The Global Nuclear Small Modular Reactors (SMRs) Market 2025-2045

0

cover

cover

  • Published: May 2025
  • Pages: 338
  • Tables: 84
  • Figures: 37

 

The global Small Modular Reactor (SMR) market represents one of the most promising segments within the nuclear energy industry, characterized by innovative reactor designs with electrical outputs typically below 300 MWe. This emerging market is driven by the search for low-carbon energy solutions that offer greater flexibility, reduced financial risk, and enhanced safety features compared to conventional large-scale nuclear plants. As countries worldwide strengthen climate commitments while facing increasing energy security concerns, SMRs are positioned as a potential solution that combines reliable baseload generation with deployment versatility. Market growth projections vary significantly based on deployment scenarios, with conservative estimates valuing the global market at approximately $10-15 billion by 2030, while more optimistic projections suggest potential growth to $40-50 billion by 2035 as the technology matures. The North American market currently leads development efforts, with the United States government providing substantial funding through programs like the Advanced Reactor Demonstration Program. Asia-Pacific represents the fastest-growing regional market, driven primarily by China's operational HTR-PM and Russia's floating nuclear plants, with significant investment also occurring in South Korea, Japan, and India.

The competitive landscape features both established nuclear industry players and innovative startups. Traditional nuclear vendors like GE Hitachi, Westinghouse, and Rosatom have developed SMR designs leveraging their existing technological expertise, while newcomers such as NuScale Power, TerraPower, and X-energy have attracted significant investment with novel approaches. The UK's Rolls-Royce SMR program exemplifies the strategic national importance many countries place on developing domestic SMR capabilities, with similar initiatives underway in Canada, France, and South Korea.

Technology segmentation within the market spans multiple reactor types with varying development timelines. Light water reactor designs dominate near-term deployments due to regulatory familiarity and technological readiness, with NuScale's VOYGR and GE Hitachi's BWRX-300 among the most advanced in regulatory processes. High-temperature gas-cooled reactors offer process heat capabilities for industrial applications, while more advanced designs utilizing liquid metal or molten salt technologies target longer-term market opportunities with enhanced performance characteristics.

Key market drivers include decarbonization policies, energy security concerns, coal plant replacement opportunities, and industrial sector applications. The integration of SMRs within broader energy systems, particularly as enablers for clean hydrogen production and providers of grid stability services in systems with high renewable penetration, represents a significant value proposition. Military and remote community applications create specialized market segments with unique requirements and potentially higher price tolerance.

The market faces several significant challenges, including first-of-a-kind regulatory hurdles, financing complexities for capital-intensive projects, supply chain development needs, and public acceptance considerations. The necessity of establishing manufacturing capacity for standardized components represents both a challenge and an opportunity for industrial development in countries pursuing SMR deployment.

International collaboration has emerged as a defining characteristic of the market, with initiatives like the IAEA's SMR Platform and various bilateral agreements facilitating knowledge sharing and harmonized approaches to regulation. Export market development remains a strategic priority for vendor countries, particularly the United States, Russia, China, and the United Kingdom, with competition for international deployments expected to intensify as designs reach commercial readiness. Over the next decade, the transition from demonstration projects to commercial fleet deployment represents the central market challenge, with successful first-of-a-kind projects likely to significantly influence subsequent market trajectories, investment flows, and technology selection patterns across the global energy landscape.

The Global Nuclear Small Modular Reactors (SMRs) Market 2025-2045 provides in-depth analysis and strategic intelligence on the rapidly evolving Global Nuclear Small Modular Reactors (SMRs) market from 2025-2045. As countries worldwide intensify efforts to achieve net-zero emissions while ensuring energy security, SMRs have emerged as a transformative solution offering reduced capital costs, enhanced safety features, and versatile applications beyond traditional electricity generation. The report meticulously examines market drivers, technological innovations, deployment scenarios, regulatory frameworks, and competitive landscapes to deliver actionable insights for investors, energy companies, policymakers, and industry stakeholders. With detailed data on market segmentation by reactor type, application, and geographical region, this comprehensive analysis presents three growth scenarios with quantitative projections spanning two decades.

