The Global Market for Industrial Biomanufacturing 2025-2035

0

cover

cover

  • Published: August 2024
  • Pages: 1,144
  • Tables: 219
  • Figures: 154
  • Companies profiled: 1,071

 

Industrial biomanufacturing utilizes biological systems (e.g., living microorganisms, resting cells, animal cells, plant cells, tissues, enzymes, or in vitro synthetic (enzymatic) systems) to produce commercial biomolecules for use in the agricultural, food, materials, energy, and pharmaceutical industries. Products are isolated from natural sources, such as blood, cultures of microbes, animal cells, or plant cells grown in specialized equipment or dedicated cultivation environments. The cells/tissues or enzymes used may be natural or modified by genetic engineering, metabolic engineering, synthetic biology, and protein engineering

It is rapidly emerging as a transformative force in the global manufacturing landscape, promising sustainable solutions to meet the world's growing demand for materials, chemicals, and energy.  As we enter a new era of biotechnology and sustainable manufacturing, industrial biomanufacturing stands at the forefront of innovation. By harnessing the power of living organisms, particularly microorganisms and cell cultures, this field offers a path to produce a wide range of products with greater efficiency, reduced environmental impact, and enhanced performance characteristics.

This comprehensive market report provides an in-depth analysis of the rapidly growing industrial biomanufacturing sector, covering key technologies, market trends, and growth projections from 2025 to 2035. As industries worldwide shift towards more sustainable and bio-based production methods, industrial biomanufacturing is poised to play a pivotal role in the future of manufacturing across multiple sectors. Report contents include: 

  • Detailed market size estimates and growth forecasts for the global industrial biomanufacturing market from 2025 to 2035
  • Analysis of key application sectors including:
    • Biopharmaceuticals: Including monoclonal antibodies, recombinant proteins, vaccines, cell and gene therapies, and more. Emerging technologies like synthetic biology and cell-free systems revolutionizing biopharmaceutical production.
    • Industrial Enzymes: Analysis of enzymes used in detergents, food processing, biofuels, textiles, and other industries. The report examines how engineered enzymes are enabling new industrial applications.
    • Biofuels: In-depth look at bioethanol, biodiesel, biogas, and advanced biofuels. The report analyzes feedstocks, conversion technologies, and emerging trends like algae-based biofuels.
    • Bioplastics: Coverage of bio-based and biodegradable plastics like PLA, PHA, bio-PE, and others. The report examines how bioplastics are transforming packaging, automotive, and other industries.
    • Biochemicals: Analysis of bio-based organic acids, alcohols, polymers, and other platform chemicals. The report looks at how biochemicals are replacing petrochemicals in various applications.
    • Bio-Agritech: Examination of biopesticides, biofertilizers, and other biological crop inputs. The report covers emerging technologies like RNA interference for crop protection.
  • Comprehensive overview of biomanufacturing technologies, processes, and production methods
  • Profiles of over 1,100 companies active in the industrial biomanufacturing space. Companies profiled include Aanika Biosciences, Allozymes, Amyris, Aralez Bio, BBGI, Biomatter, Biovectra, Bucha Bio, Byogy Renewables, Cascade Biocatalysts, Constructive Bio, Cryotech, Debut Biotechnology, Enginzyme AB, Enzymit, eversyn, Erebagen, Eligo Bioscience, Evolutor, EV Biotech, FabricNano, Ginkgo Bioworks, Hyfé, Invizyne Technologies, LanzaTech, Lygos, Mammoth Biosciences, Novozymes A/S, NTx, Origin Materials, Pow.bio, Protein Evolution, Samsara Eco, Solugen, Synthego, Taiwan Bio-Manufacturing Corp. (TBMC), Twist Bioscience, Uluu, Van Heron Labs, Verde Bioresins, and Zya.
  • Assessment of market drivers, challenges, and opportunities shaping the industry.
  • Assessment of technology landscape-key biomanufacturing technologies and processes, including:
    • Fermentation and cell culture systems
    • Metabolic engineering and synthetic biology
    • Downstream processing and purification methods
    • Analytical techniques and quality control
    • Scale-up strategies and continuous manufacturing
    • Emerging technologies like cell-free systems and microfluidics
  • The evolving regulatory environment for industrial biomanufacturing, including:
    • Regulations governing genetically modified organisms (GMOs)
    • Biofuel blending mandates and incentives
    • Approval pathways for biopharmaceuticals and biosimilars
    • Standards and certifications for bio-based products
  • Analysis of investment trends in industrial biomanufacturing, including:
    • Venture capital funding for synthetic biology startups
    • Public and private investments in bioprocessing infrastructure
    • M&A activity and strategic partnerships
    • Government funding and incentives for bio-based industries
  • Assessment of future prospects for industrial biomanufacturing, examining:
    • Emerging application areas and end-user industries
    • Technological innovations on the horizon
    • Potential disruptive technologies and business models
    • Long-term growth projections to 2035

 

Who Should Read This Report:

  • Biomanufacturing companies and synthetic biology firms
  • Pharmaceutical and biotechnology companies
  • Chemical and materials manufacturers
  • Biofuel producers and energy companies
  • Food and beverage manufacturers
  • Agricultural input suppliers
  • Equipment and technology providers
  • Investors and financial analysts
  • Government agencies and policymakers
  • Research institutions and academics

 

 

1             EXECUTIVE SUMMARY            52

  • 1.1        Definition and Scope of Industrial Biomanufacturing        52
  • 1.2        Overview of Industrial Biomanufacturing Processes           52
  • 1.3        Key Components of Industrial Biomanufacturing 55
  • 1.4        Importance of Industrial  Biomanufacturing in the Global Economy        55
    • 1.4.1    Role in Healthcare and Pharmaceutical Industries              56
    • 1.4.2    Impact on Industrial Biotechnology and Sustainability     57
    • 1.4.3    Food Security 58
    • 1.4.4    Circular Economy       59
  • 1.5        Markets              60
    • 1.5.1    Biopharmaceuticals 60
    • 1.5.2    Industrial Enzymes    60
    • 1.5.3    Biofuels             61
    • 1.5.4    Biomaterials   62
    • 1.5.5    Specialty Chemicals 62
    • 1.5.6    Food and Beverage    63
    • 1.5.7    Agriculture and Animal Health           64
    • 1.5.8    Environmental Biotechnology             65

 

