
cover
- Published: February 2026
- Pages: 298
- Tables: 89
- Figures: 50
Quantum sensing represents a new generation of precision measurement technologies that exploit second-generation quantum mechanical phenomena — superposition, entanglement, and quantum coherence — to surpass the fundamental limits of classical measurement systems. By using quantum particles such as photons or atoms as sensing elements, these devices detect extraordinarily small changes in physical quantities including magnetic fields, gravity, rotation, temperature, time, and electromagnetic spectra, often at the nanoscale and frequently through non-invasive means.
The quantum sensors landscape encompasses a diverse range of device types, including atomic clocks, superconducting quantum interference devices (SQUIDs), optically pumped magnetometers (OPMs), nitrogen-vacancy (NV) centre diamond sensors, quantum gravimeters, quantum gyroscopes and accelerometers, single photon detectors, and quantum radio frequency (RF) sensors. Each platform offers distinct advantages across a broad spectrum of end-use industries spanning healthcare and life sciences, defence and military, environmental monitoring, telecommunications, oil and gas exploration, financial services, and autonomous navigation.
The market is currently transitioning from an emerging phase to an active growth phase, a shift expected to consolidate over the next five to ten years. Sensors are achieving improved precision, stability, and form factors suitable for commercial deployment, while economies of scale and advances in integrated photonics, MEMS vapour cell fabrication, and solid-state laser technologies are steadily reducing costs. Industry roadmaps project that commercial unit prices will fall below $10,000 by approximately 2027–2028, with costs dropping below $5,000 per unit by 2030, enabling wider industrial adoption and integration into high-end commercial equipment.
Miniaturisation is a defining trend. Quantum RF sensors are approaching smartphone-sized packages, and prototype chip-scale atomic magnetometers have already demonstrated volumes below 100 cm³. Further reductions to credit card-sized packages are anticipated by 2030, with fully integrated chip-scale solutions below 1 cm³ projected by the mid-2030s. These advances are underpinned by the transition from discrete optical components to integrated photonic circuits, which significantly reduces both size and manufacturing cost.
The atomic clocks segment is the most commercially mature category. Growth across the broader market is driven by 5G and future 6G infrastructure expansion demanding precision synchronisation, autonomous vehicle deployment requiring quantum-enhanced LiDAR and GPS-independent navigation, defence applications in GPS-denied environments, and emerging quantum technology ecosystems that create synergies between quantum sensing, computing, and communication. Major technology firms including IBM, Google, Microsoft, and Intel continue to dedicate substantial in-house R&D budgets to quantum initiatives, while government programmes worldwide provide critical support for both fundamental research and commercialisation efforts.
Key challenges remain. Manufacturing at scale requires extreme nanoscale precision, high-purity materials with precisely controlled defects, and complex integration of quantum components with control electronics. Competition from well-established conventional sensors, regulatory uncertainty, security and privacy concerns, and the high cost of early-stage systems all present headwinds.
Looking ahead, the medium-term outlook (2028–2031) anticipates expansion into industrial process control and environmental monitoring, integration with 5G/6G networks, and the establishment of quantum sensing industry standards. The longer-term vision (2032 and beyond) encompasses widespread adoption in automotive and aerospace sectors, the emergence of quantum sensing as a service, integration into consumer electronics and IoT devices, and ultimately the development of global quantum sensing networks for applications ranging from climate monitoring to personalised medicine.
The global quantum sensors market is poised for significant growth over the next two decades as miniaturisation, falling costs, and expanding end-use applications accelerate adoption across defence, healthcare, telecommunications, oil and gas, environmental monitoring, transportation, and financial services. This comprehensive market research report provides detailed technology analysis, market forecasts, company profiles, and strategic roadmaps covering the quantum sensors industry from 2026 through 2046.
