The Global White Biotechnology Market 2025-2035

0

cover

cover

  • Published: May 2025
  • Pages: 531
  • Tables: 105
  • Figures: 69

 

The global white (industrial) biotechnology market is experiencing significant growth, driven by increasing demand for sustainable alternatives to traditional petroleum-based products. White biotechnology leverages biological systems, enzymes, and microorganisms to produce chemicals, materials, and energy through environmentally friendly processes. With rising environmental concerns, government regulations supporting bio-based products, and technological advancements in synthetic biology, the sector is poised for substantial expansion. The market is characterized by diverse applications across multiple industries including biofuels, bio-based chemicals, bioplastics, pharmaceuticals, food ingredients, textiles, and construction materials. Major growth drivers include carbon taxation policies, increasing consumer preference for sustainable products, and corporate sustainability commitments. The transition toward circular economy principles is further accelerating adoption as white biotechnology enables the valorization of various waste streams including agricultural residues, forestry waste, municipal solid waste, and industrial by-products.

Technological innovations in synthetic biology, metabolic engineering, and the emerging field of generative biology are dramatically improving production efficiencies and expanding the range of possible bio-manufactured molecules. Advanced fermentation processes, cell-free systems, and the development of novel microbial chassis organisms are contributing to increased commercial viability of white biotechnology products.

Report Contents include :

  • Market Analysis and Forecasts 2025-2035
    • Global market revenues by molecule type
    • Market segmentation by application sector
    • Regional market analysis and growth projections
    • Competitive landscape and key player positioning
  • Technology Landscape Assessment
    • Production hosts (bacteria, yeast, fungi, marine organisms)
    • Biomanufacturing processes and optimization techniques
    • Synthetic biology advancements and applications
    • Generative biology approaches and impact
    • Feedstock analysis and alternative resource utilization
  • Application Sector Analysis
    • Biofuels (bioethanol, biodiesel, biogas, biojet fuel)
    • Bio-based chemicals (organic acids, alcohols, monomers)
    • Bioplastics and biopolymers (PLA, PHAs, bio-PET)
    • Food and nutraceutical ingredients
    • Agricultural biotechnology
    • Textile applications
    • Pharmaceuticals and cosmetics
    • Construction materials
  • Sustainability and Circular Economy Integration
    • White biotechnology for waste valorization
    • Carbon capture utilization
    • Industrial symbiosis opportunities
    • Environmental impact assessment
  • Strategic Insights and Opportunities
    • Technology adoption trends
    • Regulatory landscape analysis
    • Investment patterns and funding environment
    • Strategic recommendations for market participants
  • Comprehensive Company Profiles
    • Detailed analysis of 395+ market participants
    • Technology platforms and proprietary processes
    • Commercial deployments and capacity expansions
    • Partnership and collaboration networks

 

The report provides comprehensive profiles of over 395 companies operating across the industrial biotechnology value chain. These include established industry leaders like Novozymes, Braskem, LanzaTech, and Corbion, alongside innovative startups developing novel technologies and applications. The diverse ecosystem encompasses specialized synthetic biology platforms (Ginkgo Bioworks, Arzeda), biofuel producers (Aemetis, Gevo), bioplastics manufacturers (NatureWorks, Total Energies Corbion, Danimer Scientific), bio-based chemical developers (Avantium, METEX), cell-free system innovators (EnginZyme, Solugen), and companies focused on emerging applications like biocement (Biomason) and bio-textiles (Bolt Threads, Modern Meadow, Spiber). The landscape also includes AI-driven biotechnology platforms (Asimov, Zymergen) and specialized waste-to-value companies (Celtic Renewables, Full Cycle Bioplastics). This comprehensive company analysis provides unparalleled insights into the competitive dynamics, technological capabilities, and strategic positioning of key market participants across the global industrial biotechnology ecosystem.

