The Global Market for Biocomposites 2023-2033

0

Published August 2022 | 337 pages, 83 figures, 82 tables | Download table of contents

Biocomposites are generally referred to as composites with either reinforcement or matrix derived from natural sources, or encompassing both (full biocomposites). Biocomposites  are produced from naturally-renewable and abundant precursor feedstocks, and possess properties equivalent, on a weight basis, to their synthetic counterparts.

Natural and wood fibers are combined with petrochemical or bio-based polymers to achieve enhanced mechanical and lightweight properties. The most commonly used types of biocomposites are Wood-Plastic Composites (WPC) and Natural Fibre Composites (NFC). Their use is growing due to the need for significant reduction in the consumption of plastic materials. 

Report includes:

  • In-depth analysis to August 2022 of the global biocomposites market. 
  • Global biocomposites market trends and drivers.
  • Market revenues for biocomposites, by end user market, and by region from 2019 and forecast to 2033.
  • Market segmentation and applications analysis. Markets covered include packaging, consumer products, automotive, building & construction, electronics, aerospace, sports & leisure equipment.
  • Advantages of biocomposites over synthetic composites. 
  • Profiles of over 150 companies in biocomposites. Companies profiled include Cruz Foam, Ecovative Design LLC, Bcomp Ltd., Ecovative, Lingrove, Inc., MOGU S.r.l., Natural Fiber Welding, Inc., OrganoClick, Seevix Material Sciences Ltd. and many more. 

 

1              EXECUTIVE SUMMARY   18

  • 1.1          Synthetic and bio-based composites       18
  • 1.2          Wood and natural fiber biocomposites   19
  • 1.3          Market trends and drivers            23
  • 1.4          Markets and applications for biocomposites        26
  • 1.5          Global market demand in millions USD 2019-2033              30
    • 1.5.1      By market           30
    • 1.5.2      By region             31
  • 1.6          Challenges for biocomposites     32

 

2              RESEARCH METHODOLOGY         34

 

3              BIOCOMPOSITE MATERIALS        36

  • 3.1          Natural Fibers    36
    • 3.1.1      Plant      36
    • 3.1.2      Animal  37
    • 3.1.3      Mineral 38
  • 3.2          Matrices              39
    • 3.2.1      Thermoplastics 40
    • 3.2.2      Thermosets        41

 

4              BIO-BASED POLYMERS AND RESINS          42

  • 4.1          Polyamides (Bio-PA)       42
    • 4.1.1      Market analysis 42
    • 4.1.2      Polyamide biocomposites            43
    • 4.1.3      Producers and production capacities       45
  • 4.2          Poly(butylene adipate-co-terephthalate) (Bio-PBAT)- Aliphatic aromatic copolyesters       46
    • 4.2.1      Market analysis 46
    • 4.2.2      PBAT biocomposites       47
    • 4.2.3      Producers and production capacities       47
  • 4.3          Polybutylene succinate (PBS) and copolymers     49
    • 4.3.1      Market analysis 49
    • 4.3.2      Poly(Butylene Succinate) biocomposites 50
    • 4.3.3      Producers and production capacities       51
  • 4.4          Polyethylene (Bio-PE)    52
    • 4.4.1      Market analysis 52
    • 4.4.2      Bio-Polyethylene biocomposites 53
    • 4.4.3      Producers and production capacities       54
  • 4.5          Polypropylene (Bio-PP) 56
    • 4.5.1      Market analysis 56
    • 4.5.2      Bio-Polyethylene biocomposites 57
    • 4.5.3      Producers and production capacities       58
  • 4.6          Polylactic acid (Bio-PLA) 59
    • 4.6.1      Market analysis 59
    • 4.6.2      Polylactic Acid (PLA) Biocomposites         61
    • 4.6.3      Producers and production capacities, current and planned            61
      • 4.6.3.1   Lactic acid producers and production capacities  61
      • 4.6.3.2   PLA producers and production capacities               61
  • 4.7          Lignin    64
    • 4.7.1      Lignin structure 65
    • 4.7.2      Types of lignin    66
      • 4.7.2.1   Sulfur containing lignin  68
      • 4.7.2.2   Sulfur-free lignin from biorefinery process            68
  • 4.7.3      Properties           69
  • 4.7.4      Phenol and phenolic resins          72
  • 4.7.5      Lignin composites            73
  • 4.7.6      Automotive        74
  • 4.8          Microfibrillated cellulose (MFC) 75
    • 4.8.1      Market analysis 75
    • 4.8.2      Microfibrillated cellulose (MFC) biocomposites  76
    • 4.8.3      Producers           77
  • 4.9          Cellulose nanocrystals    78
    • 4.9.1      Market analysis 78
    • 4.9.2      Cellulose nanocrystals biocomposites     79
      • 4.9.2.1   Producers           80
  • 4.10        Cellulose nanofibers       81
    • 4.10.1    Market analysis 81
    • 4.10.2    Cellulose nanofibers biocomposites         82
      • 4.10.2.1                Construction composites              86
      • 4.10.2.2                Automotive composites 88
      • 4.10.2.3                Aerospace composites  90
    • 4.10.3    Producers           92
  • 4.11        Starch   93
    • 4.11.1    Thermoplastic starch (TPS) biocomposites            93
    • 4.11.2    Producers           94
  • 4.12        Mycelium            95
    • 4.12.1    Mycelium biocomposites              95
  • 4.13        Chitosan              99
    • 4.13.1    Chitosan biocomposites 100
  • 4.14        Alginate               101
    • 4.14.1    Alginate biocomposites 102
  • 4.15        Polyhydroxyalkanoates (PHA)     102
    • 4.15.1    Technology description 102
    • 4.15.2    Types    104
      • 4.15.2.1                PHB        106
      • 4.15.2.2                PHBV     107
    • 4.15.3    Synthesis and production processes        108
    • 4.15.4    Market analysis 111
    • 4.15.5    Commercially available PHAs      113
    • 4.15.6    Producers and production capacities       114
    • 4.15.7    PHA biocomposites         115

