
cover
- Published: May 2025
- Pages: 531
- Tables: 105
- Figures: 69
The global white (industrial) biotechnology market is experiencing significant growth, driven by increasing demand for sustainable alternatives to traditional petroleum-based products. White biotechnology leverages biological systems, enzymes, and microorganisms to produce chemicals, materials, and energy through environmentally friendly processes. With rising environmental concerns, government regulations supporting bio-based products, and technological advancements in synthetic biology, the sector is poised for substantial expansion. The market is characterized by diverse applications across multiple industries including biofuels, bio-based chemicals, bioplastics, pharmaceuticals, food ingredients, textiles, and construction materials. Major growth drivers include carbon taxation policies, increasing consumer preference for sustainable products, and corporate sustainability commitments. The transition toward circular economy principles is further accelerating adoption as white biotechnology enables the valorization of various waste streams including agricultural residues, forestry waste, municipal solid waste, and industrial by-products.
Technological innovations in synthetic biology, metabolic engineering, and the emerging field of generative biology are dramatically improving production efficiencies and expanding the range of possible bio-manufactured molecules. Advanced fermentation processes, cell-free systems, and the development of novel microbial chassis organisms are contributing to increased commercial viability of white biotechnology products.
Report Contents include :
- Market Analysis and Forecasts 2025-2035
- Global market revenues by molecule type
- Market segmentation by application sector
- Regional market analysis and growth projections
- Competitive landscape and key player positioning
- Technology Landscape Assessment
- Production hosts (bacteria, yeast, fungi, marine organisms)
- Biomanufacturing processes and optimization techniques
- Synthetic biology advancements and applications
- Generative biology approaches and impact
- Feedstock analysis and alternative resource utilization
- Application Sector Analysis
- Biofuels (bioethanol, biodiesel, biogas, biojet fuel)
- Bio-based chemicals (organic acids, alcohols, monomers)
- Bioplastics and biopolymers (PLA, PHAs, bio-PET)
- Food and nutraceutical ingredients
- Agricultural biotechnology
- Textile applications
- Pharmaceuticals and cosmetics
- Construction materials
- Sustainability and Circular Economy Integration
- White biotechnology for waste valorization
- Carbon capture utilization
- Industrial symbiosis opportunities
- Environmental impact assessment
- Strategic Insights and Opportunities
- Technology adoption trends
- Regulatory landscape analysis
- Investment patterns and funding environment
- Strategic recommendations for market participants
- Comprehensive Company Profiles
- Detailed analysis of 395+ market participants
- Technology platforms and proprietary processes
- Commercial deployments and capacity expansions
- Partnership and collaboration networks
The report provides comprehensive profiles of over 395 companies operating across the industrial biotechnology value chain. These include established industry leaders like Novozymes, Braskem, LanzaTech, and Corbion, alongside innovative startups developing novel technologies and applications. The diverse ecosystem encompasses specialized synthetic biology platforms (Ginkgo Bioworks, Arzeda), biofuel producers (Aemetis, Gevo), bioplastics manufacturers (NatureWorks, Total Energies Corbion, Danimer Scientific), bio-based chemical developers (Avantium, METEX), cell-free system innovators (EnginZyme, Solugen), and companies focused on emerging applications like biocement (Biomason) and bio-textiles (Bolt Threads, Modern Meadow, Spiber). The landscape also includes AI-driven biotechnology platforms (Asimov, Zymergen) and specialized waste-to-value companies (Celtic Renewables, Full Cycle Bioplastics). This comprehensive company analysis provides unparalleled insights into the competitive dynamics, technological capabilities, and strategic positioning of key market participants across the global industrial biotechnology ecosystem.
