14.4.2            Biomass gasification and syngas fermentation              1824
    • 10.14.4.3            Biomass gasification and syngas thermochemical conversion              1825
    • 10.14.5 Hydrothermal cracking               1825
    • 10.14.6 SWOT analysis 1826
  • 10.15    Electrofuels (E-fuels, power-to-gas/liquids/fuels)         1827
    • 10.15.1 Introduction      1827
    • 10.15.2 Benefits of e-fuels         1830
    • 10.15.3 Feedstocks       1830
    • 10.15.3.1            Hydrogen electrolysis  1831
    • 10.15.3.2            CO2 capture     1831
    • 10.15.4 SWOT analysis 1832
    • 10.15.5 Production        1833
    • 10.15.5.1            eFuel production facilities, current and planned            1835
    • 10.15.6 Electrolysers    1835
    • 10.15.6.1            Commercial alkaline electrolyser cells (AECs)                1837
    • 10.15.6.2            PEM electrolysers (PEMEC)       1837
    • 10.15.6.3            High-temperature solid oxide electrolyser cells (SOECs)          1837
    • 10.15.7 Prices  1837
    • 10.15.8 Market challenges         1840
    • 10.15.9 Companies       1840
  • 10.16    Algae-derived biofuels 1841
    • 10.16.1 Technology description               1841
    • 10.16.2 Conversion pathways  1842
    • 10.16.3 SWOT analysis 1842
    • 10.16.4 Production        1843
    • 10.16.5 Market challenges         1844
    • 10.16.6 Prices  1845
    • 10.16.7 Producers          1846
  • 10.17    Green Ammonia             1846
    • 10.17.1 Production        1846
    • 10.17.1.1            Decarbonisation of ammonia production          1848
    • 10.17.1.2            Green ammonia projects           1849
    • 10.17.2 Green ammonia synthesis methods     1849
    • 10.17.2.1            Haber-Bosch process  1849
    • 10.17.2.2            Biological nitrogen fixation       1850
    • 10.17.2.3            Electrochemical production    1851
    • 10.17.2.4            Chemical looping processes    1851
    • 10.17.3 SWOT analysis 1851
    • 10.17.4 Blue ammonia 1852
    • 10.17.4.1            Blue ammonia projects              1852
    • 10.17.5 Markets and applications          1853
    • 10.17.5.1            Chemical energy storage           1853
    • 10.17.5.1.1        Ammonia fuel cells       1853
    • 10.17.5.2            Marine fuel        1853
    • 10.17.6 Prices  1855
    • 10.17.7 Estimated market demand        1857
    • 10.17.8 Companies and projects            1857
  • 10.18    Biofuels from carbon capture  1859
    • 10.18.1 Overview            1860
    • 10.18.2 CO2 capture from point sources            1862
    • 10.18.3 Production routes          1863
    • 10.18.4 SWOT analysis 1863
    • 10.18.5 Direct air capture (DAC)              1864
    • 10.18.5.1            Description       1864
    • 10.18.5.2            Deployment      1866
    • 10.18.5.3            Point source carbon capture versus Direct Air Capture              1867
    • 10.18.5.4            Technologies    1867
    • 10.18.5.4.1        Solid sorbents  1869
    • 10.18.5.4.2        Liquid sorbents               1870
    • 10.18.5.4.3        Liquid solvents 1871
    • 10.18.5.4.4        Airflow equipment integration 1872
    • 10.18.5.4.5        Passive Direct Air Capture (PDAC)         1872
    • 10.18.5.4.6        Direct conversion          1872
    • 10.18.5.4.7        Co-product generation                1873
    • 10.18.5.4.8        Low Temperature DAC 1873
    • 10.18.5.4.9        Regeneration methods 1873
    • 10.18.5.5            Commercialization and plants 1874
    • 10.18.5.6            Metal-organic frameworks (MOFs) in DAC         1874
    • 10.18.5.7            DAC plants and projects-current and planned 1875
    • 10.18.5.8            Markets for DAC              1880
    • 10.18.5.9            Costs    1881
    • 10.18.5.10         Challenges        1886
    • 10.18.5.11         Players and production               1886
    • 10.18.6 Carbon utilization for biofuels 1887
    • 10.18.6.1            Production routes          1891
    • 10.18.6.1.1        Electrolyzers    1891
    • 10.18.6.1.2        Low-carbon hydrogen  1892
    • 10.18.6.2            Products & applications             1893
    • 10.18.6.2.1        Vehicles             1893
    • 10.18.6.2.2        Shipping             1893
    • 10.18.6.2.3        Aviation              1894
    • 10.18.6.2.4        Costs    1895
    • 10.18.6.2.5        Ethanol                1895
    • 10.18.6.2.6        Methanol            1895
    • 10.18.6.2.7        Sustainable Aviation Fuel          1899
    • 10.18.6.2.8        Methane             1899
    • 10.18.6.2.9        Algae based biofuels    1900
    • 10.18.6.2.10     CO₂-fuels from solar     1901
    • 10.18.6.3            Challenges        1903
    • 10.18.6.4            SWOT analysis 1904
    • 10.18.6.5            Companies       1904
  • 10.19    Bio-oils (pyrolysis oils) 1907
    • 10.19.1 Description       1907
    • 10.19.1.1            Advantages of bio-oils 1907
    • 10.19.2 Production        1908
    • 10.19.2.1            Fast Pyrolysis   1909
    • 10.19.2.2            Costs of production      1909
    • 10.19.2.3            Upgrading          1909
    • 10.19.3 SWOT analysis 1910
    • 10.19.4 Applications     1911
    • 10.19.5 Bio-oil producers            1911
    • 10.19.6 Prices  1912
  • 10.20    Refuse Derived Fuels (RDF)       1913
    • 10.20.1 Overview            1913
    • 10.20.2 Production        1913
    • 10.20.2.1            Production process       1914
    • 10.20.2.2            Mechanical biological treatment           1914
    • 10.20.3 Markets               1915
  • 10.21    Company profiles          1915 (214 company profiles)

 

11           SUSTAINABLE ELECTRONICS 2071

  • 11.1       Overview            2071
    • 11.1.1   Green electronics manufacturing         2071
    • 11.1.2   Drivers for sustainable electronics       2072
    • 11.1.3   Environmental Impacts of Electronics Manufacturing 2073
      • 11.1.3.1               E-Waste Generation     2073
      • 11.1.3.2               Carbon Emissions         2074
      • 11.1.3.3               Resource Utilization     2074
      • 11.1.3.4               Waste Minimization     2075
      • 11.1.3.5               Supply Chain Impacts 2076
    • 11.1.4   New opportunities from sustainable electronics           2076
    • 11.1.5   Regulations       2076
      • 11.1.5.1               Certifications  2077
    • 11.1.6   Powering sustainable electronics (Bio-based batteries)            2078
    • 11.1.7   Bioplastics in injection moulded electronics parts       2079
  • 11.2       Green electronics manufacturing         2080
    • 11.2.1   Conventional electronics manufacturing          2080
    • 11.2.2   Benefits of Green Electronics manufacturing  2080
    • 11.2.3   Challenges in adopting Green Electronics manufacturing        2081
    • 11.2.4   Approaches      2082
      • 11.2.4.1               Closed-Loop Manufacturing    2082
      • 11.2.4.2               Digital Manufacturing  2083
        • 11.2.4.2.1           Advanced robotics & automation          2083
        • 11.2.4.2.2           AI & machine learning analytics             2084
        • 11.2.4.2.3           Internet of Things (IoT)  2084
        • 11.2.4.2.4           Additive manufacturing              2084
        • 11.2.4.2.5           Virtual prototyping         2084
        • 11.2.4.2.6           Blockchain-enabled supply chain traceability 2085
      • 11.2.4.3               Renewable Energy Usage           2085
      • 11.2.4.4               Energy Efficiency           2086
      • 11.2.4.5               Materials Efficiency      2087
      • 11.2.4.6               Sustainable Chemistry 2087
      • 11.2.4.7               Recycled Materials       2088
        • 11.2.4.7.1           Advanced chemical recycling 2089
      • 11.2.4.8               Bio-Based Materials     2091
    • 11.2.5   Greening the Supply Chain        2093
      • 11.2.5.1               Key focus areas               2094
      • 11.2.5.2               Sustainability activities from major electronics brands              2097
      • 11.2.5.3               Key challenges 2098
      • 11.2.5.4               Use of digital technologies        2098
    • 11.2.6   Sustainable Printed Circuit Board (PCB) manufacturing            2099
      • 11.2.6.1               Conventional PCB manufacturing         2099
      • 11.2.6.2               Trends in PCBs 2100
      • 11.2.6.2.1           High-Speed PCBs          2101
      • 11.2.6.2.2           Flexible PCBs   2101
      • 11.2.6.2.3           3D Printed PCBs             2102
      • 11.2.6.2.4           Sustainable PCBs          2103
      • 11.2.6.3               Reconciling sustainability with performance   2103
      • 11.2.6.4               Sustainable supply chains        2104
      • 11.2.6.5               Sustainability in PCB manufacturing   2105
      • 11.2.6.5.1           Sustainable cleaning of PCBs  2106
      • 11.2.6.6               Design of PCBs for sustainability           2107
      • 11.2.6.6.1           Rigid     2108
      • 11.2.6.6.2           Flexible               2108
      • 11.2.6.6.3           Additive manufacturing              2109
      • 11.2.6.6.4           In-mold elctronics (IME)              2110
      • 11.2.6.7               Materials            2111
      • 11.2.6.7.1           Metal cores       2111
      • 11.2.6.7.2           Recycled laminates      2111
      • 11.2.6.7.3           Conductive inks              2111
      • 11.2.6.7.4           Green and lead-free solder       2113
      • 11.2.6.7.5           Biodegradable substrates          2114
      • 11.2.6.7.5.1       Bacterial Cellulose       2115
      • 11.2.6.7.5.2       Mycelium           2116
      • 11.2.6.7.5.3       Lignin   2117
      • 11.2.6.7.5.4       Cellulose Nanofibers   2119
      • 11.2.6.7.5.5       Soy Protein        2122
      • 11.2.6.7.5.6       Algae    2122
      • 11.2.6.7.5.7       PHAs    2123
      • 11.2.6.7.6           Biobased inks  2124
      • 11.2.6.8               Substrates         2124
      • 11.2.6.8.1           Halogen-free FR4           2124
      • 11.2.6.8.1.1       FR4 limitations 2124
      • 11.2.6.8.1.2       FR4 alternatives             2126
      • 11.2.6.8.1.3       Bio-Polyimide  2126
      • 11.2.6.8.2           Metal-core PCBs            2128
      • 11.2.6.8.3           Biobased PCBs               2128
      • 11.2.6.8.3.1       Flexible (bio) polyimide PCBs   2129
      • 11.2.6.8.3.2       Recent commercial activity     2130
      • 11.2.6.8.4           Paper-based PCBs        2130
      • 11.2.6.8.5           PCBs without solder mask         2131
      • 11.2.6.8.6           Thinner dielectrics        2131
      • 11.2.6.8.7           Recycled plastic substrates     2131
      • 11.2.6.8.8           Flexible substrates        2131
      • 11.2.6.9               Sustainable patterning and metallization in electronics manufacturing            2132
      • 11.2.6.9.1           Introduction      2132
      • 11.2.6.9.2           Issues with sustainability          2132
      • 11.2.6.9.3           Regeneration and reuse of etching chemicals 2133
      • 11.2.6.9.4           Transition from Wet to Dry phase patterning    2133
      • 11.2.6.9.5           Print-and-plate               2134
      • 11.2.6.9.6           Approaches      2135
      • 11.2.6.9.6.1       Direct Printed Electronics         2135
      • 11.2.6.9.6.2       Photonic Sintering         2136
      • 11.2.6.9.6.3       Biometallization             2137
      • 11.2.6.9.6.4       Plating Resist Alternatives        2137
      • 11.2.6.9.6.5       Laser-Induced Forward Transfer            2138
      • 11.2.6.9.6.6       Electrohydrodynamic Printing 2140
      • 11.2.6.9.6.7       Electrically conductive adhesives (ECAs           2140
      • 11.2.6.9.6.8       Green electroless plating           2141
      • 11.2.6.9.6.9       Smart Masking 2142
      • 11.2.6.9.6.10    Component Integration              2143
      • 11.2.6.9.6.11    Bio-inspired material deposition            2143
      • 11.2.6.9.6.12    Multi-material jetting   2143
      • 11.2.6.9.6.13    Vacuumless deposition              2145
      • 11.2.6.9.6.14    Upcycling waste streams           2145
      • 11.2.6.10            Sustainable attachment and integration of components           2145
      • 11.2.6.10.1        Conventional component attachment materials           2145
      • 11.2.6.10.2        Materials            2147
      • 11.2.6.10.2.1    Conductive adhesives 2147
      • 11.2.6.10.2.2    Biodegradable adhesives           2147
      • 11.2.6.10.2.3    Magnets              2147
      • 11.2.6.10.2.4    Bio-based solders          2147
      • 11.2.6.10.2.5    Bio-derived solders       2148
      • 11.2.6.10.2.6    Recycled plastics          2148
      • 11.2.6.10.2.7    Nano adhesives              2148
      • 11.2.6.10.2.8    Shape memory polymers           2148
      • 11.2.6.10.2.9    Photo-reversible polymers        2150
      • 11.2.6.10.2.10 Conductive biopolymers            2150
      • 11.2.6.10.3        Processes          2151
      • 11.2.6.10.3.1    Traditional thermal processing methods            2152
      • 11.2.6.10.3.2    Low temperature solder             2152
      • 11.2.6.10.3.3    Reflow soldering             2155
      • 11.2.6.10.3.4    Induction soldering       2155
      • 11.2.6.10.3.5    UV curing           2156
      • 11.2.6.10.3.6    Near-infrared (NIR) radiation curing     2156
      • 11.2.6.10.3.7    Photonic sintering/curing          2156
      • 11.2.6.10.3.8    Hybrid integration          2157
    • 11.2.7   Sustainable integrated circuits               2157
      • 11.2.7.1               IC manufacturing           2157
      • 11.2.7.2               Sustainable IC manufacturing 2158
      • 11.2.7.3               Wafer production           2159
      • 11.2.7.3.1           Silicon 2159
      • 11.2.7.3.2           Gallium nitride ICs        2159
      • 11.2.7.3.3           Flexible ICs       2160
      • 11.2.7.3.4           Fully printed organic ICs             2160
      • 11.2.7.4               Oxidation methods       2161
      • 11.2.7.4.1           Sustainable oxidation  2161
      • 11.2.7.4.2           Metal oxides     2162
      • 11.2.7.4.3           Recycling           2163
      • 11.2.7.4.4           Thin gate oxide layers   2163
      • 11.2.7.5               Patterning and doping  2163
      • 11.2.7.5.1           Processes          2164
      • 11.2.7.5.1.1       Wet etching      2164
      • 11.2.7.5.1.2       Dry plasma etching       2164
      • 11.2.7.5.1.3       Lift-off patterning          2164
      • 11.2.7.5.1.4       Surface doping 2165
      • 11.2.7.6               Metallization    2165
      • 11.2.7.6.1           Evaporation      2166
      • 11.2.7.6.2           Plating 2166
      • 11.2.7.6.3           Printing               2167
      • 11.2.7.6.3.1       Printed metal gates for organic thin film transistors     2167
      • 11.2.7.6.4           Physical vapour deposition (PVD)          2167
    • 11.2.8   End of life           2168
      • 11.2.8.1               Hazardous waste           2168
      • 11.2.8.2               Emissions          2169
      • 11.2.8.3               Water Usage     2170
      • 11.2.8.4               Recycling           2170
      • 11.2.8.4.1           Mechanical recycling  2171
      • 11.2.8.4.2           Electro-Mechanical Separation              2172
      • 11.2.8.4.3           Chemical Recycling     2173
      • 11.2.8.5               Electrochemical Processes     2173
      • 11.2.8.5.1           Thermal Recycling         2174
      • 11.2.8.6               Green Certification       2174
  • 11.3       Global market  2175
    • 11.3.1   Global PCB manufacturing industry     2175
      • 11.3.1.1               PCB revenues  2175
    • 11.3.2   Sustainable PCBs          2176
    • 11.3.3   Sustainable ICs               2179
  • 11.4       Company profiles          2181 (45 company profiles)