Report contents include:
- In-depth executive summary covering the first and second quantum revolutions, the current quantum technology market landscape, key developments, and industry developments 2024–2026
- Detailed investment landscape analysis including quantum technology investments from 2012 to 2025 and major funding rounds in 2024–2025
- Global government initiatives and national quantum programmes driving market growth
- Comprehensive market drivers, technology challenges, and SWOT analyses for the quantum sensors market and individual sensor types
- Technology trends and innovations including miniaturisation roadmaps, cost reduction trajectories, and chip-scale quantum sensor development
- Market forecasts and future outlook segmented into short-term (2025–2027), medium-term (2028–2031), and long-term (2032–2046) projections
- Global market forecasts for quantum sensors by sensor type, volume, sensor price, and end-use industry from 2018 to 2046
- Detailed technology overviews, operating principles, applications, roadmaps, and market forecasts for atomic clocks (including bench/rack-scale and chip-scale), quantum magnetic field sensors (SQUIDs, optically pumped magnetometers, tunnelling magnetoresistance sensors, and nitrogen-vacancy centre diamond sensors), quantum gravimeters, quantum gyroscopes and accelerometers, quantum image sensors, quantum radar, quantum chemical sensors, quantum RF field sensors (including Rydberg atom and NV centre diamond platforms), and quantum NEMS and MEMS
- Benchmarking of quantum sensor technologies including technology readiness levels, comparative performance metrics, and current R&D focus areas
- Analysis of quantum sensing components including vapour cells, VCSELs, control electronics, and integrated photonic technologies
- International standardisation landscape covering ISO/IEC, CEN-CENELEC, IEEE, and national metrology institutes
- Emerging applications and use cases including quantum navigation, quantum sensing as a service, and integration with 5G/6G networks
- End-use industry analysis spanning healthcare and life sciences, defence and military, environmental monitoring, oil and gas, transportation and automotive, finance, agriculture, construction, and mining
- Case studies in healthcare early disease detection, military navigation systems, environmental monitoring, high-frequency trading, and quantum internet secure communication networks
- Over 85 company profiles and 89 tables and 50 figures
Companies profiled in this report include Aegiq, Airbus, Aquark Technologies, Artilux, Atomionics, Beyond Blood Diagnostics, Bosch Quantum Sensing, BT, Cerca Magnetics, Chipiron, Chiral Nano AG, Covesion, Delta g, DeteQt, Diatope GmbH, Diffraqtion, Digistain, Element Six, Ephos, EuQlid, Exail Quantum Sensors, Genesis Quantum Technology, ID Quantique, Infleqtion, Ligentec, M Squared Lasers, Mag4Health, Menlo Systems GmbH, Mesa Quantum, Miraex, Munich Quantum Instruments GmbH, NeoCrystech, Neuranics, NIQS Technology Ltd, Nomad Atomics, Nu Quantum, NVision, Phasor Innovation, Photon Force, Polariton Technologies, PsiQuantum, Q.ANT, Qaisec, Q-CTRL, Qingyuan Tianzhiheng Sensing Technology Co. Ltd, QLM Technology, Qnami, QSENSATO, QT Sense B.V., QuantaMap, QuantCAD LLC, Quan2D Technologies, Quantum Brilliance, Quantum Catalyzer (Q-Cat) and more.....