 

5              NATURAL FIBER BIOCOMPOSITE MATERIALS        119

  • 5.1          Manufacturing method, matrix materials and applications of natural fibers            120
  • 5.2          Advantages of natural fibers       122
  • 5.3          Chemical Treatment of Natural Fibers     122
  • 5.4          Plants (cellulose, lignocellulose) 123
    • 5.4.1      Seed fibers         123
      • 5.4.1.1   Luffa      124
      • 5.4.1.2   Banana 125
      • 5.4.1.3   Bast fibers           126
      • 5.4.1.4   Hemp    126
      • 5.4.1.5   Flax        128
      • 5.4.1.6   Kenaf    130
    • 5.4.2      Leaf fibers           130
      • 5.4.2.1   Sisal       130
      • 5.4.2.2   Abaca    131
    • 5.4.3      Fruit fibers          133
      • 5.4.3.1   Coir        133
      • 5.4.3.2   Pineapple            134
    • 5.4.4      Stalk fibers from agricultural residues     135
      • 5.4.4.1   Rice fiber             135
      • 5.4.4.2   Corn      136
    • 5.4.5      Cane, grasses and reed  136
      • 5.4.5.1   Switch grass       136
      • 5.4.5.2   Sugarcane (agricultural residues)              137
      • 5.4.5.3   Bamboo               138
      • 5.4.5.4   Fresh grass (green biorefinery)  139

 

6              BIOCOMPOSITE MARKETS            141

  • 6.1          Natural Fiber Composites             141
    • 6.1.1      Applications       142
    • 6.1.2      Natural fiber injection moulding compounds       143
      • 6.1.2.1   Properties           143
      • 6.1.2.2   Applications       144
    • 6.1.3      Non-woven natural fiber mat composites              144
      • 6.1.3.1   Automotive        144
      • 6.1.3.2   Applications       145
    • 6.1.4      Aligned natural fiber-reinforced composites        145
    • 6.1.5      Natural fiber biobased polymer compounds         146
    • 6.1.6      Natural fiber biobased polymer non-woven mats              146
      • 6.1.6.1   Flax        147
      • 6.1.6.2   Kenaf    147
    • 6.1.7      Natural fiber thermoset bioresin composites       147
  • 6.2          Packaging            147
    • 6.2.1      Flexible packaging            148
    • 6.2.2      Rigid packaging 150
  • 6.3          Consumer products        151
  • 6.4          Automotive        152
  • 6.5          Building & construction 158
  • 6.6          Electronics          160
  • 6.7          Aerospace          160
  • 6.8          Sports and leisure equipment    161

 

7              COMPANY PROFILES       162 (156 company profiles)

 

8              REFERENCES       333

 

