The Global Market for Biofuels to 2033

0

November 2022 | 231 pages, 58 tables, 51 figures | Download table of contents

Renewable energy sources can be converted directly into biofuels. There has been a huge growth in the production and usage of biofuels as substitutes for fossil fuels. Due to the declining reserve of fossil resources as well as environmental concerns, and essential energy security, it is important to develop renewable and sustainable energy and chemicals.

The use of biofuels manufactured from plant-based biomass as feedstock would reduce fossil fuel consumption and consequently the negative impact on the environment.  Renewable energy sources cover a broad raw material base, including cellulosic biomass (fibrous and inedible parts of plants), waste materials, algae, and biogas.

The Global Market for Biofuels covers biobased fuels, bio-diesel, renewable diesel,  sustainable aviation fuels (SAFs), biogas, electrofuels (e-fuels), green ammonia based on utilization of:

  • First-Generation Feedstocks (food-based) e.g. Waste oils including used cooking oil, animal fats, and other fatty acids.
  • Second-Generation Feedstocks (non-food based) e.g. Lignocellulosic wastes and residues, Energy crops, Agricultural residues, Forestry residues, Biogenic fraction of municipal and industrial waste.
  • Third-Generation Feedstocks e.g. algal biomass
  • Fourth-Generation Feedstocks e.g. genetically modified (GM) algae and cyanobacteria.

 

Report contents include:

  • Market trends and drivers.
  • Market challenges.
  • Biofuels costs, now and estimated to 2033. 
  • Biofuel consumption to 2033. 
  • Market analysis including key players, end use markets, production processes, costs, production capacities, market demand for biofuels, bio-jet fuels, biodiesel, biobased alcohol fuels, renewable diesel, biogas, electrofuels, green ammonia and other relevant technologies. 
  • Production and synthesis methods.
  • Biofuel industry developments and investments 2020-2022.
  • 119 company profiles including BTG Bioliquids, Byogy Renewables, Caphenia, Enerkem, Infinium. Eni S.p.A., Ensyn, FORGE Hydrocarbons Corporation, Fulcrum Bioenergy, Genecis Bioindustries, Gevo, Haldor Topsoe, Opera Bioscience, Steeper Energy,  SunFire GmbH, Vertus Energy and many more. 

 

 

1              RESEARCH METHODOLOGY         14

 

2              EXECUTIVE SUMMARY   15

  • 2.1          Market drivers  15
  • 2.2          Market challenges           16
  • 2.3          Liquid biofuels market 2020-2033, by type and production            17

 

3              INDUSTRY DEVELOPMENTS 2020-2022    20

 

4              BIOFUELS            24

  • 4.1          The global biofuels market           24
    • 4.1.1      Diesel substitutes and alternatives           24
    • 4.1.2      Gasoline substitutes and alternatives      26
  • 4.2          Comparison of biofuel costs 2022, by type            26
  • 4.3          Types    27
    • 4.3.1      Solid Biofuels     27
    • 4.3.2      Liquid Biofuels  28
    • 4.3.3      Gaseous Biofuels             28
    • 4.3.4      Conventional Biofuels    29
    • 4.3.5      Advanced Biofuels           29
  • 4.4          Feedstocks         30
    • 4.4.1      First-generation (1-G)    32
    • 4.4.2      Second-generation (2-G)              33
      • 4.4.2.1   Lignocellulosic wastes and residues         34
      • 4.4.2.2   Biorefinery lignin              35
    • 4.4.3      Third-generation (3-G)  39
      • 4.4.3.1   Algal biofuels     39
    • 4.4.4      Fourth-generation (4-G) 42
    • 4.4.5      Advantages and disadvantages, by generation    42

 