1 EXECUTIVE SUMMARY 16
- 1.1 First and second quantum revolutions 16
- 1.2 Current quantum technology market landscape 18
- 1.2.1 Key developments 19
- 1.3 Investment landscape 19
- 1.4 Global government initiatives 30
- 1.5 Industry developments 2024-2026 31
- 1.6 Market Drivers 34
- 1.7 Market and technology challenges 35
- 1.8 Technology trends and innovations 37
- 1.9 Market forecast and future outlook 39
- 1.9.1 Short-term Outlook (2025-2027) 39
- 1.9.2 Medium-term Outlook (2028-2031) 39
- 1.9.3 Long-term Outlook (2032-2046) 39
- 1.10 Emerging applications and use cases 40
- 1.11 Quantum Navigation 43
- 1.12 Benchmarking of Quantum Sensor Technologies 44
- 1.13 Potential Disruptive Technologies 48
- 1.14 Market Map 50
- 1.15 Global market for quantum sensors 54
- 1.15.1 By sensor type 54
- 1.15.2 By volume 56
- 1.15.3 By sensor price 58
- 1.15.4 By end use industry 60
- 1.16 Quantum Sensors Roadmapping 63
- 1.16.1 Atomic clocks 63
- 1.16.2 Quantum magnetometers 64
- 1.16.3 Quantum gravimeters 65
- 1.16.4 Inertial quantum sensors 66
- 1.16.5 Quantum RF sensors 67
- 1.16.6 Single photon detectors 68
- 1.17 International Standardization Landscape 69
- 1.17.1 ISO/IEC JTC 3 — Quantum Technologies 69
- 1.17.2 CEN-CENELEC JTC 22 — Quantum Technologies (Europe) 69
- 1.17.3 IEEE Standards Association 69
- 1.17.4 Standardization Gaps Identified for Quantum Sensors 69
- 1.17.5 National Metrology Institutes (NMIs) 69
2 INTRODUCTION 70
- 2.1 What is quantum sensing? 70
- 2.2 Types of quantum sensors 70
- 2.2.1 Comparison between classical and quantum sensors 71
- 2.3 Quantum Sensing Principles 72
- 2.4 Quantum Phenomena 73
- 2.5 Technology Platforms 74
- 2.6 Quantum Sensing Technologies and Applications 76
- 2.7 Value proposition for quantum sensors 80
- 2.8 SWOT Analysis 81
3 QUANTUM SENSING COMPONENTS 83
- 3.1 Overview 83
- 3.2 Specialized components 84
- 3.3 Vapor cells 85
- 3.3.1 Overview 85
- 3.3.2 Manufacturing 85
- 3.3.3 Alkali azides 86
- 3.3.4 Companies 86
- 3.4 VCSELs 87
- 3.4.1 Overview 87
- 3.4.2 Quantum sensor miniaturization 88
- 3.4.3 Companies 88
- 3.5 Control electronics for quantum sensors 89
- 3.6 Integrated photonic and semiconductor technologies 90
- 3.7 Challenges 90
- 3.8 Roadmap 92
4 ATOMIC CLOCKS 95
- 4.1 Technology Overview 95
- 4.1.1 Hyperfine energy levels 95
- 4.1.2 Self-calibration 96
- 4.2 Markets 97
- 4.3 Roadmap 98
- 4.4 High frequency oscillators 101
- 4.4.1 Emerging oscillators 101
- 4.5 New atomic clock technologies 101
- 4.6 Optical atomic clocks 102
- 4.6.1 Chip-scale optical clocks 104
- 4.6.2 Rack-sized atomic clocks 105
- 4.7 Challenge in atomic clock miniaturization 106
- 4.8 Companies 107
- 4.9 SWOT analysis 108
- 4.10 Market forecasts 109
- 4.10.1 Total market 109
- 4.10.2 Bench/rack-scale atomic clocks 111
- 4.10.3 Chip-scale atomic clocks 113
5 QUANTUM MAGNETIC FIELD SENSORS 116
- 5.1 Technology overview 116
- 5.1.1 Measuring magnetic fields 117
- 5.1.2 Sensitivity 118
- 5.1.3 Motivation for use 118
- 5.2 Market opportunity 120
- 5.3 Performance 122
- 5.4 Superconducting Quantum Interference Devices (Squids) 123
- 5.4.1 Introduction 123
- 5.4.2 Operating principle 124
- 5.4.3 Applications 125
- 5.4.4 Companies 127
- 5.4.5 SWOT analysis 127
- 5.5 Optically Pumped Magnetometers (OPMs) 128
- 5.5.1 Introduction 128
- 5.5.2 Operating principle 128