2             PRODUCTION               67

  • 2.1        Microbial Fermentation           67
  • 2.2        Mammalian Cell Culture        67
  • 2.3        Plant Cell Culture        68
  • 2.4        Insect Cell Culture     69
  • 2.5        Transgenic Animals   69
  • 2.6        Transgenic Plants        70
  • 2.7        Technologies  70
    • 2.7.1    Upstream Processing               70
      • 2.7.1.1 Cell Culture     70
        • 2.7.1.1.1           Overview           70
        • 2.7.1.1.2           Types of Cell Culture Systems            71
        • 2.7.1.1.3           Factors Affecting Cell Culture Performance              71
        • 2.7.1.1.4           Advances in Cell Culture Technology             72
          • 2.7.1.1.4.1      Single-use systems   72
          • 2.7.1.1.4.2      Process analytical technology (PAT)               72
          • 2.7.1.1.4.3      Cell line development              72
    • 2.7.2    Fermentation 73
      • 2.7.2.1 Overview           73
        • 2.7.2.1.1           Types of Fermentation Processes    73
        • 2.7.2.1.2           Factors Affecting Fermentation Performance          73
        • 2.7.2.1.3           Advances in Fermentation Technology         74
          • 2.7.2.1.3.1      High-cell-density fermentation          74
          • 2.7.2.1.3.2      Continuous processing           75
          • 2.7.2.1.3.3      Metabolic engineering             75
    • 2.7.3    Downstream Processing        75
      • 2.7.3.1 Purification      75
        • 2.7.3.1.1           Overview           75
        • 2.7.3.1.2           Types of Purification Methods            75
        • 2.7.3.1.3           Factors Affecting Purification Performance               76
        • 2.7.3.1.4           Advances in Purification Technology              76
          • 2.7.3.1.4.1      Affinity chromatography         77
          • 2.7.3.1.4.2      Membrane chromatography 77
          • 2.7.3.1.4.3      Continuous chromatography              77
    • 2.7.4    Formulation    78
      • 2.7.4.1 Overview           78
        • 2.7.4.1.1           Types of Formulation Methods           78
        • 2.7.4.1.2           Factors Affecting Formulation Performance             79
        • 2.7.4.1.3           Advances in Formulation Technology            79
          • 2.7.4.1.3.1      Controlled release      79
          • 2.7.4.1.3.2      Nanoparticle formulation      80
          • 2.7.4.1.3.3      3D printing       80
    • 2.7.5    Bioprocess Development      80
      • 2.7.5.1 Scale-up            80
        • 2.7.5.1.1           Overview           80
        • 2.7.5.1.2           Factors Affecting Scale-up Performance     80
        • 2.7.5.1.3           Scale-up Strategies    81
      • 2.7.5.2 Optimization  82
        • 2.7.5.2.1           Overview           82
        • 2.7.5.2.2           Factors Affecting Optimization Performance            82
        • 2.7.5.2.3           Optimization Strategies           83
    • 2.7.6    Analytical Methods    84
      • 2.7.6.1 Quality Control             84
        • 2.7.6.1.1           Overview           84
        • 2.7.6.1.2           Types of Quality Control Tests            84
        • 2.7.6.1.3           Factors Affecting Quality Control Performance      85
      • 2.7.6.2 Characterization          85
        • 2.7.6.2.1           Overview           86
        • 2.7.6.2.2           Types of Characterization Methods 86
        • 2.7.6.2.3           Factors Affecting Characterization Performance   87
  • 2.8        Scale of Production   88
    • 2.8.1    Laboratory Scale         89
      • 2.8.1.1 Overview           89
      • 2.8.1.2 Scale and Equipment               89
      • 2.8.1.3 Advantages     89
      • 2.8.1.4 Disadvantages             90
    • 2.8.2    Pilot Scale        90
      • 2.8.2.1 Overview           90
      • 2.8.2.2 Scale and Equipment               90
      • 2.8.2.3 Advantages     91
      • 2.8.2.4 Disadvantages             91
    • 2.8.3    Commercial Scale      92
      • 2.8.3.1 Overview           92
      • 2.8.3.2 Scale and Equipment               92
      • 2.8.3.3 Advantages     93
      • 2.8.3.4 Disadvantages             93
  • 2.9        Mode of Operation     94
    • 2.9.1    Batch Production        94
      • 2.9.1.1 Overview           94
      • 2.9.1.2 Advantages     95
      • 2.9.1.3 Disadvantages             95
      • 2.9.1.4 Applications   95
    • 2.9.2    Fed-batch Production              96
      • 2.9.2.1 Overview           96
      • 2.9.2.2 Advantages     96
      • 2.9.2.3 Disadvantages             96
      • 2.9.2.4 Applications   97
    • 2.9.3    Continuous Production           97
      • 2.9.3.1 Overview           97
      • 2.9.3.2 Advantages     97
      • 2.9.3.3 Disadvantages             97
      • 2.9.3.4 Applications   98
    • 2.9.4    Cell factories for biomanufacturing 98
    • 2.9.5    Perfusion Culture        100
      • 2.9.5.1 Overview           100
      • 2.9.5.2 Advantages     100
      • 2.9.5.3 Disadvantages             100
      • 2.9.5.4 Applications   101
    • 2.9.6    Other Modes of Operation     101
      • 2.9.6.1 Immobilized Cell Culture       101
      • 2.9.6.2 Two-Stage Production              101
      • 2.9.6.3 Hybrid Systems            101
  • 2.10     Host Organisms          102

 

3             BIOPHARMACEUTICALS        105

  • 3.1        Technology/materials analysis          105
    • 3.1.1    Monoclonal Antibodies (mAbs)         105
    • 3.1.2    Recombinant Proteins             105
    • 3.1.3    Vaccines           106
    • 3.1.4    Cell and Gene Therapies        106
    • 3.1.5    Blood Factors 107
    • 3.1.6    Tissue Engineering Products                108
    • 3.1.7    Nucleic Acid Therapeutics    108
    • 3.1.8    Peptide Therapeutics               109
    • 3.1.9    Biosimilars and Biobetters    110
    • 3.1.10 Nanobodies and Antibody Fragments           110
    • 3.1.11 Synthetic biology         111
      • 3.1.11.1            Metabolic engineering             111
        • 3.1.11.1.1        DNA synthesis              112
        • 3.1.11.1.2        CRISPR              113
          • 3.1.11.1.2.1   CRISPR/Cas9-modified biosynthetic pathways      113
        • 3.1.11.2            Protein/Enzyme Engineering                114
        • 3.1.11.3            Strain construction and optimization            115
        • 3.1.11.4            Synthetic biology and metabolic engineering           116
        • 3.1.11.5            Smart bioprocessing 116
        • 3.1.11.6            Cell-free systems        118
        • 3.1.11.7            Chassis organisms    120
        • 3.1.11.8            Biomimetics   121
        • 3.1.11.9            Sustainable materials              122
        • 3.1.11.10         Robotics and automation      122
          • 3.1.11.10.1     Robotic cloud laboratories   123
          • 3.1.11.10.2     Automating organism design              123
          • 3.1.11.10.3     Artificial intelligence and machine learning              124
        • 3.1.11.11         Fermentation Processes        124
    • 3.1.12 Generative Biology     125
      • 3.1.12.1            Generative Adversarial Networks (GANs)    126
        • 3.1.12.1.1        Variational Autoencoders (VAEs)      127
        • 3.1.12.1.2        Normalizing Flows      127
        • 3.1.12.1.3        Autoregressive Models            127
        • 3.1.12.1.4        Evolutionary Generative Models       127
      • 3.1.12.2            Design Optimization 128
        • 3.1.12.2.1        Evolutionary Algorithms (e.g., Genetic Algorithms, Evolutionary Strategies)       128
          • 3.1.12.2.1.1   Genetic Algorithms (GAs)      128
          • 3.1.12.2.1.2   Evolutionary Strategies (ES) 128
        • 3.1.12.2.2        Reinforcement Learning         128
        • 3.1.12.2.3        Multi-Objective Optimization              129
        • 3.1.12.2.4        Bayesian Optimization            129
      • 3.1.12.3            Computational Biology           130
        • 3.1.12.3.1        Molecular Dynamics Simulations    130
        • 3.1.12.3.2        Quantum Mechanical Calculations                131
        • 3.1.12.3.3        Systems Biology Modeling    131
        • 3.1.12.3.4        Metabolic Engineering Modeling       132
      • 3.1.12.4            Data-Driven Approaches       133
        • 3.1.12.4.1        Machine Learning       133
        • 3.1.12.4.2        Graph Neural Networks           133
        • 3.1.12.4.3        Unsupervised Learning           134
        • 3.1.12.4.4        Active Learning and Bayesian Optimization              134
      • 3.1.12.5            Agent-Based Modeling            134
      • 3.1.12.6            Hybrid Approaches    135
  • 3.2        Market analysis            137
    • 3.2.1    Key players and competitive landscape      137
    • 3.2.2    Market Growth Drivers and Trends   137
    • 3.2.3    Regulations     139
    • 3.2.4    Value chain     140
    • 3.2.5    Future outlook              140
    • 3.2.6    Addressable Market Size        141
    • 3.2.7    Risks and Opportunities         141
    • 3.2.8    Global revenues           143
      • 3.2.8.1 By application market              143
      • 3.2.8.2 By regional market      144
  • 3.3        Company profiles       145 (112 company profiles)

