ADAS Sensors Global Market 2025-2035

0

cover

cover

  • Published: August 2024
  • Pages: 375
  • Tables: 57
  • Figures: 34

 

The ADAS sensors market is experiencing rapid growth driven by increasing demand for vehicle safety features, stringent regulations, and the push towards autonomous driving. Advanced Driver Assistance Systems (ADAS) use a combination of sensors, cameras, and other technologies to gather information about the vehicle's surroundings and provide assistance to the driver. ADAS features can range from basic functionalities like cruise control to more advanced capabilities such as lane keeping assist, automatic emergency braking, and adaptive cruise control. This comprehensive market report provides an in-depth analysis of the Advanced Driver Assistance Systems (ADAS) sensors market, projecting trends and growth from 2025 to 2035. As vehicles become increasingly autonomous and safety regulations tighten globally, ADAS sensors are playing a crucial role in shaping the future of automotive technology.

Report contents include: 

  • Detailed market size projections for ADAS sensors, broken down by sensor type, units, and regional markets from 2024 to 2035.
  • In-depth examination of key ADAS sensor technologies including cameras, radar, LiDAR, ultrasonic sensors, and infrared sensors, as well as emerging technologies like event-based vision and quantum dot optical sensors.
  • Competitive Landscape: Analysis of global Tier-1 suppliers, market share data for various sensor types, and profiles of over 80 key players in the ADAS ecosystem. Companies profiled include Acconeer, Aeva, AEye, AMS Osram, Aptiv, Arbe, AutoX, Baidu, Beijing Surestar Technology, Benewake, Bosch, Cepton, Continental AG, Cruise, DeepWay, Denso Corporation, Derq, Emberion, Emotion3D, Eyeris, Greenerwave, Hella, Hesai Technology, Hikvision, Huawei, Hyundai Mobis, Inceptio Technology, Innoviz Technologies, Kognic, Koito Manufacturing, LeddarTech, Leishen Intelligent System Co., Ltd, LG Innotek, Lidwave, Livox, Lumentum Operations LLC, Luminar Technologies, Lumotive, Lunewave, Magna, Melexis, Mitsubishi Electric, Mobileye, Nodar, NXP, Ommatidia LiDAR, OmniVision, Onsemi, OQmented, Ouster, Owl Autonomous Imaging, Plastic Omnium, plus.ai, Pontosense, Pony.ai, PreAct, Qualcomm, Renesas Electronics Corporation, RoboSense, Seeing Machines, Sensrad, 7invensu, Seyond, SenseTime, SiLC Technologies, Smart Radar System, Spartan Radar, Steerlight, Tanway, Terabee, Texas Instruments, Tobii, Uhnder, Valeo, Vayyar, Velodyne, Veoneer, Visteon, Volvo, Voyant Photonics, Vueron, Waymo, XenomatiX, XPeng Motors, Zadar Labs, Zendar, ZF Friedrichshafen AG and Zvision.
  • Overview of global ADAS-related regulations and their influence on market growth and technology adoption.
  •  Insights into potential disruptive technologies, the impact of autonomous vehicle development on the ADAS market, and long-term growth projections.
  • Market segmentation analysis by sensor type, including:
    • Cameras: Front-facing, surround-view, driver monitoring, and infrared cameras
    • Radar: Short-range, long-range, and imaging radar systems
    • LiDAR: Mechanical, solid-state, and MEMS-based LiDAR technologies
    • Ultrasonic Sensors: For parking assistance and short-range object detection
    • Infrared Sensors: For enhanced night vision and pedestrian detection
  • Market restraints such as high costs of advanced ADAS systems, technical challenges in sensor reliability, and cybersecurity concerns.
  • Technology Trends and Innovations including:
    • Cameras: Developments in high-resolution sensors, wide dynamic range capabilities, and AI-enhanced image processing.
    • Radar: Evolution of 4D imaging radar, high-resolution radar, and software-defined radar systems
    • LiDAR: Innovations in solid-state LiDAR, MEMS-based LiDAR, and FMCW LiDAR, along with cost reduction strategies
    • Sensor Fusion: Advancements in multi-sensor data fusion algorithms, edge computing, and AI-driven sensor fusion techniques
    • ADAS Controllers: Trends in high-performance computing platforms, domain controllers, and zonal architecture
  • Competitive Landscape analysis including: 
    • Global Tier-1 market share analysis
    • Market share data for specific sensor types (e.g., front cameras, LiDAR, radar)
    • Analysis of major Tier-1 suppliers and their strategies
    • Global regulatory environment for ADAS technologies.