- 5.5.3 Applications 129
- 5.5.3.1 Miniaturization 129
- 5.5.3.2 Navigation 130
- 5.5.4 MEMS manufacturing 130
- 5.5.5 Companies 132
- 5.5.6 SWOT analysis 132
- 5.6 Tunneling Magneto Resistance Sensors (TMRs) 133
- 5.6.1 Introduction 133
- 5.6.2 Operating principle 133
- 5.6.3 Applications 134
- 5.6.4 Companies 135
- 5.6.5 SWOT analysis 135
- 5.7 Nitrogen Vacancy Centers (N-V Centers) 136
- 5.7.1 Introduction 136
- 5.7.2 Operating principle 136
- 5.7.3 Applications 137
- 5.7.4 Synthetic diamonds 138
- 5.7.5 Companies 140
- 5.7.6 SWOT analysis 141
- 5.8 Market forecasts 142
6 QUANTUM GRAVIMETERS 145
- 6.1 Technology overview 145
- 6.2 Operating principle 146
- 6.3 Applications 146
- 6.3.1 Commercial deployment 147
- 6.3.2 Comparison with other technologies 148
- 6.4 Roadmap 150
- 6.5 Companies 151
- 6.6 Market forecasts 152
- 6.7 SWOT analysis 153
7 QUANTUM GYROSCOPES 155
- 7.1 Technology description 155
- 7.1.1 Inertial Measurement Units (IMUs) 156
- 7.1.1.1 Atomic quantum gyroscopes 157
- 7.1.1.2 Quantum accelerometers 159
- 7.1.1.2.1 Operating Principles 159
- 7.1.1.2.2 Grating magneto-optical traps (MOTs) 160
- 7.1.1.2.3 Applications 160
- 7.1.1.2.4 Companies 161
- 7.1.1 Inertial Measurement Units (IMUs) 156
- 7.2 Applications 162
- 7.3 Roadmap 165
- 7.4 Companies 166
- 7.5 Market forecasts 166
- 7.6 SWOT analysis 169
8 QUANTUM IMAGE SENSORS 170
- 8.1 Technology overview 170
- 8.1.1 Single photon detectors 171
- 8.1.2 Semiconductor single photon detectors 171
- 8.1.3 Superconducting single photon detectors 172
- 8.2 Applications 173
- 8.2.1 Single Photon Avalanche Diodes with Time-Correlated Single Photon Counting (TCSPC 174
- 8.2.2 Bioimaging 175
- 8.3 SWOT analysis 176
- 8.4 Market forecast 177
- 8.5 Companies 179
9 QUANTUM RADAR 182
- 9.1 Technology overview 182
- 9.1.1 Quantum entanglement 183
- 9.1.2 Ghost imaging 184
- 9.1.3 Quantum holography 185
- 9.2 Applications 186
- 9.2.1 Cancer detection 186
- 9.2.2 Glucose Monitoring 187
10 QUANTUM CHEMICAL SENSORS 188
- 10.1 Technology overview 188
- 10.2 Commercial activities 188
11 QUANTUM RADIO FREQUENCY (RF) FIELD SENSORS 189
- 11.1 Overview 189
- 11.2 Types of Quantum RF Sensors 191
- 11.3 Rydberg Atom Based Electric Field Sensors and Radio Receivers 193
- 11.3.1 Principles 193
- 11.3.2 Commercialization 194
- 11.4 Nitrogen-Vacancy Centre Diamond Electric Field Sensors and Radio Receivers 195
- 11.4.1 Principles 195
- 11.4.2 Applications 196
- 11.5 Market and applications 198
- 11.6 Market forecast 204
12 QUANTUM NEMS AND MEMS 207
- 12.1 Technology overview 207
- 12.2 Types 207
- 12.3 Applications 208
- 12.4 Challenges 208
13 CASE STUDIES 210
- 13.1 Quantum Sensors in Healthcare: Early Disease Detection 210
- 13.2 Military Applications: Enhanced Navigation Systems 210
- 13.3 Environmental Monitoring 211
- 13.4 Financial Sector: High-Frequency Trading 211
- 13.5 Quantum Internet: Secure Communication Networks 211
14 END-USE INDUSTRIES 213
- 14.1 Healthcare and Life Sciences 213
- 14.1.1 Medical Imaging 213
- 14.1.2 Drug Discovery 213
- 14.1.3 Biosensing 214
- 14.2 Defence and Military 214
- 14.2.1 Navigation Systems 214
- 14.2.2 Underwater Detection 215
- 14.2.3 Communication Systems 215
- 14.3 Environmental Monitoring 216
- 14.3.1 Climate Change Research 216
- 14.3.2 Geological Surveys 217
- 14.3.3 Natural Disaster Prediction 217