1 EXECUTIVE SUMMARY 25
- 1.1 Biotechnology "colours" 25
- 1.2 Definition 26
- 1.3 Comparison with conventional processes 26
- 1.4 Markets and applications 27
- 1.5 Advantages 29
- 1.6 Sustainability 29
- 1.7 White Biotechnology for the Circular Economy 31
- 1.7.1 Agricultural Waste 31
- 1.7.2 Forestry and Paper Waste 31
- 1.7.3 Gas Fermentation 32
- 1.7.4 Plastics Upcycling 32
- 1.7.5 Wastewater Valorization 33
2 TECHNOLOGY ANALYSIS 33
- 2.1 Production hosts 34
- 2.1.1 Bacteria 34
- 2.1.2 Yeast 35
- 2.1.3 Fungi 36
- 2.1.4 Marine 36
- 2.1.5 Enzymes 37
- 2.1.6 Photosynthetic organisms 38
- 2.2 Biomanufacturing processes 38
- 2.2.1 Batch biomanufacturing 41
- 2.2.2 Continuous biomanufacturing 41
- 2.2.3 Cell factories for biomanufacturing 42
- 2.2.4 Machine learning 44
- 2.2.5 Downstream processing 45
- 2.2.6 Process intensification and high-cell-density fermentation 46
- 2.3 Synthetic Biology 47
- 2.3.1 Technology Overview 48
- 2.3.2 Synthetic biology applied to white biotechnology 49
- 2.3.3 Metabolic engineering 49
- 2.3.3.1 DNA synthesis 50
- 2.3.3.2 CRISPR 51
- 2.3.3.2.1 CRISPR/Cas9-modified biosynthetic pathways 51
- 2.3.4 Protein/Enzyme Engineering 52
- 2.3.5 Strain construction and optimization 54
- 2.3.6 Synthetic biology and metabolic engineering 54
- 2.3.7 Smart bioprocessing 55
- 2.3.8 Cell-free systems 56
- 2.3.9 Chassis organisms 60
- 2.3.10 Biomimetics 61
- 2.3.11 Sustainable materials 62
- 2.3.12 Robotics and automation 62
- 2.3.12.1 Robotic cloud laboratories 63
- 2.3.12.2 Automating organism design 63
- 2.3.12.3 Artificial intelligence and machine learning 64
- 2.3.13 Fermentation Processes 64
- 2.4 Generative Biology 65
- 2.4.1 Generative Models 67
- 2.4.2 Generative Adversarial Networks (GANs) 67
- 2.4.2.1 Variational Autoencoders (VAEs) 67
- 2.4.2.2 Normalizing Flows 68
- 2.4.2.3 Autoregressive Models 68
- 2.4.2.4 Evolutionary Generative Models 68
- 2.4.3 Design Optimization 68
- 2.4.3.1 Evolutionary Algorithms (e.g., Genetic Algorithms, Evolutionary Strategies) 69
- 2.4.3.1.1 Genetic Algorithms (GAs) 69
- 2.4.3.1.2 Evolutionary Strategies (ES) 69
- 2.4.3.2 Reinforcement Learning 69
- 2.4.3.3 Multi-Objective Optimization 70
- 2.4.3.4 Bayesian Optimization 70
- 2.4.3.1 Evolutionary Algorithms (e.g., Genetic Algorithms, Evolutionary Strategies) 69
- 2.4.4 Computational Biology 71
- 2.4.4.1 Molecular Dynamics Simulations 71
- 2.4.4.2 Quantum Mechanical Calculations 72
- 2.4.4.3 Systems Biology Modeling 72
- 2.4.4.4 Metabolic Engineering Modeling 73
- 2.4.5 Data-Driven Approaches 74
- 2.4.5.1 Machine Learning 74
- 2.4.5.2 Graph Neural Networks 74
- 2.4.5.3 Unsupervised Learning 75
- 2.4.5.4 Active Learning and Bayesian Optimization 75
- 2.4.6 Agent-Based Modeling 75
- 2.4.7 Hybrid Approaches 76
- 2.5 Feedstocks 78
- 2.5.1 C1 feedstocks 80
- 2.5.1.1 Advantages 80
- 2.5.1.2 Pathways 80
- 2.5.1.3 Challenges 81
- 2.5.1.4 Non-methane C1 feedstocks 81
- 2.5.1.5 Gas fermentation 82
- 2.5.2 C2 feedstocks 82
- 2.5.3 Biological conversion of CO2 83
- 2.5.4 Food processing wastes 86
- 2.5.5 Lignocellulosic biomass 87
- 2.5.6 Methane 87
- 2.5.7 Municipal solid wastes 91
- 2.5.8 Plastic wastes 92
- 2.5.9 Plant oils 92
- 2.5.10 Starch 93
- 2.5.11 Sugars 94
- 2.5.12 Used cooking oils 94
- 2.5.13 Carbon capture 95
- 2.5.14 Green hydrogen production 97
- 2.5.15 Blue hydrogen production 98
- 2.5.1 C1 feedstocks 80
- 2.6 Blue biotechnology (Marine biotechnology) 101
- 2.6.1 Cyanobacteria 102
- 2.6.2 Macroalgae 103
- 2.6.3 Companies 104
3 MARKET ANALYSIS 106