 

 

1             EXECUTIVE SUMMARY            25

  • 1.1        Biotechnology "colours"         25
  • 1.2        Definition         26
  • 1.3        Comparison with conventional processes 26
  • 1.4        Markets and applications      27
  • 1.5        Advantages     29
  • 1.6        Sustainability 29
  • 1.7        White Biotechnology for the Circular Economy      31
    • 1.7.1    Agricultural Waste      31
    • 1.7.2    Forestry and Paper Waste     31
    • 1.7.3    Gas Fermentation       32
    • 1.7.4    Plastics Upcycling      32
    • 1.7.5    Wastewater Valorization        33

 

2             TECHNOLOGY ANALYSIS       33

  • 2.1        Production hosts         34
    • 2.1.1    Bacteria             34
    • 2.1.2    Yeast   35
    • 2.1.3    Fungi   36
    • 2.1.4    Marine 36
    • 2.1.5    Enzymes           37
    • 2.1.6    Photosynthetic organisms    38
  • 2.2        Biomanufacturing processes              38
    • 2.2.1    Batch biomanufacturing        41
    • 2.2.2    Continuous biomanufacturing          41
    • 2.2.3    Cell factories for biomanufacturing 42
    • 2.2.4    Machine learning        44
    • 2.2.5    Downstream processing        45
    • 2.2.6    Process intensification and high-cell-density fermentation           46
  • 2.3        Synthetic Biology        47
    • 2.3.1    Technology Overview                48
    • 2.3.2    Synthetic biology applied to white biotechnology 49
    • 2.3.3    Metabolic engineering             49
      • 2.3.3.1 DNA synthesis              50
      • 2.3.3.2 CRISPR              51
        • 2.3.3.2.1           CRISPR/Cas9-modified biosynthetic pathways      51
    • 2.3.4    Protein/Enzyme Engineering                52
    • 2.3.5    Strain construction and optimization            54
    • 2.3.6    Synthetic biology and metabolic engineering           54
    • 2.3.7    Smart bioprocessing 55
    • 2.3.8    Cell-free systems        56
    • 2.3.9    Chassis organisms    60
    • 2.3.10 Biomimetics   61
    • 2.3.11 Sustainable materials              62
    • 2.3.12 Robotics and automation      62
      • 2.3.12.1            Robotic cloud laboratories   63
      • 2.3.12.2            Automating organism design              63
      • 2.3.12.3            Artificial intelligence and machine learning              64
    • 2.3.13 Fermentation Processes        64
  • 2.4        Generative Biology     65
    • 2.4.1    Generative Models     67
    • 2.4.2    Generative Adversarial Networks (GANs)    67
      • 2.4.2.1 Variational Autoencoders (VAEs)      67
      • 2.4.2.2 Normalizing Flows      68
      • 2.4.2.3 Autoregressive Models            68
      • 2.4.2.4 Evolutionary Generative Models       68
    • 2.4.3    Design Optimization 68
      • 2.4.3.1 Evolutionary Algorithms (e.g., Genetic Algorithms, Evolutionary Strategies)       69
        • 2.4.3.1.1           Genetic Algorithms (GAs)      69
        • 2.4.3.1.2           Evolutionary Strategies (ES) 69
      • 2.4.3.2 Reinforcement Learning         69
      • 2.4.3.3 Multi-Objective Optimization              70
      • 2.4.3.4 Bayesian Optimization            70
    • 2.4.4    Computational Biology           71
      • 2.4.4.1 Molecular Dynamics Simulations    71
      • 2.4.4.2 Quantum Mechanical Calculations                72
      • 2.4.4.3 Systems Biology Modeling    72
      • 2.4.4.4 Metabolic Engineering Modeling       73
    • 2.4.5    Data-Driven Approaches       74
      • 2.4.5.1 Machine Learning       74
      • 2.4.5.2 Graph Neural Networks           74
      • 2.4.5.3 Unsupervised Learning           75
      • 2.4.5.4 Active Learning and Bayesian Optimization              75
    • 2.4.6    Agent-Based Modeling            75
    • 2.4.7    Hybrid Approaches    76
  • 2.5        Feedstocks      78
    • 2.5.1    C1 feedstocks               80
      • 2.5.1.1 Advantages     80
      • 2.5.1.2 Pathways          80
      • 2.5.1.3 Challenges      81
      • 2.5.1.4 Non-methane C1 feedstocks              81
      • 2.5.1.5 Gas fermentation        82
    • 2.5.2    C2 feedstocks               82
    • 2.5.3    Biological conversion of CO2              83
    • 2.5.4    Food processing wastes         86
    • 2.5.5    Lignocellulosic biomass        87
    • 2.5.6    Methane            87
    • 2.5.7    Municipal solid wastes            91
    • 2.5.8    Plastic wastes               92
    • 2.5.9    Plant oils           92
    • 2.5.10 Starch 93
    • 2.5.11 Sugars 94
    • 2.5.12 Used cooking oils       94
    • 2.5.13 Carbon capture            95
    • 2.5.14 Green hydrogen production 97
    • 2.5.15 Blue hydrogen production     98
  • 2.6        Blue biotechnology (Marine biotechnology)              101
    • 2.6.1    Cyanobacteria              102
    • 2.6.2    Macroalgae     103
    • 2.6.3    Companies     104