Report Contents include:

  • Market Overview and Forecast (2025-2045) – Detailed market size projections, growth trajectories, and regional breakdowns with CAGR analysis and value forecasts. 
  • Technological Analysis – Comprehensive evaluation of diverse SMR technologies including Light Water Reactors (LWRs), High-Temperature Gas-Cooled Reactors (HTGRs), Fast Neutron Reactors (FNRs), Molten Salt Reactors (MSRs), and emerging microreactor designs
  • Competitive Landscape – Strategic positioning, innovation pipelines, competitive advantages, and market share analysis of 33 leading and emerging SMR developers with detailed company profiles
  • Regulatory Framework Analysis – International and regional licensing approaches, harmonization efforts, policy incentives, and export control considerations affecting market development
  • Economic Impact Assessment – Job creation potential, ROI projections, cost-benefit analyses, and comparative economics against traditional nuclear and renewable energy alternatives
  • Deployment Scenarios – Detailed timelines and milestones for First-of-a-Kind (FOAK) and Nth-of-a-Kind (NOAK) deployments with capacity addition forecasts through 2045
  • Applications Analysis – Market potential across diverse applications including electricity generation, industrial process heat, district heating, hydrogen production, desalination, remote power, and marine propulsion
  • Investment Analysis – Financing models, risk assessment methodologies, public-private partnership structures, and ROI comparisons with alternative energy investments
  • Environmental and Social Impact – Carbon emissions reduction potential, land use comparisons, water usage analysis, waste management strategies, and public acceptance considerations
  • Case Studies – In-depth analysis of pioneering SMR projects including NuScale Power VOYGR™, Rolls-Royce UK SMR, China's HTR-PM, Russia's Akademik Lomonosov, and the Canadian SMR Action Plan
  • Future Outlook – Long-term market projections beyond 2045, technology roadmaps, potential disruptive technologies, and global energy mix scenarios with SMR integration
  • Regional Market Analysis – Detailed assessments of market opportunities and regulatory environments across North America, Europe, Asia-Pacific, Middle East & Africa, and Latin America

 

The report provides comprehensive profiles of 33 leading and emerging companies including Aalo Atomics, ARC Clean Technology, Blue Capsule, Blykalla, BWX Technologies, China National Nuclear Corporation (CNNC), Deep Fission, EDF, GE Hitachi Nuclear Energy, General Atomics, Hexana, Holtec International, Kairos Power, Kärnfull Next, Korea Atomic Energy Research Institute (KAERI), Last Energy, Moltex Energy, Naarea, Nano Nuclear Energy, Newcleo, NuScale Power, Oklo, Rolls-Royce SMR, Rosatom, Saltfoss Energy and more.....

This authoritative market intelligence report is essential for anyone involved in the nuclear energy sector, clean energy transition, infrastructure investment, or climate technology. It delivers:

  • Strategic market entry and positioning insights for technology developers and suppliers
  • Investment guidance for venture capital, private equity, and institutional investors
  • Technology roadmapping for research organizations and innovation centers
  • Policy formulation support for government agencies and regulatory bodies
  • Energy planning insights for utilities and industrial energy consumers
  • Competitive intelligence for established nuclear industry players

 

As global energy systems undergo transformative decarbonization, Small Modular Reactors represent one of the most promising technologies for providing reliable, dispatchable clean energy. This report equips stakeholders with the comprehensive market intelligence needed to navigate this emerging landscape successfully, identify strategic opportunities, mitigate risks, and position for long-term success in the evolving global energy ecosystem.