 

4             INDUSTRIAL ENZYMES            223

  • 4.1        Technology/materials analysis          223
    • 4.1.1    Detergent Enzymes    223
    • 4.1.2    Food Processing Enzymes    223
    • 4.1.3    Textile Processing Enzymes  224
    • 4.1.4    Paper and Pulp Processing Enzymes             224
    • 4.1.5    Leather Processing Enzymes               225
    • 4.1.6    Biofuel Production Enzymes                225
    • 4.1.7    Animal Feed Enzymes              226
    • 4.1.8    Pharmaceutical and Diagnostic Enzymes  227
    • 4.1.9    Waste Management and Bioremediation Enzymes              227
    • 4.1.10 Agriculture and Crop Improvement Enzymes           228
  • 4.2        Market analysis            230
    • 4.2.1    Key players and competitive landscape      230
    • 4.2.2    Market Growth Drivers and Trends   231
    • 4.2.3    Regulations     232
    • 4.2.4    Value chain     233
    • 4.2.5    Future outlook              234
    • 4.2.6    Addressable Market Size        235
    • 4.2.7    Risks and Opportunities         235
    • 4.2.8    Global revenues           236
    • 4.2.8.1 By application market              236
    • 4.2.8.2 By regional market      236
  • 4.3        Companies profiles   238 (56 company profiles)

 

5             BIOFUELS        274

  • 5.1        Technology/materials analysis          274
    • 5.1.1    Role in the circular economy               274
    • 5.1.2    The global biofuels market    276
    • 5.1.3    Feedstocks      276
      • 5.1.3.1 First-generation (1-G)               278
      • 5.1.3.2 Second-generation (2-G)       279
        • 5.1.3.2.1           Lignocellulosic wastes and residues             280
        • 5.1.3.2.2           Biorefinery lignin         281
      • 5.1.3.3 Third-generation (3-G)             285
        • 5.1.3.3.1           Algal biofuels 285
          • 5.1.3.3.1.1      Properties         286
          • 5.1.3.3.1.2      Advantages     286
      • 5.1.3.4 Fourth-generation (4-G)          287
      • 5.1.3.5 Advantages and disadvantages, by generation        287
    • 5.1.4    Bioethanol       289
      • 5.1.4.1 First-generation bioethanol (from sugars and starches)    289
      • 5.1.4.2 Second-generation bioethanol (from lignocellulosic biomass)   289
      • 5.1.4.3 Third-generation bioethanol (from algae)    290
    • 5.1.5    Biodiesel           290
      • 5.1.5.1 Biodiesel by generation           290
      • 5.1.5.2 SWOT analysis              291
      • 5.1.5.3 Production of biodiesel and other biofuels 293
        • 5.1.5.3.1           Pyrolysis of biomass 293
        • 5.1.5.3.2           Vegetable oil transesterification       296
        • 5.1.5.3.3           Vegetable oil hydrogenation (HVO)  297
          • 5.1.5.3.3.1      Production process   297
        • 5.1.5.3.4           Biodiesel from tall oil                298
        • 5.1.5.3.5           Fischer-Tropsch BioDiesel     298
        • 5.1.5.3.6           Hydrothermal liquefaction of biomass         300
        • 5.1.5.3.7           CO2 capture and Fischer-Tropsch (FT)          301
        • 5.1.5.3.8           Dymethyl ether (DME)              301
      • 5.1.5.4 Prices  301
      • 5.1.5.5 Global production and consumption            302
    • 5.1.6    Biogas 304
      • 5.1.6.1 Feedstocks      305
      • 5.1.6.2 Biomethane    306
        • 5.1.6.2.1           Production pathways                308
          • 5.1.6.2.1.1      Landfill gas recovery 308
          • 5.1.6.2.1.2      Anaerobic digestion  308
          • 5.1.6.2.1.3      Thermal gasification 309
      • 5.1.6.3 SWOT analysis              310
      • 5.1.6.4 Global production      311
      • 5.1.6.5 Prices  311
        • 5.1.6.5.1           Raw Biogas     311
        • 5.1.6.5.2           Upgraded Biomethane            311
      • 5.1.6.6 Bio-LNG             311
        • 5.1.6.6.1           Markets              311
          • 5.1.6.6.1.1      Trucks 311
          • 5.1.6.6.1.2      Marine 312
        • 5.1.6.6.2           Production       312
        • 5.1.6.6.3           Plants 312
      • 5.1.6.7 bio-CNG (compressed natural gas derived from biogas)  313
      • 5.1.6.8 Carbon capture from biogas               313
      • 5.1.6.9 Biosyngas        314
        • 5.1.6.9.1           Production       314
        • 5.1.6.9.2           Prices  315
    • 5.1.7    Biobutanol      315
      • 5.1.7.1 Production       317
      • 5.1.7.2 Prices  317
    • 5.1.8    Biohydrogen   317
      • 5.1.8.1 Description     317
        • 5.1.8.1.1           Dark fermentation      318
        • 5.1.8.1.2           Photofermentation     318
        • 5.1.8.1.3           Biophotolysis (direct and indirect)   319
          • 5.1.8.1.3.1      Direct Biophotolysis 319
          • 5.1.8.1.3.2      Indirect Biophotolysis:            320
      • 5.1.8.2 SWOT analysis              321
      • 5.1.8.3 Production of biohydrogen from biomass  321
        • 5.1.8.3.1           Biological Conversion Routes             322
          • 5.1.8.3.1.1      Bio-photochemical Reaction              322
          • 5.1.8.3.1.2      Fermentation and Anaerobic Digestion        322
        • 5.1.8.3.2           Thermochemical conversion routes               323
          • 5.1.8.3.2.1      Biomass Gasification               323
          • 5.1.8.3.2.2      Biomass Pyrolysis      323
          • 5.1.8.3.2.3      Biomethane Reforming           323
      • 5.1.8.4 Applications   324
      • 5.1.8.5 Prices  325
    • 5.1.9    Biomethanol  325
      • 5.1.9.1 Gasification-based biomethanol     325
      • 5.1.9.2 Biosynthesis-based biomethanol    326
      • 5.1.9.3 SWOT analysis              326
      • 5.1.9.4 Methanol-to gasoline technology     327
        • 5.1.9.4.1           Production processes              328
          • 5.1.9.4.1.1      Anaerobic digestion  329
          • 5.1.9.4.1.2      Biomass gasification 329
          • 5.1.9.4.1.3      Power to Methane       330
    • 5.1.10 Bio-oil and Biochar    330
      • 5.1.10.1            Pyrolysis-based bio-oil            331
      • 5.1.10.2            Hydrothermal liquefaction-based bio-oil    332
      • 5.1.10.3            Biochar from pyrolysis and gasification processes               332
      • 5.1.10.4            Advantages of bio-oils             334
      • 5.1.10.5            Production       336
        • 5.1.10.5.1        Fast Pyrolysis 336
        • 5.1.10.5.2        Costs of production  336
        • 5.1.10.5.3        Upgrading        336
      • 5.1.10.6            SWOT analysis              337
      • 5.1.10.7            Applications   338
      • 5.1.10.8            Bio-oil producers         338
      • 5.1.10.9            Prices  339
    • 5.1.11 Renewable Diesel and Jet Fuel           340
      • 5.1.11.1            Renewable diesel        340
        • 5.1.11.1.1        Production       340
        • 5.1.11.1.2        SWOT analysis              341
        • 5.1.11.1.3        Global consumption 342
      • 5.1.11.2            Bio-aviation fuel (bio-jet fuel, sustainable aviation fuel, renewable jet fuel or aviation biofuel)              343
        • 5.1.11.2.1        Description     343
        • 5.1.11.2.2        SWOT analysis              344
        • 5.1.11.2.3        Global production and consumption            345
        • 5.1.11.2.4        Production pathways                345
        • 5.1.11.2.5        Prices  347
        • 5.1.11.2.6        Bio-aviation fuel production capacities       347
        • 5.1.11.2.7        Challenges      348
        • 5.1.11.2.8        Global consumption 348
    • 5.1.12 Algal biofuels 349
      • 5.1.12.1            Conversion pathways               349
      • 5.1.12.2            SWOT analysis              350
      • 5.1.12.3            Production       351
      • 5.1.12.4            Market challenges      352
      • 5.1.12.5            Prices  353
      • 5.1.12.6            Producers         354
  • 5.2        Market analysis            355
    • 5.2.1    Key players and competitive landscape      355
    • 5.2.2    Market Growth Drivers and Trends   356
    • 5.2.3    Regulations     356
    • 5.2.4    Value chain     357
    • 5.2.5    Future outlook              358
    • 5.2.6    Addressable Market Size        359
    • 5.2.7    Risks and Opportunities         359
    • 5.2.8    Global revenues           360
      • 5.2.8.1 By biofuel type               360
      • 5.2.8.2 Applications Market  360
      • 5.2.8.3 By regional market      361
  • 5.3        Company profiles       362 (211 company profiles)