 

12           BIOBASED ADHESIVES AND SEALANTS             2229

  • 12.1       Overview            2229
    • 12.1.1   Biobased Epoxy Adhesives        2229
    • 12.1.2   Bioobased Polyurethane Adhesives     2230
    • 12.1.3   Other Biobased Adhesives and Sealants           2230
  • 12.2       Types    2231
    • 12.2.1   Cellulose-Based             2231
    • 12.2.2   Starch-Based   2232
    • 12.2.3   Lignin-Based    2232
    • 12.2.4   Vegetable Oils 2233
    • 12.2.5   Protein-Based 2233
    • 12.2.6   Tannin-Based   2234
    • 12.2.7   Algae-based     2235
    • 12.2.8   Chitosan-based              2235
    • 12.2.9   Natural Rubber-based 2236
    • 12.2.10 Silkworm Silk-based    2237
    • 12.2.11 Mussel Protein-based 2238
    • 12.2.12 Soy-based Foam            2239
  • 12.3       Global revenues             2239
    • 12.3.1   By types              2240
    • 12.3.2   By market          2241
  • 12.4       Company profiles          2244 (22 company profiles)

 

13           REFERENCES   2262

 

List of Tables

  • Table 1. Plant-based feedstocks and biochemicals produced.               108
  • Table 2. Waste-based feedstocks and biochemicals produced.            109
  • Table 3. Microbial and mineral-based feedstocks and biochemicals produced.            110
  • Table 4. Common starch sources that can be used as feedstocks for producing biochemicals.           111
  • Table 5. Common lysine sources that can be used as feedstocks for producing biochemicals.            113
  • Table 6. Applications of  lysine as a feedstock for biochemicals.           113
  • Table 7. HDMA sources that can be used as feedstocks for producing biochemicals. 116
  • Table 8. Applications of bio-based HDMA.        116
  • Table 9. Biobased feedstocks that can be used to produce 1,5-diaminopentane (DA5).            118
  • Table 10. Applications of DN5. 118
  • Table 11. Biobased feedstocks for isosorbide. 119
  • Table 12. Applications of bio-based isosorbide.             120
  • Table 13. Lactide applications.               123
  • Table 14. Biobased feedstock sources for itaconic acid.           124
  • Table 15. Applications of bio-based itaconic acid.        124
  • Table 16. Biobased feedstock sources for 3-HP.            125
  • Table 17. Applications of 3-HP.               126
  • Table 18. Applications of bio-based acrylic acid.           128
  • Table 19. Applications of bio-based 1,3-Propanediol (1,3-PDO).            129
  • Table 20. Biobased feedstock sources for Succinic acid.          130
  • Table 21. Applications of succinic acid.              130
  • Table 22. Applications of bio-based 1,4-Butanediol (BDO).       132
  • Table 23. Applications of bio-based Tetrahydrofuran (THF).     133
  • Table 24. Applications of bio-based adipic acid.            135
  • Table 25. Applications of bio-based caprolactam.        136
  • Table 26. Biobased feedstock sources for isobutanol. 137
  • Table 27. Applications of bio-based isobutanol.             138
  • Table 28. Biobased feedstock sources for p-Xylene.    139
  • Table 29. Applications of bio-based p-Xylene. 140
  • Table 30. Applications of bio-based Terephthalic acid (TPA).   141
  • Table 31. Biobased feedstock sources for 1,3 Proppanediol.   142
  • Table 32. Applications of bio-based 1,3 Proppanediol.               143
  • Table 33. Biobased feedstock sources for MEG.             144
  • Table 34. Applications of bio-based MEG.         144
  • Table 35. Biobased MEG producers capacities.             145
  • Table 36. Biobased feedstock sources for ethanol.       146
  • Table 37. Applications of bio-based ethanol.   146
  • Table 38. Applications of bio-based ethylene. 147
  • Table 39. Applications of bio-based propylene.              149
  • Table 40. Applications of bio-based vinyl chloride.       150
  • Table 41. Applications of bio-based Methly methacrylate.       152
  • Table 42. Applications of bio-based aniline.     154
  • Table 43. Applications of biobased fructose.   155
  • Table 44. Applications of bio-based 5-Hydroxymethylfurfural (5-HMF).             156
  • Table 45. Applications of 5-(Chloromethyl)furfural (CMF).        158
  • Table 46. Applications of Levulinic acid.            159
  • Table 47. Markets and applications for bio-based FDME.           160
  • Table 48. Applications of FDCA.              161
  • Table 49. Markets and applications for bio-based levoglucosenone.   162
  • Table 50. Biochemicals derived from hemicellulose   164
  • Table 51. Markets and applications for bio-based hemicellulose          164
  • Table 52. Markets and applications for bio-based furfuryl alcohol.       167
  • Table 53. Commercial and pre-commercial biorefinery lignin production facilities and processes      168
  • Table 54. Lignin aromatic compound products.              170
  • Table 55. Prices of benzene, toluene, xylene and their derivatives.      170
  • Table 56. Lignin products in polymeric materials.         171
  • Table 57. Application of lignin in plastics and composites.       172
  • Table 58. Markets and applications for bio-based glycerol.      175
  • Table 59. Markets and applications for Bio-based MPG.            176
  • Table 60. Markets and applications: Bio-based ECH.   177
  • Table 61. Mineral source products and applications.  198
  • Table 62. Type of biodegradation.          280
  • Table 63. Advantages and disadvantages of biobased plastics compared to conventional plastics.   281
  • Table 64. Types of Bio-based and/or Biodegradable Plastics, applications.     281
  • Table 65. Key market players by Bio-based and/or Biodegradable Plastic types.           283
  • Table 66. Polylactic acid (PLA) market analysis-manufacture, advantages, disadvantages and applications. 284
  • Table 67. Lactic acid producers and production capacities.    286
  • Table 68. PLA producers and production capacities.   286
  • Table 69. Planned PLA capacity expansions in China. 287
  • Table 70. Bio-based Polyethylene terephthalate (Bio-PET) market analysis- manufacture, advantages, disadvantages and applications.           288
  • Table 71. Bio-based Polyethylene terephthalate (PET) producers and production capacities, 289
  • Table 72. Polytrimethylene terephthalate (PTT) market analysis-manufacture, advantages, disadvantages and applications.    290
  • Table 73. Production capacities of Polytrimethylene terephthalate (PTT), by leading producers.           291
  • Table 74. Polyethylene furanoate (PEF) market analysis-manufacture, advantages, disadvantages and applications.    292
  • Table 75. PEF vs. PET.  293
  • Table 76. FDCA and PEF producers.      294
  • Table 77. Bio-based polyamides (Bio-PA) market analysis - manufacture, advantages, disadvantages and applications.    295
  • Table 78. Leading Bio-PA producers production capacities.    296
  • Table 79. Poly(butylene adipate-co-terephthalate) (PBAT) market analysis- manufacture, advantages, disadvantages and applications.           297
  • Table 80. Leading PBAT producers, production capacities and brands.              297
  • Table 81. Bio-PBS market analysis-manufacture, advantages, disadvantages and applications.         299
  • Table 82. Leading PBS producers and production capacities. 300
  • Table 83. Bio-based Polyethylene (Bio-PE) market analysis- manufacture, advantages, disadvantages and applications.    301
  • Table 84. Leading Bio-PE producers.    301
  • Table 85. Bio-PP market analysis- manufacture, advantages, disadvantages and applications.            302
  • Table 86. Leading Bio-PP producers and capacities.   303
  • Table 87.Types of PHAs and properties.              306
  • Table 88. Comparison of the physical properties of different PHAs with conventional petroleum-based polymers.                308
  • Table 89. Polyhydroxyalkanoate (PHA) extraction methods.    310
  • Table 90. Polyhydroxyalkanoates (PHA) market analysis.          311
  • Table 91. Commercially available PHAs.           312
  • Table 92. Markets and applications for PHAs. 313
  • Table 93. Applications, advantages and disadvantages of PHAs in packaging.               314
  • Table 94. Polyhydroxyalkanoates (PHA) producers.      317
  • Table 95. Microfibrillated cellulose (MFC) market analysis-manufacture, advantages, disadvantages and applications.    318
  • Table 96. Leading MFC producers and capacities.        319
  • Table 97. Synthesis methods for cellulose nanocrystals (CNC).             320
  • Table 98. CNC sources, size and yield.               321
  • Table 99. CNC properties.         322
  • Table 100. Mechanical properties of CNC and other reinforcement materials.              322
  • Table 101. Applications of nanocrystalline cellulose (NCC).    324
  • Table 102. Cellulose nanocrystals analysis.     324
  • Table 103: Cellulose nanocrystal production capacities and production process, by producer.            325
  • Table 104. Applications of cellulose nanofibers (CNF).               326
  • Table 105. Cellulose nanofibers market analysis.         327
  • Table 106. CNF production capacities (by type, wet or dry) and production process, by producer, metric tonnes.                329
  • Table 107. Applications of bacterial nanocellulose (BNC).        332
  • Table 108. Types of protein based-bioplastics, applications and companies. 333
  • Table 109. Types of algal and fungal based-bioplastics, applications and companies.               334
  • Table 110. Overview of alginate-description, properties, application and market size.              335
  • Table 111. Companies developing algal-based bioplastics.     336
  • Table 112. Overview of mycelium fibers-description, properties, drawbacks and applications.            337
  • Table 113. Companies developing mycelium-based bioplastics.          339
  • Table 114. Overview of chitosan-description, properties, drawbacks and applications.            340
  • Table 115. Global production capacities of biobased and sustainable plastics in 2019-2035, by region, 1,000 tonnes.                341
  • Table 116. Biobased and sustainable plastics producers in North America.    342
  • Table 117. Biobased and sustainable plastics producers in Europe.    342
  • Table 118. Biobased and sustainable plastics producers in Asia-Pacific.         343
  • Table 119. Biobased and sustainable plastics producers in Latin America.     344
  • Table 120. Processes for bioplastics in packaging.       346
  • Table 121. Comparison of bioplastics’ (PLA and PHAs) properties to other common polymers used in product packaging.         348
  • Table 122. Typical applications for bioplastics in flexible packaging.  348
  • Table 123. Typical applications for bioplastics in rigid packaging.         351
  • Table 124. Technical lignin types and applications.      364
  • Table 125. Classification of technical lignins. 366
  • Table 126. Lignin content of selected biomass.              366
  • Table 127. Properties of lignins and their applications.               367
  • Table 128. Example markets and applications for lignin.            369
  • Table 129. Processes for lignin production.      371
  • Table 130. Biorefinery feedstocks.        377
  • Table 131. Comparison of pulping and biorefinery lignins.        377
  • Table 132. Commercial and pre-commercial biorefinery lignin production facilities and  processes  378
  • Table 133. Market drivers and trends for lignin.               382
  • Table 134. Production capacities of technical lignin producers.            382
  • Table 135. Production capacities of biorefinery lignin producers.         383
  • Table 136. Estimated consumption of lignin, 2019-2035 (000 MT).        384
  • Table 137. Prices of benzene, toluene, xylene and their derivatives.    386
  • Table 138. Application of lignin in plastics and polymers.          387
  • Table 139. Lactips plastic pellets.         570
  • Table 140. Oji Holdings CNF products.                636
  • Table 141. Types of natural fibers.         758
  • Table 142. Markets and applications for natural fibers.              760
  • Table 143. Commercially available natural fiber products.       762
  • Table 144. Market drivers for natural fibers.      765
  • Table 145. Typical properties of natural fibers.                768
  • Table 146. Overview of kapok fibers-description, properties, drawbacks and applications.    769
  • Table 147. Overview of luffa fibers-description, properties, drawbacks and applications.        770
  • Table 148. Overview of jute fibers-description, properties, drawbacks and applications.         772
  • Table 149. Overview of hemp fibers-description, properties, drawbacks and applications.     773
  • Table 150. Overview of flax fibers-description, properties, drawbacks and applications.          774
  • Table 151. Overview of ramie fibers-description, properties, drawbacks and applications.     775
  • Table 152. Overview of kenaf fibers-description, properties, drawbacks and applications.     776
  • Table 153. Overview of sisal fibers-description, properties, drawbacks and applications.       777
  • Table 154. Overview of abaca fibers-description, properties, drawbacks and applications.    778
  • Table 155. Overview of coir fibers-description, properties, drawbacks and applications.         779
  • Table 156. Overview of banana fibers-description, properties, drawbacks and applications. 780
  • Table 157. Overview of pineapple fibers-description, properties, drawbacks and applications.            780
  • Table 158. Overview of rice fibers-description, properties, drawbacks and applications.         782
  • Table 159. Overview of corn fibers-description, properties, drawbacks and applications.        782
  • Table 160. Overview of switch grass fibers-description, properties and applications. 783
  • Table 161. Overview of sugarcane fibers-description, properties, drawbacks and application and market size.                784
  • Table 162. Overview of bamboo fibers-description, properties, drawbacks and applications.                785
  • Table 163. Overview of mycelium fibers-description, properties, drawbacks and applications.            788
  • Table 164. Overview of chitosan fibers-description, properties, drawbacks and applications.               789