List of Tables

  • Table 1. Types of natural fibers, properties and applications.         20
  • Table 2. Market trends in biocomposites.              24
  • Table 3. Markets and applications for biocomposites.      26
  • Table 4. Challenges for biocomposites.   32
  • Table 5. Bio-based polyamides (Bio-PA) market analysis - manufacture, advantages, disadvantages and applications.                42
  • Table 6. Leading Bio-PA producers production capacities.               45
  • Table 7. Poly(butylene adipate-co-terephthalate) (PBAT) market analysis- manufacture, advantages, disadvantages and applications.              46
  • Table 8. Leading PBAT producers, production capacities and brands.         47
  • Table 9. Bio-PBS market analysis-manufacture, advantages, disadvantages and applications.          49
  • Table 10. Leading PBS producers and production capacities.          51
  • Table 11. Bio-based Polyethylene (Bio-PE) market analysis- manufacture, advantages, disadvantages and applications.                52
  • Table 12. Leading Bio-PE producers.        55
  • Table 13. Bio-PP market analysis- manufacture, advantages, disadvantages and applications.        56
  • Table 14. Leading Bio-PP producers and capacities.           58
  • Table 15. Polylactic acid (PLA) market analysis-manufacture, advantages, disadvantages and applications.               59
  • Table 16. Lactic acid producers and production capacities.             61
  • Table 17. PLA producers and production capacities.          61
  • Table 18. Planned PLA capacity expansions in China.         62
  • Table 19. Technical lignin types and applications.               66
  • Table 20. Classification of technical lignins.           68
  • Table 21. Lignin content of selected biomass.      69
  • Table 22. Properties of lignins and their applications.       70
  • Table 23. Example markets and applications for lignin.     71
  • Table 24. Application of lignin in composites.      73
  • Table 25. Microfibrillated cellulose (MFC) market analysis.            75
  • Table 26. Leading MFC producers and capacities.               77
  • Table 27. Cellulose nanocrystals analysis.               78
  • Table 28. Cellulose nanocrystal production capacities and production process, by producer.          80
  • Table 29. Cellulose nanofibers market analysis.   81
  • Table 30. Comparative properties of polymer composites reinforcing materials.   82
  • Table 31. Market assessment for cellulose nanofibers in composites-application, key benefits and motivation for use, megatrends, market drivers, technology drawbacks, competing materials, material loading, main global composites OEMs.   83
  • Table 32. Market assessment for cellulose nanofibers in construction composites-application, key benefits and motivation for use, megatrends, market drivers, technology drawbacks, competing materials, material loading, main global construction OEMs             86
  • Table 33. Market assessment for cellulose nanofibers in automotive composites-application, key benefits and motivation for use, megatrends, market drivers, technology drawbacks, competing materials, material loading, main global automotive OEMs.             89
  • Table 34. Market assessment for cellulose nanofibers in aerospace composites-application, key benefits and motivation for use, megatrends, market drivers, technology drawbacks, competing materials, material loading.    91
  • Table 35. CNF production capacities and production process, by producer, in metric tons.               92
  • Table 36. Starch-based bioplastic producers.       94
  • Table 37. Overview of mycelium fibers-description, properties, drawbacks and applications.          97
  • Table 38. Overview of chitosan fibers-description, properties, drawbacks and applications.            99
  • Table 39. Overview of alginate-description, properties, application and market size.          101