 

6             BIOPLASTICS 510

  • 6.1        Technology/materials analysis          510
    • 6.1.1    Polylactic acid (PLA) 510
    • 6.1.2    Polyhydroxyalkanoates (PHAs)          511
      • 6.1.2.1 Types   513
      • 6.1.2.2 Polyhydroxybutyrate (PHB)   516
      • 6.1.2.3 Polyhydroxyvalerate (PHV)    517
    • 6.1.3    Bio-based polyethylene (PE)                517
    • 6.1.4    Bio-based polyethylene terephthalate (PET)             518
    • 6.1.5    Bio-based polyurethanes (PUs)         519
    • 6.1.6    Starch-based plastics              520
    • 6.1.7    Cellulose-based plastics       521
  • 6.2        Market analysis            522
    • 6.2.1    Key players and competitive landscape      522
    • 6.2.2    Market Growth Drivers and Trends   523
    • 6.2.3    Regulations     524
    • 6.2.4    Value chain     525
    • 6.2.5    Future outlook              525
    • 6.2.6    Addressable Market Size        527
    • 6.2.7    Risks and Opportunities         527
    • 6.2.8    Global revenues           528
      • 6.2.8.1 By type                528
      • 6.2.8.2 By application market              528
      • 6.2.8.3 By regional market      528
  • 6.3        Company profiles       530 (520 company profiles)

 

7             BIOCHEMICALS           902

  • 7.1        Technology/materials analysis          902
    • 7.1.1    Organic acids 905
      • 7.1.1.1 Lactic acid       905
        • 7.1.1.1.1           D-lactic acid   906
        • 7.1.1.1.2           L-lactic acid    906
      • 7.1.1.2 Succinic acid 906
      • 7.1.1.3 Itaconic acid  907
      • 7.1.1.4 Citric acid        908
      • 7.1.1.5 Acetic acid      909
    • 7.1.2    Amino acids   910
      • 7.1.2.1 Glutamic acid                910
      • 7.1.2.2 Lysine 910
      • 7.1.2.3 Threonine         912
      • 7.1.2.4 Methionine      912
    • 7.1.3    Alcohols            913
      • 7.1.3.1 Ethanol              913
      • 7.1.3.2 Butanol              914
      • 7.1.3.3 Isobutanol       915
      • 7.1.3.4 Propanediol    916
    • 7.1.4    Surfactants     916
      • 7.1.4.1 Biosurfactants (e.g., rhamnolipids, sophorolipids)              916
      • 7.1.4.2 Alkyl polyglucosides (APGs) 917
    • 7.1.5    Solvents            918
      • 7.1.5.1 Ethyl lactate    918
      • 7.1.5.2 Dimethyl carbonate   919
      • 7.1.5.3 Glycerol             919
    • 7.1.6    Flavours and fragrances         920
      • 7.1.6.1 Vanillin               920
      • 7.1.6.2 Nootkatone     921
      • 7.1.6.3 Limonene         922
    • 7.1.7    Bio-based monomers and intermediates    923
      • 7.1.7.1 Succinic acid 923
      • 7.1.7.2 1,4-Butanediol (BDO)              924
      • 7.1.7.3 Isoprene            925
      • 7.1.7.4 Ethylene            926
      • 7.1.7.5 Propylene         926
      • 7.1.7.6 Adipic acid      927
      • 7.1.7.7 Acrylic acid     928
      • 7.1.7.8 Sebacic acid  929
    • 7.1.8    Bio-based polymers  929
      • 7.1.8.1 Polybutylene succinate (PBS)             929
      • 7.1.8.2 Polyamides (nylons)  930
      • 7.1.8.3 Polyethylene furanoate (PEF)              930
      • 7.1.8.4 Polytrimethylene terephthalate (PTT)            932
      • 7.1.8.5 Polyethylene isosorbide terephthalate (PEIT)           934
    • 7.1.9    Bio-based composites and blends  935
      • 7.1.9.1 Wood-plastic composites (WPCs)  935
      • 7.1.9.2 Biofiller-reinforced plastics  936
      • 7.1.9.3 Biofiber-reinforced plastics  937
      • 7.1.9.4 Polymer blends with bio-based components           938
    • 7.1.10 Waste 939
      • 7.1.10.1            Food waste      939
      • 7.1.10.2            Agricultural waste       940
      • 7.1.10.3            Forestry waste               941
      • 7.1.10.4            Aquaculture/fishing waste    941
      • 7.1.10.5            Municipal solid waste              942
      • 7.1.10.6            Industrial waste           942
      • 7.1.10.7            Waste oils        942
    • 7.1.11 Microbial and mineral sources           943
      • 7.1.11.1            Microalgae      943
      • 7.1.11.2            Macroalgae     943
      • 7.1.11.3            Mineral sources            944
  • 7.2        Market analysis            945
    • 7.2.1    Key players and competitive landscape      945
    • 7.2.2    Market Growth Drivers and Trends   946
    • 7.2.3    Regulations     947
    • 7.2.4    Value chain     948
    • 7.2.5    Future outlook              948
    • 7.2.6    Addressable Market Size        949
    • 7.2.7    Risks and Opportunities         950
    • 7.2.8    Global revenues           950
      • 7.2.8.1 By type                950
      • 7.2.8.2 By application market              951
      • 7.2.8.3 By regional market      951
  • 7.3        Company profiles       952 (123 company profiles)