 

Key Questions Addressed:

  1. What is the projected market size for ADAS sensors by 2035?
  2. Which sensor technologies are expected to see the highest growth rates?
  3. How will regulatory requirements drive ADAS sensor adoption in different regions?
  4. What are the key challenges facing ADAS sensor manufacturers?
  5. How will the shift towards autonomous vehicles impact the ADAS sensors market?
  6. Which companies are leading in different sensor categories, and what are their market shares?
  7. What emerging technologies could disrupt the current ADAS sensor landscape?

 

Who should be interested in this report?

  • Automotive OEMs and Tier-1 suppliers
  • ADAS sensor manufacturers
  • Semiconductor companies
  • Autonomous vehicle technology developers
  • Investment firms and financial analysts
  • Regulatory bodies and policymakers
  • Automotive industry consultants and researchers

 

 

Download Table of contents

1             EXECUTIVE SUMMARY            15

  • 1.1        Autonomous driving technologies   16
  • 1.2        Sensors for ADAS and Autonomous Technologies 20
  • 1.3        Successful ADAS Implementation in Mass-Market Vehicles          22
  • 1.4        Challenges Faced by OEMs in ADAS Integration     23
  • 1.5        Innovative ADAS Solutions in Premium Vehicles    24
  • 1.6        ADAS Performance in Real-World Conditions          25
  • 1.7        Market Drivers               26
    • 1.7.1    Safety Regulations and NCAP Requirements           28
    • 1.7.2    Consumer Demand for Advanced Safety Features               29
    • 1.7.3    Progress Towards Vehicle Autonomy             30
    • 1.7.4    Cost Reductions in Sensor Technologies    31
  • 1.8        Market Restraints       32
    • 1.8.1    High Costs of Advanced ADAS Systems       33
    • 1.8.2    Technical Challenges in Sensor Reliability 34
    • 1.8.3    Consumer Trust and Acceptance Issues     35
    • 1.8.4    Cybersecurity Concerns         36
  • 1.9        Market Opportunities               36
    • 1.9.1    Integration of ADAS with V2X Technologies                37
    • 1.9.2    Aftermarket ADAS Solutions                38
    • 1.9.3    ADAS in Commercial Vehicles and Fleets   39
    • 1.9.4    Emerging Markets for ADAS Technologies   40
  • 1.10     Market Challenges     41
  • 1.11     Competitive landscape          43
    • 1.11.1 Competitive Positioning of Key Players         44
    • 1.11.2 Investment Trends in ADAS Technologies    44

 

2             INTRODUCTION          47

  • 2.1        Autonomous driving  48
    • 2.1.1    Overview           49
    • 2.1.2    Sensor fusion 50
      • 2.1.2.1 ADAS/AV            51
      • 2.1.2.2 Trends 51
      • 2.1.2.3 Hybrid AI           53
      • 2.1.2.4 Pure vision vs lidar sensor fusion     54
    • 2.1.3    Optical 3D sensing    55
    • 2.1.4    Multi-camera 56
    • 2.1.5    Radar and lidar             58
  • 2.2        Passive and Active Sensors  60
  • 2.3        Overview of ADAS Sensors and Controllers               61
    • 2.3.1    ADAS Features              62
  • 2.4        ADAS functions            64
  • 2.5        Importance of ADAS in Modern Vehicles     65
  • 2.6        Key Players in the ADAS Supply Chain          66

 

3             MARKET OVERVIEW  67

  • 3.1        Global ADAS Market Size and Growth           68
    • 3.1.1    By type                68
  • 3.2        Regional ADAS Adoption Trends        69
  • 3.3        Regulatory Landscape Driving ADAS Adoption        71
  • 3.4        Impact of Autonomous Vehicle Development on ADAS Market    73