- 3.1 Market trends 106
- 3.1.1 Demand for biobased products 107
- 3.1.2 Government regulation 107
- 3.1.3 Costs 108
- 3.1.4 Carbon taxes 110
- 3.2 Industry challenges and constraints 111
- 3.2.1 Technical challenges 112
- 3.2.2 Costs 113
- 3.3 White biotechnology in the bioeconomy 113
- 3.4 SWOT analysis 114
- 3.5 Market map 116
- 3.6 Key market players and competitive landscape 116
- 3.7 Regulations 119
- 3.7.1 United States 119
- 3.7.2 European Union 120
- 3.7.3 International 120
- 3.7.4 Specific Regulations and Guidelines 120
- 3.8 Main end-use markets 121
- 3.8.1 Biofuels 122
- 3.8.1.1 Market supply chain 122
- 3.8.1.2 Solid Biofuels 124
- 3.8.1.3 Liquid Biofuels 125
- 3.8.1.4 Gaseous Biofuels 125
- 3.8.1.5 Conventional Biofuels 126
- 3.8.1.6 Next-generation Biofuels 126
- 3.8.1.7 Feedstocks 127
- 3.8.1.7.1 First-generation (1-G) 129
- 3.8.1.7.2 Second-generation (2-G) 130
- 3.8.1.7.2.1 Lignocellulosic wastes and residues 131
- 3.8.1.7.2.2 Biorefinery lignin 132
- 3.8.1.7.3 Third-generation (3-G) 136
- 3.8.1.7.3.1 Algal biofuels 136
- 3.8.1.7.3.1.1 Properties 137
- 3.8.1.7.3.1.2 Advantages 137
- 3.8.1.7.3.1 Algal biofuels 136
- 3.8.1.7.4 Fourth-generation (4-G) 138
- 3.8.1.7.5 Energy crops 138
- 3.8.1.7.6 Agricultural residues 139
- 3.8.1.7.7 Manure, sewage sludge and organic waste 139
- 3.8.1.7.8 Forestry and wood waste 140
- 3.8.1.7.9 Feedstock costs 140
- 3.8.1.8 Bioethanol 141
- 3.8.1.8.1 Ethanol to jet fuel technology 141
- 3.8.1.8.2 Methanol from pulp & paper production 142
- 3.8.1.8.3 Sulfite spent liquor fermentation 142
- 3.8.1.8.4 Gasification 143
- 3.8.1.8.4.1 Biomass gasification and syngas fermentation 143
- 3.8.1.8.4.2 Biomass gasification and syngas thermochemical conversion 143
- 3.8.1.8.5 CO2 capture and alcohol synthesis 144
- 3.8.1.8.6 Biomass hydrolysis and fermentation 144
- 3.8.1.8.7 Separate hydrolysis and fermentation 144
- 3.8.1.8.7.1 Simultaneous saccharification and fermentation (SSF) 145
- 3.8.1.8.7.2 Pre-hydrolysis and simultaneous saccharification and fermentation (PSSF) 145
- 3.8.1.8.7.3 Simultaneous saccharification and co-fermentation (SSCF) 145
- 3.8.1.8.7.4 Direct conversion (consolidated bioprocessing) (CBP) 146
- 3.8.1.9 Biodiesel 146
- 3.8.1.10 Biogas 149
- 3.8.1.10.1 Biomethane 150
- 3.8.1.10.2 Feedstocks 151
- 3.8.1.10.3 Anaerobic digestion 152
- 3.8.1.11 Renewable diesel 153
- 3.8.1.12 Biojet fuel 154
- 3.8.1.13 Algal biofuels (blue biotech) 158
- 3.8.1.13.1 Conversion pathways 158
- 3.8.1.13.2 Market challenges 160
- 3.8.1.13.3 Prices 160
- 3.8.1.13.4 Producers 161
- 3.8.1.14 Biohydrogen 162
- 3.8.1.14.1 Biological Conversion Routes 164
- 3.8.1.14.1.1 Bio-photochemical Reaction 164
- 3.8.1.14.1.2 Fermentation and Anaerobic Digestion 164
- 3.8.1.14.1 Biological Conversion Routes 164
- 3.8.1.15 Biobutanol 164
- 3.8.1.16 Bio-based methanol 166
- 3.8.1.16.1 Anaerobic digestion 168
- 3.8.1.16.2 Biomass gasification 168
- 3.8.1.16.3 Power to Methane 169
- 3.8.1.17 Bioisoprene 170
- 3.8.1.18 Fatty Acid Esters 170
- 3.8.2 Bio-based chemicals 170
- 3.8.2.1 Market supply chain 170
- 3.8.2.2 Acetic acid 171
- 3.8.2.3 Adipic acid 171
- 3.8.2.4 Aldehydes 173
- 3.8.2.5 Acrylic acid 173
- 3.8.2.6 Bacterial cellulose 174
- 3.8.2.7 1,4-Butanediol (BDO) 176
- 3.8.2.8 Bio-DME 177
- 3.8.2.9 Dodecanedioic acid (DDDA) 178
- 3.8.2.10 Ethylene 178
- 3.8.2.11 3-Hydroxypropionic acid (3-HP) 179
- 3.8.2.12 1,3-Propanediol (1,3-PDO) 180
- 3.8.2.13 Itaconic acid 180
- 3.8.2.14 Lactic acid (D-LA) 181
- 3.8.2.15 1,5-diaminopentane (DA5) 182