  • Table 165. Overview of alginate-description, properties, application and market size.              790
  • Table 166. Overview of silk fibers-description, properties, application and market size.           791
  • Table 167. Next-gen silk producers.      792
  • Table 168. Companies developing cellulose fibers for application in plastic composites.        793
  • Table 169. Microfibrillated cellulose (MFC) market analysis.   794
  • Table 170. Leading MFC producers and capacities.     795
  • Table 171. Cellulose nanocrystals market overview.   796
  • Table 172. Cellulose nanocrystal production capacities and production process, by producer.            797
  • Table 173. Cellulose nanofibers market analysis.         797
  • Table 174. CNF production capacities and production process, by producer, in metric tons. 799
  • Table 175. Processing and treatment methods for natural fibers used in plastic composites. 800
  • Table 176. Application, manufacturing method, and matrix materials of natural fibers.            802
  • Table 177. Properties of natural fiber-bio-based polymer compounds.              803
  • Table 178. Typical properties of short natural fiber-thermoplastic composites.            804
  • Table 179. Properties of non-woven natural fiber mat composites.      805
  • Table 180. Applications of natural fibers in plastics.    808
  • Table 181. Applications of natural fibers in the automotive industry.   810
  • Table 182. Natural fiber-reinforced polymer composite in the automotive market.     812
  • Table 183. Applications of natural fibers in packaging.                815
  • Table 184. Applications of natural fibers in construction.          818
  • Table 185. Applications of natural fibers in the appliances market.      820
  • Table 186. Applications of natural fibers in the consumer electronics market.               823
  • Table 187. Global market for natural fiber based plastics, 2018-2035, by end use sector (Billion USD).            828
  • Table 188. Global market for natural fiber based plastics, 2018-2035, by material type (Billion USD).                831
  • Table 189. Global market for natural fiber based plastics, 2018-2035, by plastic type (Billion USD).   833
  • Table 190. Global market for natural fiber based plastics, 2018-2035, by region (Billion USD).              835
  • Table 191. Granbio Nanocellulose Processes. 870
  • Table 192. Oji Holdings CNF products.                888
  • Table 193. Global trends and drivers in sustainable construction materials.   907
  • Table 194. Global revenues in sustainable construction materials, by materials type, 2020-2035 (millions USD).                909
  • Table 195. Global revenues in sustainable construction materials, by market, 2020-2035 (millions USD).      912
  • Table 196. Established bio-based construction materials.       916
  • Table 197. Types of self-healing concrete.        923
  • Table 198. General properties and value of aerogels.  934
  • Table 199. Key properties of silica aerogels.     936
  • Table 200. Chemical precursors used to synthesize silica aerogels.   937
  • Table 201. Commercially available aerogel-enhanced blankets.           940
  • Table 202. Main manufacturers of silica aerogels and product offerings.          944
  • Table 203. Typical structural properties of metal oxide aerogels.          946
  • Table 204. Polymer aerogels companies.          948
  • Table 205. Types of biobased aerogels.               949
  • Table 206. Carbon aerogel companies.              955
  • Table 207. Conversion pathway for CO2-derived building materials.   961
  • Table 208. Carbon capture technologies and projects in the cement sector    964
  • Table 209. Carbonation of recycled concrete companies.        969
  • Table 210. Current and projected costs for some key CO2 utilization applications in the construction industry.                970
  • Table 211. Market challenges for CO2 utilization in construction materials.   971
  • Table 212. Global Decarbonization Targets and Policies related to Green Steel.           974
  • Table 213. Estimated cost for iron and steel industry under the Carbon Border Adjustment Mechanism (CBAM).                977
  • Table 214. Hydrogen-based steelmaking technologies.             978
  • Table 215. Comparison of green steel production technologies.           979
  • Table 216. Advantages and disadvantages of each potential hydrogen carrier.              981
  • Table 217. CCUS in green steel production.      982
  • Table 218. Biochar in steel and metal. 985
  • Table 219. Hydrogen blast furnace schematic.               986
  • Table 220. Applications of microwave processing in green steelmaking.           990
  • Table 221. Applications of additive manufacturing (AM) in steelmaking.            990
  • Table 222.  Technology readiness level (TRL) for key green steel production technologies.      991
  • Table 223. Properties of Green steels. 992
  • Table 224. Applications of green steel in the construction industry.     993
  • Table 225. Market trends in bio-based and sustainable packaging       1113
  • Table 226. Drivers for recent growth in the bioplastics and biopolymers markets.        1114
  • Table 227. Challenges for bio-based and sustainable packaging.          1114
  • Table 228. Types of bio-based plastics and fossil-fuel-based plastics 1117
  • Table 229. Comparison of synthetic fossil-based and bio-based polymers.     1123
  • Table 230. Processes for bioplastics in packaging.       1124
  • Table 231. Polylactic acid (PLA) market analysis-manufacture, advantages, disadvantages and applications.                1126
  • Table 232. Lactic acid producers and production capacities. 1128
  • Table 233. PLA producers and production capacities. 1128
  • Table 234. Planned PLA capacity expansions in China.               1129
  • Table 235. Bio-based Polyethylene terephthalate (Bio-PET) market analysis- manufacture, advantages, disadvantages and applications.           1130
  • Table 236. Bio-based Polyethylene terephthalate (PET) producers and production capacities,             1131
  • Table 237. Polytrimethylene terephthalate (PTT) market analysis-manufacture, advantages, disadvantages and applications.    1131
  • Table 238. Production capacities of Polytrimethylene terephthalate (PTT), by leading producers.        1132
  • Table 239. Polyethylene furanoate (PEF) market analysis-manufacture, advantages, disadvantages and applications.    1133
  • Table 240. PEF vs. PET.                1134
  • Table 241. FDCA and PEF producers.   1134
  • Table 242. Bio-based polyamides (Bio-PA) market analysis - manufacture, advantages, disadvantages and applications.    1135
  • Table 243. Leading Bio-PA producers production capacities. 1136
  • Table 244. Poly(butylene adipate-co-terephthalate) (PBAT) market analysis- manufacture, advantages, disadvantages and applications.           1137
  • Table 245. Leading PBAT producers, production capacities and brands.           1138
  • Table 246. Bio-PBS market analysis-manufacture, advantages, disadvantages and applications.       1139
  • Table 247. Leading PBS producers and production capacities.              1139
  • Table 248. Polyethylene furanoate (PEF) market analysis-manufacture, advantages, disadvantages and applications.    1140
  • Table 249. PEF vs. PET.                1142
  • Table 250. FDCA and PEF producers.   1142
  • Table 251. Bio-based Polyethylene (Bio-PE) market analysis- manufacture, advantages, disadvantages and applications.    1145
  • Table 252. Leading Bio-PE producers.  1145
  • Table 253. Bio-PP market analysis- manufacture, advantages, disadvantages and applications.         1146
  • Table 254. Leading Bio-PP producers and capacities. 1146
  • Table 255.Types of PHAs and properties.           1150
  • Table 256. Comparison of the physical properties of different PHAs with conventional petroleum-based polymers.           1152
  • Table 257. Polyhydroxyalkanoate (PHA) extraction methods.  1154
  • Table 258. Polyhydroxyalkanoates (PHA) market analysis.       1155
  • Table 259. Commercially available PHAs.         1157
  • Table 260. Markets and applications for PHAs.               1158
  • Table 261. Applications, advantages and disadvantages of PHAs in packaging.             1159
  • Table 262. Length and diameter of nanocellulose and MFC.    1162
  • Table 263. Major polymers found in the extracellular covering of different algae.         1167
  • Table 264. Market overview for cellulose microfibers (microfibrillated cellulose) in paperboard and packaging-market age, key benefits, applications and producers.               1168
  • Table 265. Applications of nanocrystalline cellulose (NCC).    1170
  • Table 266. Market overview for cellulose nanofibers in packaging.       1172
  • Table 267. Types of protein based-bioplastics, applications and companies. 1181
  • Table 268. Overview of alginate-description, properties, application and market size.              1183
  • Table 269. Companies developing algal-based bioplastics.     1185
  • Table 270. Overview of mycelium fibers-description, properties, drawbacks and applications.            1185
  • Table 271. Overview of chitosan-description, properties, drawbacks and applications.            1188
  • Table 272. Bio-based naphtha markets and applications.         1190
  • Table 273. Bio-naphtha market value chain.    1190
  • Table 274. Pros and cons of different type of food packaging materials.            1192
  • Table 275. Active Biodegradable Films films and their food applications.         1199
  • Table 276. Intelligent Biodegradable Films.      1199
  • Table 277. Edible films and coatings market summary.              1203
  • Table 278. Summary of barrier films and coatings for packaging.          1206
  • Table 279. Types of polyols.      1208
  • Table 280. Polyol producers.    1209
  • Table 281. Bio-based polyurethane coating products. 1209
  • Table 282. Bio-based acrylate resin products. 1211
  • Table 283. Polylactic acid (PLA) market analysis.          1211
  • Table 284. Commercially available PHAs.         1214
  • Table 285. Market overview for cellulose nanofibers in paints and coatings.   1216
  • Table 286. Companies developing cellulose nanofibers products in paints and coatings.        1217
  • Table 287. Types of protein based-biomaterials, applications and companies.             1221
  • Table 288. CO2 utilization and removal pathways.       1223
  • Table 289. CO2 utilization products developed by chemical and plastic producers.    1226
  • Table 290. Comparison of bioplastics’ (PLA and PHAs) properties to other common polymers used in product packaging.         1228
  • Table 291. Typical applications for bioplastics in flexible packaging.  1229
  • Table 292. Typical applications for bioplastics in rigid packaging.         1231
  • Table 293. Market revenues for bio-based coatings, 2018-2035 (billions USD), high estimate.              1234
  • Table 294. Lactips plastic pellets.         1331
  • Table 295. Oji Holdings CNF products.                1356
  • Table 296. Properties and applications of the main natural fibres         1405
  • Table 298. Types of sustainable alternative leathers.  1412
  • Table 299. Properties of bio-based leathers.    1413
  • Table 300. Comparison with conventional leathers.    1415
  • Table 301. Price of commercially available sustainable alternative leather products. 1417
  • Table 302. Comparative analysis of sustainable alternative leathers. 1418
  • Table 303. Key processing steps involved in transforming plant fibers into leather materials. 1419
  • Table 304. Current and emerging plant-based leather products.           1421
  • Table 305. Companies developing plant-based leather products.         1422
  • Table 306. Overview of mycelium-description, properties, drawbacks and applications.         1424
  • Table 307. Companies developing mycelium-based leather products.              1429
  • Table 308. Types of microbial-derived leather alternative.        1432
  • Table 309. Companies developing microbial leather products.              1434
  • Table 310. Companies developing plant-based leather products.         1437
  • Table 311. Types of protein-based leather alternatives.             1438
  • Table 312. Companies developing protein based leather.         1439
  • Table 313. Companies developing sustainable coatings and dyes for leather -               1441
  • Table 314. Markets and applications for bio-based textiles and leather.            1442
  • Table 315. Applications of biobased leather in furniture and upholstery.           1445
  • Table 316. Global revenues for bio-based textiles by type, 2018-2035 (millions USD).                1447
  • Table 317. Global revenues for bio-based and sustainable textiles by end use market, 2018-2035 (millions USD).                1450
  • Table 318. Market drivers and trends in bio-based and sustainable coatings. 1508
  • Table 319. Example envinronmentally friendly coatings, advantages and disadvantages.        1510
  • Table 320. Plant Waxes.              1517
  • Table 321. Types of alkyd resins and properties.            1521
  • Table 322. Market summary for bio-based alkyd coatings-raw materials, advantages, disadvantages, applications and producers.     1523
  • Table 323. Bio-based alkyd coating products. 1523
  • Table 324. Types of polyols.      1525
  • Table 325. Polyol producers.    1526
  • Table 326. Bio-based polyurethane coating products. 1527
  • Table 327. Market summary for bio-based epoxy resins.            1528
  • Table 328. Bio-based polyurethane coating products. 1529
  • Table 329. Bio-based acrylate resin products. 1531
  • Table 330. Polylactic acid (PLA) market analysis.          1532
  • Table 331. PLA producers and production capacities. 1533
  • Table 332. Polyhydroxyalkanoates (PHA) market analysis.       1535
  • Table 333.Types of PHAs and properties.           1538
  • Table 334. Polyhydroxyalkanoates (PHA) producers.   1539
  • Table 335. Commercially available PHAs.         1540
  • Table 336. Properties of micro/nanocellulose, by type.              1543