 

4             ADAS SENSOR TECHNOLOGIES       74

  • 4.1        Overview of Key ADAS Sensor Types               75
    • 4.1.1    Sensors in Autonomous Vehicles     75
      • 4.1.1.1 Number of sensors    76
      • 4.1.1.2 Cost     77
      • 4.1.1.3 V2X, 5G, advanced digital mapping, and GPS in autonomous driving      78
    • 4.1.2    Cameras           80
      • 4.1.2.1 External Cameras       80
      • 4.1.2.2 Internal Cameras        82
      • 4.1.2.3 Front camera 84
      • 4.1.2.4 RGB/Visible light camera       85
      • 4.1.2.5 CMOS image sensors vs CCD cameras       88
      • 4.1.2.6 Driver Monitoring Systems (DMS) and Occupant Monitoring Systems (OMS)     90
        • 4.1.2.6.1           Overview           90
        • 4.1.2.6.2           2D Cameras   93
        • 4.1.2.6.3           3D Cameras   94
        • 4.1.2.6.4           ToF Cameras  95
        • 4.1.2.6.5           Occupant Monitoring System (OMS) Cameras        97
        • 4.1.2.6.6           NIR/IR Imaging             99
          • 4.1.2.6.6.1      IR cameras/sensors  99
          • 4.1.2.6.6.2      Infrared (IR) in DMS    100
          • 4.1.2.6.6.3      VCSEL 101
      • 4.1.2.6.7           Eye Movement Tracking          103
      • 4.1.2.6.8           Brain Function Monitoring     104
      • 4.1.2.6.9           Cardiovascular Metrics           105
      • 4.1.2.7 E-mirrors           106
      • 4.1.2.8 Thermal cameras        107
        • 4.1.2.8.1           Thermal Cameras in Autonomous Vehicles               107
        • 4.1.2.8.2           NIR        108
        • 4.1.2.8.3           SWIR    109
      • 4.1.2.9 Companies     110
    • 4.1.3    Radar  112
      • 4.1.3.1 Radar in Autonomous Vehicles          113
      • 4.1.3.2 Front Radar     116
      • 4.1.3.3 Side Radars    118
      • 4.1.3.4 Components  119
      • 4.1.3.5 Radar trends   121
      • 4.1.3.6 In-Cabin Radars          123
      • 4.1.3.7 4D Radars and Imaging Radars         124
      • 4.1.3.8 Transceivers   128
      • 4.1.3.9 Companies     130
    • 4.1.4    LiDAR  134
      • 4.1.4.1 Automotive LiDAR       135
      • 4.1.4.1.1           Operating process      135
      • 4.1.4.1.2           Requirements                136
      • 4.1.4.2 LiDAR systems              138
      • 4.1.4.3 2D vs 3D lidar 140
      • 4.1.4.4 Ranging and photodetection               141
      • 4.1.4.4.1           Direct TOF        141
      • 4.1.4.4.2           Indirect TOF    142
      • 4.1.4.4.3           Frequency modulated continuous wave (FMCW) 142
      • 4.1.4.5 Beam steering               144
      • 4.1.4.5.1           Mechanical Lidar        145
      • 4.1.4.5.2           MEMS Lidar     146
      • 4.1.4.5.3           Flash lidar        147
      • 4.1.4.5.4           Others 149
      • 4.1.4.5.4.1      Spectral deflection     149
      • 4.1.4.5.4.2      Micro-motion technology      150
      • 4.1.4.5.4.3      Liquid crystal lidar      151
      • 4.1.4.5.4.4      Metamaterials               152
      • 4.1.4.5.4.5      GLV-based beam steering     156
      • 4.1.4.6 Lasers 157
      • 4.1.4.6.1           IR emitters       158
      • 4.1.4.6.2           Edge-emitting lasers (EEL)    158
      • 4.1.4.6.3           Vertical-cavity surface-emitting lasers (VCSEL)     160
      • 4.1.4.6.4           External cavity & quantum cascade lasers (QCL)  161
      • 4.1.4.6.5           Fiber lasers     163
      • 4.1.4.6.6           Diode-pumped solid-state lasers (DPSSL) 164
      • 4.1.4.7 Receivers          166
      • 4.1.4.8 Signal and data analysis/processing             167
      • 4.1.4.9 Companies     169
  • 4.2        ADAS Controllers and ECUs 175
    • 4.2.1    Role of ADAS Controllers and ECUs in Autonomous Driving          175
    • 4.2.2    ADAS Controllers: Functions and Technologies      176
      • 4.2.2.1 Core Functions of ADAS Controllers               176
      • 4.2.2.2 Key Technologies in ADAS Controllers           177
      • 4.2.2.3 ADAS Controller Architectures           177
      • 4.2.2.4 Types of ECUs in Autonomous Vehicles       178
    • 4.2.3    Thermal Management             179
    • 4.2.4    Challenges in ADAS Controllers and ECUs for Autonomous Driving         180
    • 4.2.5    Future Trends and Developments    181
      • 4.2.5.1 Advanced AI and Machine Learning                181
      • 4.2.5.2 Edge Computing and Distributed Intelligence          182
      • 4.2.5.3 Software-Defined Vehicles   183
      • 4.2.5.4 Integration of V2X Communication 184
  • 4.3        Sensor Fusion Technologies 187
  • 4.4        Emerging Sensor Technologies          189
    • 4.4.1    Event-based Vision    189
    • 4.4.2    Quantum Dot Optical Sensors           191
    • 4.4.3    Hyperspectral Imaging            192