 

8             BIO-AGRITECH             1030

  • 8.1        Technology/materials analysis          1030
    • 8.1.1    Biopesticides 1030
      • 8.1.1.1 Semiochemical            1031
      • 8.1.1.2 Macrobial Biological Control Agents              1031
      • 8.1.1.3 Microbial pesticides  1034
      • 8.1.1.4 Biochemical pesticides          1035
      • 8.1.1.5 Plant-incorporated protectants (PIPs)           1035
    • 8.1.2    Biofertilizers   1036
    • 8.1.3    Biostimulants 1037
      • 8.1.3.1 Microbial biostimulants         1037
        • 8.1.3.1.1           Nitrogen Fixation         1040
        • 8.1.3.1.2           Formulation Challenges         1041
      • 8.1.3.2 Natural Product Biostimulants          1042
      • 8.1.3.3 Manipulating the Microbiome             1045
      • 8.1.3.4 Synthetic Biology        1046
      • 8.1.3.5 Non-microbial biostimulants             1047
    • 8.1.4    Agricultural Enzymes                1048
      • 8.1.4.1 Types of Agricultural Enzymes            1048
  • 8.2        Market analysis            1050
    • 8.2.1    Key players and competitive landscape      1050
    • 8.2.2    Market Growth Drivers and Trends   1051
    • 8.2.3    Regulations     1051
    • 8.2.4    Value chain     1052
    • 8.2.5    Future outlook              1053
    • 8.2.6    Addressable Market Size        1054
    • 8.2.7    Risks and Opportunities         1054
    • 8.2.8    Global revenues           1055
      • 8.2.8.1 By application market              1055
      • 8.2.8.2 By regional market      1055
  • 8.3        Company profiles       1056 (105 company profiles)

 

9             RESEARCH METHODOLOGY              1131

 

10          REFERENCES 1132

 