1             EXECUTIVE SUMMARY            14

  • 1.1        Market Overview          16
    • 1.1.1    The nuclear industry 16
    • 1.1.2    Nuclear as a source of low-carbon power  16
    • 1.1.3    Challenges for nuclear power             17
    • 1.1.4    Construction and costs of commercial nuclear power plants      18
    • 1.1.5    Renewed interest in nuclear energy                23
    • 1.1.6    Projections for nuclear installation rates     24
    • 1.1.7    Nuclear energy costs                25
    • 1.1.8    SMR benefits  26
    • 1.1.9    Decarbonization          27
  • 1.2        Market Forecast           28
  • 1.3        Technological Trends                29
  • 1.4        Regulatory Landscape             31

 

2             INTRODUCTION          35

  • 2.1        Definition and Characteristics of SMRs       35
  • 2.2        Established nuclear technologies    38
  • 2.3        History and Evolution of SMR Technology   45
    • 2.3.1    Nuclear fission             45
    • 2.3.2    Controlling nuclear chain reactions               48
    • 2.3.3    Fuels    49
    • 2.3.4    Safety parameters      50
      • 2.3.4.1 Void coefficient of reactivity 50
      • 2.3.4.2 Temperature coefficient          51
    • 2.3.5    Light Water Reactors (LWRs)               51
    • 2.3.6    Ultimate heat sinks (UHS)     52
  • 2.4        Advantages and Disadvantages of SMRs    53
  • 2.5        Comparison with Traditional Nuclear Reactors      55
  • 2.6        Current SMR reactor designs and projects 57
  • 2.7        Types of SMRs               60
    • 2.7.1    Designs             60
    • 2.7.2    Coolant temperature                60
    • 2.7.3    The Small Modular Reactor landscape         63
    • 2.7.4    Light Water Reactors (LWRs)               68
      • 2.7.4.1 Pressurized Water Reactors (PWRs)               68
        • 2.7.4.1.1           Overview           68
        • 2.7.4.1.2           Key features    72
        • 2.7.4.1.3           Examples         73
      • 2.7.4.2 Pressurized Heavy Water Reactors (PHWRs)            75
        • 2.7.4.2.1           Overview           75
        • 2.7.4.2.2           Key features    81
        • 2.7.4.2.3           Examples         83
      • 2.7.4.3 Boiling Water Reactors (BWRs)          84
        • 2.7.4.3.1           Overview           84
        • 2.7.4.3.2           Key features    85
        • 2.7.4.3.3           Examples         88
    • 2.7.5    High-Temperature Gas-Cooled Reactors (HTGRs) 89
      • 2.7.5.1 Overview           89
      • 2.7.5.2 Key features    93
      • 2.7.5.3 Examples         95
    • 2.7.6    Fast Neutron Reactors (FNRs)            97
      • 2.7.6.1 Overview           97
      • 2.7.6.2 Key features    98
      • 2.7.6.3 Examples         98
    • 2.7.7    Molten Salt Reactors (MSRs)               99
      • 2.7.7.1 Overview           99
      • 2.7.7.2 Key features    100
      • 2.7.7.3 Examples         100
    • 2.7.8    Microreactors                102
      • 2.7.8.1 Overview           102
      • 2.7.8.2 Key features    103
      • 2.7.8.3 Examples         103
    • 2.7.9    Heat Pipe Reactors    104
      • 2.7.9.1 Overview           104
      • 2.7.9.2 Key features    105
      • 2.7.9.3 Examples         105
    • 2.7.10 Liquid Metal Cooled Reactors            106
      • 2.7.10.1            Overview           106
      • 2.7.10.2            Key features    108
      • 2.7.10.3            Examples         108
    • 2.7.11 Supercritical Water-Cooled Reactors (SCWRs)      110
      • 2.7.11.1            Overview           110
      • 2.7.11.2            Key features    111
    • 2.7.12 Pebble Bed Reactors 112
      • 2.7.12.1            Overview           112
      • 2.7.12.2            Key features    113
  • 2.8        Applications of SMRs               113
    • 2.8.1    Electricity Generation               118
      • 2.8.1.1 Overview           118
      • 2.8.1.2 Cogeneration 119
    • 2.8.2    Process Heat for Industrial Applications     119
      • 2.8.2.1 Overview           119
      • 2.8.2.2 Strategic co-location of SMRs            120
      • 2.8.2.3 High-temperature reactors   120
      • 2.8.2.4 Coal-fired power plant conversion  121
    • 2.8.3    Nuclear District Heating         121
    • 2.8.4    Desalination   122
    • 2.8.5    Remote and Off-Grid Power 122
    • 2.8.6    Hydrogen and industrial gas production      123
    • 2.8.7    Space Applications   124
    • 2.8.8    Marine SMRs  125
  • 2.9        Market challenges      129
  • 2.10     Safety of SMRs              132