- 14.3.4 Other Applications 217
- 14.4 Oil and Gas 218
- 14.4.1 Exploration and Surveying 218
- 14.4.2 Pipeline Monitoring 219
- 14.4.3 Other Applications 219
- 14.5 Transportation and Automotive 220
- 14.5.1 Autonomous Vehicles 221
- 14.5.2 Aerospace Navigation 221
- 14.5.3 Other Applications 221
- 14.6 Other Industries 222
- 14.6.1 Finance and Banking 222
- 14.6.2 Agriculture 222
- 14.6.3 Construction 222
- 14.6.4 Mining 222
15 COMPANY PROFILES 224 (86 company profiles)
16 APPENDICES 290
- 16.1 Research Methodology 290
- 16.2 Glossary of Terms 291
- 16.3 List of Abbreviations 294
17 REFERENCES 295
List of Tables
- Table 1. First and second quantum revolutions. 16
- Table 2. Quantum Sensing Technologies and Applications. 17
- Table 3. Quantum Technology investments 2012-2025 (millions USD), total. 20
- Table 4. Major Quantum Technologies Investments 2024-2025. 22
- Table 5. Global government initiatives in quantum technologies. 31
- Table 6. Quantum Sensor industry developments 2024-2026. 31
- Table 7. Market Drivers for Quantum Sensors. 34
- Table 8. Market and technology challenges in quantum sensing. 36
- Table 9. Technology Trends and Innovations in Quantum Sensors. 37
- Table 10. Emerging Applications and Use Cases 41
- Table 11. Benchmarking of Quantum Sensing Technologies by Type. 44
- Table 12. Performance Metrics by Application Domain. 45
- Table 13. Technology Readiness Levels (TRL) and Commercialization Status 46
- Table 14. Comparative Performance Metrics. 47
- Table 15.Current Research and Development Focus Areas 47
- Table 16. Potential Disruptive Technologies. 48
- Table 17. Global market for quantum sensors, by types, 2018-2046 (Millions USD). 54
- Table 18. Global market for quantum sensors, by volume (Units), 2018-2046. 57
- Table 19. Global market for quantum sensors, by sensor price, 2025-2046 (Units). 59
- Table 20. Global market for quantum sensors, by end use industry, 2018-2046 (Millions USD). 61
- Table 21.Types of Quantum Sensors 70
- Table 22. Comparison between classical and quantum sensors. 71
- Table 23. Applications in quantum sensors. 72
- Table 24. Technology approaches for enabling quantum sensing 73
- Table 25. Key technology platforms for quantum sensing. 74
- Table 26. Quantum sensing technologies and applications. 77
- Table 27. Value proposition for quantum sensors. 80
- Table 28. Components for quantum sensing. 83
- Table 29. Specialized components for atomic and diamond-based quantum sensing. 84
- Table 30. Companies in Chip-Scale Vapor Cell Development. 86
- Table 31. Companies in VCSELs for Quantum Sensing. 88
- Table 32. Challenges for Quantum Sensor Components. 91
- Table 33. Key challenges and limitations of quartz crystal clocks vs. atomic clocks. 95
- Table 34. Atomic clocks End users and addressable markets. 97
- Table 35. Key Market Inflection Points and Technology Transitions. 100
- Table 36. New modalities being researched to improve the fractional uncertainty of atomic clocks. 103
- Table 37. Companies developing high-precision quantum time measurement 107
- Table 38. Key players in atomic clocks. 109
- Table 39. Global market for atomic clocks 2025-2046 (Billions USD). 110
- Table 40. Global market for Bench/rack-scale atomic clocks, 2026-2046 (Millions USD). 112
- Table 41. Global market for Chip-scale atomic clocks, 2026-2046 (Millions USD). 114