  • Table 40.Types of PHAs and properties. 105
  • Table 41. Comparison of the physical properties of different PHAs with conventional petroleum-based polymers. 107
  • Table 42. Polyhydroxyalkanoate (PHA) extraction methods.          109
  • Table 43. Polyhydroxyalkanoates (PHA) market analysis. 111
  • Table 44. Commercially available PHAs.  113
  • Table 45. Polyhydroxyalkanoates (PHA) producers.           114
  • Table 46. Markets and applications for PHAs.       116
  • Table 47. Applications, advantages and disadvantages of PHAs in packaging.         117
  • Table 48. Application, manufacturing method, and matrix materials of natural fibers.        121
  • Table 49. Typical properties of natural fibers.      122
  • Table 50. Overview of luffa fibers-description, properties, drawbacks and applications.    124
  • Table 51. Overview of banana fibers-description, properties, drawbacks and applications.               125
  • Table 52. Overview of hemp fibers-description, properties, drawbacks and applications.  127
  • Table 53. Overview of flax fibers-description, properties, drawbacks and applications.      128
  • Table 54. Overview of kenaf fibers-description, properties, drawbacks and applications.  130
  • Table 55. Overview of sisal fibers-description, properties, drawbacks and applications.     130
  • Table 56. Overview of abaca fibers-description, properties, drawbacks and applications.  132
  • Table 57. Overview of coir fibers-description, properties, drawbacks and applications.      133
  • Table 58. Overview of pineapple fibers-description, properties, drawbacks and applications.         134
  • Table 59. Overview of rice fibers-description, properties, drawbacks and applications.      135
  • Table 60. Overview of corn fibers-description, properties, drawbacks and applications.    136
  • Table 61. Overview of switch grass fibers-description, properties and applications.             136
  • Table 62. Overview of sugarcane fibers-description, properties, drawbacks and application and market size.           137
  • Table 63. Overview of bamboo fibers-description, properties, drawbacks and applications.             138
  • Table 64. Applications of natural fiber composites.           142
  • Table 65. Typical properties of short natural fiber-thermoplastic composites.       143
  • Table 66. Properties of non-woven natural fiber mat composites.               145
  • Table 67. Properties of aligned natural fiber composites. 145
  • Table 68. Properties of natural fiber-bio-based polymer compounds.       146
  • Table 69. Properties of natural fiber-bio-based polymer non-woven mats.             147
  • Table 70. Comparison of bioplastics’ (PLA and PHAs) properties to other common polymers used in product packaging.                148
  • Table 71. Typical applications for bioplastics in flexible packaging.              149
  • Table 72. Typical applications for bioplastics in rigid packaging.   151
  • Table 73. Biocomposites in the automotive sector- market drivers, applications and challenges for NF use.              152
  • Table 74. Natural fiber-reinforced polymer composite in the automotive market. 155
  • Table 75. Applications of natural fibers in the automotive industry.           157
  • Table 76. Biocomposites in the building/construction sector- market drivers, applications and challenges for NF use.                158
  • Table 77. Applications of natural fibers in the building/construction sector.           159
  • Table 78. Biocomposites in the aerospace sector-market drivers, applications and challenges for NF use. 160
  • Table 79. Biocomposites in the sports and leisure sector-market drivers, applications and challenges for NF use.  161
  • Table 80. Granbio Nanocellulose Processes.         236
  • Table 81. Lactips plastic pellets. 252
  • Table 82. Oji Holdings CNF products.       278