 

5             KEY MARKET PLAYERS AND MARKET SHARE            194

  • 5.1        Global Tier-1 Market Share Analysis               194
  • 5.2        Overall ADAS Sensor Market Share 195
    • 5.2.1    Top 10 Tier-1 Suppliers by Revenue  196
    • 5.2.2    Market Share Trends (2021-2023)    198
    • 5.2.3    Regional Market Share Variations    199
  • 5.3        Front Camera Market Share 200
    • 5.3.1    Leading Suppliers and Their Market Positions         200
    • 5.3.2    Technology Differentiators Among Top Players        201
    • 5.3.3    OEM Partnerships and Supply Agreements               202
  • 5.4        Driver Monitoring Systems (DMS) / Occupant Monitoring Systems (OMS) Market Share             203
    • 5.4.1    Key Players in the DMS/OMS Space                203
  • 5.5        Technological Advancements Driving Market Growth         205
  • 5.6        Regulatory Impacts on DMS/OMS Adoption             207
  • 5.7        LiDAR Market Share   208
    • 5.7.1    Current Market Leaders in Automotive LiDAR          208
    • 5.7.2    Emerging Players and Disruptive Technologies       210
    • 5.7.3    LiDAR Adoption Trends Among OEMs           212
  • 5.8        Radar Market Share   214
    • 5.8.1    Dominant Players in Automotive Radar        215
    • 5.8.2    Imaging Radar vs. Traditional Radar Market Dynamics      218
    • 5.8.3    Frequency Trends (24GHz, 77GHz, 79GHz)               220
  • 5.9        Other ADAS Sensors Market Share  221
    • 5.9.1    Ultrasonic Sensors     221
    • 5.9.2    Infrared Sensors          223
    • 5.9.3    GNSS and IMU Suppliers       224
  • 5.10     ADAS Controllers and ECUs Market Share 225
    • 5.10.1 Leading Suppliers of ADAS Computing Platforms 225
    • 5.10.2 Trends in Centralized vs. Distributed ADAS Architectures                225
  • 5.11     Analysis of Major Tier-1 Suppliers     227

 