  • Table 337: Types of nanocellulose.       1545
  • Table 338. Microfibrillated Cellulose (MFC) production capacities in metric tons and production process, by producer, metric tons. 1547
  • Table 339. Commercially available Microfibrillated Cellulose products.           1548
  • Table 340. Market overview for cellulose nanofibers in paints and coatings.   1549
  • Table 341. Market assessment for cellulose nanofibers in paints and coatings-application, key benefits and motivation for use, megatrends, market drivers, technology drawbacks, competing materials, material loading, main global paints and coatings OEMs.              1551
  • Table 342. Companies developing CNF products in paints and coatings, applications targeted and stage of commercialization.      1553
  • Table 343. CNC properties.       1554
  • Table 344: Cellulose nanocrystal capacities (by type, wet or dry) and production process, by producer, metric tonnes.                1555
  • Table 345. Applications of bacterial nanocellulose (BNC).        1556
  • Table 346. Edible films and coatings market summary.              1559
  • Table 347. Types of protein based-biomaterials, applications and companies.             1565
  • Table 348. Overview of algal coatings-description, properties, application and market size.  1566
  • Table 349. Companies developing algal-based plastics.            1568
  • Table 350. Global market revenues for bio-based coatings, by types,  2018-2035 (billions USD).          1569
  • Table 351. Market revenues for bio-based coatings by market, 2018-2035 (billions USD), conservative estimate.                1571
  • Table 352. Lactips plastic pellets.         1648
  • Table 353. Oji Holdings CNF products.                1671
  • Table 354. Market drivers for biofuels. 1714
  • Table 355. Market challenges for biofuels.        1715
  • Table 356. Liquid biofuels market 2020-2035, by type and production.              1717
  • Table 357. Comparison of biofuels.      1719
  • Table 358. Comparison of biofuel costs (USD/liter) 2023, by type.        1724
  • Table 359. Categories and examples of solid biofuel.  1725
  • Table 360. Comparison of biofuels and e-fuels to fossil and electricity.            1727
  • Table 361. Classification of biomass feedstock.            1729
  • Table 362. Biorefinery feedstocks.        1729
  • Table 363. Feedstock conversion pathways.    1730
  • Table 364. First-Generation Feedstocks.           1730
  • Table 365.  Lignocellulosic ethanol plants and capacities.       1733
  • Table 366. Comparison of pulping and biorefinery lignins.        1734
  • Table 367. Commercial and pre-commercial biorefinery lignin production facilities and  processes  1735
  • Table 368. Operating and planned lignocellulosic biorefineries and industrial flue gas-to-ethanol.     1736
  • Table 369. Properties of microalgae and macroalgae. 1738
  • Table 370. Yield of algae and other biodiesel crops.     1739
  • Table 371. Advantages and disadvantages of biofuels, by generation. 1740
  • Table 372. Biodiesel by generation.      1750
  • Table 373. Biodiesel production techniques.   1753
  • Table 374. Summary of pyrolysis technique under different operating conditions.       1753
  • Table 375. Biomass materials and their bio-oil yield.   1754
  • Table 376. Biofuel production cost from the biomass pyrolysis process.           1755
  • Table 377. Properties of vegetable oils in comparison to diesel.            1756
  • Table 378. Main producers of HVO and capacities.      1758
  • Table 379. Example commercial Development of BtL processes.         1759
  • Table 380. Pilot or demo projects for biomass to liquid (BtL) processes.            1759
  • Table 381. Global biodiesel consumption, 2010-2035 (M litres/year). 1764
  • Table 382. Global renewable diesel consumption, 2010-2035 (M litres/year). 1768
  • Table 383. Renewable diesel price ranges.        1769
  • Table 384. Advantages and disadvantages of Bio-aviation fuel.             1770
  • Table 385. Production pathways for Bio-aviation fuel. 1772
  • Table 386. Current and announced Bio-aviation fuel facilities and capacities.              1774
  • Table 387. Global bio-jet fuel consumption 2019-2035 (Million litres/year).    1775
  • Table 388. Bio-based naphtha markets and applications.         1779
  • Table 389. Bio-naphtha market value chain.    1779
  • Table 390. Bio-naphtha pricing against petroleum-derived naphtha and related fuel products.             1780
  • Table 391. Bio-based Naphtha production capacities, by producer.    1781
  • Table 392. Comparison of biogas, biomethane and natural gas.            1785
  • Table 393.  Processes in bioethanol production.          1792
  • Table 394. Microorganisms used in CBP for ethanol production from biomass lignocellulosic.             1793
  • Table 395. Ethanol consumption 2010-2035 (million litres).     1795
  • Table 396. Biogas feedstocks. 1800
  • Table 397. Existing and planned bio-LNG production plants.   1807
  • Table 398. Methods for capturing carbon dioxide from biogas.               1808
  • Table 399. Comparison of different Bio-H2 production pathways.        1812
  • Table 400. Markets and applications for biohydrogen. 1814
  • Table 401. Summary of gasification technologies.        1820
  • Table 402. Overview of hydrothermal cracking for advanced chemical recycling.        1825
  • Table 403. Applications of e-fuels, by type.       1829
  • Table 404. Overview of e-fuels.               1830
  • Table 405. Benefits of e-fuels. 1830
  • Table 406. eFuel production facilities, current and planned.    1835
  • Table 407. Main characteristics of different electrolyzer technologies.              1836
  • Table 408. Market challenges for e-fuels.          1840
  • Table 409. E-fuels companies. 1841
  • Table 410. Algae-derived biofuel producers.    1846
  • Table 411. Green ammonia projects (current and planned).     1849
  • Table 412. Blue ammonia projects.      1852
  • Table 413. Ammonia fuel cell technologies.     1853
  • Table 414. Market overview of green ammonia in marine fuel. 1854
  • Table 415. Summary of marine alternative fuels.           1854
  • Table 416. Estimated costs for different types of ammonia.     1856
  • Table 417. Main players in green ammonia.      1857
  • Table 418. Market overview for CO2 derived fuels.        1860
  • Table 419. Point source examples.       1862
  • Table 420. Advantages and disadvantages of DAC.       1866
  • Table 421. Companies developing airflow equipment integration with DAC.   1872
  • Table 422. Companies developing Passive Direct Air Capture (PDAC) technologies.  1872
  • Table 423. Companies developing regeneration methods for DAC technologies.          1873
  • Table 424. DAC companies and technologies. 1874
  • Table 425. DAC technology developers and production.            1876
  • Table 426. DAC projects in development.          1879
  • Table 427. Markets for DAC.     1880
  • Table 428. Costs summary for DAC.     1881
  • Table 429. Cost estimates of DAC.        1884
  • Table 430. Challenges for DAC technology.      1886
  • Table 431. DAC companies and technologies. 1886
  • Table 432. Market overview for CO2 derived fuels.        1888
  • Table 433. Main production routes and processes for manufacturing fuels from captured carbon dioxide.     1891
  • Table 434. CO₂-derived fuels projects. 1892
  • Table 435. Thermochemical methods to produce methanol from CO2.             1896
  • Table 436. pilot plants for CO2-to-methanol conversion.          1899
  • Table 437. Microalgae products and prices.     1901
  • Table 438. Main Solar-Driven CO2 Conversion Approaches.    1902
  • Table 439. Market challenges for CO2 derived fuels.    1903
  • Table 440. Companies in CO2-derived fuel products.  1904
  • Table 441. Typical composition and physicochemical properties reported for bio-oils and heavy petroleum-derived oils.      1908
  • Table 442. Properties and characteristics of pyrolysis liquids derived from biomass versus a fuel oil.                1908
  • Table 443. Main techniques used to upgrade bio-oil into higher-quality fuels. 1909
  • Table 444. Markets and applications for bio-oil.             1911
  • Table 445. Bio-oil producers.    1912
  • Table 446. Key resource recovery technologies              1914
  • Table 447. Markets and end uses for refuse-derived fuels (RDF).           1915
  • Table 448. Granbio Nanocellulose Processes. 1983
  • Table 449. Key factors driving adoption of green electronics.  2073
  • Table 450. Key circular economy strategies for electronics.    2075
  • Table 451. Regulations pertaining to green electronics.             2077
  • Table 452. Companies developing bio-based batteries for application in sustainable electronics.      2078
  • Table 453. Benefits of Green Electronics Manufacturing           2080
  • Table 454. Challenges in adopting Green Electronics manufacturing. 2082
  • Table 455. Major chipmakers' renewable energy road maps.   2086
  • Table 456. Energy efficiency in sustainable electronics manufacturing.            2086
  • Table 457. Composition of plastic waste streams.        2089
  • Table 458. Comparison of mechanical and advanced chemical recycling.      2090
  • Table 459. Example chemically recycled plastic products.      2091
  • Table 460. Bio-based and non-toxic materials in sustainable electronics.       2092
  • Table 461. Key focus areas for enabling greener and ethically responsible electronics supply chains.               2094
  • Table 462. Sustainability programs and disclosure from major electronics brands.     2097
  • Table 463. PCB manufacturing process.            2100
  • Table 464. Challenges in PCB manufacturing. 2100
  • Table 465. 3D PCB manufacturing.       2103
  • Table 466.  Comparison of some sustainable PCB alternatives against conventional options in terms of key performance factors.   2104
  • Table 467. Sustainable PCB supply chain.         2105
  • Table 468. Key areas where the PCB industry can improve sustainability.        2105
  • Table 469. Improving sustainability of PCB design.       2107
  • Table 470. PCB design options for sustainability.          2108
  • Table 471.  Sustainability benefits and challenges associated with 3D printing.            2109
  • Table 472. Conductive ink producers.  2112
  • Table 473.  Green and lead-free solder companies.      2114
  • Table 474. Biodegradable substrates for PCBs.              2114
  • Table 475. Overview of mycelium fibers-description, properties, drawbacks and applications.            2116
  • Table 476. Application of lignin in composites.               2117
  • Table 477. Properties of lignins and their applications.               2118
  • Table 478. Properties of flexible electronics‐cellulose nanofiber film (nanopaper).     2120
  • Table 479. Companies developing cellulose nanofibers for electronics.           2120
  • Table 480. Commercially available PHAs.         2123
  • Table 481. Main limitations of the FR4 material system used for manufacturing printed circuit boards (PCBs).                2125
  • Table 482. Halogen-free FR4 companies.          2127
  • Table 483. Properties of biobased PCBs.            2128
  • Table 484. Applications of flexible (bio) polyimide PCBs.           2129
  • Table 485. Main patterning and metallization steps in PCB fabrication and sustainable options.          2132
  • Table 486. Sustainability issues with conventional metallization processes.  2132
  • Table 487. Benefits of print-and-plate. 2134
  • Table 488. Sustainable alternative options to standard plating resists used in printed circuit board (PCB) fabrication.       2137
  • Table 489. Applications for laser induced forward transfer       2138
  • Table 490. Copper versus silver inks in laser-induced forward transfer (LIFT) for electronics fabrication.        2139
  • Table 491. Approaches for in-situ oxidation prevention.             2139
  • Table 492. Market readiness and maturity of different lead-free solders and electrically conductive adhesives (ECAs) for electronics manufacturing. 2141
  • Table 493. Advantages of green electroless plating.     2142
  • Table 494. Comparison of component attachment materials. 2145
  • Table 495. Comparison between sustainable and conventional component attachment materials for printed circuit boards   2146
  • Table 496. Comparison between the SMAs and SMPs.               2149
  • Table 497. Comparison of conductive biopolymers versus conventional materials for printed circuit board fabrication.       2151
  • Table 498. Comparison of curing and reflow processes used for attaching components in electronics assembly.                2151
  • Table 499. Low temperature solder alloys.        2152
  • Table 500. Thermally sensitive substrate materials.    2153
  • Table 501. Limitations of existing IC production.            2158
  • Table 502. Strategies for improving sustainability in integrated circuit (IC) manufacturing.     2158
  • Table 503. Comparison of oxidation methods and level of sustainability.         2161
  • Table 504. Stage of commercialization for oxides.        2162
  • Table 505. Alternative doping techniques.         2165
  • Table 506.  Metal content mg / Kg in Printed Circuit Boards (PCBs) from waste desktop computers.  2172
  • Table 507. Chemical recycling methods for handling electronic waste.             2173
  • Table 508.  Electrochemical processes for recycling metals from electronic waste    2173
  • Table 509. Thermal recycling processes for electronic waste. 2174
  • Table 510. Global PCB revenues 2018-2035 (billions USD), by substrate types.             2175
  • Table 511. Global sustainable PCB revenues 2018-2035, by type (millions USD).         2176
  • Table 512. Global sustainable ICs revenues 2018-2035, by type (millions USD).           2179
  • Table 513. Oji Holdings CNF products.                2211
  • Table 514. Global market revenues for bio-based adhesives & sealants, by types,  2018-2035 (millions USD).                2240
  • Table 515. Global market revenues for bio-based adhesives & sealants, by market,  2018-2035 (millions USD).                2241