 

3             MARKET ANALYSIS      106

  • 3.1        Market trends 106
    • 3.1.1    Demand for biobased products         107
    • 3.1.2    Government regulation           107
    • 3.1.3    Costs  108
    • 3.1.4    Carbon taxes  110
  • 3.2        Industry challenges and constraints              111
    • 3.2.1    Technical challenges 112
    • 3.2.2    Costs  113
  • 3.3        White biotechnology in the bioeconomy     113
  • 3.4        SWOT analysis              114
  • 3.5        Market map    116
  • 3.6        Key market players and competitive landscape     116
  • 3.7        Regulations     119
    • 3.7.1    United States 119
    • 3.7.2    European Union           120
    • 3.7.3    International   120
    • 3.7.4    Specific Regulations and Guidelines             120
  • 3.8        Main end-use markets             121
    • 3.8.1    Biofuels             122
      • 3.8.1.1 Market supply chain  122
      • 3.8.1.2 Solid Biofuels 124
      • 3.8.1.3 Liquid Biofuels              125
      • 3.8.1.4 Gaseous Biofuels       125
      • 3.8.1.5 Conventional Biofuels             126
      • 3.8.1.6 Next-generation Biofuels       126
      • 3.8.1.7 Feedstocks      127
        • 3.8.1.7.1           First-generation (1-G)               129
        • 3.8.1.7.2           Second-generation (2-G)       130
          • 3.8.1.7.2.1      Lignocellulosic wastes and residues             131
          • 3.8.1.7.2.2      Biorefinery lignin         132
        • 3.8.1.7.3           Third-generation (3-G)             136
          • 3.8.1.7.3.1      Algal biofuels 136
            • 3.8.1.7.3.1.1  Properties         137
            • 3.8.1.7.3.1.2  Advantages     137
        • 3.8.1.7.4           Fourth-generation (4-G)          138
        • 3.8.1.7.5           Energy crops  138
        • 3.8.1.7.6           Agricultural residues 139
        • 3.8.1.7.7           Manure, sewage sludge and organic waste                139
        • 3.8.1.7.8           Forestry and wood waste       140
        • 3.8.1.7.9           Feedstock costs          140
      • 3.8.1.8 Bioethanol       141
        • 3.8.1.8.1           Ethanol to jet fuel technology             141
        • 3.8.1.8.2           Methanol from pulp & paper production      142
        • 3.8.1.8.3           Sulfite spent liquor fermentation      142
        • 3.8.1.8.4           Gasification    143
          • 3.8.1.8.4.1      Biomass gasification and syngas fermentation       143
          • 3.8.1.8.4.2      Biomass gasification and syngas thermochemical conversion    143
        • 3.8.1.8.5           CO2 capture and alcohol synthesis               144
        • 3.8.1.8.6           Biomass hydrolysis and fermentation           144
        • 3.8.1.8.7           Separate hydrolysis and fermentation           144
          • 3.8.1.8.7.1      Simultaneous saccharification and fermentation (SSF)    145
          • 3.8.1.8.7.2      Pre-hydrolysis and simultaneous saccharification and fermentation (PSSF)      145
          • 3.8.1.8.7.3      Simultaneous saccharification and co-fermentation (SSCF)         145