- 3.8.2.16 Tetrahydrofuran (THF) 183
- 3.8.2.17 Malonic acid 184
- 3.8.2.18 Monoethylene glycol (MEG) 185
- 3.8.2.19 Propylene 185
- 3.8.2.20 Succinic acid (SA) 186
- 3.8.2.21 Triglycerides 188
- 3.8.2.22 Enzymes 188
- 3.8.2.23 Vitamins 188
- 3.8.2.24 Antibiotics 189
- 3.8.3 Bioplastics and Biopolymers 190
- 3.8.3.1 Bioplastics via white biotechnology 190
- 3.8.3.2 Biobased polymers from monosaccharides 191
- 3.8.3.3 Market supply chain 193
- 3.8.3.4 Polylactic acid (PLA) 195
- 3.8.3.5 PHAs 200
- 3.8.3.5.1 Types 202
- 3.8.3.5.1.1 PHB 204
- 3.8.3.5.1.2 PHBV 204
- 3.8.3.5.2 Synthesis and production processes 205
- 3.8.3.5.3 Commercially available PHAs 208
- 3.8.3.5.1 Types 202
- 3.8.3.6 Bio-PET 210
- 3.8.3.7 Starch blends 210
- 3.8.3.8 Protein-based bioplastics 211
- 3.8.4 Bioremediation 212
- 3.8.5 Biocatalysis 213
- 3.8.5.1 Biotransformations 214
- 3.8.5.2 Cascade biocatalysis 214
- 3.8.5.3 Co-factor recycling 214
- 3.8.5.4 Immobilization 215
- 3.8.6 Food and Nutraceutical Ingredients 215
- 3.8.6.1 Market supply chain 215
- 3.8.6.2 Alternative Proteins 217
- 3.8.6.3 Natural Sweeteners 218
- 3.8.6.4 Natural Flavors and Fragrances 218
- 3.8.6.5 Texturants and Thickeners 218
- 3.8.6.6 Nutraceuticals and Supplements 219
- 3.8.7 Agricultural biotechnology 219
- 3.8.7.1 Market supply chain 219
- 3.8.7.2 Biofertilizers 221
- 3.8.7.2.1 Overview 221
- 3.8.7.2.2 Companies 221
- 3.8.7.3 Biopesticides 221
- 3.8.7.3.1 Overview 221
- 3.8.7.3.2 Companies 222
- 3.8.7.4 Biostimulants 222
- 3.8.7.4.1 Overview 222
- 3.8.7.4.2 Companies 223
- 3.8.7.5 Crop Biotechnology 223
- 3.8.7.5.1 Genetic engineering 223
- 3.8.7.5.2 Genome editing 224
- 3.8.7.5.3 Companies 224
- 3.8.8 Textiles 225
- 3.8.8.1 Market supply chain 225
- 3.8.8.2 Bio-Based Fibers 227
- 3.8.8.2.1 Lyocell 227
- 3.8.8.2.2 Bacterial cellulose 227
- 3.8.8.2.3 Algae textiles 228
- 3.8.8.3 Spider silk 229
- 3.8.8.4 Collagen-derived textiles 230
- 3.8.8.5 Recombinant Materials 230
- 3.8.8.6 Sustainable Processing 230
- 3.8.9 Consumer goods 231
- 3.8.9.1 Market supply chain 231
- 3.8.9.2 White biotechnology in consumer goods 232
- 3.8.10 Biopharmaceuticals 233
- 3.8.10.1 Market supply chain 233
- 3.8.10.2 Market overview for white biotechnology 234
- 3.8.11 Cosmetics 235
- 3.8.11.1 Market supply chain 236
- 3.8.11.2 Market overview for white biotechnology 237
- 3.8.12 Surfactants and detergents 237
- 3.8.12.1 Market supply chain 238
- 3.8.12.2 Market overview for white biotechnology 238
- 3.8.13 Construction materials 240
- 3.8.13.1 Market supply chain 240
- 3.8.13.2 Biocement 241
- 3.8.13.3 Mycelium materials 242
- 3.8.1 Biofuels 122
- 3.9 Global market revenues 2018-2035 244
- 3.9.1 By molecule 244
- 3.9.2 By market 245
- 3.9.3 By region 248
- 3.10 Future Market Outlook 249
4 COMPANY PROFILES 250 (397 company profiles)
5 APPENDIX 517
- 5.1 Research methodology 517
- 5.2 Acronyms 517
- 5.3 Glossary of Terms 518
6 REFERENCES 520
List of Tables
- Table 1. Biotechnology "colours". 25
- Table 2. Differences between white biotechnology and conventional processes. 26
- Table 3. Application areas for white biotechnology. 27
- Table 4. Advantages of white biotechnology. 29
- Table 5. Routes for carbon capture in white biotechnology. 30
- Table 6. Molecules produced through industrial biomanufacturing. 33
- Table 7. Commonly used bacterial hosts for white biotechnology production. 34
- Table 8. Commonly used yeast hosts for white biotech production. 35
- Table 9. Examples of fungal hosts used in white biotechnology processes. 36