- Table 42. Comparative analysis of key performance parameters and metrics of magnetic field sensors. 117
- Table 43. Types of magnetic field sensors. 119
- Table 44. Market opportunity for different types of quantum magnetic field sensors. 121
- Table 45. Performance of magnetic field sensors. 123
- Table 46. Applications of SQUIDs. 125
- Table 47. Market opportunities for SQUIDs (Superconducting Quantum Interference Devices). 126
- Table 48. Key players in SQUIDs. 127
- Table 49. Applications of optically pumped magnetometers (OPMs). 129
- Table 50. MEMS Manufacturing Techniques for Miniaturized OPMs. 131
- Table 51. Key players in Optically Pumped Magnetometers (OPMs). 132
- Table 52. Applications for TMR (Tunneling Magnetoresistance) sensors. 134
- Table 53. Market players in TMR (Tunneling Magnetoresistance) sensors. 135
- Table 54. Applications of N-V center magnetic field centers 137
- Table 55. Quantum Grade Diamond. 138
- Table 56. Synthetic Diamond Value Chain for Quantum Sensing. 139
- Table 57. Key players in N-V center magnetic field sensors. 141
- Table 58. Global market forecasts for quantum magnetic field sensors, by type, 2025-2046 (Millions USD). 143
- Table 59. Applications of quantum gravimeters 146
- Table 60. Comparative table between quantum gravity sensing and some other technologies commonly used for underground mapping. 148
- Table 61. Key players in quantum gravimeters. 151
- Table 62. Global market for Quantum gravimeters 2025-2046 (Millions USD). 152
- Table 63. Comparison of quantum gyroscopes with MEMs gyroscopes and optical gyroscopes. 155
- Table 64. Comparison of Quantum Gyroscopes with MEMS Gyroscopes and Optical Gyroscopes. 158
- Table 65. Key Players in Quantum Accelerometers. 161
- Table 66. Markets and applications for quantum gyroscopes. 164
- Table 67. Key players in quantum gyroscopes. 166
- Table 68. Global market for for quantum gyroscopes and accelerometers 2026-2046 (millions USD). 167
- Table 69. Types of quantum image sensors and their key features. 170
- Table 70. Applications of quantum image sensors. 173
- Table 71. SPAD Bioimaging Applications. 176
- Table 72. Global market for quantum image sensors 2025-2046 (Millions USD). 178
- Table 73. Key players in quantum image sensors. 180
- Table 74. Comparison of quantum radar versus conventional radar and lidar technologies. 183
- Table 75. Applications of quantum radar. 186
- Table 76. Value Proposition of Quantum RF Sensors 189
- Table 77. Types of Quantum RF Sensors 191
- Table 78. Markets for Quantum RF Sensors 198
- Table 79. Technology Transition Milestones. 202
- Table 80. Application-Specific Adoption Timeline 203
- Table 81. Global market for quantum RF sensors 2026-2046 (Millions USD). 205
- Table 82.Types of Quantum NEMS and MEMS. 207
- Table 83. Quantum Sensors in Healthcare and Life Sciences. 213
- Table 84. Quantum Sensors in Defence and Military 214
- Table 85. Quantum Sensors in Environmental Monitoring 216
- Table 86. Quantum Sensors in Oil and Gas 218
- Table 87. Quantum Sensors in Transportation. 220
- Table 88.Glossary of terms. 291
- Table 89. List of Abbreviations. 294
List of Figures
- Figure 1. Quantum computing development timeline. 18
- Figure 2. Quantum Technology investments 2012-2025 (millions USD), total. 21
- Figure 3. National quantum initiatives and funding. 30