          • 3.8.1.8.7.4      Direct conversion (consolidated bioprocessing) (CBP)      146
      • 3.8.1.9 Biodiesel           146
      • 3.8.1.10            Biogas 149
        • 3.8.1.10.1        Biomethane    150
        • 3.8.1.10.2        Feedstocks      151
        • 3.8.1.10.3        Anaerobic digestion  152
      • 3.8.1.11            Renewable diesel        153
      • 3.8.1.12            Biojet fuel         154
      • 3.8.1.13            Algal biofuels (blue biotech) 158
        • 3.8.1.13.1        Conversion pathways               158
        • 3.8.1.13.2        Market challenges      160
        • 3.8.1.13.3        Prices  160
        • 3.8.1.13.4        Producers         161
      • 3.8.1.14            Biohydrogen   162
        • 3.8.1.14.1        Biological Conversion Routes             164
          • 3.8.1.14.1.1   Bio-photochemical Reaction              164
          • 3.8.1.14.1.2   Fermentation and Anaerobic Digestion        164
      • 3.8.1.15            Biobutanol      164
      • 3.8.1.16            Bio-based methanol 166
        • 3.8.1.16.1        Anaerobic digestion  168
        • 3.8.1.16.2        Biomass gasification 168
        • 3.8.1.16.3        Power to Methane       169
      • 3.8.1.17            Bioisoprene    170
      • 3.8.1.18            Fatty Acid Esters          170
    • 3.8.2    Bio-based chemicals               170
      • 3.8.2.1 Market supply chain  170
      • 3.8.2.2 Acetic acid      171
      • 3.8.2.3 Adipic acid      171
      • 3.8.2.4 Aldehydes        173
      • 3.8.2.5 Acrylic acid     173
      • 3.8.2.6 Bacterial cellulose      174
      • 3.8.2.7 1,4-Butanediol (BDO)              176
      • 3.8.2.8 Bio-DME            177
      • 3.8.2.9 Dodecanedioic acid (DDDA)                178
      • 3.8.2.10            Ethylene            178
      • 3.8.2.11            3-Hydroxypropionic acid (3-HP)        179
      • 3.8.2.12            1,3-Propanediol (1,3-PDO)   180
      • 3.8.2.13            Itaconic acid  180
      • 3.8.2.14            Lactic acid (D-LA)       181
      • 3.8.2.15            1,5-diaminopentane (DA5)   182
      • 3.8.2.16            Tetrahydrofuran (THF)               183
      • 3.8.2.17            Malonic acid   184
      • 3.8.2.18            Monoethylene glycol (MEG) 185
      • 3.8.2.19            Propylene         185
      • 3.8.2.20            Succinic acid (SA)       186
      • 3.8.2.21            Triglycerides    188
      • 3.8.2.22            Enzymes           188
      • 3.8.2.23            Vitamins           188
      • 3.8.2.24            Antibiotics       189
    • 3.8.3    Bioplastics and Biopolymers              190
      • 3.8.3.1 Bioplastics via white biotechnology               190
      • 3.8.3.2 Biobased polymers from monosaccharides             191
      • 3.8.3.3 Market supply chain  193
      • 3.8.3.4 Polylactic acid (PLA) 195
      • 3.8.3.5 PHAs   200
        • 3.8.3.5.1           Types   202
          • 3.8.3.5.1.1      PHB      204
          • 3.8.3.5.1.2      PHBV   204
        • 3.8.3.5.2           Synthesis and production processes             205