List of Tables

  • Table 1. Biomanufacturing revolutions and representative products. 52
  • Table 2. Industrial Biomanufacturing categories. 53
  • Table 3. Overview of Biomanufacturing Processes. 54
  • Table 4. Continuous vs batch biomanufacturing 55
  • Table 5. Key Components of Industrial Biomanufacturing. 56
  • Table 6. Types of Cell Culture Systems. 72
  • Table 7. Factors Affecting Cell Culture Performance. 73
  • Table 8. Types of Fermentation Processes. 74
  • Table 9. Factors Affecting Fermentation Performance. 75
  • Table 10. Advances in Fermentation Technology. 75
  • Table 11. Types of Purification Methods in Downstream Processing. 76
  • Table 12. Factors Affecting Purification Performance. 77
  • Table 13. Advances in Purification Technology. 77
  • Table 14. Common formulation methods used in biomanufacturing. 79
  • Table 15. Factors Affecting Formulation Performance. 80
  • Table 16. Advances in Formulation Technology. 80
  • Table 17. Factors Affecting Scale-up Performance in Biomanufacturing. 82
  • Table 18. Scale-up Strategies in Biomanufacturing. 82
  • Table 19. Factors Affecting Optimization Performance in Biomanufacturing. 84
  • Table 20. Optimization Strategies in Biomanufacturing. 84
  • Table 21. Types of Quality Control Tests in Biomanufacturing. 85
  • Table 22.Factors Affecting Quality Control Performance in Biomanufacturing 86
  • Table 23. Factors Affecting Characterization Performance in Biomanufacturing 88
  • Table 24. Key fermentation parameters in batch vs continuous biomanufacturing processes. 95
  • Table 25. Major microbial cell factories used in industrial biomanufacturing. 100
  • Table 26. Comparison of Modes of Operation. 103
  • Table 27. Host organisms commonly used in biomanufacturing. 104
  • Table 28. Types of Monoclonal Antibodies. 106
  • Table 29. Types of Recombinant Proteins. 106
  • Table 30. Types of biopharma vaccines. 107
  • Table 31. Types of Cell and Gene Therapies 107
  • Table 32. Types of Blood Factors. 108
  • Table 33. Types of Tissue Engineering Products. 109
  • Table 34. Types of Nucleic Acid Therapeutics. 109
  • Table 35. Types of Peptide Therapeutics. 110
  • Table 36. Types of Biosimilars and Biobetters. 111
  • Table 37. Types of Nanobodies and Antibody Fragments. 111
  • Table 38. Types of Synthetic Biology Applications in Biopharmaceuticals. 112
  • Table 39. Engineered proteins in industrial applications. 116
  • Table 40. Cell-free versus cell-based systems 120
  • Table 41. White biotechnology fermentation processes. 125
  • Table 42. Key players in biopharmaceuticals. 138
  • Table 43. Market Growth Drivers and Trends in Biopharmaceuticals. 138
  • Table 44. Biopharmaceuticals Regulations. 140
  • Table 45. Value chain: Biopharmaceuticals. 141
  • Table 46. Addressable market size for biopharmaceuticals. 142
  • Table 47. Risks and Opportunities in biopharmaceuticals. 143
  • Table 48. Global revenues for biopharmaceuticals, by applications market (2020-2035), billions USD. 145
  • Table 49. Global revenues for biopharmaceuticals, by regional market (2020-2035), billions USD. 145
  • Table 50. Types of Detergent Enzymes. 224
  • Table 51.Types of Food Processing Enzymes 224
  • Table 52. Types of Textile Processing Enzymes. 225
  • Table 53. Types of Paper and Pulp Processing Enzymes. 225
  • Table 54. Types of Leather Processing Enzymes. 226
  • Table 55. Types of Biofuel Production Enzymes. 226
  • Table 56. Types of Animal Feed Enzymes. 227
  • Table 57. Types of Pharmaceutical and Diagnostic Enzymes. 228
  • Table 58. Types of Waste Management and Bioremediation Enzymes. 228
  • Table 59. Types of Agriculture and Crop Improvement Enzymes. 229
  • Table 60. Comparison of enzyme types. 230
  • Table 61. Key players in industrial enzymes. 232
  • Table 62. Market Growth Drivers and Trends in industrial enzymes. 232
  • Table 63. Industrial enzymes Regulations. 233
  • Table 64. Value chain: Industrial enzymes. 234
  • Table 65. Addressable market size for industrial enzymes. 236
  • Table 66. Risks and Opportunities in industrial enzymes. 236
  • Table 67. Global revenues for industrial enzymes, by applications market (2020-2035), billions USD. 237
  • Table 68. Global revenues for industrial enzymes, by regional market (2020-2035), billions USD. 238
  • Table 69. Comparison of biofuels. 276
  • Table 70. Classification of biomass feedstock. 277
  • Table 71. Biorefinery feedstocks. 278
  • Table 72. Feedstock conversion pathways. 279
  • Table 73. First-Generation Feedstocks. 279
  • Table 74. Lignocellulosic ethanol plants and capacities. 281
  • Table 75. Comparison of pulping and biorefinery lignins. 282
  • Table 76. Commercial and pre-commercial biorefinery lignin production facilities and processes 283
  • Table 77. Operating and planned lignocellulosic biorefineries and industrial flue gas-to-ethanol. 284
  • Table 78. Properties of microalgae and macroalgae. 287
  • Table 79. Yield of algae and other biodiesel crops. 287
  • Table 80. Advantages and disadvantages of biofuels, by generation. 288
  • Table 81. Biodiesel by generation. 291
  • Table 82. Biodiesel production techniques. 294
  • Table 83. Summary of pyrolysis technique under different operating conditions. 295
  • Table 84. Biomass materials and their bio-oil yield. 296
  • Table 85. Biofuel production cost from the biomass pyrolysis process. 296
  • Table 86. Properties of vegetable oils in comparison to diesel. 298
  • Table 87. Main producers of HVO and capacities. 299
  • Table 88. Example commercial Development of BtL processes. 300
  • Table 89. Pilot or demo projects for biomass to liquid (BtL) processes. 300
  • Table 90. Global biodiesel consumption, 2010-2035 (M litres/year). 304
  • Table 91. Biogas feedstocks. 306
  • Table 92. Existing and planned bio-LNG production plants. 313
  • Table 93. Methods for capturing carbon dioxide from biogas. 314
  • Table 94. Comparison of different Bio-H2 production pathways. 323
  • Table 95. Markets and applications for biohydrogen. 325
  • Table 96. Comparison of biogas, biomethane and natural gas. 329
  • Table 97. Summary of applications of biochar in energy. 335
  • Table 98. Typical composition and physicochemical properties reported for bio-oils and heavy petroleum-derived oils. 336
  • Table 99. Properties and characteristics of pyrolysis liquids derived from biomass versus a fuel oil. 336
  • Table 100. Main techniques used to upgrade bio-oil into higher-quality fuels. 338
  • Table 101. Markets and applications for bio-oil. 339
  • Table 102. Bio-oil producers. 339
  • Table 103. Global renewable diesel consumption, 2010-2035 (M litres/year). 343
  • Table 104. Renewable diesel price ranges. 344
  • Table 105. Advantages and disadvantages of Bio-aviation fuel. 344
  • Table 106. Production pathways for Bio-aviation fuel. 346
  • Table 107. Current and announced Bio-aviation fuel facilities and capacities. 348
  • Table 108. Global bio-jet fuel consumption 2019-2035 (Million litres/year). 350
  • Table 109. Algae-derived biofuel producers. 355
  • Table 110. Key players in biofuels. 356