 

List of Figures

  • Figure 1. Schematic of biorefinery processes. 108
  • Figure 2. Global production of starch for biobased chemicals and intermediates, 2018-2035 (million metric tonnes).               113
  • Figure 3. Global production of biobased lysine, 2018-2035 (metric tonnes).    115
  • Figure 4. Global glucose production for bio-based chemicals and intermediates 2018-2035 (million metric tonnes).               116
  • Figure 5. Global production volumes of bio-HMDA, 2018 to 2035 in metric tonnes.     118
  • Figure 6. Global production of bio-based DN5, 2018-2035 (metric tonnes).     120
  • Figure 7. Global production of bio-based isosorbide, 2018-2035 (metric tonnes).        121
  • Figure 8. L-lactic acid (L-LA) production, 2018-2035 (metric tonnes).  123
  • Figure 9. Global lactide production, 2018-2035 (metric tonnes).           124
  • Figure 10. Global production of bio-itaconic acid, 2018-2035 (metric tonnes).               125
  • Figure 11. Global production of 3-HP,  2018-2035 (metric tonnes).       127
  • Figure 12. Global production of bio-based acrylic acid,  2018-2035 (metric tonnes).   128
  • Figure 13. Global production of bio-based 1,3-Propanediol (1,3-PDO), 2018-2035 (metric tonnes).    130
  • Figure 14. Global production of bio-based Succinic acid, 2018-2035 (metric tonnes).               132
  • Figure 15. Global production of 1,4-Butanediol (BDO), 2018-2035 (metric tonnes).     133
  • Figure 16. Global production of bio-based tetrahydrofuran (THF), 2018-2035 (metric tonnes).               135
  • Figure 17. Overview of Toray process.  136
  • Figure 18. Global production of bio-based caprolactam, 2018-2035 (metric tonnes). 138
  • Figure 19. Global production of bio-based isobutanol, 2018-2035 (metric tonnes).     140
  • Figure 20. Global production of bio-based p-xylene, 2018-2035 (metric tonnes).          141
  • Figure 21. Global production of biobased terephthalic acid (TPA), 2018-2035 (metric tonnes).              143
  • Figure 22. Global production of biobased 1,3 Proppanediol, 2018-2035 (metric tonnes).          145
  • Figure 23. Global production of biobased MEG, 2018-2035 (metric tonnes).   146
  • Figure 24. Global production of biobased ethanol, 2018-2035 (million metric tonnes).              148
  • Figure 25. Global production of biobased ethylene, 2018-2035 (million metric tonnes).            149
  • Figure 26. Global production of biobased propylene, 2018-2035 (metric tonnes).        151
  • Figure 27. Global production of biobased vinyl chloride, 2018-2035 (metric tonnes).  152
  • Figure 28. Global production of bio-based Methly methacrylate, 2018-2035 (metric tonnes). 154
  • Figure 29. Global production of biobased aniline, 2018-2035 (metric tonnes).               156
  • Figure 30. Global production of biobased fructose, 2018-2035 (metric tonnes).            156
  • Figure 31. Global production of biobased 5-Hydroxymethylfurfural (5-HMF), 2018-2035 (metric tonnes).        158
  • Figure 32. Global production of biobased 5-(Chloromethyl)furfural (CMF), 2018-2035 (metric tonnes).            159
  • Figure 33. Global production of biobased Levulinic acid, 2018-2035 (metric tonnes). 160
  • Figure 34. Global production of biobased FDME, 2018-2035 (metric tonnes). 162
  • Figure 35. Global production of biobased Furan-2,5-dicarboxylic acid (FDCA), 2018-2035 (metric tonnes).    163
  • Figure 36. Global production projections for bio-based levoglucosenone from 2018 to 2035 in metric tonnes:                164
  • Figure 37. Global production of hemicellulose, 2018-2035 (metric tonnes).    166
  • Figure 38. Global production of biobased furfural, 2018-2035 (metric tonnes).              167
  • Figure 39. Global production of biobased furfuryl alcohol, 2018-2035 (metric tonnes).              168
  • Figure 40. Schematic of WISA plywood home. 172
  • Figure 41. Global production of biobased lignin, 2018-2035 (metric tonnes).  174
  • Figure 42. Global production of biobased glycerol, 2018-2035 (metric tonnes).             176
  • Figure 43. Global production of Bio-MPG, 2018-2035 (metric tonnes).               178
  • Figure 44. Global production of biobased ECH, 2018-2035 (metric tonnes).    179
  • Figure 45. Global production of biobased fatty acids, 2018-2035 (million metric tonnes).        180
  • Figure 46. Global production of biobased sebacic acid, 2018-2035 (metric tonnes).   182
  • Figure 47. Global production of biobased 11-Aminoundecanoic acid (11-AA), 2018-2035 (metric tonnes).     183
  • Figure 48. Global production of biobased Dodecanedioic acid (DDDA), 2018-2035 (metric tonnes).  185
  • Figure 49. Global production of biobased Pentamethylene diisocyanate, 2018-2035 (metric tonnes).              186
  • Figure 50. Global production of biobased casein, 2018-2035 (metric tonnes).                188
  • Figure 51. Global production of food waste for biochemicals, 2018-2035 (million metric tonnes).       190
  • Figure 52. Global production of agricultural waste for biochemicals, 2018-2035 (million metric tonnes).        191
  • Figure 53. Global production of forestry waste for biochemicals, 2018-2035 (million metric tonnes). 192
  • Figure 54. Global production of aquaculture/fishing waste for biochemicals, 2018-2035 (million metric tonnes).                193
  • Figure 55. Global production of municipal solid waste for biochemicals, 2018-2035 (million metric tonnes). 194
  • Figure 56. Global production of waste oils for biochemicals, 2018-2035 (million metric tonnes).         195
  • Figure 57. Global microalgae production, 2018-2035 (million metric tonnes). 197
  • Figure 58. Global macroalgae production, 2018-2035 (million metric tonnes).               198
  • Figure 59. Global production of biogas, 2018-2035 (billion m3).             201
  • Figure 60. Global production of syngas, 2018-2035 (billion m3).            203
  • Figure 61. formicobio™ technology.      221
  • Figure 62. Domsjö process.      225
  • Figure 63.  TMP-Bio Process.    230
  • Figure 64. Lignin gel.     248
  • Figure 65. BioFlex process.       251
  • Figure 66. LX Process. 252
  • Figure 67. METNIN™ Lignin refining technology.              256
  • Figure 68. Enfinity cellulosic ethanol technology process.        262
  • Figure 69.  Precision Photosynthesis™ technology.       264
  • Figure 70. Fabric consisting of 70 per cent wool and 30 per cent Qmilk.            265
  • Figure 71. UPM biorefinery process.     274
  • Figure 72. The Proesa® Process.             276
  • Figure 73. Goldilocks process and applications.            277
  • Figure 74.  Coca-Cola PlantBottle®.     280
  • Figure 75. Interrelationship between conventional, bio-based and biodegradable plastics.    280
  • Figure 76. Polylactic acid (Bio-PLA) production 2019-2035 (1,000 tonnes).      289
  • Figure 77. Polyethylene terephthalate (Bio-PET) production 2019-2035 (1,000 tonnes)              291
  • Figure 78. Polytrimethylene terephthalate (PTT) production 2019-2035 (1,000 tonnes).             292
  • Figure 79. Production capacities of Polyethylene furanoate (PEF) to 2025.       295
  • Figure 80. Polyethylene furanoate (Bio-PEF) production 2019-2035 (1,000 tonnes).     295
  • Figure 81. Polyamides (Bio-PA) production 2019-2035 (1,000 tonnes).               298
  • Figure 82. Poly(butylene adipate-co-terephthalate) (Bio-PBAT) production 2019-2035 (1,000 tonnes).              299
  • Figure 83. Polybutylene succinate (PBS) production 2019-2035 (1,000 tonnes).            301
  • Figure 84. Polyethylene (Bio-PE) production 2019-2035 (1,000 tonnes).             303
  • Figure 85. Polypropylene (Bio-PP) production capacities 2019-2035 (1,000 tonnes).   304
  • Figure 86. PHA family. 307
  • Figure 88. TEM image of cellulose nanocrystals.            321
  • Figure 89. CNC preparation.     321
  • Figure 90. Extracting CNC from trees.  322
  • Figure 91. CNC slurry.  324
  • Figure 92. CNF gel.        327
  • Figure 93. Bacterial nanocellulose shapes        332
  • Figure 94. BLOOM masterbatch from Algix.      337
  • Figure 95. Typical structure of mycelium-based foam.               339
  • Figure 96. Commercial mycelium composite construction materials. 340
  • Figure 97. Global production capacities for bioplastics by regionn 2019-2035, 1,000 tonnes. 342
  • Figure 98. Global production capacities for bioplastics by end user market 2019-2035, 1,000 tonnes.              346
  • Figure 99. PHA bioplastics products.   348
  • Figure 100. The global market for biobased and biodegradable plastics for flexible packaging 2019–2033 (‘000 tonnes).               351
  • Figure 101. Production volumes for bioplastics for rigid packaging, 2019–2033 (‘000 tonnes).               353
  • Figure 102. Global production for biobased and biodegradable plastics in consumer products 2019-2035, in 1,000 tonnes.   354
  • Figure 103. Global production capacities for biobased and biodegradable plastics in automotive 2019-2035, in 1,000 tonnes.   356
  • Figure 104. Global production volumes for biobased and biodegradable plastics in building and construction 2019-2035, in 1,000 tonnes.     357
  • Figure 105. Global production volumes for biobased and biodegradable plastics in textiles 2019-2035, in 1,000 tonnes.                360
  • Figure 106. Global production volumes for biobased and biodegradable plastics in electronics 2019-2035, in 1,000 tonnes.   361
  • Figure 107. Biodegradable mulch films.             362
  • Figure 108. Global production volulmes for biobased and biodegradable plastics in agriculture 2019-2035, in 1,000 tonnes.   362
  • Figure 109. High purity lignin.   363
  • Figure 110. Lignocellulose architecture.            364
  • Figure 111. Extraction processes to separate lignin from lignocellulosic biomass and corresponding technical lignins. 365
  • Figure 112. The lignocellulose biorefinery.        370
  • Figure 113. LignoBoost process.             374
  • Figure 114. LignoForce system for lignin recovery from black liquor.   375
  • Figure 115. Sequential liquid-lignin recovery and purification (SLPR) system. 376
  • Figure 116. A-Recovery+ chemical recovery concept. 377
  • Figure 117.  Schematic of a biorefinery for production of carriers and chemicals.        379
  • Figure 118. Organosolv lignin.  381
  • Figure 119. Hydrolytic lignin powder.   382
  • Figure 120. Estimated consumption of lignin, 2019-2035 (000 MT).      385
  • Figure 121. Pluumo.      392
  • Figure 122. ANDRITZ Lignin Recovery process.               401
  • Figure 123. Anpoly cellulose nanofiber hydrogel.           403
  • Figure 124. MEDICELLU™.          403
  • Figure 125. Asahi Kasei CNF fabric sheet.         411
  • Figure 126. Properties of Asahi Kasei cellulose nanofiber nonwoven fabric.    412
  • Figure 127. CNF nonwoven fabric.         413
  • Figure 128. Roof frame made of natural fiber.  421
  • Figure 129. Beyond Leather Materials product.              425
  • Figure 130. BIOLO e-commerce mailer bag made from PHA.  431
  • Figure 131. Reusable and recyclable foodservice cups, lids, and straws from Joinease Hong Kong Ltd., made with plant-based NuPlastiQ BioPolymer from BioLogiQ, Inc.   432
  • Figure 132. Fiber-based screw cap.      443
  • Figure 133. formicobio™ technology.    462
  • Figure 134. nanoforest-S.          464