        • 3.8.3.5.3           Commercially available PHAs            208
      • 3.8.3.6 Bio-PET              210
      • 3.8.3.7 Starch blends 210
      • 3.8.3.8 Protein-based bioplastics     211
    • 3.8.4    Bioremediation             212
    • 3.8.5    Biocatalysis    213
      • 3.8.5.1 Biotransformations   214
      • 3.8.5.2 Cascade biocatalysis               214
      • 3.8.5.3 Co-factor recycling    214
      • 3.8.5.4 Immobilization             215
    • 3.8.6    Food and Nutraceutical Ingredients               215
      • 3.8.6.1 Market supply chain  215
      • 3.8.6.2 Alternative Proteins   217
      • 3.8.6.3 Natural Sweeteners   218
      • 3.8.6.4 Natural Flavors and Fragrances         218
      • 3.8.6.5 Texturants and Thickeners     218
      • 3.8.6.6 Nutraceuticals and Supplements    219
    • 3.8.7    Agricultural biotechnology    219
      • 3.8.7.1 Market supply chain  219
      • 3.8.7.2 Biofertilizers   221
        • 3.8.7.2.1           Overview           221
        • 3.8.7.2.2           Companies     221
      • 3.8.7.3 Biopesticides 221
        • 3.8.7.3.1           Overview           221
        • 3.8.7.3.2           Companies     222
      • 3.8.7.4 Biostimulants 222
        • 3.8.7.4.1           Overview           222
        • 3.8.7.4.2           Companies     223
      • 3.8.7.5 Crop Biotechnology   223
        • 3.8.7.5.1           Genetic engineering  223
        • 3.8.7.5.2           Genome editing           224
        • 3.8.7.5.3           Companies     224
    • 3.8.8    Textiles               225
      • 3.8.8.1 Market supply chain  225
      • 3.8.8.2 Bio-Based Fibers         227
        • 3.8.8.2.1           Lyocell                227
        • 3.8.8.2.2           Bacterial cellulose      227
        • 3.8.8.2.3           Algae textiles  228
      • 3.8.8.3 Spider silk        229
      • 3.8.8.4 Collagen-derived textiles       230
      • 3.8.8.5 Recombinant Materials           230
      • 3.8.8.6 Sustainable Processing          230
    • 3.8.9    Consumer goods        231
      • 3.8.9.1 Market supply chain  231
      • 3.8.9.2 White biotechnology in consumer goods    232
    • 3.8.10 Biopharmaceuticals 233
      • 3.8.10.1            Market supply chain  233
      • 3.8.10.2            Market overview for white biotechnology    234
    • 3.8.11 Cosmetics       235
      • 3.8.11.1            Market supply chain  236
      • 3.8.11.2            Market overview for white biotechnology    237
    • 3.8.12 Surfactants and detergents  237
      • 3.8.12.1            Market supply chain  238
      • 3.8.12.2            Market overview for white biotechnology    238
    • 3.8.13 Construction materials           240
      • 3.8.13.1            Market supply chain  240
      • 3.8.13.2            Biocement       241
      • 3.8.13.3            Mycelium materials   242
  • 3.9        Global market revenues 2018-2035               244
    • 3.9.1    By molecule    244
    • 3.9.2    By market         245
    • 3.9.3    By region           248
    • 3.10     Future Market Outlook            249