- Table 10. Examples of marine organisms as hosts for white biotechnology applications. 37
- Table 11. Common microbial hosts used for enzyme production in white biotechnology. 37
- Table 12. Photosynthetic microorganisms used as production hosts in white biotechnology 38
- Table 13. Biomanufacturing processes utilized in white biotechnology. 39
- Table 14. Continuous vs batch biomanufacturing 40
- Table 15. Key fermentation parameters in batch vs continuous biomanufacturing processes. 41
- Table 16. Major microbial cell factories used in industrial biomanufacturing. 43
- Table 17. Core stages - Design, Build and Test. 48
- Table 18. Products and applications enabled by synthetic biology. 49
- Table 19. Engineered proteins in industrial applications. 53
- Table 20. Cell-free versus cell-based systems 57
- Table 21.Companies developing cell-free systems for white biotechnology. 59
- Table 22. White biotechnology fermentation processes. 65
- Table 23. Alternative feedstocks for white biotechnology 78
- Table 24. Products from C1 feedstocks in white biotechnology. 82
- Table 25. C2 Feedstock Products. 83
- Table 26. CO2 derived products via biological conversion-applications, advantages and disadvantages. 85
- Table 27. Production capacities of biorefinery lignin producers. 87
- Table 28. Common starch sources that can be used as feedstocks for producing biochemicals. 94
- Table 29. Routes for carbon capture in white biotechnology. 95
- Table 30. Biomass processes summary, process description and TRL. 98
- Table 31. Pathways for hydrogen production from biomass. 100
- Table 32. Overview of alginate-description, properties, application and market size. 101
- Table 33. Blue biotechnology companies. 104
- Table 34. Market trends and drivers in white biotechnology. 106
- Table 35. Industry challenges and restraints in white biotechnology. 111
- Table 36. White biotechnology key application sectors and products. 121
- Table 37. Comparison of biofuels. 123
- Table 38. Categories and examples of solid biofuel. 124
- Table 39. Comparison of biofuels and e-fuels to fossil and electricity. 127
- Table 40. Classification of biomass feedstock. 127
- Table 41. Biorefinery feedstocks. 128
- Table 42. Feedstock conversion pathways. 129
- Table 43. First-Generation Feedstocks. 129
- Table 44. Lignocellulosic ethanol plants and capacities. 131
- Table 45. Comparison of pulping and biorefinery lignins. 132
- Table 46. Commercial and pre-commercial biorefinery lignin production facilities and processes 133
- Table 47. Operating and planned lignocellulosic biorefineries and industrial flue gas-to-ethanol. 134
- Table 48. Properties of microalgae and macroalgae. 137
- Table 49. Yield of algae and other biodiesel crops. 138
- Table 50. Processes in bioethanol production. 144
- Table 51. Microorganisms used in CBP for ethanol production from biomass lignocellulosic. 146
- Table 52. Biodiesel by generation. 147
- Table 53. Biodiesel production techniques. 148
- Table 54. Biofuel production cost from the biomass pyrolysis process. 148
- Table 55. Biogas feedstocks. 151
- Table 56. Advantages and disadvantages of Bio-aviation fuel. 155
- Table 57. Production pathways for Bio-aviation fuel. 155
- Table 58. Current and announced Bio-aviation fuel facilities and capacities. 157
- Table 59. Algae-derived biofuel producers. 161
- Table 60. Markets and applications for biohydrogen. 162
- Table 61. Comparison of different Bio-H2 production pathways. 163