  • Figure 135. nanoforest-PDP.    464
  • Figure 136. nanoforest-MB.      465
  • Figure 137. sunliquid® production process.      472
  • Figure 138. CuanSave film.       475
  • Figure 139. Celish.         476
  • Figure 140. Trunk lid incorporating CNF.            478
  • Figure 141. ELLEX products.     479
  • Figure 142. CNF-reinforced PP compounds.    480
  • Figure 143. Kirekira! toilet wipes.           480
  • Figure 144. Color CNF. 481
  • Figure 145. Rheocrysta spray.  486
  • Figure 146. DKS CNF products.               487
  • Figure 147. Domsjö process.    488
  • Figure 148. Mushroom leather.               498
  • Figure 149. CNF based on citrus peel. 499
  • Figure 150. Citrus cellulose nanofiber.               499
  • Figure 151. Filler Bank CNC products. 510
  • Figure 152. Fibers on kapok tree and after processing.               512
  • Figure 153.  TMP-Bio Process. 514
  • Figure 154. Flow chart of the lignocellulose biorefinery pilot plant in Leuna.    515
  • Figure 155. Water-repellent cellulose. 517
  • Figure 156. Cellulose Nanofiber (CNF) composite with polyethylene (PE).        518
  • Figure 157. PHA production process.   519
  • Figure 158. CNF products from Furukawa Electric.      520
  • Figure 159. AVAPTM process.  530
  • Figure 160. GreenPower+™ process.    530
  • Figure 161. Cutlery samples (spoon, knife, fork) made of nano cellulose and biodegradable plastic composite materials.          533
  • Figure 162. Non-aqueous CNF dispersion "Senaf" (Photo shows 5% of plasticizer).    535
  • Figure 163. CNF gel.      542
  • Figure 164. Block nanocellulose material.        542
  • Figure 165. CNF products developed by Hokuetsu.      542
  • Figure 166. Marine leather products.    545
  • Figure 167. Inner Mettle Milk products.               549
  • Figure 168. Kami Shoji CNF products. 559
  • Figure 169. Dual Graft System.               562
  • Figure 170. Engine cover utilizing Kao CNF composite resins. 563
  • Figure 171. Acrylic resin blended with modified CNF (fluid) and its molded product (transparent film), and image obtained with AFM (CNF 10wt% blended).         563
  • Figure 172. Kel Labs yarn.          564
  • Figure 173. 0.3% aqueous dispersion of sulfated esterified CNF and dried transparent film (front side).           568
  • Figure 174. Lignin gel.  576
  • Figure 175. BioFlex process.     579
  • Figure 176. Nike Algae Ink graphic tee. 581
  • Figure 177. LX Process.               584
  • Figure 178. Made of Air's HexChar panels.        587
  • Figure 179. TransLeather.          588
  • Figure 180. Chitin nanofiber product.   592
  • Figure 181. Marusumi Paper cellulose nanofiber products.      594
  • Figure 182. FibriMa cellulose nanofiber powder.            594
  • Figure 183. METNIN™ Lignin refining technology.           598
  • Figure 184. IPA synthesis method.         602
  • Figure 185. MOGU-Wave panels.           605
  • Figure 186. CNF slurries.            606
  • Figure 187. Range of CNF products.      606
  • Figure 188. Reishi.         610
  • Figure 189. Compostable water pod.    626
  • Figure 190. Leather made from leaves.               627
  • Figure 191. Nike shoe with beLEAF™.   627
  • Figure 192. CNF clear sheets.  637
  • Figure 193. Oji Holdings CNF polycarbonate product. 638
  • Figure 194. Enfinity cellulosic ethanol technology process.     652
  • Figure 195. Fabric consisting of 70 per cent wool and 30 per cent Qmilk.          656
  • Figure 196. XCNF.          663
  • Figure 197: Plantrose process. 664
  • Figure 198. LOVR hemp leather.             667
  • Figure 199. CNF insulation flat plates. 669
  • Figure 200. Hansa lignin.            675
  • Figure 201. Manufacturing process for STARCEL.          679
  • Figure 202. Manufacturing process for STARCEL.          683
  • Figure 203. 3D printed cellulose shoe. 690
  • Figure 204. Lyocell process.     693
  • Figure 205. North Face Spiber Moon Parka.      697
  • Figure 206. PANGAIA LAB NXT GEN Hoodie.    698
  • Figure 207. Spider silk production.        699
  • Figure 208. Stora Enso lignin battery materials.              703
  • Figure 209. 2 wt.% CNF suspension.   704
  • Figure 210. BiNFi-s Dry Powder.             705
  • Figure 211. BiNFi-s Dry Powder and Propylene (PP) Complex Pellet.   705
  • Figure 212. Silk nanofiber (right) and cocoon of raw material. 706
  • Figure 213. Sulapac cosmetics containers.      707
  • Figure 214.  Sulzer equipment for PLA polymerization processing.       708
  • Figure 215. Solid Novolac Type lignin modified phenolic resins.             709
  • Figure 216. Teijin bioplastic film for door handles.         718
  • Figure 217. Corbion FDCA production process.              725
  • Figure 218. Comparison of weight reduction effect using CNF.              726
  • Figure 219. CNF resin products.             730
  • Figure 220. UPM biorefinery process.  731
  • Figure 221. Vegea production process.               736
  • Figure 222. The Proesa® Process.          738
  • Figure 223. Goldilocks process and applications.         739
  • Figure 224. Visolis’ Hybrid Bio-Thermocatalytic Process.         742
  • Figure 225. HefCel-coated wood (left) and untreated wood (right) after 30 seconds flame test.            744
  • Figure 226. Worn Again products.          749
  • Figure 227. Zelfo Technology GmbH CNF production process.               753
  • Figure 228. Absolut natural based fiber bottle cap.       763
  • Figure 229. Adidas algae-ink tees.         763
  • Figure 230. Carlsberg natural fiber beer bottle.               764
  • Figure 231. Miratex watch bands.          764
  • Figure 232. Adidas Made with Nature Ultraboost 22.    764
  • Figure 233. PUMA RE:SUEDE sneaker  765
  • Figure 234. Types of natural fibers.       769
  • Figure 235.  Luffa cylindrica fiber.         772
  • Figure 236. Pineapple fiber.      782
  • Figure 237. Typical structure of mycelium-based foam.            788
  • Figure 238. Commercial mycelium composite construction materials.             788
  • Figure 239. SEM image of microfibrillated cellulose.   795
  • Figure 240. Hemp fibers combined with PP in car door panel. 807
  • Figure 241. Car door produced from Hemp fiber.           811
  • Figure 242. Natural fiber composites in the BMW M4 GT4 racing car.  813
  • Figure 243. Mercedes-Benz components containing natural fibers.     813
  • Figure 244. SWOT analysis: natural fibers in the automotive market.  815
  • Figure 245. SWOT analysis: natural fibers in the packaging market.     818
  • Figure 246. SWOT analysis: natural fibers in the appliances market.   820
  • Figure 247. SWOT analysis: natural fibers in the appliances market.   823
  • Figure 248. SWOT analysis: natural fibers in the consumer electronics market.            826
  • Figure 249. SWOT analysis: natural fibers in the furniture market.        828
  • Figure 250. Global market for natural fiber based plastics, 2018-2035, by market (Billion USD).           831
  • Figure 251. Global market for natural fiber based plastics, 2018-2035, by material type (Billion USD).              833
  • Figure 252. Global market for natural fiber based plastics, 2018-2035, by plastic type (Billion USD).  835
  • Figure 253. Global market for natural fiber based plastics, 2018-2035, by region (Billion USD).             837
  • Figure 254. Asahi Kasei CNF fabric sheet.         842
  • Figure 255. Properties of Asahi Kasei cellulose nanofiber nonwoven fabric.    842
  • Figure 256. CNF nonwoven fabric.         843
  • Figure 257. Roof frame made of natural fiber.  845
  • Figure 258.Tras Rei chair incorporating ampliTex fibers.            847
  • Figure 259. Natural fibres racing seat. 848
  • Figure 260. Porche Cayman GT4 Clubsport incorporating BComp flax fibers. 848
  • Figure 261. Fiber-based screw cap.      852
  • Figure 262. Cellugy materials. 857
  • Figure 263. CuanSave film.       860
  • Figure 264. Trunk lid incorporating CNF.            861
  • Figure 265. ELLEX products.     863
  • Figure 266. CNF-reinforced PP compounds.    863
  • Figure 267. Kirekira! toilet wipes.           863
  • Figure 268. DKS CNF products.               867
  • Figure 269. Cellulose Nanofiber (CNF) composite with polyethylene (PE).        869
  • Figure 270. CNF products from Furukawa Electric.      870
  • Figure 271. Cutlery samples (spoon, knife, fork) made of nano cellulose and biodegradable plastic composite materials.          874
  • Figure 272. CNF gel.      875
  • Figure 273. Block nanocellulose material.        876
  • Figure 274. CNF products developed by Hokuetsu.      876
  • Figure 275. Dual Graft System.               877
  • Figure 276. Engine cover utilizing Kao CNF composite resins. 878
  • Figure 277. Acrylic resin blended with modified CNF (fluid) and its molded product (transparent film), and image obtained with AFM (CNF 10wt% blended).         879
  • Figure 278. Cellulomix production process.     882
  • Figure 279. Nanobase versus conventional products. 882
  • Figure 280. MOGU-Wave panels.           884
  • Figure 281. CNF clear sheets.  889
  • Figure 282. Oji Holdings CNF polycarbonate product. 890
  • Figure 283. A vacuum cleaner part made of cellulose fiber (left) and the assembled vacuum cleaner.              891
  • Figure 284. XCNF.          894
  • Figure 285. Manufacturing process for STARCEL.          896
  • Figure 286. 2 wt.% CNF suspension.   898
  • Figure 287. Sulapac cosmetics containers.      900
  • Figure 288. Comparison of weight reduction effect using CNF.              903
  • Figure 289. CNF resin products.             905
  • Figure 290. Global revenues in sustainable construction materials, by materials type, 2020-2035 (millions USD).                912
  • Figure 291. Global revenues in sustainable construction materials, by market, 2020-2035 (millions USD).     915
  • Figure 292. Luum Temple, constructed from Bamboo.               916
  • Figure 293. Typical structure of mycelium-based foam.            920
  • Figure 294. Commercial mycelium composite construction materials.             920
  • Figure 295. Self-healing concrete test study with cracked concrete (left) and self-healed concrete after 28 days (right).  924
  • Figure 296. Self-healing bacteria crack filler for concrete.        925
  • Figure 297. Self-healing bio concrete. 926
  • Figure 298. Microalgae based biocement masonry bloc.           928
  • Figure 299. Classification of aerogels. 935
  • Figure 300. Flower resting on a piece of silica aerogel suspended in mid air by the flame of a bunsen burner.                937
  • Figure 301. Monolithic aerogel.               939
  • Figure 302. Aerogel granules.   940
  • Figure 303. Internal aerogel granule applications.         941
  • Figure 304. 3D printed aerogels.             943
  • Figure 305. Lignin-based aerogels.        953
  • Figure 306. Fabrication routes for starch-based aerogels.        954
  • Figure 307. Graphene aerogel. 958
  • Figure 308. Schematic of CCUS in cement sector.        963
  • Figure 309. Carbon8 Systems’ ACT process.    968
  • Figure 310. CO2 utilization in the Carbon Cure process.            968
  • Figure 311. Share of (a) production, (b) energy consumption and (c) CO2 emissions from different steel making routes. 974
  • Figure 312. Transition to hydrogen-based production. 974