  • Table 111. Market Growth Drivers and Trends in biofuels. 357
  • Table 112. Biofuels Regulations. 357
  • Table 113. Value chain: Biofuels. 358
  • Table 114. Addressable market size for biofuels. 360
  • Table 115. Risks and Opportunities in biofuels 360
  • Table 116. Global revenues for biofuels, by type (2020-2035), billions USD. 361
  • Table 117. Global Revenues for Biofuels, by Applications Market (2020-2035), billions USD. 361
  • Table 118. Global revenues for biofuels, by regional market (2020-2035), billions USD. 362
  • Table 119. Granbio Nanocellulose Processes. 426
  • Table 120. Polylactic acid (PLA) market analysis-manufacture, advantages, disadvantages and applications. 511
  • Table 121.Types of PHAs and properties. 515
  • Table 122. Commercially available PHAs. 516
  • Table 123. Markets and applications for PHAs. 516
  • Table 124. Bio-based Polyethylene (Bio-PE) market analysis- manufacture, advantages, disadvantages and applications. 518
  • Table 125. Bio-based Polyethylene terephthalate (Bio-PET) market analysis- manufacture, advantages, disadvantages and applications. 519
  • Table 126. Bio-based Polyethylene terephthalate (PET) producers and production capacities, 520
  • Table 127. Key players in Bioplastics. 524
  • Table 128. Market Growth Drivers and Trends in Bioplastics. 524
  • Table 129. Bioplastics Regulations. 525
  • Table 130. Value chain: Bioplastics. 526
  • Table 131. Addressable market size for Bioplastics. 528
  • Table 132. Risks and Opportunities in Bioplastics. 528
  • Table 133. Global revenues for bioplastics, by type (2020-2035), billions USD. 529
  • Table 134. Global revenues for bioplastics, by applications market (2020-2035), billions USD. 529
  • Table 135. Global revenues for bioplastics, by regional market (2020-2035), billions USD. 529
  • Table 136. Lactips plastic pellets. 715
  • Table 137. Oji Holdings CNF products. 781
  • Table 138. Plant-based feedstocks and biochemicals produced. 903
  • Table 139. Waste-based feedstocks and biochemicals produced. 904
  • Table 140. Microbial and mineral-based feedstocks and biochemicals produced. 905
  • Table 141. Biobased feedstock sources for Succinic acid. 907
  • Table 142. Applications of succinic acid. 908
  • Table 143. Biobased feedstock sources for itaconic acid. 908
  • Table 144. Applications of bio-based itaconic acid. 909
  • Table 145. Feedstock Sources for Citric Acid Production. 909
  • Table 146. Applications of Citric Acid. 910
  • Table 147. Feedstock Sources for Acetic Acid Production. 910
  • Table 148. Applications of Acetic Acid. 910
  • Table 149. Feedstock Sources for Acetic Acid Production. 911
  • Table 150. Applications of Acetic Acid. 911
  • Table 151. Common lysine sources that can be used as feedstocks for producing biochemicals. 912
  • Table 152. Applications of lysine as a feedstock for biochemicals. 912
  • Table 153. Feedstock Sources for Threonine Production. 913
  • Table 154. Applications of Threonine. 913
  • Table 155.Feedstock Sources for Methionine Production. 913
  • Table 156. Applications of Methionine. 914
  • Table 157. Biobased feedstock sources for ethanol. 914
  • Table 158. Applications of bio-based ethanol. 915
  • Table 159. Feedstock Sources for Butanol Production. 915
  • Table 160. Applications of Butanol. 915
  • Table 161. Biobased feedstock sources for isobutanol. 916
  • Table 162. Applications of bio-based isobutanol. 916
  • Table 163. Applications of bio-based 1,3-Propanediol (1,3-PDO). 917
  • Table 164. Types of Biosurfactants. 917
  • Table 165. Feedstock Sources for Biosurfactant Production 918
  • Table 166. Applications of Biosurfactants 918
  • Table 167.Feedstock Sources for APG Production 918
  • Table 168. Applications of Alkyl Polyglucosides (APGs) 919
  • Table 169. Feedstock Sources for Ethyl Lactate Production. 919
  • Table 170. Applications of Ethyl Lactate. 919
  • Table 171.Feedstock Sources for Dimethyl Carbonate Production 920
  • Table 172. Applications of Dimethyl Carbonate 920
  • Table 173. Markets and applications for bio-based glycerol. 921
  • Table 174.Feedstock Sources for Succinic Acid Production 925
  • Table 175. Applications of Succinic Acid. 925
  • Table 176. Applications of bio-based 1,4-Butanediol (BDO). 925
  • Table 177. Feedstock Sources for Isoprene Production. 926
  • Table 178. Applications of Isoprene. 926
  • Table 179. Applications of bio-based ethylene. 927
  • Table 180. Applications of bio-based propylene. 928
  • Table 181. Applications of bio-based adipic acid. 928
  • Table 182. Applications of bio-based acrylic acid. 929
  • Table 183. Bio-PBS market analysis-manufacture, advantages, disadvantages and applications. 931
  • Table 184. Leading PBS producers and production capacities. 931
  • Table 185. Polyethylene furanoate (PEF) market analysis-manufacture, advantages, disadvantages and applications. 932
  • Table 186. FDCA and PEF producers. 933
  • Table 187. Polytrimethylene terephthalate (PTT) market analysis-manufacture, advantages, disadvantages and applications. 934
  • Table 188. Production capacities of Polytrimethylene terephthalate (PTT), by leading producers. 934
  • Table 189. Types of Wood-Plastic Composites (WPCs). 937
  • Table 190. Types of Biofiber-Reinforced Plastics. 938
  • Table 191. Types of Polymer Blends with Bio-based Components. 940
  • Table 192. Mineral source products and applications. 946
  • Table 193. Key players in Biochemicals. 946
  • Table 194. Market Growth Drivers and Trends in Biochemicals. 947
  • Table 195. Biochemicals Regulations. 948
  • Table 196. Value chain: Biochemicals. 949
  • Table 197. Addressable market size for Biochemicals. 950
  • Table 198. Risks and Opportunities in Biochemicals. 951
  • Table 199. Global revenues for biochemicals, by type (2020-2035), billions USD. 951
  • Table 200. Global revenues for biochemicals, by applications market (2020-2035), billions USD. 952
  • Table 201. Global revenues for biochemicals, by regional market (2020-2035), billions USD. 952
  • Table 202. Biopesticides: Pros and Cons. 1031
  • Table 203. Semiochemicals: Advantages and Disadvantages. 1032
  • Table 204.Biological Pest Control: Advantages and Disadvantages. 1033
  • Table 205. Global regulations on biopesticides. 1033
  • Table 206. Main types of microbial pesticides. 1035
  • Table 207. Main types of biochemical pesticides. 1036
  • Table 208. Main types of biofertilizers. 1037
  • Table 209. Types of Microbial Biostimulants. 1044
  • Table 210. Main types of non-microbial biostimulants. 1048
  • Table 211. Types of Agricultural Enzymes 1049
  • Table 212. Key players in Bio Agritech. 1051
  • Table 213. Market Growth Drivers and Trends in Bio Agritech 1052
  • Table 214. Bio Agritech Regulations. 1052
  • Table 215. Value chain: Bio Agritech. 1053
  • Table 216. Addressable market size for Bio Agritech. 1055
  • Table 217. Risks and Opportunities in Bio Agritech. 1055
  • Table 218. Global revenues for Bio Agritech products, by applications market (2020-2035), billions USD. 1056
  • Table 219. Global revenues for Bio Agritech products, by regional market (2020-2035), billions USD. 1056