 

3             GLOBAL ENERGY LANDSCAPE AND THE ROLE OF SMRs 134

  • 3.1        Current Global Energy Mix    134
  • 3.2        Projected Energy Demand (2025-2045)       136
  • 3.3        Climate Change Mitigation and the Paris Agreement          138
  • 3.4        Nuclear Energy in the Context of Sustainable Development Goals           138
  • 3.5        SMRs as a Solution for Clean Energy Transition     139

 

4             TECHNOLOGY OVERVIEW    140

  • 4.1        Design Principles of SMRs    140
  • 4.2        Key Components and Systems          140
  • 4.3        Safety Features and Passive Safety Systems            142
  • 4.4        Cycle and Waste Management          145
  • 4.5        Advanced Manufacturing Techniques           146
  • 4.6        Modularization and Factory Fabrication      149
  • 4.7        Transportation and Site Assembly   149
  • 4.8        Grid Integration and Load Following Capabilities  150
  • 4.9        Emerging Technologies and Future Developments               151

 

5             REGULATORY FRAMEWORK AND LICENSING          155

  • 5.1        International Atomic Energy Agency (IAEA) Guidelines      155
  • 5.2        Nuclear Regulatory Commission (NRC) Approach to SMRs           155
  • 5.3        European Nuclear Safety Regulators Group (ENSREG) Perspective          155
  • 5.4        Regulatory Challenges and Harmonization Efforts               156
  • 5.5        Licensing Processes for SMRs            157
  • 5.6        Environmental Impact Assessment                159
  • 5.7        Public Acceptance and Stakeholder Engagement 160

 

6             MARKET ANAYSIS        161

  • 6.1        Global Market Size and Growth Projections (2025-2045) 161
  • 6.2        Market Segmentation               161
    • 6.2.1    By Reactor Type            161
    • 6.2.2    By Application               161
    • 6.2.3    By Region         162
  • 6.3        SWOT Analysis             163
  • 6.4        Value Chain Analysis 163
  • 6.5        Cost Analysis and Economic Viability           166
  • 6.6        Financing Models and Investment Strategies           167
  • 6.7        Regional Market Analysis      170
    • 6.7.1    North America              171
      • 6.7.1.1 United States 171
      • 6.7.1.2 Canada             171
    • 6.7.2    Europe                171
      • 6.7.2.1 United Kingdom           171
      • 6.7.2.2 France 172
      • 6.7.2.3 Russia 172
    • 6.7.3    Other European Countries    172
    • 6.7.4    Asia-Pacific    172
      • 6.7.4.1 China  172
      • 6.7.4.2 Japan  173
      • 6.7.4.3 South Korea    173
      • 6.7.4.4 India    173
      • 6.7.4.5 Other Asia-Pacific Countries               173
    • 6.7.5    Middle East and Africa             174
    • 6.7.6    Latin America 174

 

7             COMPETITIVE LANDSCAPE  175

  • 7.1        Competitive Strategies            175
  • 7.2        Recent market news 177
  • 7.3        New Product Developments and Innovations          179
  • 7.4        SMR private investment          181

 

8             SMR DEPOLYMENT SCENARIOS       184

  • 8.1        First-of-a-Kind (FOAK) Projects          190
  • 8.2        Nth-of-a-Kind (NOAK) Projections   191
  • 8.3        Deployment Timelines and Milestones        191
  • 8.4        Capacity Additions Forecast (2025-2045)  194
  • 8.5        Market Penetration Analysis 196
  • 8.6        Replacement of Aging Nuclear Fleet              198
  • 8.7        Integration with Renewable Energy Systems             198

 

9             ECONOMIC IMPACT ANALYSIS           199

  • 9.1        Job Creation and Skill Development               199
  • 9.2        Local and National Economic Benefits        201
  • 9.3        Impact on Energy Prices         201
  • 9.4        Comparison with Other Clean Energy Technologies            203

 