  • Figure 313. CO2 emissions from steelmaking (tCO2/ton crude steel). 975
  • Figure 314. CO2 emissions of different process routes for liquid steel.              978
  • Figure 315. Hydrogen Direct Reduced Iron (DRI) process.         981
  • Figure 316. Molten oxide electrolysis process.                983
  • Figure 317. Steelmaking with CCS.       985
  • Figure 318. Flash ironmaking process. 989
  • Figure 319. Hydrogen Plasma Iron Ore Reduction process.      990
  • Figure 320. Aizawa self-healing concrete.         1004
  • Figure 321. ArcelorMittal decarbonization strategy.     1014
  • Figure 322. Thermal Conductivity Performance of ArmaGel HT.            1016
  • Figure 323. SLENTEX® roll (piece).         1019
  • Figure 324. Neustark modular plant.    1071
  • Figure 325. HIP AERO paint.      1078
  • Figure 326. Sunthru Aerogel pane.         1088
  • Figure 327. Quartzene®.             1090
  • Figure 328. Schematic of HyREX technology.  1096
  • Figure 329. EAF Quantum.         1097
  • Figure 330. CNF insulation flat plates. 1100
  • Figure 331. Global packaging market by material type.               1113
  • Figure 332. Routes for synthesizing polymers from fossil-based and bio-based resources.     1123
  • Figure 333. PHA bioplastic packaging products.             1126
  • Figure 334. Production capacities of Polyethylene furanoate (PEF) to 2025.    1136
  • Figure 335. Production capacities of Polyethylene furanoate (PEF) to 2025.    1143
  • Figure 336. Polyethylene furanoate (Bio-PEF) production capacities 2019-2035 (1,000 tons). 1145
  • Figure 337. PHA family.              1151
  • Figure 338. PHA production capacities 2019-2035 (1,000 tons).            1162
  • Figure 339. Schematic diagram of partial molecular structure of cellulose chain with numbering for carbon atoms and n= number of cellobiose repeating unit.      1164
  • Figure 340. Scale of cellulose materials.           1165
  • Figure 341. Organization and morphology of cellulose synthesizing terminal complexes (TCs) in different organisms.        1166
  • Figure 342. Biosynthesis of (a) wood cellulose (b) tunicate cellulose and (c) BC.           1167
  • Figure 343. Cellulose microfibrils and nanofibrils.        1169
  • Figure 344. TEM image of cellulose nanocrystals.         1170
  • Figure 345. CNC slurry.               1171
  • Figure 346. CNF gel.      1172
  • Figure 347. Bacterial nanocellulose shapes     1179
  • Figure 348. BLOOM masterbatch from Algix.   1185
  • Figure 349. Typical structure of mycelium-based foam.            1188
  • Figure 350. Commercial mycelium composite construction materials.             1188
  • Figure 351. Types of bio-based materials used for antimicrobial food packaging application. 1202
  • Figure 352. Schematic of gas barrier properties of nanoclay film.         1207
  • Figure 353. Hefcel-coated wood (left) and untreated wood (right) after 30 seconds flame test.             1220
  • Figure 354. Applications for CO2.          1224
  • Figure 355. Life cycle of CO2-derived products and services. 1226
  • Figure 356.  Conversion pathways for CO2-derived polymeric materials          1227
  • Figure 357. Bioplastics for flexible packaging by bioplastic material type, 2019–2033 (‘000 tonnes).  1231
  • Figure 358. Bioplastics for rigid packaging by bioplastic material type, 2019–2033 (‘000 tonnes).        1233
  • Figure 359. Market revenues for bio-based coatings, 2018-2035 (billions USD), conservative estimate.          1234
  • Figure 360. Pluumo.      1238
  • Figure 361. Anpoly cellulose nanofiber hydrogel.           1245
  • Figure 362. MEDICELLU™.          1245
  • Figure 363. Asahi Kasei CNF fabric sheet.         1252
  • Figure 364. Properties of Asahi Kasei cellulose nanofiber nonwoven fabric.    1253
  • Figure 365. CNF nonwoven fabric.         1254
  • Figure 366. Passionfruit wrapped in Xgo Circular packaging.   1259
  • Figure 367. BIOLO e-commerce mailer bag made from PHA.  1263
  • Figure 368. Reusable and recyclable foodservice cups, lids, and straws from Joinease Hong Kong Ltd., made with plant-based NuPlastiQ BioPolymer from BioLogiQ, Inc.   1265
  • Figure 369. Fiber-based screw cap.      1273
  • Figure 370. CuanSave film.       1287
  • Figure 371. ELLEX products.     1289
  • Figure 372. CNF-reinforced PP compounds.    1290
  • Figure 373. Kirekira! toilet wipes.           1290
  • Figure 374. Rheocrysta spray.  1294
  • Figure 375. DKS CNF products.               1294
  • Figure 376. Photograph (a) and micrograph (b) of mineral/ MFC composite showing the high viscosity and fibrillar structure.           1305
  • Figure 377. PHA production process.   1310
  • Figure 378. AVAPTM process.  1314
  • Figure 379. GreenPower+™ process.    1315
  • Figure 380. Cutlery samples (spoon, knife, fork) made of nano cellulose and biodegradable plastic composite materials.          1317
  • Figure 381. CNF gel.      1319
  • Figure 382. Block nanocellulose material.        1320
  • Figure 383. CNF products developed by Hokuetsu.      1320
  • Figure 384. Kami Shoji CNF products. 1326
  • Figure 385. IPA synthesis method.         1343
  • Figure 386. Compostable water pod.    1352
  • Figure 387. XCNF.          1367
  • Figure 388: Innventia AB movable nanocellulose demo plant. 1368
  • Figure 389. Shellworks packaging containers. 1373
  • Figure 390. Thales packaging incorporating Fibrease. 1379
  • Figure 391. Sulapac cosmetics containers.      1381
  • Figure 392.  Sulzer equipment for PLA polymerization processing.       1382
  • Figure 393. Silver / CNF composite dispersions.            1388
  • Figure 394. CNF/nanosilver powder.    1389
  • Figure 395. Corbion FDCA production process.              1390
  • Figure 396. UPM biorefinery process.  1392
  • Figure 397. Vegea production process.               1395
  • Figure 398. Worn Again products.          1399
  • Figure 399. S-CNF in powder form.       1400
  • Figure 400. AlgiKicks sneaker, made with the Algiknit biopolymer gel. 1411
  • Figure 401. Conceptual landscape of next-gen leather materials.        1412
  • Figure 402. Typical structure of mycelium-based foam.            1426
  • Figure 403. Hermès bag made of MycoWorks' mycelium leather.         1430
  • Figure 404. Ganni blazer made from bacterial cellulose.           1434
  • Figure 405. Bou Bag by GANNI and Modern Synthesis.               1435
  • Figure 406. Global revenues for bio-based textiles by type, 2018-2035 (millions USD).              1450
  • Figure 407. Global revenues for bio-based and sustainable textiles by end use market, 2018-2035 (millions USD).    1452
  • Figure 408. Beyond Leather Materials product.              1457
  • Figure 409. Treekind.    1459
  • Figure 410. Examples of Stella McCartney and Adidas products made using leather alternative Mylo.              1461
  • Figure 411. Mushroom leather.               1464
  • Figure 412. Ecovative Design Forager Hides.    1465
  • Figure 413. LUNA® leather.       1470
  • Figure 414. TransLeather.          1473
  • Figure 415. Reishi.         1479
  • Figure 416. AirCarbon Pellets and AirCarbon Leather. 1483
  • Figure 417. Leather made from leaves.               1488
  • Figure 418. Nike shoe with beLEAF™.   1488
  • Figure 419.  Persiskin leather.  1491
  • Figure 420. LOVR hemp leather.             1496
  • Figure 421. North Face Spiber Moon Parka.      1499
  • Figure 422. PANGAIA LAB NXT GEN Hoodie.    1500
  • Figure 423.  Ultrasuede headrest covers.           1502
  • Figure 424. Vegea production process.               1504
  • Figure 425. Schematic of production of powder coatings.         1514
  • Figure 426. Organization and morphology of cellulose synthesizing terminal complexes (TCs) in different organisms.        1517
  • Figure 427. PHA family.              1539
  • Figure 428: Schematic diagram of partial molecular structure of cellulose chain with numbering for carbon atoms and n= number of cellobiose repeating unit.      1543
  • Figure 429: Scale of cellulose materials.           1543
  • Figure 430. Nanocellulose preparation methods and resulting materials.        1544
  • Figure 431: Relationship between different kinds of nanocelluloses.  1546
  • Figure 432. SEM image of microfibrillated cellulose.   1548
  • Figure 433. Applications of cellulose nanofibers in paints and coatings.           1552
  • Figure 434: CNC slurry.               1556
  • Figure 435. Types of bio-based materials used for antimicrobial food packaging application. 1562
  • Figure 436. BLOOM masterbatch from Algix.   1568
  • Figure 437. Global market revenues for bio-based coatings by type, 2018-2035 (billions USD).             1572
  • Figure 438. Market revenues for bio-based coatings by market, 2018-2035 (billions USD), conservative estimate.                1574
  • Figure 439. Dulux Better Living Air Clean Bio-based.    1577
  • Figure 440. NCCTM Process.    1601
  • Figure 441. CNC produced at Tech Futures’ pilot plant; cloudy suspension (1 wt.%), gel-like (10 wt.%), flake-like crystals, and very fine powder. Product advantages include:   1602
  • Figure 442. Cellugy materials. 1603
  • Figure 443. EcoLine® 3690 (left) vs Solvent-Based Competitor Coating (right).               1608
  • Figure 444. Rheocrysta spray.  1614
  • Figure 445. DKS CNF products.               1615
  • Figure 446. Domsjö process.    1616
  • Figure 447. CNF gel.      1635
  • Figure 448. Block nanocellulose material.        1635
  • Figure 449. CNF products developed by Hokuetsu.      1636
  • Figure 450. VIVAPUR® MCC Spheres.   1642
  • Figure 451. BioFlex process.     1653
  • Figure 452. Marusumi Paper cellulose nanofiber products.      1655
  • Figure 453. Melodea CNC barrier coating packaging.  1658
  • Figure 454. Fluorene cellulose ® powder.           1677
  • Figure 455. XCNF.          1684
  • Figure 456. Plantrose process. 1685
  • Figure 457. Spider silk production.        1696
  • Figure 458. CNF dispersion and powder from Starlite. 1698
  • Figure 459. 2 wt.% CNF suspension.   1701
  • Figure 460. BiNFi-s Dry Powder.             1702
  • Figure 461. BiNFi-s Dry Powder and Propylene (PP) Complex Pellet.   1702
  • Figure 462. Silk nanofiber (right) and cocoon of raw material. 1703
  • Figure 463. traceless® hooks.   1705
  • Figure 464. HefCel-coated wood (left) and untreated wood (right) after 30 seconds flame test.            1708
  • Figure 465. Bio-based barrier bags prepared from Tempo-CNF coated bio-HDPE film.              1709
  • Figure 466. Bioalkyd products. 1713
  • Figure 467. Liquid biofuel production and consumption (in thousands of m3), 2000-2022.      1717
  • Figure 468. Distribution of global liquid biofuel production in 2022.     1718
  • Figure 469. Diesel and gasoline alternatives and blends.           1723
  • Figure 470. SWOT analysis for biofuels.              1724
  • Figure 471.  Schematic of a biorefinery for production of carriers and chemicals.        1735
  • Figure 472. Hydrolytic lignin powder.   1738
  • Figure 473. SWOT analysis for energy crops in biofuels.             1744
  • Figure 474. SWOT analysis for agricultural residues in biofuels.             1745
  • Figure 475. SWOT analysis for Manure, sewage sludge and organic waste in biofuels.               1747
  • Figure 476. SWOT analysis for forestry and wood waste in biofuels.    1749