- Table 62. Properties of petrol and biobutanol. 165
- Table 63. Comparison of biogas, biomethane and natural gas. 168
- Table 64. Applications of bio-based caprolactam. 172
- Table 65. Applications of bio-based acrylic acid. 173
- Table 66. Applications of bio-based 1,4-Butanediol (BDO). 177
- Table 67. Applications of bio-based ethylene. 178
- Table 68. Biobased feedstock sources for 3-HP. 179
- Table 69. Applications of 3-HP. 179
- Table 70. Applications of bio-based 1,3-Propanediol (1,3-PDO). 180
- Table 71. Biobased feedstock sources for itaconic acid. 181
- Table 72. Applications of bio-based itaconic acid. 181
- Table 73. Biobased feedstocks that can be used to produce 1,5-diaminopentane (DA5). 182
- Table 74. Applications of DN5. 183
- Table 75. Applications of bio-based Tetrahydrofuran (THF). 184
- Table 76. Markets and applications for malonic acid. 184
- Table 77. Biobased feedstock sources for MEG. 185
- Table 78. Applications of bio-based MEG. 185
- Table 79. Applications of bio-based propylene. 186
- Table 80. Biobased feedstock sources for Succinic acid. 187
- Table 81. Applications of succinic acid. 187
- Table 82. Bioplastics and polymer precursors synthesized via white biotechnology. 192
- Table 83. Bioplastics and bioplastic precursors synthesized via white biotechnology processes . 194
- Table 84. Polylactic acid (PLA) market analysis-manufacture, advantages, disadvantages and applications. 195
- Table 85. PLA producers and production capacities. 196
- Table 86.Types of PHAs and properties. 203
- Table 87. Comparison of the physical properties of different PHAs with conventional petroleum-based polymers. 205
- Table 88. Polyhydroxyalkanoate (PHA) extraction methods. 207
- Table 89. Commercially available PHAs. 208
- Table 90. Types of protein based-bioplastics, applications and companies. 211
- Table 91. Applications of white biotechnology in bioremediation and environmental remediation. 213
- Table 92. Companies developing fermentation-derived food. 217
- Table 93. Biofertilizer companies. 221
- Table 94. Biopesticides companies. 222
- Table 95. Biostimulants companies. 223
- Table 96. Crop biotechnology companies. 224
- Table 97. White biotechnology applications in consumer goods. 232
- Table 98. Pharmaceutical applications of white biotechnology. 235
- Table 99. Applications of white biotechnology in the cosmetics industry. 237
- Table 100. Sustainable biomanufacturing of surfactants and detergents. 239
- Table 101. Global revenues for white biotechnology, by molecule, 2018-2035 (Billion USD). 244
- Table 102. Global revenues for white biotechnology, by market, 2018-2035 (Billion USD). 245
- Table 103. Global revenues for white biotechnology, by region, 2018-2035 (Billion USD). 248
- Table 104. White biotechnology Glossary of Acronyms. 517
- Table 105. White biotechnology Glossary of Terms. 518
List of Figures
- Figure 1. CRISPR/Cas9 & Targeted Genome Editing. 52
- Figure 2. Genetic Circuit-Assisted Smart Microbial Engineering. 56
- Figure 3. Cell-free and cell-based protein synthesis systems. 58
- Figure 4. Microbial Chassis Development for Natural Product Biosynthesis. 61
- Figure 5. The design-make-test-learn loop of generative biology. 66
- Figure 6. LanzaTech gas-fermentation process. 83
- Figure 7. Schematic of biological CO2 conversion into e-fuels. 84
- Figure 8. Overview of biogas utilization. 89
- Figure 9. Biogas and biomethane pathways. 90
- Figure 10. Schematic overview of anaerobic digestion process for biomethane production. 91