5              HYDROCARBON BIOFUELS            44

  • 5.1          Biodiesel              44
    • 5.1.1      Biodiesel by generation 45
    • 5.1.2      Production of biodiesel and other biofuels            46
      • 5.1.2.1   Pyrolysis of biomass        47
      • 5.1.2.2   Vegetable oil transesterification 50
      • 5.1.2.3   Vegetable oil hydrogenation (HVO)         51
      • 5.1.2.4   Biodiesel from tall oil      53
      • 5.1.2.5   Fischer-Tropsch BioDiesel             53
      • 5.1.2.6   Hydrothermal liquefaction of biomass    55
      • 5.1.2.7   CO2 capture and Fischer-Tropsch (FT)     55
      • 5.1.2.8   Dymethyl ether (DME)   56
    • 5.1.3      Global production and consumption        56
  • 5.2          Renewable diesel            59
    • 5.2.1      Production          59
    • 5.2.2      Global consumption       60
  • 5.3          Bio-jet (bio-aviation) fuels            62
    • 5.3.1      Description         62
    • 5.3.2      Global market   62
    • 5.3.3      Production pathways     63
    • 5.3.4      Costs     65
    • 5.3.5      Biojet fuel production capacities                66
    • 5.3.6      Challenges          66
    • 5.3.7      Global consumption ]     67
  • 5.4          Syngas  68
  • 5.5          Biogas and biomethane 69
    • 5.5.1      Feedstocks         71

 

6              ALCOHOL FUELS               73

  • 6.1          Biomethanol      73
    • 6.1.1      Methanol-to gasoline technology             73
      • 6.1.1.1   Production processes     74
  • 6.2          Bioethanol          77
    • 6.2.1      Technology description 77
    • 6.2.2      1G Bio-Ethanol  77
    • 6.2.3      Ethanol to jet fuel technology     78
    • 6.2.4      Methanol from pulp & paper production               79
    • 6.2.5      Sulfite spent liquor fermentation              79
    • 6.2.6      Gasification        80
      • 6.2.6.1   Biomass gasification and syngas fermentation    80
      • 6.2.6.2   Biomass gasification and syngas thermochemical conversion        80
    • 6.2.7      CO2 capture and alcohol synthesis           81
    • 6.2.8      Biomass hydrolysis and fermentation     81
      • 6.2.8.1   Separate hydrolysis and fermentation    81
      • 6.2.8.2   Simultaneous saccharification and fermentation (SSF)     82
      • 6.2.8.3   Pre-hydrolysis and simultaneous saccharification and fermentation (PSSF)             82
      • 6.2.8.4   Simultaneous saccharification and co-fermentation (SSCF)            82
      • 6.2.8.5   Direct conversion (consolidated bioprocessing) (CBP)      83
    • 6.2.9      Global ethanol consumption       84
  • 6.3          Biobutanol          85
    • 6.3.1      Production          87

 

7              BIOFUEL FROM PLASTIC WASTE AND USED TIRES               88

  • 7.1          Plastic pyrolysis 88
  • 7.2          Used tires pyrolysis         89
    • 7.2.1      Conversion to biofuel     90

 

8              ELECTROFUELS (E-FUELS)             92

  • 8.1          Introduction       92
    • 8.1.1      Benefits of e-fuels           94
  • 8.2          Feedstocks         95
    • 8.2.1      Hydrogen electrolysis     95
    • 8.2.2      CO2 capture       96
  • 8.3          Production          96
  • 8.4          Electrolysers      98
    • 8.4.1      Commercial alkaline electrolyser cells (AECs)       100
    • 8.4.2      PEM electrolysers (PEMEC)         100
    • 8.4.3      High-temperature solid oxide electrolyser cells (SOECs)  100
  • 8.5          Direct Air Capture (DAC)               100
    • 8.5.1      Technologies     101
    • 8.5.2      Markets for DAC               103
    • 8.5.3      Costs     103
    • 8.5.4      Challenges          104
    • 8.5.5      Companies and production          105
    • 8.5.6      CO2 capture from point sources 106
  • 8.6          Costs     107
  • 8.7          Market challenges           110
  • 8.8          Companies         110

 

9              ALGAE-DERIVED BIOFUELS           112

  • 9.1          Technology description 112
  • 9.2          Production          112

 