 

4             COMPANY PROFILES                250 (397 company profiles)

 

5             APPENDIX        517

  • 5.1        Research methodology           517
  • 5.2        Acronyms         517
  • 5.3        Glossary of Terms       518

 

6             REFERENCES 520

 

List of Tables

  • Table 1. Biotechnology "colours".     25
  • Table 2. Differences between white biotechnology and conventional processes.           26
  • Table 3. Application areas for  white biotechnology.            27
  • Table 4. Advantages of white biotechnology.            29
  • Table 5. Routes for carbon capture in white biotechnology.           30
  • Table 6. Molecules produced through industrial biomanufacturing.        33
  • Table 7. Commonly used bacterial hosts for white biotechnology production. 34
  • Table 8. Commonly used yeast hosts for white biotech production.         35
  • Table 9. Examples of fungal hosts used in white biotechnology processes.         36
  • Table 10. Examples of marine organisms as hosts for white biotechnology applications.          37
  • Table 11. Common microbial hosts used for enzyme production in white biotechnology.         37
  • Table 12. Photosynthetic microorganisms used as production hosts in white biotechnology  38
  • Table 13. Biomanufacturing processes utilized in white biotechnology. 39
  • Table 14. Continuous vs batch biomanufacturing 40
  • Table 15. Key fermentation parameters in batch vs continuous biomanufacturing processes.              41
  • Table 16.  Major microbial cell factories used in industrial biomanufacturing.  43
  • Table 17. Core stages - Design, Build and Test.       48
  • Table 18. Products and applications enabled by synthetic biology.           49
  • Table 19. Engineered proteins in industrial applications. 53
  • Table 20. Cell-free versus cell-based systems         57
  • Table 21.Companies developing cell-free systems for white biotechnology.       59
  • Table 22. White biotechnology fermentation processes.  65
  • Table 23. Alternative feedstocks for white biotechnology 78
  • Table 24. Products from C1 feedstocks in white biotechnology.  82
  • Table 25. C2 Feedstock Products.   83
  • Table 26. CO2 derived products via biological conversion-applications, advantages and disadvantages.                85
  • Table 27. Production capacities of biorefinery lignin producers. 87
  • Table 28. Common starch sources that can be used as feedstocks for producing biochemicals.        94
  • Table 29. Routes for carbon capture in white biotechnology.         95
  • Table 30. Biomass processes summary, process description and TRL.  98
  • Table 31. Pathways for hydrogen production from biomass.          100
  • Table 32. Overview of alginate-description, properties, application and market size.   101
  • Table 33. Blue biotechnology companies.  104
  • Table 34. Market trends and drivers in white biotechnology.          106
  • Table 35. Industry challenges and restraints in white biotechnology.       111
  • Table 36. White biotechnology key application sectors and products.    121
  • Table 37. Comparison of biofuels.   123
  • Table 38. Categories and examples of solid biofuel.            124
  • Table 39. Comparison of biofuels and e-fuels to fossil and electricity.     127
  • Table 40. Classification of biomass feedstock.       127
  • Table 41. Biorefinery feedstocks.     128
  • Table 42. Feedstock conversion pathways.                129
  • Table 43. First-Generation Feedstocks.        129
  • Table 44.  Lignocellulosic ethanol plants and capacities. 131
  • Table 45. Comparison of pulping and biorefinery lignins. 132
  • Table 46. Commercial and pre-commercial biorefinery lignin production facilities and  processes    133
  • Table 47. Operating and planned lignocellulosic biorefineries and industrial flue gas-to-ethanol.      134
  • Table 48. Properties of microalgae and macroalgae.          137
  • Table 49. Yield of algae and other biodiesel crops.               138
  • Table 50.  Processes in bioethanol production.     144