 

List of Figures

  • Figure 1. CRISPR/Cas9 & Targeted Genome Editing.           114
  • Figure 2. Genetic Circuit-Assisted Smart Microbial Engineering. 118
  • Figure 3. Cell-free and cell-based protein synthesis systems.      120
  • Figure 4. Microbial Chassis Development for Natural Product Biosynthesis.     121
  • Figure 5. The design-make-test-learn loop of generative biology.                126
  • Figure 6. XtalPi’s automated and robot-run workstations.               220
  • Figure 7. Light Bio Bioluminescent plants. 265
  • Figure 8. Corbion FDCA production process.           272
  • Figure 9.  Schematic of a biorefinery for production of carriers and chemicals.                282
  • Figure 10. Hydrolytic lignin powder. 285
  • Figure 11. SWOT analysis for biodiesel.       292
  • Figure 12. Flow chart for biodiesel production.       296
  • Figure 13. Biodiesel (B20) average prices, current and historical, USD/litre.       302
  • Figure 14. Biogas and biomethane pathways.          305
  • Figure 15. Overview of biogas utilization.    306
  • Figure 16. Biogas and biomethane pathways.          307
  • Figure 17. Schematic overview of anaerobic digestion process for biomethane production.   309
  • Figure 18. Schematic overview of biomass gasification for biomethane production.    310
  • Figure 19. SWOT analysis for biogas.             311
  • Figure 20. Total syngas market by product in MM Nm³/h of Syngas, 2023.           315
  • Figure 21. Properties of petrol and biobutanol.       316
  • Figure 22. Biobutanol production route.      316
  • Figure 23. SWOT analysis for biohydrogen. 321
  • Figure 24. SWOT analysis biomethanol.      327
  • Figure 25. Renewable Methanol Production Processes from Different Feedstocks.       328
  • Figure 26. Production of biomethane through anaerobic digestion and upgrading.        329
  • Figure 27. Production of biomethane through biomass gasification and methanation.               330
  • Figure 28. Production of biomethane through the Power to methane process.  330
  • Figure 29. Bio-oil upgrading/fractionation techniques.      336
  • Figure 30. SWOT analysis for bio-oils.           338
  • Figure 31. SWOT analysis for renewable iesel.         342
  • Figure 32. SWOT analysis for Bio-aviation fuel.       344
  • Figure 33. Global bio-jet fuel consumption to 2019-2035 (Million litres/year).   348
  • Figure 34.  Pathways for algal biomass conversion to biofuels.    350
  • Figure 35. SWOT analysis for algae-derived biofuels.         351
  • Figure 36. Algal biomass conversion process for biofuel production.      352
  • Figure 37. ANDRITZ Lignin Recovery process.          368
  • Figure 38. ChemCyclingTM prototypes.       374
  • Figure 39. ChemCycling circle by BASF.       374
  • Figure 40. FBPO process        385
  • Figure 41. Direct Air Capture Process.          389
  • Figure 42. CRI process.           391
  • Figure 43. Cassandra Oil  process.  394
  • Figure 44. Colyser process.  401
  • Figure 45. ECFORM electrolysis reactor schematic.            406
  • Figure 46. Dioxycle modular electrolyzer.    407
  • Figure 47. Domsjö process.  408
  • Figure 48. FuelPositive system.         419
  • Figure 49. INERATEC unit.     435
  • Figure 50. Infinitree swing method. 436
  • Figure 51. Audi/Krajete unit. 442
  • Figure 52. Enfinity cellulosic ethanol technology process.              467
  • Figure 53: Plantrose process.              475
  • Figure 54. Sunfire process for Blue Crude production.       491
  • Figure 55. Takavator.  494
  • Figure 56. O12 Reactor.           497
  • Figure 57. Sunglasses with lenses made from CO2-derived materials.  497
  • Figure 58. CO2 made car part.           498
  • Figure 59. The Velocys process.        500
  • Figure 60. Goldilocks process and applications.   503
  • Figure 61. The Proesa® Process.        504
  • Figure 62. PHA family.              513
  • Figure 63. Pluumo.     533
  • Figure 64. ANDRITZ Lignin Recovery process.          542
  • Figure 65. Anpoly cellulose nanofiber hydrogel.     544
  • Figure 66. MEDICELLU™.         544
  • Figure 67. Asahi Kasei CNF fabric sheet.     553
  • Figure 68. Properties of Asahi Kasei cellulose nanofiber nonwoven fabric.          553
  • Figure 69. CNF nonwoven fabric.      554
  • Figure 70. Roof frame made of natural fiber.             563
  • Figure 71. Beyond Leather Materials product.          567
  • Figure 72. BIOLO e-commerce mailer bag made from PHA.           573
  • Figure 73. Reusable and recyclable foodservice cups, lids, and straws from Joinease Hong Kong Ltd., made with plant-based NuPlastiQ BioPolymer from BioLogiQ, Inc.          574
  • Figure 74. Fiber-based screw cap.   586
  • Figure 75. formicobio™ technology. 605
  • Figure 76. nanoforest-S.         607
  • Figure 77. nanoforest-PDP.   607
  • Figure 78. nanoforest-MB.     608
  • Figure 79. sunliquid® production process. 615
  • Figure 80. CuanSave film.     618
  • Figure 81. Celish.        619
  • Figure 82. Trunk lid incorporating CNF.         621
  • Figure 83. ELLEX products.   622
  • Figure 84. CNF-reinforced PP compounds.               623
  • Figure 85. Kirekira! toilet wipes.         623
  • Figure 86. Color CNF.               624
  • Figure 87. Rheocrysta spray.                629
  • Figure 88. DKS CNF products.            630
  • Figure 89. Domsjö process.  631
  • Figure 90. Mushroom leather.              641
  • Figure 91. CNF based on citrus peel.             642
  • Figure 92. Citrus cellulose nanofiber.            643
  • Figure 93. Filler Bank CNC products.             653
  • Figure 94. Fibers on kapok tree and after processing.         655
  • Figure 95.  TMP-Bio Process.               658
  • Figure 96. Flow chart of the lignocellulose biorefinery pilot plant in Leuna.         659
  • Figure 97. Water-repellent cellulose.             661
  • Figure 98. Cellulose Nanofiber (CNF) composite with polyethylene (PE).             662
  • Figure 99. PHA production process.               664
  • Figure 100. CNF products from Furukawa Electric.              664
  • Figure 101. AVAPTM process.              674
  • Figure 102. GreenPower+™ process.               674
  • Figure 103. Cutlery samples (spoon, knife, fork) made of nano cellulose and biodegradable plastic composite materials.               677
  • Figure 104. Non-aqueous CNF dispersion "Senaf" (Photo shows 5% of plasticizer).     679
  • Figure 105. CNF gel.  685
  • Figure 106. Block nanocellulose material. 686
  • Figure 107. CNF products developed by Hokuetsu.             686
  • Figure 108. Marine leather products.             689
  • Figure 109. Inner Mettle Milk products.        693
  • Figure 110. Kami Shoji CNF products.           703
  • Figure 111. Dual Graft System.          706
  • Figure 112. Engine cover utilizing Kao CNF composite resins.      707
  • Figure 113. Acrylic resin blended with modified CNF (fluid) and its molded product (transparent film), and image obtained with AFM (CNF 10wt% blended).        707
  • Figure 114. Kel Labs yarn.      708
  • Figure 115. 0.3% aqueous dispersion of sulfated esterified CNF and dried transparent film (front side).                712
  • Figure 116. Lignin gel.               720
  • Figure 117. BioFlex process. 723
  • Figure 118. Nike Algae Ink graphic tee.          725
  • Figure 119. LX Process.           729
  • Figure 120. Made of Air's HexChar panels. 731
  • Figure 121. TransLeather.       732
  • Figure 122. Chitin nanofiber product.            737
  • Figure 123. Marusumi Paper cellulose nanofiber products.           738
  • Figure 124. FibriMa cellulose nanofiber powder.    739
  • Figure 125. METNIN™ Lignin refining technology.    742
  • Figure 126. IPA synthesis method.   746
  • Figure 127. MOGU-Wave panels.      749
  • Figure 128. CNF slurries.        750
  • Figure 129. Range of CNF products.               750
  • Figure 130. Reishi.      754
  • Figure 131. Compostable water pod.             770
  • Figure 132. Leather made from leaves.         771
  • Figure 133. Nike shoe with beLEAF™.              771
  • Figure 134. CNF clear sheets.             780
  • Figure 135. Oji Holdings CNF polycarbonate product.       782
  • Figure 136. Enfinity cellulosic ethanol technology process.           795
  • Figure 137. Fabric consisting of 70 per cent wool and 30 per cent Qmilk.             799
  • Figure 138. XCNF.       806
  • Figure 139: Plantrose process.           807
  • Figure 140. LOVR hemp leather.         810
  • Figure 141. CNF insulation flat plates.          813
  • Figure 142. Hansa lignin.       819
  • Figure 143. Manufacturing process for STARCEL.  822
  • Figure 144. Manufacturing process for STARCEL.  826
  • Figure 145. 3D printed cellulose shoe.          834
  • Figure 146. Lyocell process. 837
  • Figure 147. North Face Spiber Moon Parka.              841
  • Figure 148. PANGAIA LAB NXT GEN Hoodie.             841
  • Figure 149. Spider silk production.  842
  • Figure 150. Stora Enso lignin battery materials.      847
  • Figure 151. 2 wt.% CNF suspension.            848
  • Figure 152. BiNFi-s Dry Powder.         848
  • Figure 153. BiNFi-s Dry Powder and Propylene (PP) Complex Pellet.        849
  • Figure 154. Silk nanofiber (right) and cocoon of raw material.       849
  • Figure 155. Sulapac cosmetics containers.              851
  • Figure 156.  Sulzer equipment for PLA polymerization processing.            852
  • Figure 157. Solid Novolac Type lignin modified phenolic resins. 853
  • Figure 158. Teijin bioplastic film for door handles. 862
  • Figure 159. Corbion FDCA production process.     869
  • Figure 160. Comparison of weight reduction effect using CNF.    870
  • Figure 161. CNF resin products.        874
  • Figure 162. UPM biorefinery process.            875
  • Figure 163. Vegea production process.        879
  • Figure 164. The Proesa® Process.     881
  • Figure 165. Goldilocks process and applications. 882
  • Figure 166. Visolis’ Hybrid Bio-Thermocatalytic Process. 886
  • Figure 167. HefCel-coated wood (left) and untreated wood (right) after 30 seconds flame test.            888
  • Figure 168. Worn Again products.    893
  • Figure 169. Zelfo Technology GmbH CNF production process.    897
  • Figure 170. Schematic of biorefinery processes.   905
  • Figure 171. Production capacities of Polyethylene furanoate (PEF) to 2025.       932
  • Figure 172. formicobio™ technology.              970
  • Figure 173. Domsjö process.               974
  • Figure 174.  TMP-Bio Process.             980
  • Figure 175. Lignin gel.               998
  • Figure 176. BioFlex process. 1001
  • Figure 177. LX Process.           1003
  • Figure 178. METNIN™ Lignin refining technology.    1006
  • Figure 179. Enfinity cellulosic ethanol technology process.           1012
  • Figure 180.  Precision Photosynthesis™ technology.            1014
  • Figure 181. Fabric consisting of 70 per cent wool and 30 per cent Qmilk.             1016
  • Figure 182. UPM biorefinery process.            1025
  • Figure 183. The Proesa® Process.     1027
  • Figure 184. Goldilocks process and applications. 1028

 

The Global Market for Industrial Biomanufacturing 2025-2035
The Global Market for Industrial Biomanufacturing 2025-2035
PDF download.

Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer. 

To purchase by invoice (bank transfer) contact info@futuremarketsinc.com or select Bank Transfer (Invoice) as a payment method at checkout.