6             TECHNOLOGY TRENDS AND INNOVATIONS            229

  • 6.1        Advancements in Camera Technology          229
    • 6.1.1    High-Resolution Sensors       230
    • 6.1.2    Wide Dynamic Range (WDR) Capabilities  231
    • 6.1.3    Low-Light Performance Improvements        233
    • 6.1.4    AI-Enhanced Image Processing         233
  • 6.2        Radar Technology Evolution 234
    • 6.2.1    4D Imaging Radar       234
    • 6.2.2    High-Resolution Radar            235
    • 6.2.3    Software-Defined Radar        237
  • 6.3        LiDAR Innovations      239
    • 6.3.1    Solid-State LiDAR       239
    • 6.3.2    MEMS-based LiDAR   240
    • 6.3.3    FMCW LiDAR 242
    • 6.3.4    Cost Reduction Strategies     244
  • 6.4        Sensor Fusion Advancements            244
    • 6.4.1    Multi-Sensor Data Fusion Algorithms            246
    • 6.4.2    Edge Computing for Sensor Fusion 246
    • 6.4.3    AI and Machine Learning in Sensor Fusion 248
  • 6.5        ADAS Controller Innovations               248
    • 6.5.1    High-Performance Computing Platforms    248
    • 6.5.2    Domain Controllers   250
    • 6.5.3    Zonal Architecture Trends     250

 

7             FUTURE OUTLOOK AND MARKET FORECASTS        252

  • 7.1        Market Forecast (2024-2035)             252
    • 7.1.1    Market Size Projections           254
      • 7.1.1.1 By Sensor Type              254
      • 7.1.1.2 By Units             256
        • 7.1.1.2.1           Cameras           256
        • 7.1.1.2.2           Radar  257
        • 7.1.1.2.3           LiDAR  259
    • 7.1.2    Regional Growth Forecasts  261
    • 7.1.3    Expected Technology Adoption Rates           263
  • 7.2        Impact of Autonomous Vehicle Development on ADAS Market    264
  • 7.3        Potential Disruptive Technologies and Their Impact            265

 

8             REGULATORY LANDSCAPE   266

  • 8.1        Global ADAS-Related Regulations   266
  • 8.2        Regional Variations in ADAS Requirements               269
  • 8.3        Future Regulatory Trends and Their Impact on the Market               271

 

9             COMPANY PROFILES                273

  • 9.1        Acconeer           276
  • 9.2        Aeva     278
  • 9.3        AEye     279
  • 9.4        AMS Osram     281
  • 9.5        Aptiv    282
  • 9.6        Arbe     283
  • 9.7        AutoX  284
  • 9.8        Baidu  285
  • 9.9        Beijing Surestar Technology 286
  • 9.10     Benewake         287
  • 9.11     Bosch 288
  • 9.12     Cepton               290
  • 9.13     Continental AG             292
  • 9.14     Cruise 293
  • 9.15     DeepWay          295
  • 9.16     Denso Corporation    296
  • 9.17     Derq     297
  • 9.18     Emberion          298
  • 9.19     Emotion3D      299
  • 9.20     Eyeris  301
  • 9.21     Greenerwave  302
  • 9.22     Hella    303
  • 9.23     Hesai Technology        305
  • 9.24     Hikvision           306
  • 9.25     Huawei               307
  • 9.26     Hyundai Mobis             308
  • 9.27     Inceptio Technology  309
  • 9.28     Innoviz Technologies 309
  • 9.29     Kognic 311
  • 9.30     Koito Manufacturing 312
  • 9.31     LeddarTech      313
  • 9.32     Leishen Intelligent System Co., Ltd 315
  • 9.33     LG Innotek       316
  • 9.34     Lidwave              317
  • 9.35     Livox    318
  • 9.36     Lumentum Operations LLC  319
  • 9.37     Luminar Technologies              320
  • 9.38     Lumotive           321
  • 9.39     Lunewave         322
  • 9.40     Magna 324
  • 9.41     Melexis               325
  • 9.42     Mitsubishi Electric      327
  • 9.43     Mobileye           328
  • 9.44     Nodar  329
  • 9.45     NXP      330
  • 9.46     Ommatidia LiDAR       331
  • 9.47     OmniVision     332
  • 9.48     Onsemi              333
  • 9.49     OQmented      334
  • 9.50     Ouster 334
  • 9.51     Owl Autonomous Imaging    335
  • 9.52     Plastic Omnium           336
  • 9.53     plus.ai 337
  • 9.54     Pontosense     338
  • 9.55     Pony.ai               339
  • 9.56     PreAct 340
  • 9.57     Qualcomm      341
  • 9.58     Renesas Electronics Corporation     341
  • 9.59     RoboSense      342
  • 9.60     Seeing Machines         343
  • 9.61     Sensrad             344
  • 9.62     7invensu           344
  • 9.63     Seyond               345
  • 9.64     SenseTime       346
  • 9.65     SiLC Technologies      347
  • 9.66     Smart Radar System 347
  • 9.67     Spartan Radar               348
  • 9.68     Steerlight          349
  • 9.69     Tanway               350
  • 9.70     Terabee              351
  • 9.71     Texas Instruments      352
  • 9.72     Tobii     353
  • 9.73     Uhnder               354
  • 9.74     Valeo   355
  • 9.75     Vayyar 356
  • 9.76     Velodyne           357
  • 9.77     Veoneer             358
  • 9.78     Visteon               360
  • 9.79     Volvo   360
  • 9.80     Voyant Photonics        361
  • 9.81     Vueron                362
  • 9.82     Waymo               363
  • 9.83     XenomatiX       364
  • 9.84     XPeng Motors 364
  • 9.85     Zadar Labs      365
  • 9.86     Zendar                366
  • 9.87     ZF Friedrichshafen AG              367
  • 9.88     Zvision                368