- Figure 11. BLOOM masterbatch from Algix. 102
- Figure 12. SWOT analysis: white biotechnology. 115
- Figure 13. Market map: white biotechnology. 116
- Figure 14. Biofuels market supply chain. 122
- Figure 15. Schematic of a biorefinery for production of carriers and chemicals. 133
- Figure 16. Hydrolytic lignin powder. 136
- Figure 17. Range of biomass cost by feedstock type. 140
- Figure 18. Overview of biogas utilization. 150
- Figure 19. Biogas and biomethane pathways. 151
- Figure 20. Schematic overview of anaerobic digestion process for biomethane production. 153
- Figure 21. Algal biomass conversion process for biofuel production. 160
- Figure 22. Pathways for algal biomass conversion to biofuels. 162
- Figure 23. Biobutanol production route. 165
- Figure 24. Renewable Methanol Production Processes from Different Feedstocks. 167
- Figure 25. Production of biomethane through anaerobic digestion and upgrading. 168
- Figure 26. Production of biomethane through biomass gasification and methanation. 169
- Figure 27. Production of biomethane through the Power to methane process. 169
- Figure 28. Bio-based chemicals market supply chain. 171
- Figure 29. Overview of Toray process. 172
- Figure 30. Bacterial nanocellulose shapes 175
- Figure 31. Bioplastics and biopolymers market supply chain. 194
- Figure 32. PHA family. 203
- Figure 33. Food and Nutraceutical Ingredients market supply chain. 216
- Figure 34. Agricultural biotechnology market supply chain. 220
- Figure 35. Bio-textiles market supply chain. 226
- Figure 36. AlgiKicks sneaker, made with the Algiknit biopolymer gel. 228
- Figure 37. Biobased consumer goods market supply chain. 232
- Figure 38. Biopharmaceuticals market supply chain. 234
- Figure 39. Biobased cosmetics market supply chain. 236
- Figure 40. Surfactants and detergents market supply chain. 238
- Figure 41. Biobased construction materials market supply chain. 241
- Figure 42. BioMason cement. 241
- Figure 43. Microalgae based biocement masonry bloc. 242
- Figure 44. Typical structure of mycelium-based foam. 242
- Figure 45. Commercial mycelium composite construction materials. 243
- Figure 46. Global revenues for white biotechnology, by market, 2018-2035 (Billion USD). 247
- Figure 47. Global revenues for white biotechnology, by region, 2018-2035 (Billion USD). 249
- Figure 48. Algiknit yarn. 258
- Figure 49. ALGIECEL PhotoBioReactor. 259
- Figure 50. Jelly-like seaweed-based nanocellulose hydrogel. 260
- Figure 51. BIOLO e-commerce mailer bag made from PHA. 291
- Figure 52. Domsjö process. 337
- Figure 53. Mushroom leather. 340
- Figure 54. PHA production process. 360
- Figure 55. Light Bio Bioluminescent plants. 401
- Figure 56. Lignin gel. 402
- Figure 57. BioFlex process. 405
- Figure 58. TransLeather. 409
- Figure 59. Reishi. 423
- Figure 60. Compostable water pod. 432
- Figure 61. Precision Photosynthesis™ technology. 459
- Figure 62. Enfinity cellulosic ethanol technology process. 460
- Figure 63. Fabric consisting of 70 per cent wool and 30 per cent Qmilk. 463
- Figure 64. Lyocell process. 478
- Figure 65. Spider silk production. 483
- Figure 66. Corbion FDCA production process. 496
- Figure 67. UPM biorefinery process. 501
- Figure 68. The Proesa® Process. 505
- Figure 69. XtalPi’s automated and robot-run workstations. 512
Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer. To order by Bank Transfer (Invoice) select this option from the payment methods menu after adding to cart, or contact info@futuremarketsinc.com