10           GREEN AMMONIA           114

  • 10.1        Production          114
    • 10.1.1    Decarbonisation of ammonia production               116
    • 10.1.2    Green ammonia projects              117
  • 10.2        Green ammonia synthesis methods         117
    • 10.2.1    Haber-Bosch process      117
    • 10.2.2    Biological nitrogen fixation          118
    • 10.2.3    Electrochemical production         119
    • 10.2.4    Chemical looping processes        119
  • 10.3        Blue ammonia   119
    • 10.3.1    Blue ammonia projects  119
  • 10.4        Markets and applications              120
    • 10.4.1    Chemical energy storage              120
      • 10.4.1.1                Ammonia fuel cells          120
    • 10.4.2    Marine fuel         121
  • 10.5        Costs     123
  • 10.6        Estimated market demand           125
  • 10.7        Companies and projects 125

 

11           COMPANY PROFILES       127 (119 company profiles)

 

 

12           REFERENCES       220

 

List of Tables

  • Table 1. Market drivers for biofuels.        15
  • Table 2. Market challenges for biofuels. 16
  • Table 3. Liquid biofuels market 2020-2033, by type and production.          18
  • Table 4. Industry developments in biofuels 2020-2022.    20
  • Table 5. Comparison of biofuel costs (USD/liter) 2022, by type.   26
  • Table 6. Categories and examples of solid biofuel.             27
  • Table 7. Comparison of biofuels and e-fuels to fossil and electricity.           29
  • Table 8. Classification of biomass feedstock.        30
  • Table 9. Biorefinery feedstocks. 31
  • Table 10. Feedstock conversion pathways.           31
  • Table 11. First-Generation Feedstocks.   32
  • Table 12.  Lignocellulosic ethanol plants and capacities.  34
  • Table 13. Comparison of pulping and biorefinery lignins. 35
  • Table 14. Commercial and pre-commercial biorefinery lignin production facilities and  processes 36
  • Table 15. Operating and planned lignocellulosic biorefineries and industrial flue gas-to-ethanol.  38
  • Table 16. Properties of microalgae and macroalgae.         40
  • Table 17. Yield of algae and other biodiesel crops.             41
  • Table 18. Advantages and disadvantages of biofuels, by generation.         42
  • Table 19. Biodiesel by generation.            45
  • Table 20. Biodiesel production techniques.          47
  • Table 21. Summary of pyrolysis technique under different operating conditions. 47
  • Table 22. Biomass materials and their bio-oil yield.            49
  • Table 23. Biofuel production cost from the biomass pyrolysis process.      49
  • Table 24. Properties of vegetable oils in comparison to diesel.     51
  • Table 25. Main producers of HVO and capacities.               52
  • Table 26. Example commercial Development of BtL processes.    53
  • Table 27. Pilot or demo projects for biomass to liquid (BtL) processes.     54
  • Table 28. Global biodiesel consumption, 2010-2033 (M litres/year).          58
  • Table 29. Global renewable diesel consumption, to 2033 (M litres/year). 60
  • Table 30. Advantages and disadvantages of biojet fuel    62
  • Table 31. Production pathways for bio-jet fuel.   63
  • Table 32. Current and announced biojet fuel facilities and capacities.        66
  • Table 33. Global bio-jet fuel consumption to 2033 (Million litres/year).    67
  • Table 34. Biogas feedstocks.       71
  • Table 35. Comparison of biogas, biomethane and natural gas.      75
  • Table 36.  Processes in bioethanol production.  81
  • Table 37. Microorganisms used in CBP for ethanol production from biomass lignocellulosic.           83
  • Table 38. Ethanol consumption 2010-2033 (million litres).             84
  • Table 39. Applications of e-fuels, by type.             93
  • Table 40. Overview of e-fuels.    94
  • Table 41. Benefits of e-fuels.      94
  • Table 42. Main characteristics of different electrolyzer technologies.        99
  • Table 43. Advantages and disadvantages of DAC.               101
  • Table 44. DAC companies and technologies.         102
  • Table 45. Markets for DAC.          103
  • Table 46. Cost estimates of DAC.               103
  • Table 47. Challenges for DAC technology.              104
  • Table 48. DAC technology developers and production.    105
  • Table 49. Market challenges for e-fuels. 110
  • Table 50. E-fuels companies.       110
  • Table 51. Green ammonia projects (current and planned).             117
  • Table 52. Blue ammonia projects.             119
  • Table 53. Ammonia fuel cell technologies.            120
  • Table 54. Market overview of green ammonia in marine fuel.       121
  • Table 55. Summary of marine alternative fuels.  122
  • Table 56. Estimated costs for different types of ammonia.             124
  • Table 57. Main players in green ammonia.            125
  • Table 58. Granbio Nanocellulose Processes.         165