10          ENVIRONMENTAL AND SOCIAL IMPACT      208

  • 10.1     Carbon Emissions Reduction Potential        208
  • 10.2     Land Use and Siting Considerations              212
  • 10.3     Water Usage and Thermal Pollution               213
  • 10.4     Radioactive Waste Management      213
  • 10.5     Public Health and Safety        214
  • 10.6     Social Acceptance and Community Engagement 214

 

11          POLICY AND GOVERNMENT INITIATIVES    216

  • 11.1     National Nuclear Energy Policies     217
  • 11.2     SMR-Specific Support Programs      218
  • 11.3     Research and Development Funding             218
  • 11.4     International Cooperation and Technology Transfer            219
  • 11.5     Export Control and Non-Proliferation Measures     220

 

12          CHALLENGES AND OPPORTUNITIES             221

  • 12.1     Technical Challenges               221
    • 12.1.1 Design Certification and Licensing  222
    • 12.1.2 Fuel Development and Supply           222
    • 12.1.3 Component Manufacturing and Quality Assurance             223
    • 12.1.4 Grid Integration and Load Following               224
  • 12.2     Economic Challenges              225
    • 12.2.1 Capital Costs and Financing               226
    • 12.2.2 Economies of Scale   226
    • 12.2.3 Market Competition from Other Energy Sources    227
  • 12.3     Regulatory Challenges            229
    • 12.3.1 Harmonization of International Standards 229
    • 12.3.2 Site Licensing and Environmental Approvals            230
    • 12.3.3 Liability and Insurance Issues            231
  • 12.4     Social and Political Challenges         233
    • 12.4.1 Public Perception and Acceptance  234
    • 12.4.2 Nuclear Proliferation Concerns         234
    • 12.4.3 Waste Management and Long-Term Storage             236
  • 12.5     Opportunities 237
    • 12.5.1 Decarbonization of Energy Systems               237
    • 12.5.2 Energy Security and Independence 238
    • 12.5.3 Industrial Applications and Process Heat   238
    • 12.5.4 Remote and Off-Grid Power Solutions          239
    • 12.5.5 Nuclear-Renewable Hybrid Energy Systems             240

 

13          FUTURE OUTLOOK AND SCENARIOS            242

  • 13.1     Technology Roadmap (2025-2045) 245
  • 13.2     Market Evolution Scenarios  248
  • 13.3     Long-Term Market Projections (Beyond 2045)         249
  • 13.4     Potential Disruptive Technologies    252
  • 13.5     Global Energy Mix Scenarios with SMR Integration               256

 

14          CASE STUDIES              259

  • 14.1     NuScale Power VOYGR™ SMR Power Plant 259
  • 14.2     Rolls-Royce UK SMR Program             260
  • 14.3     China's HTR-PM Demonstration Project      261
  • 14.4     Russia's Floating Nuclear Power Plant (Akademik Lomonosov)   262
  • 14.5     Canadian SMR Action Plan   263

 

15          INVESTMENT ANALYSIS           264

  • 15.1     Return on Investment (ROI) Projections       264
  • 15.2     Risk Assessment and Mitigation Strategies                266
  • 15.3     Comparative Analysis with Other Energy Investments       269
  • 15.4     Public-Private Partnership Models  271

 

16          COMPANY PROFILES                274 (33 company profiles)

 

17          APPENDICES  333

  • 17.1     Research Methodology           333

 

18          REFERENCES 334

 