  • Table 51. Microorganisms used in CBP for ethanol production from biomass lignocellulosic.               146
  • Table 52. Biodiesel by generation.    147
  • Table 53. Biodiesel production techniques.              148
  • Table 54. Biofuel production cost from the biomass pyrolysis process. 148
  • Table 55. Biogas feedstocks.               151
  • Table 56. Advantages and disadvantages of Bio-aviation fuel.      155
  • Table 57. Production pathways for Bio-aviation fuel.           155
  • Table 58. Current and announced Bio-aviation fuel facilities and capacities.    157
  • Table 59. Algae-derived biofuel producers.                161
  • Table 60. Markets and applications for biohydrogen.          162
  • Table 61. Comparison of different Bio-H2 production pathways.                163
  • Table 62. Properties of petrol and biobutanol.         165
  • Table 63. Comparison of biogas, biomethane and natural gas.   168
  • Table 64. Applications of bio-based caprolactam.               172
  • Table 65. Applications of bio-based acrylic acid.  173
  • Table 66. Applications of bio-based 1,4-Butanediol (BDO).           177
  • Table 67. Applications of bio-based ethylene.         178
  • Table 68. Biobased feedstock sources for 3-HP.     179
  • Table 69. Applications of 3-HP.           179
  • Table 70. Applications of bio-based 1,3-Propanediol (1,3-PDO). 180
  • Table 71. Biobased feedstock sources for itaconic acid.  181
  • Table 72. Applications of bio-based itaconic acid.               181
  • Table 73. Biobased feedstocks that can be used to produce 1,5-diaminopentane (DA5).         182
  • Table 74. Applications of DN5.           183
  • Table 75. Applications of bio-based Tetrahydrofuran (THF).           184
  • Table 76. Markets and applications for malonic acid.         184
  • Table 77. Biobased feedstock sources for MEG.     185
  • Table 78. Applications of bio-based MEG.  185
  • Table 79. Applications of bio-based propylene.      186
  • Table 80. Biobased feedstock sources for Succinic acid. 187
  • Table 81. Applications of succinic acid.       187
  • Table 82. Bioplastics and polymer precursors synthesized via white biotechnology.    192
  • Table 83. Bioplastics and bioplastic precursors synthesized via white biotechnology processes .      194
  • Table 84. Polylactic acid (PLA) market analysis-manufacture, advantages, disadvantages and applications.  195
  • Table 85. PLA producers and production capacities.          196
  • Table 86.Types of PHAs and properties.       203
  • Table 87. Comparison of the physical properties of different PHAs with conventional petroleum-based polymers.         205
  • Table 88. Polyhydroxyalkanoate (PHA) extraction methods.           207
  • Table 89. Commercially available PHAs.     208
  • Table 90. Types of protein based-bioplastics, applications and companies.      211
  • Table 91. Applications of white biotechnology in bioremediation and environmental remediation.     213
  • Table 92. Companies developing fermentation-derived food.       217
  • Table 93. Biofertilizer companies.    221
  • Table 94. Biopesticides companies.              222
  • Table 95. Biostimulants companies.             223
  • Table 96. Crop biotechnology companies. 224
  • Table 97. White biotechnology applications in consumer goods.               232
  • Table 98. Pharmaceutical applications of white biotechnology.  235
  • Table 99. Applications of white biotechnology in the cosmetics industry.            237
  • Table 100. Sustainable biomanufacturing of surfactants and detergents.            239
  • Table 101. Global revenues for white biotechnology, by molecule, 2018-2035 (Billion USD).  244
  • Table 102. Global revenues for white biotechnology, by market, 2018-2035 (Billion USD).       245
  • Table 103. Global revenues for white biotechnology, by region, 2018-2035 (Billion USD).         248
  • Table 104. White biotechnology Glossary of Acronyms.    517
  • Table 105. White biotechnology Glossary of Terms.             518