- Figure 4. Quantum Sensors: Market and Technology Roadmap to 2040. 40
- Figure 5. Quantum sensor industry market map. 53
- Figure 6. Global market for quantum sensors, by types, 2018-2046 (Millions USD). 56
- Figure 7. Global market for quantum sensors, by volume, 2018-2046. 58
- Figure 8. Global market for quantum sensors, by sensor price, 2025-2046 (Units). 60
- Figure 9. Global market for quantum sensors, by end use industry, 2018-2046 (Millions USD). 62
- Figure 10. Atomic clocks roadmap. 63
- Figure 11. Quantum magnetometers roadmap. 65
- Figure 12. Quantum gravimeters roadmap. 66
- Figure 13. Inertial quantum sensors roadmap. 66
- Figure 14. Quantum RF sensors roadmap. 67
- Figure 15. Single photon detectors roadmap. 68
- Figure 16. Q.ANT quantum particle sensor. 81
- Figure 17. SWOT analysis for quantum sensors market. 82
- Figure 18. Roadmap for quantum sensing components and their applications. 94
- Figure 19. Atomic clocks market roadmap. 100
- Figure 20. Strontium lattice optical clock. 102
- Figure 21. NIST's compact optical clock. 104
- Figure 22. SWOT analysis for atomic clocks. 109
- Figure 23. Global market for atomic clocks 2025-2046 (Billions USD). 111
- Figure 24. Global market for Bench/rack-scale atomic clocks, 2026-2046 (Millions USD). 113
- Figure 25. Global market for Chip-scale atomic clocks, 2026-2046 (Millions USD). 115
- Figure 26. Quantum Magnetometers Market Roadmap. 122
- Figure 27.Principle of SQUID magnetometer. 124
- Figure 28. SWOT analysis for SQUIDS. 128
- Figure 29. SWOT analysis for OPMs 133
- Figure 30. Tunneling magnetoresistance mechanism and TMR ratio formats. 133
- Figure 31. SWOT analysis for TMR (Tunneling Magnetoresistance) sensors. 136
- Figure 32. SWOT analysis for N-V Center Magnetic Field Sensors. 142
- Figure 33. Global market forecasts for quantum magnetic field sensors, by type, 2025-2046 (Millions USD). 144
- Figure 34. Quantum Gravimeter. 145
- Figure 35. Quantum gravimeters Market roadmap. 151
- Figure 36. Global market for Quantum gravimeters 2025-2046 (Millions USD). 153
- Figure 37. SWOT analysis for Quantum Gravimeters. 154
- Figure 38. Inertial Quantum Sensors Market roadmap. 166
- Figure 39. Global market for quantum gyroscopes and accelerometers 2026-2046 (millions USD). 168
- Figure 40. SWOT analysis for Quantum Gyroscopes. 169
- Figure 41. SWOT analysis for Quantum image sensing. 177
- Figure 42. Global market for quantum image sensors 2025-2046 (Millions USD). 179
- Figure 43. Principle of quantum radar. 182
- Figure 44. Illustration of a quantum radar prototype. 183
- Figure 45. Quantum RF Sensors Market Roadmap (2023-2046). 202
- Figure 46. Global market for quantum RF sensors 2026-2046 (Millions USD). 206
- Figure 47. ColdQuanta Quantum Core (left), Physics Station (middle) and the atoms control chip (right). 243
- Figure 48. PsiQuantum’s modularized quantum computing system networks. 255
- Figure 49. Quantum Brilliance device 264
- Figure 50. SpinMagIC quantum sensor. 286
Purchasers will receive the following:
- PDF report download/by email.
- Comprehensive Excel spreadsheet of all data.
- Mid-year Update
Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer. To order by Bank Transfer (Invoice) select this option from the payment methods menu after adding to cart, or contact info@futuremarketsinc.com