 

10          APPENDICES  369

  • 10.1     Research Methodology           369
  • 10.2     List of Abbreviations  370

 

11          REFERENCES 372

 

List of Tables

  • Table 1. Automation Levels . 15
  • Table 2. Autonomous driving technologies.               16
  • Table 3. Market drivers for ADAS sensors.  26
  • Table 4. Market Restraints for ADAS sensors.           31
  • Table 5. Market opportunities in ADAS sensors.     36
  • Table 6. Market challenges in ADAS sensors.           41
  • Table 7. Emerging Players and Startups in the ADAS Ecosystem. 45
  • Table 8. SAE Automation Levels Definition.               48
  • Table 9. Pure vision vs lidar sensor fusion. 53
  • Table 10. Optical 3D sensing methods.        54
  • Table 11. Overview of ADAS Sensors and Controllers.        61
  • Table 12. Key Players in the ADAS Supply Chain.   65
  • Table 13. Regional ADAS Adoption Trends  69
  • Table 14. Regulatory Landscape Driving ADAS Adoption  71
  • Table 15. ADAS Camera Sensors vs Radar Sensors vs Lidar Sensors.      83
  • Table 16. CMOS image sensors vs CCD cameras. 86
  • Table 17. Advatanages and disadvantages of IR Cameras.             87
  • Table 18. CMOS image sensors vs CCD cameras. 88
  • Table 19. Sensing Technologies by Features.            90
  • Table 20. Comparison of Radar, ToF and IR Cameras.        91
  • Table 21. Comparison of In-Cabin Sensing Technologies.               91
  • Table 22. Applications of DMS.          94
  • Table 23. Comparative analysis of LEDS and VCSEL.          101
  • Table 24. Market players in cameras and thermal cameras.          110
  • Table 25. Front Radar ADAS Applications.  116
  • Table 26. Side Radar ADAS Applications.    118
  • Table 27. Vehicles Using 4D Imaging Radars,           124
  • Table 28. Plastic Omnium Functionalized Bumper.              126
  • Table 29. Key Radar Components    127
  • Table 30. Tier 1 Radar suppliers.       128
  • Table 31. Market players in automotive radar.          130
  • Table 32. LiDAR classifications.        134
  • Table 33.TOF vs FMCW LiDAR             137
  • Table 34. Comparative analysis of TOF and FMCW.              143
  • Table 35.  LiDAR beam steering technologies.         144
  • Table 36. Lidar scanning.       144
  • Table 37. Technology options for laser illumination.            157
  • Table 38. Automotive LiDAR players.              169
  • Table 39. LiDAR challenges. 172
  • Table 40. Event-based sensing: Pros and cons        190
  • Table 41. Leading Suppliers and Their Market Positions   200
  • Table 42. OEM Partnerships and Supply Agreements.        202
  • Table 43.Key Players in the DMS/OMS Space.          204
  • Table 44.Technological Advancements Driving Market Growth.   205
  • Table 45. Current Market Leaders in Automotive LiDAR.   208
  • Table 46. Emerging Players and Disruptive Technologies. 210
  • Table 47.LiDAR Adoption Trends Among OEMs.     212
  • Table 48. Imaging Radar vs. Traditional Radar Market Dynamics.               218
  • Table 49. Leading Suppliers of ADAS Computing Platforms.          225
  • Table 50. Trends in Centralized vs. Distributed ADAS Architectures.         225
  • Table 51. Autonomous Vehicles Forecast by SAE level 2022-2035.          253
  • Table 52. Market Size Projections by Sensor Type, Millions USD, 2024-2035.    254
  • Table 53. Market Size Projections: Cameras, Units, 2024-2035. 256
  • Table 54. Market Size Projections: Radar, Units, 2024-2035.         257
  • Table 55. Market Size Projections: LiDAR, Units, 2024-2035.        259
  • Table 56. Market Size Projections by Region, Millions USD, 2024-2035. 261
  • Table 57. Global ADAS-Related Regulations.            266