 

List of Figures

  • Figure 1. Classification of biocomposites.              19
  • Figure 2. Mechanical properties of natural and synthetic fibres.  20
  • Figure 3. Global production capacities of biobased and sustainable plastics in 2019-2033, by type, in 1,000 tons.  29
  • Figure 4. Global demand for biocomposites 2019-2033, by market, millions USD. 31
  • Figure 5. Global demand for biocomposites 2019-2033, by region, millions USD.  31
  • Figure 6. High purity lignin.          64
  • Figure 7. Lignocellulose architecture.      65
  • Figure 8. Extraction processes to separate lignin from lignocellulosic biomass and corresponding technical lignins.                66
  • Figure 9. Schematic of WISA plywood home.       74
  • Figure 10. Interior of NCV concept car.    88
  • Figure 11. Typical structure of mycelium-based foam.     95
  • Figure 12. Commercial mycelium composite construction materials.          96
  • Figure 13. Frayme Mylo™️.            97
  • Figure 14. BLOOM masterbatch from Algix.           102
  • Figure 15. PHA family.    105
  • Figure 16. Types of natural fibers.             120
  • Figure 17.  Luffa cylindrica fiber. 125
  • Figure 18. Production of bio-based materials and products from flax.        128
  • Figure 19. Pineapple fiber.           135
  • Figure 20. Hemp fibers combined with PP in car door panel.         147
  • Figure 21. Car door produced from Hemp fiber.  154
  • Figure 22. Natural fiber composites in the BMW M4 GT4 racing car.          155
  • Figure 23. Mercedes-Benz components containing natural fibers.               155
  • Figure 24. ANDRITZ Lignin Recovery process.       168
  • Figure 25: Ashai Kasei CNF production process.  177
  • Figure 26: Asahi Kasei CNF fabric sheet. 178
  • Figure 27: Properties of Asahi Kasei cellulose nanofiber nonwoven fabric.              178
  • Figure 28. CNF nonwoven fabric.               179
  • Figure 29. Bio-PA rear bumper stay.         185
  • Figure 30: R3TM process technology.      194
  • Figure 31: Blue Goose CNC Production Process.  195
  • Figure 32: Celluforce production process.              206
  • Figure 33: NCCTM Process.          207
  • Figure 34: CNC produced at Tech Futures’ pilot plant; cloudy suspension (1 wt.%), gel-like (10 wt.%), flake-like crystals, and very fine powder. Product advantages include:          207
  • Figure 35. nanoforest-S. 210
  • Figure 36. nanoforest-PDP.         211
  • Figure 37. nanoforest-MB.           211
  • Figure 38. ELLEX products.           217
  • Figure 39. CNF-reinforced PP compounds.            217
  • Figure 40. Kirekira! toilet wipes. 218
  • Figure 41. DIC Products CNF production process.               220
  • Figure 42. Mushroom leather.    224
  • Figure 43.  TMP-Bio Process.       230
  • Figure 44. Cellulose Nanofiber (CNF) composite with polyethylene (PE).  233
  • Figure 45: CNF products from Furukawa Electric.                234
  • Figure 46. Cutlery samples (spoon, knife, fork) made of nano cellulose and biodegradable plastic composite materials.                239
  • Figure 47. Non-aqueous CNF dispersion "Senaf" (Photo shows 5% of plasticizer). 240
  • Figure 48. CNF gel.           242
  • Figure 49. Block nanocellulose material. 243
  • Figure 50. CNF products developed by Hokuetsu.              243
  • Figure 51. Dual Graft System.     249
  • Figure 52: Engine cover utilizing Kao CNF composite resins.           250
  • Figure 53. Acrylic resin blended with modified CNF (fluid) and its molded product (transparent film), and image obtained with AFM (CNF 10wt% blended).           250
  • Figure 54. IPA synthesis method.              263
  • Figure 55. MOGU-Wave panels. 266
  • Figure 56. Reishi.              267
  • Figure 57. Nippon Paper Industries’ adult diapers.             272
  • Figure 58. CNF clear sheets.        278
  • Figure 59. Oji Holdings CNF polycarbonate product.          280
  • Figure 60. A vacuum cleaner part made of cellulose fiber (left) and the assembled vacuum cleaner.            281
  • Figure 61. XCNF.               289
  • Figure 62: Plantrose process.      290
  • Figure 63. Innventia CNF production process.      293
  • Figure 64: Innventia AB movable nanocellulose demo plant.         294
  • Figure 65. Manufacturing process for STARCEL.   297
  • Figure 66. CNF dispersion and powder from Starlite.         304
  • Figure 67. Sugino Machine CNF production process.         306
  • Figure 68. High Pressure Water Jet Process.         306
  • Figure 69. 2 wt.% CNF suspension.          307
  • Figure 70. BiNFi-s Dry Powder.   307
  • Figure 71. BiNFi-s Dry Powder and Propylene (PP) Complex Pellet.             308
  • Figure 72. Silk nanofiber (right) and cocoon of raw material.         308
  • Figure 73. Sulapac cosmetics containers.               310
  • Figure 74.  Sulzer equipment for PLA polymerization processing. 311
  • Figure 75. Teijin bioplastic film for door handles.               318
  • Figure 76. Silver / CNF composite dispersions.     320
  • Figure 77. CNF/nanosilver powder.          321
  • Figure 78. Corbion FDCA production process.      322
  • Figure 79: CNF resin products.    323
  • Figure 80. UPM biorefinery process.        324
  • Figure 81. HefCel-coated wood (left) and untreated wood (right) after 30 seconds flame test.       328
  • Figure 82. Bio-based barrier bags prepared from Tempo-CNF coated bio-HDPE film.           328
  • Figure 83. Zelfo Technology GmbH CNF production process.         331

 

 

  •  

The Global Market for Biocomposites 2023-2033
The Global Market for Biocomposites 2023-2033
PDF download.

The Global Market for Biocomposites 2023-2033
The Global Market for Biocomposites 2023-2033
PDF download and print edition (including tracked delivery).

Payment methods: Visa, Mastercard, American Express, Alipay, Paypal. 

To purchase by invoice (bank transfer or cheque) contact info@futuremarketsinc.com

Purchasers receive a report and Excel sheet with forecasts and tables.