 

List of Figures

  • Figure 1. CRISPR/Cas9 & Targeted Genome Editing.           52
  • Figure 2. Genetic Circuit-Assisted Smart Microbial Engineering. 56
  • Figure 3. Cell-free and cell-based protein synthesis systems.      58
  • Figure 4. Microbial Chassis Development for Natural Product Biosynthesis.     61
  • Figure 5. The design-make-test-learn loop of generative biology.                66
  • Figure 6. LanzaTech gas-fermentation process.      83
  • Figure 7. Schematic of biological CO2 conversion into e-fuels.   84
  • Figure 8. Overview of biogas utilization.       89
  • Figure 9. Biogas and biomethane pathways.             90
  • Figure 10. Schematic overview of anaerobic digestion process for biomethane production.   91
  • Figure 11. BLOOM masterbatch from Algix.               102
  • Figure 12. SWOT analysis: white biotechnology.    115
  • Figure 13. Market map: white biotechnology.           116
  • Figure 14. Biofuels market supply chain.    122
  • Figure 15.  Schematic of a biorefinery for production of carriers and chemicals.             133
  • Figure 16. Hydrolytic lignin powder. 136
  • Figure 17. Range of biomass cost by feedstock type.          140
  • Figure 18. Overview of biogas utilization.    150
  • Figure 19. Biogas and biomethane pathways.          151
  • Figure 20. Schematic overview of anaerobic digestion process for biomethane production.   153
  • Figure 21. Algal biomass conversion process for biofuel production.      160
  • Figure 22.  Pathways for algal biomass conversion to biofuels.    162
  • Figure 23. Biobutanol production route.      165
  • Figure 24. Renewable Methanol Production Processes from Different Feedstocks.       167
  • Figure 25. Production of biomethane through anaerobic digestion and upgrading.        168
  • Figure 26. Production of biomethane through biomass gasification and methanation.               169
  • Figure 27. Production of biomethane through the Power to methane process.  169
  • Figure 28. Bio-based chemicals market supply chain.       171
  • Figure 29. Overview of Toray process.            172
  • Figure 30. Bacterial nanocellulose shapes 175
  • Figure 31. Bioplastics and biopolymers market supply chain.      194
  • Figure 32. PHA family.              203
  • Figure 33. Food and Nutraceutical Ingredients market supply chain.      216
  • Figure 34. Agricultural biotechnology market supply chain.           220
  • Figure 35. Bio-textiles market supply chain.             226
  • Figure 36. AlgiKicks sneaker, made with the Algiknit biopolymer gel.       228
  • Figure 37. Biobased consumer goods market supply chain.          232
  • Figure 38. Biopharmaceuticals market supply chain.         234
  • Figure 39. Biobased cosmetics market supply chain.        236
  • Figure 40. Surfactants and detergents market supply chain.         238
  • Figure 41. Biobased construction materials market supply chain.            241
  • Figure 42. BioMason cement.             241
  • Figure 43. Microalgae based biocement masonry bloc.    242
  • Figure 44. Typical structure of mycelium-based foam.      242
  • Figure 45. Commercial mycelium composite construction materials.    243
  • Figure 46. Global revenues for white biotechnology, by market, 2018-2035 (Billion USD).        247
  • Figure 47. Global revenues for white biotechnology, by region, 2018-2035 (Billion USD).          249
  • Figure 48. Algiknit yarn.           258
  • Figure 49. ALGIECEL PhotoBioReactor.        259
  • Figure 50. Jelly-like seaweed-based nanocellulose hydrogel.       260
  • Figure 51. BIOLO e-commerce mailer bag made from PHA.           291
  • Figure 52. Domsjö process.  337
  • Figure 53. Mushroom leather.              340
  • Figure 54. PHA production process.               360
  • Figure 55. Light Bio Bioluminescent plants.              401
  • Figure 56. Lignin gel. 402
  • Figure 57. BioFlex process.   405
  • Figure 58. TransLeather.          409
  • Figure 59. Reishi.         423
  • Figure 60. Compostable water pod.               432
  • Figure 61.  Precision Photosynthesis™ technology.               459
  • Figure 62. Enfinity cellulosic ethanol technology process.              460
  • Figure 63. Fabric consisting of 70 per cent wool and 30 per cent Qmilk.               463
  • Figure 64. Lyocell process.   478
  • Figure 65. Spider silk production.     483
  • Figure 66. Corbion FDCA production process.        496
  • Figure 67. UPM biorefinery process.               501
  • Figure 68. The Proesa® Process.        505
  • Figure 69. XtalPi’s automated and robot-run workstations.            512

 

 

 

The Global White Biotechnology Market 2025-2035
The Global White Biotechnology Market 2025-2035
PDF download/by email.

The Global White Biotechnology Market 2025-2035
The Global White Biotechnology Market 2025-2035
PDF and Print Edition (including tracked delivery).

Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer. To order by Bank Transfer (Invoice) select this option from the payment methods menu after adding to cart, or contact info@futuremarketsinc.com