 

List of Figures

  • Figure 1. Evolution of Sensor Suites.              16
  • Figure 2. Position navigation technology.    49
  • Figure 3. Global market for ADAS sensors 2022-2035 (by type).  68
  • Figure 4. Toyota external camera.    80
  • Figure 5. ADAS/AV Thermal Camera.              81
  • Figure 6. Internal ADAS camera.       82
  • Figure 7. RGB Cameras for Autonomous Vehicles 85
  • Figure 8. OmniVision Global Shutter Sensor chip. 86
  • Figure 9. Front vs backside illumination.     88
  • Figure 10. Driver Monitoring System.             90
  • Figure 11. Driver Monitoring Systems (DMS) with S32V234 Vision Processor.     92
  • Figure 12. Infineon DMS - REAL3™ ToF Imager IRS2877A(S).          96
  • Figure 13. Exploded view of Magna's driver monitoring system built into a rearview mirror.      96
  • Figure 14. PreAct Mojave Flash LiDAR for OMS.      97
  • Figure 15. LG Innotek ToF Camera for DMS.              98
  • Figure 16. TriEye.          109
  • Figure 17. LANXESS Concept Radar.              119
  • Figure 18.Typical Sensor Suite for Autonomous Cars.        120
  • Figure 19. LiDAR system.       136
  • Figure 20. LiDAR working principle. 137
  • Figure 21. Metamaterials in automotive applications.       153
  • Figure 22. Lumotive advanced beam steering concept.    153
  • Figure 23. Illustration of EchoDrive operation.         155
  • Figure 24. Laser operating principles             157
  • Figure 25. Top 10 Tier-1 Suppliers by Revenue          196
  • Figure 26. LiDAR for automotive market share.       209
  • Figure 27. Autonomous Vehicles Forecast by SAE level 2022-2035.         253
  • Figure 28. Market Size Projections: Cameras, Units, 2024-2035. 257
  • Figure 29. Market Size Projections: Radar, Units, 2024-2035.       258
  • Figure 30. Radar Unit Sales by SAE Levels 2022-2035.      259
  • Figure 31. Market Size Projections: LiDAR, Units, 2024-2035.      260
  • Figure 32. Market Size Projections by Region, Millions USD, 2024-2035.              262
  • Figure 33. Continental ARS540.        292
  • Figure 34. (Hesai AT512 LiDAR).        305

 

 

 

 

 

ADAS Sensors Global Market 2025-2035
ADAS Sensors Global Market 2025-2035
PDF download.

ADAS Sensors Global Market 2025-2035
ADAS Sensors Global Market 2025-2035
PDF download and print edition (including delivery).

Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer. 

To purchase by invoice (bank transfer) contact info@futuremarketsinc.com or select Bank Transfer (Invoice) as a payment method at checkout.