  • Figure 477. Range of biomass cost by feedstock type. 1749
  • Figure 478. Regional production of biodiesel (billion litres).      1751
  • Figure 479. SWOT analysis for biodiesel.            1753
  • Figure 480. Flow chart for biodiesel production.             1757
  • Figure 481. Biodiesel (B20) average prices, current and historical, USD/litre. 1763
  • Figure 482. Global biodiesel consumption, 2010-2035 (M litres/year).               1765
  • Figure 483. SWOT analysis for renewable iesel.              1768
  • Figure 484. Global renewable diesel consumption, 2010-2035 (M litres/year).               1769
  • Figure 485. SWOT analysis for Bio-aviation fuel.            1772
  • Figure 486. Global bio-jet fuel consumption to 2019-2035 (Million litres/year).              1776
  • Figure 487. SWOT analysis for bio-naphtha.     1779
  • Figure 488. Bio-based naphtha production capacities, 2018-2035 (tonnes).   1783
  • Figure 489. SWOT analysis biomethanol.           1784
  • Figure 490. Renewable Methanol Production Processes from Different Feedstocks.  1785
  • Figure 491. Production of biomethane through anaerobic digestion and upgrading.    1787
  • Figure 492. Production of biomethane through biomass gasification and methanation.           1787
  • Figure 493. Production of biomethane through the Power to methane process.             1788
  • Figure 494. SWOT analysis for ethanol.               1790
  • Figure 495. Ethanol consumption 2010-2035 (million litres).   1795
  • Figure 496. Properties of petrol and biobutanol.             1797
  • Figure 497. Biobutanol production route.           1798
  • Figure 498. Biogas and biomethane pathways.               1800
  • Figure 499. Overview of biogas utilization.        1802
  • Figure 500. Biogas and biomethane pathways.               1803
  • Figure 501. Schematic overview of anaerobic digestion process for biomethane production. 1804
  • Figure 502. Schematic overview of biomass gasification for biomethane production. 1805
  • Figure 503. SWOT analysis for biogas. 1806
  • Figure 504. Total syngas market by product in MM Nm³/h of Syngas, 2021.      1810
  • Figure 505. SWOT analysis for biohydrogen.     1812
  • Figure 506. Waste plastic production pathways to (A) diesel and (B) gasoline 1818
  • Figure 507. Schematic for Pyrolysis of Scrap Tires.       1819
  • Figure 508. Used tires conversion process.       1820
  • Figure 509. Total syngas market by product in MM Nm³/h of Syngas, 2021.      1822
  • Figure 510. Overview of biogas utilization.        1824
  • Figure 511. Biogas and biomethane pathways.               1825
  • Figure 512. SWOT analysis for chemical recycling of biofuels. 1828
  • Figure 513. Process steps in the production of electrofuels.    1829
  • Figure 514. Mapping storage technologies according to performance characteristics.              1830
  • Figure 515. Production process for green hydrogen.     1832
  • Figure 516. SWOT analysis for E-fuels. 1833
  • Figure 517. E-liquids production routes.             1834
  • Figure 518. Fischer-Tropsch liquid e-fuel products.      1835
  • Figure 519. Resources required for liquid e-fuel production.    1835
  • Figure 520. Levelized cost and fuel-switching CO2 prices of e-fuels.   1839
  • Figure 521. Cost breakdown for e-fuels.             1841
  • Figure 522.  Pathways for algal biomass conversion to biofuels.            1843
  • Figure 523. SWOT analysis for algae-derived biofuels. 1844
  • Figure 524. Algal biomass conversion process for biofuel production.                1845
  • Figure 525. Classification and process technology according to carbon emission in ammonia production.    1848
  • Figure 526. Green ammonia production and use.          1849
  • Figure 527. Schematic of the Haber Bosch ammonia synthesis reaction.         1851
  • Figure 528. Schematic of hydrogen production via steam methane reformation.          1851
  • Figure 529. SWOT analysis for green ammonia.              1853
  • Figure 530. Estimated production cost of green ammonia.       1857
  • Figure 531. Projected annual ammonia production, million tons.          1858
  • Figure 532. CO2 capture and separation technology.  1861
  • Figure 533. Conversion route for CO2-derived fuels and chemical intermediates.       1862
  • Figure 534.  Conversion pathways for CO2-derived methane, methanol and diesel.    1863
  • Figure 535. SWOT analysis for biofuels from carbon capture.  1865
  • Figure 536. CO2 captured from air using liquid and solid sorbent DAC plants, storage, and reuse.      1866
  • Figure 537. Global CO2 capture from biomass and DAC in the Net Zero Scenario.      1867
  • Figure 538.  DAC technologies.               1869
  • Figure 539. Schematic of Climeworks DAC system.     1870
  • Figure 540. Climeworks’ first commercial direct air capture (DAC) plant, based in Hinwil, Switzerland.           1871
  • Figure 541.  Flow diagram for solid sorbent DAC.           1871
  • Figure 542. Direct air capture based on high temperature liquid sorbent by Carbon Engineering.         1872
  • Figure 543. Global capacity of direct air capture facilities.       1876
  • Figure 544. Global map of DAC and CCS plants.            1881
  • Figure 545. Schematic of costs of DAC technologies. 1883
  • Figure 546. DAC cost breakdown and comparison.      1884
  • Figure 547. Operating costs of generic liquid and solid-based DAC systems.  1886
  • Figure 548. Conversion route for CO2-derived fuels and chemical intermediates.       1891
  • Figure 549.  Conversion pathways for CO2-derived methane, methanol and diesel.    1892
  • Figure 550. CO2 feedstock for the production of e-methanol. 1899
  • Figure 551. Schematic illustration of (a) biophotosynthetic, (b) photothermal, (c) microbial-photoelectrochemical, (d) photosynthetic and photocatalytic (PS/PC), (e) photoelectrochemical (PEC), and (f) photovoltaic plus electrochemical (PV+EC) approaches for CO2.         1903
  • Figure 552. SWOT analysis: CO2 utilization in fuels.    1905
  • Figure 553. Audi synthetic fuels.            1906
  • Figure 554. Bio-oil upgrading/fractionation techniques.            1910
  • Figure 555. SWOT analysis for bio-oils.               1912
  • Figure 556. ANDRITZ Lignin Recovery process.               1923
  • Figure 557. ChemCyclingTM prototypes.           1929
  • Figure 558. ChemCycling circle by BASF.          1929
  • Figure 559. FBPO process          1941
  • Figure 560. Direct Air Capture Process.              1945
  • Figure 561. CRI process.             1947
  • Figure 562. Cassandra Oil  process.     1950
  • Figure 563. Colyser process.    1958
  • Figure 564. ECFORM electrolysis reactor schematic. 1962
  • Figure 565. Dioxycle modular electrolyzer.       1963
  • Figure 566. Domsjö process.    1965
  • Figure 567. FuelPositive system.           1977
  • Figure 568. INERATEC unit.       1994
  • Figure 569. Infinitree swing method.    1995
  • Figure 570. Audi/Krajete unit.  2001
  • Figure 571. Enfinity cellulosic ethanol technology process.     2028
  • Figure 572: Plantrose process. 2036
  • Figure 573. Sunfire process for Blue Crude production.              2053
  • Figure 574. Takavator. 2056
  • Figure 575. O12 Reactor.            2059
  • Figure 576. Sunglasses with lenses made from CO2-derived materials.            2060
  • Figure 577. CO2 made car part.              2060
  • Figure 578. The Velocys process.           2063
  • Figure 579. Goldilocks process and applications.         2066
  • Figure 580. The Proesa® Process.          2067
  • Figure 581. Closed-loop manufacturing.            2084
  • Figure 582. Sustainable supply chain for electronics. 2095
  • Figure 583. Flexible PCB.           2103
  • Figure 584. Vapor degreasing. 2107
  • Figure 585. Multi-layered PCB. 2108
  • Figure 586. 3D printed PCB.      2110
  • Figure 587. In-mold electronics prototype devices and products.         2111
  • Figure 588. Silver nanocomposite ink after sintering and resin bonding of discrete electronic components.  2113
  • Figure 589. Typical structure of mycelium-based foam.            2118
  • Figure 590. Flexible electronic substrate made from CNF.       2122
  • Figure 591. CNF composite.     2122
  • Figure 592. Oji CNF transparent sheets.             2122
  • Figure 593. Electronic components using cellulose nanofibers as insulating materials.           2123
  • Figure 594. BLOOM masterbatch from Algix.   2124
  • Figure 595. Dell's Concept Luna laptop.             2131
  • Figure 596.  Direct-write, precision dispensing, and 3D printing platform for 3D printed electronics. 2136
  • Figure 597. 3D printed circuit boards from Nano Dimension.  2137
  • Figure 598. Photonic sintering. 2137
  • Figure 599. Laser-induced forward transfer (LIFT).        2139
  • Figure 600. Material jetting 3d printing.               2145
  • Figure 601. Material jetting 3d printing product.              2145
  • Figure 602. The molecular mechanism of the shape memory effect under different stimuli.   2151
  • Figure 603. Supercooled Soldering™ Technology.          2155
  • Figure 604. Reflow soldering schematic.           2156
  • Figure 605. Schematic diagram of induction heating reflow.   2157
  • Figure 606. Fully-printed organic thin-film transistors and circuitry on one-micron-thick polymer films.          2162
  • Figure 607. Types of PCBs after dismantling waste computers and monitors. 2172
  • Figure 608. Global PCB revenues 2018-2035 (billions USD), by substrate types.           2177
  • Figure 609. Global sustainable PCB revenues 2018-2035, by type (millions USD).        2179
  • Figure 610. Global sustainable ICs revenues 2018-2035, by type (millions USD).          2181
  • Figure 611. Piezotech® FC.        2187
  • Figure 612. PowerCoat® paper.               2188
  • Figure 613. BeFC® biofuel cell and digital platform.      2189
  • Figure 614. DPP-360 machine. 2192
  • Figure 615. P-Flex® Flexible Circuit.     2194
  • Figure 616. Fairphone 4.             2196
  • Figure 617. In2tec’s fully recyclable flexible circuit board assembly.  2202
  •  Figure 618. C.L.A.D. system.   2203
  • Figure 619. Soluboard immersed in water.        2205
  • Figure 620. Infineon PCB before and after immersion. 2206
  • Figure 621. Nano OPS Nanoscale wafer printing system.          2209
  • Figure 622. Stora Enso lignin battery materials.              2219
  • Figure 623. 3D printed electronics.       2222
  • Figure 624. Tactotek IME device.            2223
  • Figure 625. TactoTek® IMSE® SiP - System In Package.                2224
  • Figure 626. Verde Bio-based resins.     2227
  • Figure 627. Global market revenues for bio-based adhesives & sealants, by types,  2018-2035 (millions USD).                2242
  • Figure 628. Global market revenues for bio-based adhesives & sealants, by market,  2018-2035 (millions USD).                2244
  • Figure 629. sunliquid® production process.      2252
  • Figure 630. Spider silk production.        2260

    

The Global Market for Biobased and Sustainable Materials 2024-2035
The Global Market for Biobased and Sustainable Materials 2024-2035
PDF download.

Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer. 

To purchase by invoice (bank transfer) contact info@futuremarketsinc.com or select Bank Transfer (Invoice) as a payment method at checkout.