List of Tables

  • Table 1. Motivation for Adopting SMRs.        14
  • Table 2. Generations of nuclear technologies.        17
  • Table 3. SMR Construction Economics.       19
  • Table 4. Cost of Capital for SMRs vs. Traditional NPP Projects.    21
  • Table 5. Comparative Costs of SMRs with Other Types.     26
  • Table 6. SMR Benefits.             26
  • Table 7. SMR Market Growth Trajectory, 2025-2045.           28
  • Table 8. Technological trends in Nuclear Small Modular Reactors (SMR).            30
  • Table 9. Regulatory landscape for Nuclear Small Modular Reactors (SMR).        31
  • Table 10. Designs by generation.      36
  • Table 11. Established nuclear technologies.            38
  • Table 12. Advantages and Disadvantages of SMRs.             53
  • Table 13. Comparison with Traditional Nuclear Reactors.               55
  • Table 14. SMR Projects            58
  • Table 15. Project Types by Reactor Class.  61
  • Table 16. SMR Technology Benchmarking. 64
  • Table 17. Comparison of SMR Types: LWRs, HTGRs, FNRs, and MSRs.  67
  • Table 18. Types of PWR.          69
  • Table 19. Key Features of Pressurized Water Reactors (PWRs).    72
  • Table 20. Comparison of Leading Gen III/III+ Designs         76
  • Table 21. Gen-IV Reactor Designs    79
  • Table 22. Key Features of Pressurized Heavy Water Reactors        81
  • Table 23. Key Features of Boiling Water Reactors (BWRs).               85
  • Table 24. HTGRs- Rankine vs. Brayton vs. Combined Cycle Generation.                90
  • Table 25. Key Features of High-Temperature Gas-Cooled Reactors (HTGRs)       93
  • Table 26. Comparing LMFRs to Other Gen IV Types.            107
  • Table 27. Markets and Applications for SMRs          114
  • Table 28. SMR Applications and Their Market Share, 2025-2045.               116
  • Table 29. Development Status.          126
  • Table 30. Market Challenges for SMRs          129
  • Table 31. Global Energy Mix Projections, 2025-2045.         134
  • Table 32. Projected Energy Demand (2025-2045). 136
  • Table 33. Key Components and Systems.   140
  • Table 34. Key Safety Features of SMRs.        143
  • Table 35. Advanced Manufacturing Techniques.    146
  • Table 36. Emerging Technologies and Future Developments in SMRs.    152
  • Table 37.SMR Licensing Process Timeline. 157
  • Table 38. SMR Market Size by Reactor Type, 2025-2045.  161
  • Table 39. SMR Market Size by Application, 2025-2045.     162
  • Table 40. SMR Market Size by Region, 2025-2045. 162
  • Table 41. Cost Breakdown of SMR Construction and Operation. 166
  • Table 42. Financing Models for SMR Projects.          168
  • Table 43. Projected SMR Capacity Additions by Region, 2025-2045.       170
  • Table 44. Competitive Strategies in SMR     175
  • Table 45. Nuclear Small Modular Reactor (SMR) Market News 2022-2024.         177
  • Table 46. New Product Developments and Innovations    179
  • Table 47. SMR private investment.   181
  • Table 48. Major SMR Projects and Their Status, 2025.       185
  • Table 49. SMR Deployment Scenarios: FOAK vs. NOAK.    189
  • Table 50. SMR Deployment Timeline, 2025-2045. 191
  • Table 51. Job Creation in SMR Industry by Sector. 199
  • Table 52. Comparison with Other Clean Energy Technologies.     203
  • Table 53. Comparison of Carbon Emissions: SMRs vs. Other Energy Sources.  208
  • Table 54. Carbon Emissions Reduction Potential of SMRs, 2025-2045. 210
  • Table 55. Land Use Comparison: SMRs vs. Traditional Nuclear Plants.  212
  • Table 56. Water Usage Comparison: SMRs vs. Traditional Nuclear Plants.           213
  • Table 57. Government Funding for SMR Research and Development by Country.           216
  • Table 58. Government Initiatives Supporting SMR Development by Country.     216
  • Table 59. National Nuclear Energy Policies.              217
  • Table 60. SMR-Specific Support Programs.               218
  • Table 61. R&D Funding Allocation for SMR Technologies. 219
  • Table 62. International Cooperation Networks in SMR Development.      219
  • Table 63. Export Control and Non-Proliferation Measures.              220
  • Table 64. Technical Challenges in SMR Development and Deployment. 221
  • Table 65. Economic Challenges in SMR Commercialization.         225
  • Table 66. Economies of Scale in SMR Production. 226
  • Table 67. Market Competition: SMRs vs. Other Clean Energy Technologies         228
  • Table 68. Regulatory Challenges for SMR Adoption.            229
  • Table 69. Regulatory Harmonization Efforts for SMRs Globally.   230
  • Table 70. Liability and Insurance Models for SMR Operations.     231
  • Table 71. Social and Political Challenges for SMR Implementation.          233
  • Table 72. Non-Proliferation Measures for SMR Technology.             234
  • Table 73. Waste Management Strategies for SMRs.             236
  • Table 74. Decarbonization Potential of SMRs in Energy Systems.               237
  • Table 75. SMR Applications in Industrial Process Heat.     238
  • Table 76. Off-Grid and Remote Power Solutions Using SMRs.      239
  • Table 77. SMR Market Evolution Scenarios, 2025-2045.   248
  • Table 78. Long-Term Market Projections for SMRs (Beyond 2045).             249
  • Table 79. Potential Disruptive Technologies in Nuclear Energy.    253
  • Table 80. Global Energy Mix Scenarios with SMR Integration, 2045.         256
  • Table 81. ROI Projections for SMR Investments, 2025-2045.         264
  • Table 82. Risk Assessment and Mitigation Strategies.        266
  • Table 83. Comparative Analysis with Other Energy Investments. 269
  • Table 84. Public-Private Partnership Models for SMR Projects      271
  •  