 

List of Figures

  • Figure 1. Liquid biofuel production and consumption (in thousands of m3), 2000-2021.     17
  • Figure 2. Distribution of global liquid biofuel production in 2021. 18
  • Figure 3. Diesel and gasoline alternatives and blends.      25
  • Figure 4.  Schematic of a biorefinery for production of carriers and chemicals.      36
  • Figure 5. Hydrolytic lignin powder.           39
  • Figure 6. Regional production of biodiesel (billion litres). 45
  • Figure 7. Flow chart for biodiesel production.      50
  • Figure 8. Global biodiesel consumption, 2010-2033 (M litres/year).           57
  • Figure 9. Global renewable diesel consumption, to 2033 (M litres/year). 60
  • Figure 10. Global bio-jet fuel consumption to 2033 (Million litres/year).  67
  • Figure 11. Total syngas market by product in MM Nm³/h of Syngas, 2021.               68
  • Figure 12. Overview of biogas utilization.               70
  • Figure 13. Biogas and biomethane pathways.      71
  • Figure 14. Renewable Methanol Production Processes from Different Feedstocks.              74
  • Figure 15. Production of biomethane through anaerobic digestion and upgrading.              75
  • Figure 16. Production of biomethane through biomass gasification and methanation.       76
  • Figure 17. Production of biomethane through the Power to methane process.     77
  • Figure 18. Ethanol consumption 2010-2033 (million litres).            84
  • Figure 19. Properties of petrol and biobutanol.   86
  • Figure 20. Biobutanol production route. 86
  • Figure 21. Waste plastic production pathways to (A) diesel and (B) gasoline           88
  • Figure 22. Schematic for Pyrolysis of Scrap Tires. 90
  • Figure 23. Used tires conversion process.              91
  • Figure 24. Process steps in the production of electrofuels.             92
  • Figure 25. Mapping storage technologies according to performance characteristics.           93
  • Figure 26. Production process for green hydrogen.           96
  • Figure 27. E-liquids production routes.   97
  • Figure 28. Fischer-Tropsch liquid e-fuel products.              97
  • Figure 29. Resources required for liquid e-fuel production.            98
  • Figure 30. Schematic of Climeworks DAC system.               102
  • Figure 31. Levelized cost and fuel-switching CO2 prices of e-fuels.             108
  • Figure 32. Cost breakdown for e-fuels.   109
  • Figure 33.  Pathways for algal biomass conversion to biofuels.     112
  • Figure 34. Algal biomass conversion process for biofuel production.          113
  • Figure 35. Classification and process technology according to carbon emission in ammonia production.    114
  • Figure 36. Green ammonia production and use. 116
  • Figure 37. Schematic of the Haber Bosch ammonia synthesis reaction.     118
  • Figure 38. Schematic of hydrogen production via steam methane reformation.    118
  • Figure 39. Estimated production cost of green ammonia.               124
  • Figure 40. Projected annual ammonia production, million tons.   125
  • Figure 41. ANDRITZ Lignin Recovery process.       130
  • Figure 42. FBPO process 141
  • Figure 43. Direct Air Capture Process.     144
  • Figure 44. CRI process.   145
  • Figure 45. Domsjö process.          152
  • Figure 46. FuelPositive system.  160
  • Figure 47. Infinitree swing method.         171
  • Figure 48. Enfinity cellulosic ethanol technology process.               192
  • Figure 49: Plantrose process.      196
  • Figure 50. The Velocys process. 211
  • Figure 51. Goldilocks process and applications.   214

 

The Global Market for Biofuels to 2033
The Global Market for Biofuels to 2033
PDF download.

The Global Market for Biofuels to 2033
The Global Market for Biofuels to 2033
PDF and print edition (including tracked delivery).

Payment methods: Visa, Mastercard, American Express, Alipay, Paypal. 

To purchase by invoice (bank transfer or cheque) contact info@futuremarketsinc.com