List of Figures

  • Figure 1. Schematic of Small Modular Reactor (SMR) operation. 35
  • Figure 2. Linglong One.            58
  • Figure 3. Pressurized Water Reactors.           69
  • Figure 4. CAREM reactor.       74
  • Figure 5. Westinghouse Nuclear AP300™ Small Modular Reactor.              75
  • Figure 6. Advanced CANDU Reactor (ACR-300) schematic.           84
  • Figure 7. GE Hitachi's BWRX-300.    89
  • Figure 8. The nuclear island of HTR-PM Demo.        96
  • Figure 9. U-Battery schematic.           97
  • Figure 10. TerraPower's Natrium.      98
  • Figure 11. Russian BREST-OD-300. 99
  • Figure 12. Terrestrial Energy's IMSR.               101
  • Figure 13. Moltex Energy's SSR.         102
  • Figure 14. Westinghouse's eVinci .   104
  • Figure 15. GE Hitachi PRISM.              109
  • Figure 16. Leadcold SEALER.              110
  • Figure 17. SCWR schematic.               112
  • Figure 18. SWOT Analysis of the SMR Market.          163
  • Figure 19. Nuclear SMR Value Chain.            165
  • Figure 20. Global SMR Capacity Forecast, 2025-2045.     194
  • Figure 21. SMR Market Penetration in Different Energy Sectors.   196
  • Figure 22. SMR Fuel Cycle Diagram.              223
  • Figure 23. Power plant with small modular reactors.          224
  • Figure 24. Nuclear-Renewable Hybrid Energy System Configurations.   241
  • Figure 25. Technical Readiness Levels of Different SMR Technologies.   245
  • Figure 26. Technology Roadmap (2025-2045).        247
  • Figure 27. NuScale Power VOYGR™ SMR Power Plant Design.       260
  • Figure 28. China's HTR-PM Demonstration Project Layout.             262
  • Figure 29. Russia's Floating Nuclear Power Plant Schematic.        263
  • Figure 30. ARC-100 sodium-cooled fast reactor.    277
  • Figure 31. ACP100 SMR.         283
  • Figure 32. Deep Fission pressurised water reactor schematic.     285
  • Figure 33. NUWARD SMR design.     287
  • Figure 34. A rendering image of NuScale Power's SMR plant.        310
  • Figure 35. Oklo Aurora Powerhouse reactor.             312
  • Figure 36. Multiple LDR-50 unit plant.           318
  • Figure 37.  AP300™ Small Modular Reactor.               329

 

 

 

The Global Nuclear Small Modular Reactors (SMRs) Market 2025-2045
The Global Nuclear Small Modular Reactors (SMRs) Market 2025-2045
PDF download/by email.

The Global Nuclear Small Modular Reactors (SMRs) Market 2025-2045
The Global Nuclear Small Modular Reactors (SMRs) Market 2025-2045
PDF and Print Edition (including tracked delivery).

Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer. To order by Bank Transfer (Invoice) select this option from the payment methods menu after adding to cart, or contact info@futuremarketsinc.com